12 research outputs found

    Simulation-Sound Arguments for LWE and Applications to KDM-CCA2 Security

    Get PDF
    The Naor-Yung paradigm is a well-known technique that constructs IND-CCA2-secure encryption schemes by means of non-interactive zero-knowledge proofs satisfying a notion of simulation-soundness. Until recently, it was an open problem to instantiate it under the sole Learning-With-Errors (LWE) assumption without relying on random oracles. While the recent results of Canetti {\it et al.} (STOC\u2719) and Peikert-Shiehian (Crypto\u2719) provide a solution to this problem by applying the Fiat-Shamir transform in the standard model, the resulting constructions are extremely inefficient as they proceed via a reduction to an NP-complete problem. In this paper, we give a direct, non-generic method for instantiating Naor-Yung under the LWE assumption outside the random oracle model. Specifically, we give a direct construction of an unbounded simulation-sound NIZK argument system which, for carefully chosen parameters, makes it possible to express the equality of plaintexts encrypted under different keys in Regev\u27s cryptosystem. We also give a variant of our argument that provides tight security. As an application, we obtain an LWE-based public-key encryption scheme for which we can prove (tight) key-dependent message security under chosen-ciphertext attacks in the standard model

    Rational Modular Encoding in the DCR Setting: Non-Interactive Range Proofs and Paillier-Based Naor-Yung in the Standard Model

    Get PDF
    International audienceRange proofs allow a sender to convince a verifier that committed integers belong to an interval without revealing anything else. So far, all known non-interactive range proofs in the standard model rely on groups endowed with a bilinear map. Moreover, they either require the group order to be larger than the range of any proven statement or they suffer from a wasteful rate. Recently (Eurocrypt'21), Couteau et al. introduced a new approach to efficiently prove range membership by encoding integers as a modular ratio between small integers. We show that their technique can be transposed in the standard model under the Composite Residuosity (DCR) assumption. Interestingly, with this modification, the size of ranges is not a priori restricted by the common reference string. It also gives a constant ratio between the size of ranges and proofs. Moreover, we show that their technique of encoding messages as bounded rationals provides a secure standard model instantiation of the Naor-Yung CCA2 encryption paradigm under the DCR assumption

    Keyed-Fully Homomorphic Encryption without Indistinguishability Obfuscation

    Get PDF
    (Fully) homomorphic encryption ((F)HE) allows users to publicly evaluate circuits on encrypted data. Although public homomorphic evaluation property has various applications, (F)HE cannot achieve security against chosen ciphertext attacks (CCA2) due to its nature. To achieve both the CCA2 security and homomorphic evaluation property, Emura et al. (PKC 2013) introduced keyed-homomorphic public key encryption (KH-PKE) and formalized its security denoted by KH-CCA security. KH-PKE has a homomorphic evaluation key that enables users to perform homomorphic operations. Intuitively, KH-PKE achieves the CCA2 security unless adversaries have a homomorphic evaluation key. Although Lai et al. (PKC 2016) proposed the first keyed-fully homomorphic encryption (keyed-FHE) scheme, its security relies on the indistinguishability obfuscation (iO), and this scheme satisfies a weak variant of KH-CCA security. Here, we propose a generic construction of a KH-CCA secure keyed-FHE scheme from an FHE scheme secure against non-adaptive chosen ciphertext attack (CCA1) and a strong dual-system simulation-sound non-interactive zero-knowledge (strong DSS-NIZK) argument system by using the Naor-Yung paradigm. We show that there are a strong DSS-NIZK and an IND-CCA1 secure FHE scheme that are suitable for our generic construction. This shows that there exists a keyed-FHE scheme from simpler primitives than iO

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Minicrypt Primitives with Algebraic Structure and Applications

    Get PDF
    Algebraic structure lies at the heart of much of Cryptomania as we know it. An interesting question is the following: instead of building (Cryptomania) primitives from concrete assumptions, can we build them from simple Minicrypt primitives endowed with additional algebraic structure? In this work, we affirmatively answer this question by adding algebraic structure to the following Minicrypt primitives: ‱ One-Way Function (OWF) ‱ Weak Unpredictable Function (wUF) ‱ Weak Pseudorandom Function (wPRF) The algebraic structure that we consider is group homomorphism over the input/output spaces of these primitives. We also consider a “bounded” notion of homomorphism where the primitive only supports an a priori bounded number of homomorphic operations in order to capture lattice-based and other “noisy” assumptions. We show that these structured primitives can be used to construct many cryptographic protocols. In particular, we prove that: ‱ (Bounded) Homomorphic OWFs (HOWFs) imply collision-resistant hash functions, Schnorr-style signatures, and chameleon hash functions. ‱ (Bounded) Input-Homomorphic weak UFs (IHwUFs) imply CPA-secure PKE, non-interactive key exchange, trapdoor functions, blind batch encryption (which implies anonymous IBE, KDM-secure and leakage-resilient PKE), CCA2 deterministic PKE, and hinting PRGs (which in turn imply transformation of CPA to CCA security for ABE/1-sided PE). ‱ (Bounded) Input-Homomorphic weak PRFs (IHwPRFs) imply PIR, lossy trapdoor functions, OT and MPC (in the plain model). In addition, we show how to realize any CDH/DDH-based protocol with certain properties in a generic manner using IHwUFs/IHwPRFs, and how to instantiate such a protocol from many concrete assumptions. We also consider primitives with substantially richer structure, namely Ring IHwPRFs and L-composable IHwPRFs. In particular, we show the following: ‱ Ring IHwPRFs with certain properties imply FHE. ‱ 2-composable IHwPRFs imply (black-box) IBE, and LL-composable IHwPRFs imply non-interactive (L+1)(L + 1)-party key exchange. Our framework allows us to categorize many cryptographic protocols based on which structured Minicrypt primitive implies them. In addition, it potentially makes showing the existence of many cryptosystems from novel assumptions substantially easier in the future

    On Foundations of Protecting Computations

    Get PDF
    Information technology systems have become indispensable to uphold our way of living, our economy and our safety. Failure of these systems can have devastating effects. Consequently, securing these systems against malicious intentions deserves our utmost attention. Cryptography provides the necessary foundations for that purpose. In particular, it provides a set of building blocks which allow to secure larger information systems. Furthermore, cryptography develops concepts and tech- niques towards realizing these building blocks. The protection of computations is one invaluable concept for cryptography which paves the way towards realizing a multitude of cryptographic tools. In this thesis, we contribute to this concept of protecting computations in several ways. Protecting computations of probabilistic programs. An indis- tinguishability obfuscator (IO) compiles (deterministic) code such that it becomes provably unintelligible. This can be viewed as the ultimate way to protect (deterministic) computations. Due to very recent research, such obfuscators enjoy plausible candidate constructions. In certain settings, however, it is necessary to protect probabilistic com- putations. The only known construction of an obfuscator for probabilistic programs is due to Canetti, Lin, Tessaro, and Vaikuntanathan, TCC, 2015 and requires an indistinguishability obfuscator which satisfies extreme security guarantees. We improve this construction and thereby reduce the require- ments on the security of the underlying indistinguishability obfuscator. (Agrikola, Couteau, and Hofheinz, PKC, 2020) Protecting computations in cryptographic groups. To facilitate the analysis of building blocks which are based on cryptographic groups, these groups are often overidealized such that computations in the group are protected from the outside. Using such overidealizations allows to prove building blocks secure which are sometimes beyond the reach of standard model techniques. However, these overidealizations are subject to certain impossibility results. Recently, Fuchsbauer, Kiltz, and Loss, CRYPTO, 2018 introduced the algebraic group model (AGM) as a relaxation which is closer to the standard model but in several aspects preserves the power of said overidealizations. However, their model still suffers from implausibilities. We develop a framework which allows to transport several security proofs from the AGM into the standard model, thereby evading the above implausi- bility results, and instantiate this framework using an indistinguishability obfuscator. (Agrikola, Hofheinz, and Kastner, EUROCRYPT, 2020) Protecting computations using compression. Perfect compression algorithms admit the property that the compressed distribution is truly random leaving no room for any further compression. This property is invaluable for several cryptographic applications such as “honey encryption” or password-authenticated key exchange. However, perfect compression algorithms only exist for a very small number of distributions. We relax the notion of compression and rigorously study the resulting notion which we call “pseudorandom encodings”. As a result, we identify various surprising connections between seemingly unrelated areas of cryptography. Particularly, we derive novel results for adaptively secure multi-party computation which allows for protecting computations in distributed settings. Furthermore, we instantiate the weakest version of pseudorandom encodings which suffices for adaptively secure multi-party computation using an indistinguishability obfuscator. (Agrikola, Couteau, Ishai, Jarecki, and Sahai, TCC, 2020

    Rate-1 Key-Dependent Message Security via Reusable Homomorphic Extractor against Correlated-Source Attacks

    Get PDF
    In this work, we first present general methods to construct information rate-1 PKE that is \KDM^{(n)}-secure with respect to \emph{block-affine} functions for any unbounded polynomial nn. To achieve this, we propose a new notion of extractor that satisfies \emph{reusability}, \emph{homomorphic}, and \emph{security against correlated-source attacks}, and show how to use this extractor to improve the information rate of the \KDM-secure PKE of Brakerski et al.~(Eurocrypt 18). Then, we show how to amplify \KDM~security from block-affine function class into general bounded size circuits via a variant of the technique of Applebaum (Eurocrypt 11), achieving better efficiency. Furthermore, we show how to generalize these approaches to the IBE setting. Additionally, our PKE and IBE schemes are also leakage resilient, with leakage rates 1−o(1)1-o(1) against a slightly smaller yet still general class -- block leakage functions. We can instantiate the required building blocks from \LWE or \DDH

    On Quantum Simulation-Soundness

    Get PDF
    Non-interactive zero-knowledge (NIZK) proof systems are a cornerstone of modern cryptography, but their security has received little attention in the quantum settings. Motivated by improving our understanding of this fundamental primitive against quantum adversaries, we propose a new definition of security against quantum adversary. Specifically, we define the notion of quantum simulation soundness (SS-NIZK), that allows the adversary to access the simulator in superposition. We show a separation between post-quantum and quantum security of SS-NIZK, and prove that both Sahai’s construction for SS-NIZK (in the CRS model) and the Fiat-Shamir transformation (in the QROM) can be made quantumly-simulation-sound. As an immediate application of our new notion, we prove the security of the Naor-Yung paradigm in the quantum settings, with respect to a strong quantum IND-CCA security notion. This provides the quantum analogue of the classical dual key approach to prove the security of encryption schemes. Along the way, we introduce a new notion of quantum-query advantage functions, which may be used as a general framework to show classical/quantum separation for other cryptographic primitives, and it may be of independent interest

    One-Shot Fiat-Shamir-based NIZK Arguments of Composite Residuosity and Logarithmic-Size Ring Signatures in the Standard Model

    Get PDF
    The standard model security of the Fiat-Shamir transform has been an active research area for many years. In breakthrough results, Canetti et al. (STOC\u2719) and Peikert-Shiehian (Crypto\u2719) showed that, under the Learning-With-Errors (LWE) assumption, it provides soundness by applying correlation-intractable (CI) hash functions to so-called trapdoor Σ\Sigma-protocols. In order to be compatible with CI hash functions based on standard LWE assumptions with polynomial approximation factors, all known such protocols have been obtained via parallel repetitions of a basic protocol with binary challenges. In this paper, we consider languages related to Paillier\u27s composite residuosity assumption (DCR) for which we give the first trapdoor Σ\Sigma-protocols providing soundness in one shot, via exponentially large challenge spaces. This improvement is analogous to the one enabled by Schnorr over the original Fiat-Shamir protocol in the random oracle model. Using the correlation-intractable hash function paradigm, we then obtain simulation-sound NIZK arguments showing that an element of ZN2∗\mathbb{Z}_{N^2}^\ast is a composite residue, which opens the door to space-efficient applications in the standard model. As a concrete example, we build logarithmic-size ring signatures (assuming a common reference string) with the shortest signature length among schemes based on standard assumptions in the standard model. We prove security under the DCR and LWE assumptions, while keeping the signature size comparable with that of random-oracle-based schemes

    Advances in Functional Encryption

    Get PDF
    Functional encryption is a novel paradigm for public-key encryption that enables both fine-grained access control and selective computation on encrypted data, as is necessary to protect big, complex data in the cloud. In this thesis, I provide a brief introduction to functional encryption, and an overview of my contributions to the area
    corecore