
O N F O U N DAT I O N S O F P R OT E C T I N G C O M P U TAT I O N S

1. Referent: Prof. Dr. Jörn Müller-Quade

2. Referent: Prof. Dr. Dennis Hofheinz

Tag der mündlichen Prüfung: 07. Mai 2021

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Thomas Agrikola

geboren am 03. April 1991 in Karsruhe

on foundations of protecting computations

Dissertation by Thomas Agrikola in partial fulfillment of the
requirements for the degree of Doctor of Natural Sciences (Dr.
rer. nat.) accepted by the KIT Department of Informatics of the
Karlsruhe Institute of Technology (KIT)

Day of examination: May 7, 2021

First referee: Prof. Dr. Jörn Müller-Quade, KIT
Second referee: Prof. Dr. Dennis Hofheinz, ETH Zürich

Published by KIT, Karlsruhe, Germany
DOI: 10.5445/IR/1000133798

https://doi.org/10.5445/IR/1000133798

A B S T R A C T

Information technology systems have become indispensable to uphold our
way of living, our economy and our safety. Failure of these systems can have
devastating effects. Consequently, securing these systems against malicious
intentions deserves our utmost attention.

Cryptography provides the necessary foundations for that purpose. In
particular, it provides a set of building blocks which allow to secure larger
information systems. Furthermore, cryptography develops concepts and tech-
niques towards realizing these building blocks. The protection of computations
is one invaluable concept for cryptography which paves the way towards
realizing a multitude of cryptographic tools. In this thesis, we contribute to
this concept of protecting computations in several ways.

protecting computations of probabilistic programs. An indis-
tinguishability obfuscator (IO) compiles (deterministic) code such that it
becomes provably unintelligible. This can be viewed as the ultimate way
to protect (deterministic) computations. Due to very recent research, such
obfuscators enjoy plausible candidate constructions.

In certain settings, however, it is necessary to protect probabilistic com-
putations. The only known construction of an obfuscator for probabilistic
programs is due to Canetti, Lin, Tessaro, and Vaikuntanathan, TCC, 2015 and
requires an indistinguishability obfuscator which satisfies extreme security
guarantees. We improve this construction and thereby reduce the require-
ments on the security of the underlying indistinguishability obfuscator.

Agrikola, Couteau, and Hofheinz, PKC, 2020

protecting computations in cryptographic groups. To facilitate
the analysis of building blocks which are based on cryptographic groups,
these groups are often overidealized such that computations in the group
are protected from the outside. Using such overidealizations allows to prove
building blocks secure which are sometimes beyond the reach of standard
model techniques. However, these overidealizations are subject to certain
impossibility results. Recently, Fuchsbauer, Kiltz, and Loss, CRYPTO, 2018

introduced the algebraic group model (AGM) as a relaxation which is closer
to the standard model but in several aspects preserves the power of said
overidealizations. However, their model still suffers from implausibilities.
We develop a framework which allows to transport several security proofs
from the AGM into the standard model, thereby evading the above implausi-
bility results, and instantiate this framework using an indistinguishability
obfuscator.

Agrikola, Hofheinz, and Kastner, EUROCRYPT, 2020

protecting computations using compression. Perfect compression
algorithms admit the property that the compressed distribution is truly
random leaving no room for any further compression. This property is
invaluable for several cryptographic applications such as “honey encryption”

iii

or password-authenticated key exchange. However, perfect compression
algorithms only exist for a very small number of distributions. We relax the
notion of compression and rigorously study the resulting notion which we
call “pseudorandom encodings”. As a result, we identify various surprising
connections between seemingly unrelated areas of cryptography. Particularly,
we derive novel results for adaptively secure multi-party computation which
allows for protecting computations in distributed settings. Furthermore, we
instantiate the weakest version of pseudorandom encodings which suffices
for adaptively secure multi-party computation using an indistinguishability
obfuscator.

Agrikola, Couteau, Ishai, Jarecki, and Sahai, TCC, 2020

P U B L I C AT I O N S

[AH18] Thomas Agrikola and Dennis Hofheinz. “Interactively Secure
Groups from Obfuscation.” In: Public-Key Cryptography - PKC
2018 - 21st IACR International Conference on Practice and Theory of
Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018,
Proceedings, Part II. (Work partially included in my master’s
thesis.) 2018, pp. 341–370. doi: 10.1007/978-3-319-76581-
5_12. eprint: https://eprint.iacr.org/2018/010. url:
https://doi.org/10.1007/978-3-319-76581-5_12 (cit. on
pp. 9, 91, 92, 110, 111, 115, 116, 120).

[ACH20] Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz.
“The Usefulness of Sparsifiable Inputs: How to Avoid Subex-
ponential iO.” In: Public-Key Cryptography - PKC 2020 - 23rd
IACR International Conference on Practice and Theory of Public-Key
Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part I.
Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas. Vol. 12110. Lecture Notes in Computer Sci-
ence. Springer, 2020, pp. 187–219. doi: 10.1007/978-3-030-
45374-9_7. eprint: https://eprint.iacr.org/2018/470. url:
https://doi.org/10.1007/978-3-030-45374-9_7 (cit. on
pp. 3–5, 17–19, 41, 46, 71, 81, 245).

[ACI+20] Thomas Agrikola, Geoffroy Couteau, Yuval Ishai, Stanislaw
Jarecki, and Amit Sahai. “On Pseudorandom Encodings.” In:
Theory of Cryptography - 18th International Conference, TCC 2020,
Durham, NC, USA, November 16-19, 2020, Proceedings, Part III.
Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12552. Lecture
Notes in Computer Science. Springer, 2020, pp. 639–669. doi:
10.1007/978-3-030-64381-2_23. url: https://doi.org/10.
1007/978-3-030-64381-2_23 (cit. on pp. 4, 5, 12, 15, 17–19,
147, 149, 153, 155, 245).

[AHK20] Thomas Agrikola, Dennis Hofheinz, and Julia Kastner. “On
Instantiating the Algebraic Group Model from Falsifiable As-
sumptions.” In: Advances in Cryptology - EUROCRYPT 2020
- 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part II. Ed. by Anne Canteaut and Yuval
Ishai. Vol. 12106. Lecture Notes in Computer Science. Springer,
2020, pp. 96–126. doi: 10 . 1007 / 978 - 3 - 030 - 45724 - 2 _ 4.
eprint: https://eprint.iacr.org/2020/070. url: https:
//doi.org/10.1007/978-3-030-45724-2_4 (cit. on pp. 4, 5, 9,
10, 17–19, 87, 89, 91, 130, 245).

v

https://doi.org/10.1007/978-3-319-76581-5_12
https://doi.org/10.1007/978-3-319-76581-5_12
https://eprint.iacr.org/2018/010
https://doi.org/10.1007/978-3-319-76581-5_12
https://doi.org/10.1007/978-3-030-45374-9_7
https://doi.org/10.1007/978-3-030-45374-9_7
https://eprint.iacr.org/2018/470
https://doi.org/10.1007/978-3-030-45374-9_7
https://doi.org/10.1007/978-3-030-64381-2_23
https://doi.org/10.1007/978-3-030-64381-2_23
https://doi.org/10.1007/978-3-030-64381-2_23
https://doi.org/10.1007/978-3-030-45724-2_4
https://eprint.iacr.org/2020/070
https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/978-3-030-45724-2_4

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

— Alan Turing [Tur50]

A C K N O W L E D G M E N T S

First and foremost, I would like to thank my advisor Dennis Hofheinz for
his support and for awakening my interest in cryptography in the first place.
Your technical intuition for cryptography is enviable. I also would like to
thank Jörn Müller-Quade for making it possible to finish my PhD at KIT
when Dennis decided to leave for ETH Zürich.

Furthermore, I would like to thank my co-authors Geoffroy Couteau, Yuval
Ishai, Stanisław Jarecki, Julia Kastner and Amit Sahai for many inspiring
discussions, for your ability to make hard problems seem easy and for your
trust. It was an honor and a pleasure to work with you.

I cannot emphasize enough how grateful I am to Geoffroy. You were like a
second advisor to me and without your support during a rather frustrating
time, I might not be where I am now. Thank you!

Special thanks also goes to Michael Klooß and Sven Maier for thoroughly
proofreading this thesis.

Also, I would like to thank all my former and present colleagues for
the great working atmosphere and for making my time at the institute so
enjoyable. In particular, I would like to thank Akin Ünal for decorating
your office beyond comparison; Björn Kaidel for encouraging me to major
in cryptography; Bogdan Ursu for the countless hours of trying to best
me at table tennis; Brandon Broadnax for a great time at the conference in
Brazil and for always decimating my cough drops; Geoffroy Couteau for
many fun and entertaining discussions about everything; Jessica Koch for
the fun time we had when co-organizing the practice part for the security
lecture together; Julia Hesse for Elin; Julia Kastner for sharing your limitless
knowledge about squirrels; Lisa Kohl for fun hangman games during exam
supervisions; Michael Klooß for your unparalleled love for formalisms; Sven
Maier for an unending supply of Doctor Who DVDs; Valerie Fetzer for a
great canoeing trip.

Finally, I would like to thank my family for their encouragement and
support. Furthermore, I would like to thank my better half Dani for all her
support and patience during my PhD. Together, we can overcome anything.

vii

C O N T E N T S

1 introduction 1

1.1 Protecting Computations of Probabilistic Programs 5

1.2 Protecting Computations in Cryptographic Groups 8

1.3 Protecting Computations – Using Compression? 12

1.4 Structure of this Thesis . 17

2 preliminaries 19

2.1 Notations . 19

2.2 Hardness Assumptions . 20

2.2.1 Efficient Falsifiability . 22

2.3 One-Way Functions . 22

2.4 Puncturable Pseudorandom Functions 23

2.5 Obfuscation . 25

2.5.1 Probabilistic Indistinguishability Obfuscation 27

2.6 Assuming Adversarial Knowledge 30

2.7 Public-Key Encryption and its Variants 33

2.7.1 Fully Homomorphic Encryption 34

2.8 Non-Interactive Zero-Knowledge Proof Systems 35

i doubly-probabilistic indistinguishability obfuscation

3 introduction 41

3.1 Technical Overview . 43

4 preliminaries 47

4.1 Perfect Puncturable PRFs . 47

4.2 Extremely Lossy Functions . 47

4.2.1 Instantiating Extremely Lossy Functions 48

5 doubly-probabilistic io 51

6 construction 59

6.1 Overview . 59

6.2 Constructing Doubly-Probabilistic IO 60

7 leveled homomorphic encryption 73

ii instantiating the algebraic group model from obfuscation

8 introduction 87

8.1 Technical Overview . 90

8.2 Related Work . 92

9 preliminaries 93

ix

x contents

9.1 Notations and Cryptographic Groups 93

9.2 The Algebraic Group Model . 93

9.3 Subset Membership Problem 94

9.4 Dual-mode NIWI Proof System 95

9.5 Re-Randomizable Public-Key Encryption 97

10 statistically correct pio 99

10.1 Statistically Correct pIO . 100

10.2 Puncturable Pseudorandom Functions 102

10.3 Construction . 104

11 how to simulate extraction 109

11.1 Group Schemes and Wrappers 110

11.2 An Algebraic Wrapper . 111

12 construction 115

12.1 Main Theorem and Security Analysis 117

13 signed elgamal 129

iii on pseudorandom encodings

14 introduction 147

14.1 Flavors of Pseudorandom Encodings 149

14.1.1 Randomized, Computational Pseudorandom Encodings 151

14.2 Implications of our Results . 154

14.2.1 New Results for Adaptively Secure Computation . . . 154

14.2.2 Steganography and Covert Multi-Party Computation . 154

14.2.3 Other Results . 156

14.3 Negative Results . 156

14.3.1 Deterministic, Statistical Pseudorandom Encodings . . 156

14.3.2 Deterministic, Computational Pseudorandom Encodings157

14.3.3 Randomized, Statistical Pseudorandom Encodings . . 157

14.4 Open questions and subsequent work 158

14.5 Overview of Techniques . 159

15 the pseudorandom encoding hypothesis 165

15.1 The Pseudorandom Encoding Hypothesis with Setup 169

15.2 Static-to-Adaptive Transformation 171

16 pseudorandom encodings and invertible sampling 177

16.1 The Invertible Sampling Hypothesis 177

16.2 The Invertible Sampling Hypothesis with Setup 178

16.3 Equivalence between PREH and ISH 181

16.3.1 Every Inverse Samplable Distribution can be Pseudo-
randomly Encoded . 181

contents xi

16.3.2 Every Pseudorandomly Encodable Distribution can be
Inverse Sampled . 184

17 a taxonomy of pseudorandom encodings 189

17.1 Deterministic Encoding Algorithm 189

17.1.1 Information-theoretic Guarantees and Compression . 190

17.1.2 Computational Guarantees and Pseudoentropy 195

17.2 Randomized Encoding Algorithm 200

17.2.1 (Generalized) Extractable One-way Functions 200

17.2.2 Information-theoretic Guarantees and Privately Verifi-
able GEOWFs . 201

17.2.3 Computational Guarantees and EOWFs with Common
Auxiliary Information 204

17.3 Static Pseudorandom Encodings from IO 212

17.4 Bootstrapping Pseudorandom Encodings with URC 216

18 applications of pseudorandom encodings 221

18.1 Adaptively Secure Multi-Party Computation 221

18.1.1 Adaptive MPC . 221

18.1.2 Pseudorandom Encodings Imply Adaptive MPC . . . 224

18.1.3 Adaptive MPC Implies Pseudorandom Encodings . . 226

18.2 Honey Encryption . 229

18.3 Keyless Steganography . 231

18.4 Deniable Encryption . 233

18.5 Non-Committing Encryption 237

18.6 Super-Polynomial Encoding . 238

Outlook and Further Directions

19 outlook and further directions 245

bibliography 247

L I S T O F F I G U R E S

Figure 1.1 A high-level overview of the contributions of this thesis. 4

Figure 1.2 Overview of the strategy to reduce the amount of
hybrids to a polynomial. 7

Figure 1.3 Description of group element representations in the
algebraic wrapper. 11

Figure 1.4 Illustration of our notion of pseudorandom encodings. 14

Figure 1.5 An overview of the different notions of pseudoran-
dom encodings. 15

Figure 2.1 Selective security game for pPRFs. 24

Figure 2.2 Security games for circuit samplers. 29

Figure 2.3 One-way and extraction games for EOWFs. 31

Figure 2.4 One-way and extraction game for EOWFs with com-
mon auxiliary input. 32

Figure 5.1 Overview of input samplers and states. 52

Figure 5.2 Simulatability of encodings games. 53

Figure 5.3 Statistical closeness game. 54

Figure 5.4 Restricted correctness games. 56

Figure 5.5 Indistinguishablity game for dpIO. 56

Figure 6.1 An ℓ-source dpIO scheme. 62

Figure 6.2 Simulator Sim used in proof of Theorem 6.1. 63

Figure 6.3 Modified circuit used in proof of Theorem 6.1. 68

Figure 6.4 Modified circuit used in proof of Theorem 6.1. 70

Figure 7.1 Input samplers for construction of LHE from dpIO. . 74

Figure 7.2 LHE scheme from dpIO. 75

Figure 7.3 Definition of the circuits C and tC. 76

Figure 7.4 Hybrid used in security proof of LHE scheme. 77

Figure 7.5 Circuit sampler used in the security proof LHE. . . . 78

Figure 10.1 The oracles used in the definition of correctness of ℓ-
expanding pIO. 102

Figure 10.2 The definition of our special extracting puncturable
PRF F′. 104

list of figures xiii

Figure 10.3 Construction of ℓ-expanding pIO. 105

Figure 11.1 The re-randomization and k-switching games. 113

Figure 12.1 Definition of the algorithms of the group scheme un-
derlying the algebraic wrapper. 118

Figure 12.2 Definition of the algorithms of the algebraic wrapper. 119

Figure 12.3 Games for Lemma 12.4. 121

Figure 12.4 Modified addition and re-randomization circuits used
in proof of Lemma 12.4. 123

Figure 12.5 Modified addition and re-randomization circuits used
in proof of Lemma 12.4. 124

Figure 12.6 Modified addition and re-randomization circuits used
in proof of Lemma 12.4. 125

Figure 12.7 Games used in proof of Lemma 12.5. 126

Figure 13.1 The Schnorr-signed ElGamal encryption scheme. . . 130

Figure 13.2 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 135

Figure 13.3 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 136

Figure 13.4 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 137

Figure 13.5 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 138

Figure 13.6 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 139

Figure 13.7 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 140

Figure 13.8 Game used in the security proof of Schnorr-signed
ElGamal in Theorem 13.1. 141

Figure 14.1 An overview of the connections of pseudorandom
encodings. 153

Figure 15.1 The pseudorandomness games. 166

Figure 15.2 The static games experiments with setup. 170

Figure 15.3 The adaptive pseudorandomness games with setup. . 171

Figure 15.4 Adaptive pseudorandom encodings. 172

Figure 15.5 Hybrid games for the proof of adaptive correctness. . 173

Figure 15.6 Adversary used for proof of adaptive correctness. . . 174

Figure 15.7 Hybrid games for the proof of adaptive pseudoran-
domness. 174

xiv list of figures

Figure 15.8 Adversary used in proof of adaptive pseudorandomness.175

Figure 15.9 Adversary used for proof of adaptive pseudorandom-
ness. 176

Figure 16.1 The closeness and invertibility experiments. 178

Figure 16.2 The static closeness and invertibility experiments with
setup. 179

Figure 16.3 The adaptive closeness and invertibility experiments
with setup. 180

Figure 16.4 Hybrids used in the proof of correctness of Lemma 16.1.182

Figure 16.5 Hybrids used in the proof of pseudorandomness of
Lemma 16.1. 183

Figure 16.6 Hybrids used in the proof of closeness of Lemma 16.2. 184

Figure 16.7 Hybrids used in the proof of invertibility of Lemma 16.2.186

Figure 16.8 Proof sketch for the equivalence of the adaptive no-
tions of pseudorandom encodings and invertible sam-
pling. 188

Figure 17.1 Hardness and extractability games for GEOWFs. . . . 201

Figure 17.2 Adversary and sampler used in proof of Theorem 17.7.202

Figure 17.3 Hybrids used in the proof of Theorem 17.7. 202

Figure 17.4 Sampler and adversaries used in proof of Theorem 17.10.205

Figure 17.5 Hybrids used in the proof of Theorem 17.10. 206

Figure 17.6 Hybrids used in the proof of Theorem 17.10. 207

Figure 17.7 Hybrids used in the proof of Lemma 17.9. 209

Figure 17.8 Perfectly correct pseudorandom encoding scheme
from IO with universal setup. 213

Figure 17.9 Hybrids used in the proof of pseudorandomness for
Theorem 17.13. 214

Figure 17.10 Perfectly correct pseudorandom encoding scheme
from IO without universal setup. 215

Figure 17.11 Pseudorandom encoding scheme with common ran-
dom string. 216

Figure 17.12 Hybrids used in the proof of correctness of Theo-
rem 17.15. 217

Figure 17.13 Hybrids used in the proof of Lemma 17.10. 218

Figure 17.14 Hybrids used in the proof of pseudorandomness of
Theorem 17.15. 218

Figure 18.1 Hybrids used in proof of Theorem 18.2. 225

Figure 18.2 Alternative and inverse sampler used in proof of The-
orem 18.3. 227

Figure 18.3 Message recovery game. 230

Figure 18.4 DTE games. 231

Figure 18.5 Definition of the security game for keyless stegosystems.232

Figure 18.6 A keyless stegosystem. 233

Figure 18.7 Indistinguishability of explanation games (static and
adaptive). 234

Figure 18.8 Publicly deniable encryption scheme. 235

Figure 18.9 Hybrids used in the proof of IND-CPA security for
Theorem 18.6. 236

Figure 18.10 Static indistinguishability of explanation games. . . . 237

Figure 18.11 Non-committing encryption scheme in the global CRS
model based on [CDMW09]. 238

Figure 18.12 Simulator for the non-committing encryption scheme. 239

Figure 18.13 Pseudorandom encoding scheme with super-polyno-
mial time encoding. 240

L I S T O F TA B L E S

Table 12.1 Overview of proof steps of Lemma 12.4. Changes to
previous games are highlighted in boxes. 121

A C R O N Y M S

BPP Bounded probability polynomial time. 21, 35

NC Nick’s class. 2

NP Non-deterministic polynomial time. 1–3, 21, 25,
35, 61, 205, 211

P Deterministic polynomial time. 1, 2, 21, 25

UP Unambiguous polynomial-time. 94

P/poly Non-uniform polynomial time. 21

agm Algebraic group model. iii, 9–12, 87–94, 109, 111,
245

ampc Fully adaptively secure multi-party computation.
221, 224, 226

at Anonymous transfer. 246

xv

xvi Acronyms

bls Boneh-Lynn-Shacham signature scheme. 12, 89

crs Common reference string. xv, 15, 46, 63, 95, 149,
150, 152, 154, 156, 158, 161–163, 171, 172, 178, 181,
187, 194, 197, 199, 204, 205, 207, 212, 221–224, 226,
227, 231, 237–239

ddh Decisional Diffie-Hellman assumption. 42, 43, 45,
46, 48, 49, 80, 95, 129, 240

de Deniable encryption. 233

dio Differing-inputs obfuscation. 27

dl Discrete logarithm assumption. 93, 129, 130, 134

dlin Decisional linear assumption. 96

dpio Doubly-probabilistic indistinguishability obfusca-
tion. xii, 51–56, 59–62, 71, 73–75, 81, 245

dte Distribution transforming encoder. xv, 156, 158,
230, 231

eddh Exponential decisional Diffie-Hellman assump-
tion. 48, 49

elf Extremely lossy function. 7, 8, 42, 44–49, 61, 63, 66,
80, 81, 238–240

eowf Extractable one-way function. xii, 31–33, 88, 152–
154, 200, 204, 205, 211, 212, 216

fhe Fully homomorphic encryption. 34, 42, 43, 45, 46,
80, 81, 97

geowf Generalized extractable one-way function. xiv, 153,
200–202, 204, 211

ggm Generic group model. 8, 9, 87, 93

gkea Generalized knowledge-of-exponent assumption.
109

he Honey encryption. 230

iacr International Association of Cryptologic Research.
4, 17

ind-cca1 Indistinguishability under (non-adaptive) chosen-
ciphertext attack. 46, 245

ind-cca2 Indistinguishability under chosen-ciphertext at-
tack. 89, 129–131

Acronyms xvii

ind-cpa Indistinguishability under chosen-plaintext attack.
xv, 3, 34, 73–76, 78–80, 129, 213, 233–237

io Indistinguishability obfuscation. iii, xiv, 2–8, 10–
12, 15, 17, 18, 21, 25–27, 29, 33, 41–46, 60, 71, 73, 80,
81, 89, 91, 92, 97, 99, 149, 152–154, 158, 159, 187,
211, 215, 231, 245

ish Invertible sampling hypothesis. 151, 152

kdm Key-dependent message attack. 42, 45, 46, 73

kea Knowledge-of-exponent assumption. 30–33

kem Key-encapsulation mechanism. 129

klsts Key-less stegosystem. 231

lhe Leveled homomorphic encryption. xii, 8, 45, 73–75,
80, 81

lpn Learning-pairity-with-noise assumption. 2, 245

lwe Learning-with-errors assumption. 2, 3, 36, 43, 153,
158, 159, 187, 200, 245

mpc Multi-party computation. 3, 16, 17, 149, 151–155,
171, 187, 221, 222, 229, 237, 241, 246

nce Non-committing encryption. 237

niwi Non-interactive witness-indistinguishable proof
system. 95, 96, 115, 117, 212

nizk Non-interactive zero-knowledge proof system. 22,
35, 36, 44, 59–61, 63, 96, 117, 153, 199, 200, 204, 205,
210–212

ot Oblivious transfer. 3, 224

owf One-way function. 23, 33, 97, 153

pake Password-authenticated key exchange. 150, 158

pio Probabilistic indistinguishability obfuscation. xii,
xiii, 5–7, 27–29, 42–46, 60, 80, 99–102, 104, 105, 116,
117, 127

pke Public-key encryption. 33, 46, 97, 153, 221, 233,
234, 237

pksts Public-key stegosystem. 231

ppad Polynomial parity argument (directed). 3

pprf Puncturable pseudorandom function. xii, 23, 24,
47, 102–105

xviii Acronyms

ppt Probabilistic polynomial time. 19, 21–26, 28, 31–36,
47, 52, 53, 55, 56, 62, 63, 65, 66, 68–71, 73, 76–80,
93–97, 101, 102, 105, 106, 112, 113, 116, 120–124,
126, 130, 148, 151, 154, 159–161, 163, 165–185, 187,
197, 200, 201, 205, 207, 208, 210, 212, 214, 216, 217,
219, 221–229, 231–234, 236, 237, 239–241

pre Pseudorandom encoding. 149

preh Pseudorandom encoding hypothesis. 14, 148, 168

prf Pseudorandom function. xii, 3, 23, 24, 29, 43, 45,
47, 59–61, 64, 69–71, 94, 100, 102–105, 109, 212, 214,
215

prg Pseudorandom generator. 2, 167, 192, 212, 214

qra Quadratic residuosity assumption. 153, 157, 163,
199

rom Random oracle model. 10, 88, 90, 91

ske Symmetric-key encryption. 33, 230

smp Subset membership problem. 94, 95

snarg Succinct non-interactive arguments. 27

ss-cca Chosen-covertext attack. 231

ssb Somewhere statistically binding. 3

sxdh Symmetric external Diffie-Hellman assumption.
96

uc Universal composability framework. 223, 224, 226

upre Universal proxy re-encryption. 46

urc Uniformly random CRS. 171, 181, 216, 219, 229

vbb Virtual black-box obfuscation. 25

vlf Very lossy function. 238–241

1 I N T R O D U C T I O N

why cryptography? In the current information age, our economy is
primarily built on information technology. This applies for our society as
well. Access to and distribution of information has become an essential part
of our daily lives.

Many critical infrastructures rely on information technology systems. This
includes, for instance, control systems for nuclear power plants, military
drones, smart grids, online payment systems, internal databases, medical
records, personal correspondence and social media. Failure of these systems
has severe consequences ranging from damage of social lives and reputations,
over damage to economic infrastructures, to endangerment of human lives. In
fact, on account of this dependency on information technology, cyberwarfare,
cyberterrorism and cybercrime have become as devastating as their physical
counterparts.

Consequently, the necessity to ensure security of information systems has
become pervasive.

what is cryptography? Cryptography provides building blocks which
are capable of creating an asymmetry in the computational costs between
honest users and malicious entities. These building blocks can then be
used to ensure security in larger information systems. One primary focus
of cryptography is to provide rigorous mathematical proofs of such building
blocks’ properties and guarantees.

One widely used approach towards achieving such an asymmetry is to
resort to computational complexity theory. This approach is referred to as
asymptotic security. The philosophy behind asymptotic security is to be
able to scale the security of a building block to withstand arbitrarily powerful
adversaries, while the computational cost for honest users remains affordable.
That is, any supposed computational adversarial power, even magnitudes
of whole computing centers, can be outmatched by computationally limited
users.

For most cryptographic building blocks, the task of breaking them is in
NP, hence non-deterministically solvable in polynomial time (since solution
candidates can be verified in polynomial time). Consequently, given our
current understanding of computational complexity, asymptotic security
cannot be achieved unconditionally but requires computational hardness
assumptions. Clearly, P ̸= NP is a necessary assumption.

However, the assumption P ̸= NP is not sufficient for cryptography since
the definition of NP only considers hardness in the worst case. In the context
of cryptography, not only need there be hard problems, but furthermore
sampling hard instances of these problems must be efficient since this task is
performed by an honest user. The initial foundational study of hardness-on-
the-average is due to Levin [Lev86].

1

2 introduction

1 This should not be
confused with
practical code

obfuscation used in
the realm of software

engineering which
does not provide any
provable guarantees,

e. g., [CTL98a;
CTL98b].

sources of hardness. One central goal of cryptography is to identify
and analyze potential sources of computational hardness. Number theory
gives rise to several computational hardness assumptions such as (variants of)
the factoring assumption [RSA78] and assumptions in cyclic groups [DH76].
Some time later, codes [BFKL94] and lattices [Ajt96] were discovered to yield
new sources of computational hardness.

An alternative road towards secure cryptographic building blocks is to
base their security on generic hardness assumptions which can be instantiated
from several sources of hardness. The most fundamental generic hardness
assumption is the existence of one-way functions [DH76], i. e., functions
which can efficiently be evaluated but are hard to invert. To justify security
based on generic assumptions which do not admit any inherent algebraic
structure (such as the aforementioned sources of hardness) is rather appealing
from a theoretical perspective. Furthermore, if one particular source of
hardness was to fall victim to modern cryptanalysis, there remain several
other sources that can equally be used.

In the recent past, another generic hardness assumption has been conceived
– the assumption that computations within certain programs are protected.
In the following, we shed light on several angles of protecting computations.

code obfuscation. Compiling program code such that it becomes prov-
ably unintelligible can be seen as the ultimate way to protect computations.1

The concept of code obfuscation was first formalized in [Had00; BGI+12].
An obfuscator is a compiler which preserves the functionality of programs
but makes the original code unintelligible. In search of the “right” defini-
tion of unintelligibility, the notion of indistinguishability obfuscation (IO)
emerged as the “best possible” [GR07], achievable and useful [GGH+13]
notion. An indistinguishability obfuscator guarantees that the obfuscations
of two programs (represented as Boolean circuits) which compute the same
functionality are indistinguishable from each other. Note that since IO can
exist even if P = NP, an additional mild assumption is usually necessary to
instantiate a cryptographic building block from IO.

Starting from the line of work [Lin16; LV16; LT17; Lin17], there has been
substantial progress towards instantiating IO from (falsifiable) standard
assumptions [AJL+19; Agr19; JLMS19; BDGM20a; GJLS20; JLS20; GP20;
BDGM20b]. Most remarkably, Jain, Lin, and Sahai [JLS20] introduce the
first instantiation of IO based solely on well-founded assumptions, namely
pairing-friendly cryptographic groups, LWE, LPN and PRGs in NC0. An-
other remarkable candidate is due to Brakerski, Döttling, Garg, and Malavolta
[BDGM20b] which is based only (a slightly non-standard variant of) circularly
secure LWE.

Another line of work seeks to remove pairing based assumptions from
the above works [Agr19; AP20]. Very recently, [WW20], building upon
[BDGM20a], instantiate IO from lattice-based assumptions in conjunction
with a novel but falsifiable oblivious sampling assumption.

Furthermore, there has been significant progress towards instantiating IO
from graded multilinear maps (graded encoding schemes) [GGH15; BMSZ16;
GMM+16; CVW18; CHVW19]. These current candidates for graded encoding
schemes only provide heuristic security (that is, they are proven secure in
idealized models) but withstood intense cryptanalysis [CHL+15; MSZ16;
CLLT16; ADGM17; CLLT17; CGH17; CVW18].

introduction 3

Another incomparable line of work base IO directly on assumptions about
tensor products [GJK18] and affine determinant programs [BIJ+20].

Protecting computations by making code unintelligible emerged as an
extremely powerful tool unveiling undreamt-of possibilities. Following the
positive result of [GGH+13], a wide variety of applications has been pro-
posed, e. g., functional encryption [GGH+13], deniable encryption [SW14],
fully homomorphic encryption [CLTV15], two-round secure multi-party com-
putation [GGHR14], multi-party key exchange [BZ14], secret sharing for NP

[KNY14], IO for Turing machines [KLW15], succinct randomized encodings
[BGL+15], constant-round concurrent zero-knowledge [CLP15], reductions
from the hardness of PPAD to the hardness of cryptographic problems
[BPR15; GPS16], trapdoor permutations [BPW16; CL18], non-interactive zero-
knowledge proof systems (in the common random string model) and non-
interactive witness-indistinguishable proof systems [BP15a]. This includes
applications that seemed beyond our reach for a long time and became
feasible thanks to IO.

Not only does IO yield intriguing new applications, but it also triggers
the development of new techniques. These techniques prove useful even
in settings without IO. The core technique which was developed for IO
is “puncturing” [SW14]. This motivated the study and use of puncturable
pseudorandom functions (PRFs). Puncturing proved useful in further areas
and puncturable PRFs are at the heart of recent constructions like homomor-
phic secret sharing [BGI17], oblivious transfer with small communication
[BCG+19a], and pseudorandom correlation generators [BCG+19b]. Further,
IO motivated the design of “somewhere statistically binding (SSB) hashing”
[HW15; OPWW15] as an abstraction of useful properties for the analysis
of IO-based constructions. This notion of SSB hashing has inspired recent
results like laconic OT [CDG+17] and trapdoor hash functions [DGI+19]
which both have significant applications for MPC. Due to [GGG+14], IO can
be used to achieve two-round MPC. This inspired the notion of interactive
garbling schemes [FJNT15] which led to the result that two-round MPC can
be instantiated from OT [GS18; BL18a]. Moreover, IO techniques proved
useful for identity-based encryption [DG17], verifiable random functions
[Bit17; GHKW17] and the Fiat-Shamir paradigm and correlation intractability
allowing to emulate obfuscation-like properties from key-dependent message
security [CCRR18; HL18; CCH+19; PS19]. Furthermore, IO motivated the
study of multilinear maps. The candidate construction from [GGH15] can in-
deed be proven secure in certain settings under the LWE assumption paving
the way for novel LWE-based constructions such as privately constrained
PRFs [CC17], compute-and-compare obfuscation [WZ17] and separations
between circular security and IND-CPA security for secret-key encryption
[GKW17].

Thereby, the study of IO helps to improve our understanding of cryptogra-
phy.

overview of contributions. In the following, we provide a high-level
overview of the contributions of this thesis, see Figure 1.1.

We improve concepts regarding the protection of computations in several
ways. In [ACH20], we improve constructions in the context of probabilistic
obfuscation – a variant of indistinguishability obfuscation for randomized
programs. To be specific, previous constructions of probabilistic IO required

4 introduction

[AHK20]
IACR Eurocrypt 2020

implementing idealized
models using IO

[ACH20]
IACR PKC 2020

improving reductions
in the context of
probabilistic IO

[ACI+20]
IACR TCC 2020

exploring a novel
notion which relaxes

compression

Protecting
Computation

advances in
probabilistic IO

avoiding
subexponential IO

constructing new
primitives from IO

Figure 1.1: A high-level overview of the contributions of this thesis.

2 Subexponentially
secure IO provides

guarantees even
against

subexponential-time
adversaries.

Cryptographic
hardness assumptions

classically only
require security

against polynomial-
time adversaries
which is a much

weaker requirement.

subexponentially secure2 IO, a very strong assumption. We manage to re-
duce this requirement to standard polynomially secure IO. In [ACI+20],
we relax the notion of perfect compression to harness the useful property
that compressed samples appear to be uniform randomness for a broader
class of distributions. We derive a notion we call “pseudorandom encodings”
which we prove to exist for all efficiently samplable distributions assum-
ing IO. Further, our study of pseudorandom encodings reveals interesting
and unexpected relations to secure multi-party computation which allows
to protect computations in distributed systems. In [AHK20], we use IO to
instantiate an idealized model in the context of cryptographic groups which
protects – or shields – computations in the group. While these contributions
are centered around the protection of computations, this is not their only
common ground.

[ACH20; AHK20] both make progress in the field of probabilistic IO.
[ACH20] reduces the necessary hardness assumptions and [AHK20] im-
proves the correctness guarantee offered by probabilistic IO. More precisely,
previous notions of probabilistic IO information-theoretically leaked whether
an output was produced via the original or the obfuscated program while
our novel notion of probabilistic IO conceals even this information. Hence,
we make progress in the context of protecting randomized computations.

[ACH20] avoids assuming subexponential IO. Surprisingly, [ACI+20] also
avoids this assumption in a completely different context: adaptively secure
multi-party computation with sublinear communication complexity [CsW19].
Thereby, we make progress towards realizing protection of computations
based on weaker and more reliable hardness assumptions.

Furthermore, we make progress in deriving novel building blocks from
the assumption that certain computations are protected. In [ACI+20], we
construct a novel primitive (our relaxation of compression) from IO. This is
also true for [AHK20], where we construct a novel building block from IO

1.1 protecting computations of probabilistic programs 5

3 Note that parts of
the following are
loosely inspired by
the introductions of
the underlying
publications [ACH20;
AHK20; ACI+20].

4 Except for the
notable examples of
collision resistant
hash functions or
fully-homomorphic
signatures.
5 This definition of
subexponential
security is a slight
simplification which
suffices for this
overview.

which can be used to transport proofs from an idealized group model to the
standard group model.

In the following, we elaborate on these results in more detail.3

1.1 protecting computations of
probabilistic programs

Presently, almost all conceivable cryptographic building blocks can be instan-
tiated from IO (and mild generic assumptions).4 However, some building
blocks currently require subexponentially secure IO, i. e., require security even
against subexponential-time adversaries with time complexity in O(2λ

ϵ
) (for

some 0 ⩽ ϵ < 1).5 This is a much stronger requirement compared to the
standard notion of security which covers polynomial-time adversaries.

There are several promising roads towards achieving IO. The approaches
based on functional encryption start from subexponential assumptions and
directly yield subexponential IO “for free”. This includes the recent break-
through results [BDGM20a; GJLS20; JLS20; GP20; BDGM20b] outlined above.
However, this does not apply to the approaches using graded encoding
schemes [GGH15; BMSZ16; GMM+16; CVW18; CHVW19] and the incom-
parable approaches from tensor products [GJK18] or affine determinant
programs [BIJ+20]. For these approaches, security against polynomial-time
adversaries and security against subexponential-time adversaries does make
a significant difference. Furthermore, constructing a building block from
polynomial IO relates the security of that building block more tightly to
IO. This can give rise to more insightful techniques and help to improve
our understanding of that building block. Thus, it is desirable to avoid
subexponentially secure IO.

related work on avoiding subexponential io. Avoiding subexpo-
nentially secure IO has been studied in [GPS16; GPSZ17; LZ17; KLMR18].
These works follow the approach to replace (subexponentially secure) IO
with polynomially secure functional encryption. This strong variant of public-
key encryption allows to implement several IO-based proof techniques with-
out relying on guarantees against subexponential-time adversaries. However,
this strategy requires the building block in question to meet certain structural
conditions. We seek to provide a more general solution.

probabilistic obfuscation. A certain class of building blocks requires
to protect probabilistic computations. The notion of probabilistic indistin-
guishability obfuscation (pIO) was put forth by Canetti, Lin, Tessaro, and
Vaikuntanathan [CLTV15] and requires subexponentially secure IO. On a
high level, pIO not only protects the program code, but additionally pro-
tects the randomness which is used to evaluate the randomized program
from a user of the program. Syntactically, a probabilistic indistinguishability
obfuscator compiles a randomized circuit into a deterministic circuit which
has “almost” the same functionality. Recall that standard IO guarantees
indistinguishability of obfuscated programs, provided that these programs
behave identically on all inputs. For a useful definition, this condition of
identical behavior needs to be relaxed such that pIO is applicable for, e. g.,

6 introduction

6 A pseudorandom
function is a function

which is
indistinguishable

from a truly random
function.

7 This approach only
certifies membership,

no distributional
property.

programs which produce identical output distributions. Informally, a prob-
abilistic indistinguishability obfuscator guarantees that the obfuscations of
two randomized programs are indistinguishable, provided that these pro-
grams induce suitably close output distributions. Currently, the only known
construction of pIO applies standard IO on a de-randomized version of
the original program. De-randomized programs derive their randomness
deterministically by applying a pseudorandom function6 F on their input,
that is,

piO(C) := iO(C), where C(x) := C(x; F(x)).

The reason why polynomially secure IO is insufficient for pIO is best
explained by example. Consider the two randomized programs C0 and C1,
where Cb on input of x ∈ {0, 1}λ and (internal) randomness r ∈ {0, 1}λ,
outputs x⊕ r⊕bλ (for b ∈ {0, 1}). Clearly, these programs both induce the
uniform distribution over {0, 1}λ. Hence, pIO should guarantee indistin-
guishability between piO(C0) = iO(C0) and piO(C1) = iO(C1). However,
IO does not provide any guarantees for circuits which do not behave fully
identically. In fact, there is not even one input x such that the de-randomized
circuits C0 and C1 produce the same output.

The only known strategy to deal with this issue is to prove that iO(C0)

and iO(C1) are indistinguishable for every single input x (applying the security
property of IO every time). Since the number of inputs is exponential, this
proof technique inherently requires (sub)exponential security of IO.

We aim at realizing a sufficient protection of randomized computations
without having to rely on subexponentially secure IO.

doubly-probabilistic io. For the purpose of avoiding subexponential
IO, a natural solution would be to reduce the number of inputs for the
probabilistic circuit. However, obfuscation with only polynomially many
inputs is trivially solvable by enumerating each input-output-pair and can
thus not be useful towards constructing complex cryptographic building
blocks.

We observe that in many cases, it suffices to consider probabilistic circuits
expecting inputs from a small number of efficiently samplable distributions.
To exemplify, consider the two distributions induced by encryption of a single
bit. In many applications of pIO, the obfuscated circuit expects only inputs
which originate from such distributions. Towards reducing the number of
meaningful inputs which need to be considered in the security proof, we
restrict the correctness guarantee provided by pIO to only hold for “well-
generated” inputs. To exclude all “non-well-generated” inputs from the
security proof, we certify each input in the domain of an input sampler with
a non-interactive zero-knowledge proof and define the probabilistic circuit
to reject all uncertified inputs.7 However, while the number of distributions
is small, the support of each such distribution is still exponential.

The restricted correctness property lays the foundation to an orthogonal
way to reduce the amount of well-generated inputs. Namely, suppose we
could narrow the randomness space of the input samplers to a polynomial
amount, the amount of well-generated inputs necessarily shrinks to a poly-
nomial. However, shrinking the randomness space from an exponential size
to a polynomial size is far from trivial. Consider the example of bit-encryp-
tion distributions from above. For these distributions, it is essential to use

1.1 protecting computations of probabilistic programs 7

good randomness to ensure secrecy of the encrypted bit. If the randomness
space for encryption is only polynomial, exhaustive search can recover the
encrypted bit.

Contrary to the above intuition, it is indeed possible to sparsify the ran-
domness space to a polynomial size using a special tool called extremely lossy
functions introduced by Zhandry [Zha16]. Extremely lossy functions (ELFs)
are functions which can be set up in two computationally indistinguishable
modes – an injective mode and an extremely lossy mode. In injective mode,
the range of the ELF is exponential whereas in extremely lossy mode, the
range of the ELF merely comprises a polynomial quantity. Such a notion
requires a slightly non-black-box use of adversary. More precisely, such an in-
distinguishability cannot hold against arbitrary polynomial-time adversaries
since finding collisions requires only polynomial resources. Instead, the size
of the range in extremely lossy mode needs to be sufficiently large to fool
the particular adversary in question.

We use extremely lossy functions to pre-process the randomness for the
input sampler, see also Figure 1.2 for an overview. In injective mode, the
original distribution is not affected. During the proof, we can unnoticeably
(for the particular adversary) switch the ELF into extremely lossy mode,
thereby sparsifying the randomness space of the input sampler and hence
the amount of well-generated inputs.

Sin(︁ ;
)︁

P
(︁

;
)︁

F

x r

G

Figure 1.2: Overview of the strategy to reduce the amount of hybrids to a polynomial.
The randomized program P receives inputs from some input distribution
Sin and derives its randomness using a pseudorandom function F on this
input. The input distribution Sin receives an input x from a small input
space and a random tape r (from an exponentially large randomness
space). Pre-processing r with the extremely lossy function G allows to
sparsify the amount of possible inputs to P to a polynomial amount.

Using the strategy above, we are able to use standard polynomially secure
IO by “pushing” the subexponential loss to a much more standard and better-
understood assumption on cyclic groups which is necessary to instantiate the
extremely lossy function. We provide a general framework called “doubly-
probabilistic IO” which can be used to avoid subexponentially secure IO
in many pIO-based applications without making any assumptions on the
structure of the obfuscated programs. We only need to require that inputs for
the obfuscated circuit originate from a small number of efficiently samplable
distributions.

8 introduction

applications. We are able to apply doubly-probabilistic IO, for instance,
in the context of leveled homomorphic encryption (LHE). LHE allows to
evaluate fixed-depth circuits on the contents of ciphertexts.

The LHE construction due to Canetti et al. [CLTV15] requires to obfuscate
a probabilistic program which expects two ciphertexts as input, decrypts
them, evaluates say the logical NAND on the plaintexts, and re-encrypts the
result. Clearly, this program expects two inputs which both come from one
of two efficiently samplable distributions: the ciphertext distribution of the
plaintext 0 or the ciphertext distribution of the plaintext 1. Hence, by using
doubly-probabilistic IO, we are able to push the subexponential assumptions
for LHE away from IO to ELFs which can be based on well-established and
well-analyzed assumptions.

Thus, our notion of doubly-probabilistic IO provides a general frame-
work for reducing the necessary assumptions for protecting probabilistic
computations. We refer the reader to Part I of this thesis for more details.

subsequent work. Our notion of doubly-probabilistic IO has already
found further application. Döttling and Nishimaki [DN18] are able to avoid
subexponentially secure IO in the following context. [DN18] consider the
task of converting ciphertexts produced with any public-key encryption
scheme into re-randomized ciphertexts under any possibly different public-key
encryption scheme. They call this notion universal proxy re-encryption and
instantiate it using probabilistic IO. Furthermore, they observe that using our
doubly-probabilistic IO, they are able to avoid subexponentially secure IO.

1.2 protecting computations in
cryptographic groups

Since the seminal work of Diffie and Hellman [DH76], certain cyclic groups
have emerged as a major source of computational hardness giving rise to a
great variety of cryptographic building blocks such as public-key encryption
and digital signatures [ElG85], non-committing encryption [Bea97], identity-
based encryption [BF01], non-interactive zero-knowledge proof systems
[GOS12], and many more.

Protecting computations is a central concept in the context of cryptographic
groups. Building blocks or novel hardness assumptions which are based
on cryptographic groups are commonly analyzed in an idealized group
model. This idealized model assumes that the computations in the group
are “protected” in the sense that an adversary has no control over the group
itself, but is granted access to a restricted interface providing only generic
group operations. This model is called the generic group model (GGM) and
was formalized by Shoup [Sho97] and Maurer [Mau05]. An adversary who
only uses this generic interface is called a generic adversary. Given a security
proof in the GGM, no generic adversary can succeed in breaking the proven
security properties. In other words, in order to break a generically proven
security property in some concrete group, every adversary is required to
exploit the concrete encodings of group elements in that group in a nontrivial
way. Hence, the GGM provides a sanity check for the security of building
blocks or novel assumptions. However, there exist building blocks which

1.2 protecting computations in cryptographic groups 9

can be proven secure in the GGM but are insecure when instantiated with
any concrete group [Den02]. Hence, generic groups cannot exist. In my
master’s thesis which led to the publication [AH18], we demonstrate that
fundamental proof strategies developed for the GGM can be transported
into the standard model at the expense of uniqueness of group element
encodings. However, due to this lack of unique group element encodings
and the inability to extract a unique bitstring from group element encodings,
the applicability of the resulting group is very limited. Without the ability
to extract a bitstring which is unique for every encoding of the same group
element, it is impossible to extract, e. g., a unique encryption key from a
group element. This result is not part of this thesis, but [AHK20], which is
part of this thesis, constitutes follow-up work.

algebraic groups. The algebraic group model [FKL18] is a relaxation of
the generic group model conceived to avoid the above mentioned impossi-
bility results while preserving the power and generality of the GGM. While
the GGM only considers the class of generic adversaries, the AGM considers
the broader class of so-called algebraic adversaries. In contrast to generic
adversaries, algebraic adversaries can make arbitrary use of group element
encodings but must explain each output group element in terms of their
input group elements. More precisely, if an algebraic adversary outputs a
group element h given the group elements g1, . . . ,gℓ, the adversary must
additionally provide a list of exponents z1, . . . , zℓ, such that h =

∏︁ℓ
i=1 g

zi
i .

This formalization of algebraic adversaries is equivalent to the more standard
definition that for every adversary who outputs a group element, there exists
an efficient extractor which is able to derive the exponents z1, . . . , zℓ as above.
Every generic adversary is algebraic, since a generic adversary needs to use
a generic interface of oracles to obtain new group elements.

Hence, while the AGM does not protect computations to the same extent
as the GGM, it still offers a meaningful protection of computations in the
group. Namely, even though an adversary can derive group elements in an
arbitrary way disregarding the actual group operation, ultimately, he has
to be able to explain his doing in terms of the group operation. Thus, the
AGM protects the computations in the group by nullifying any advantage in
deriving group elements in any other way than using the group operation
directly.

inherent obstacles. The AGM is equivalent to a very strong form of
the knowledge-of-exponent assumption [Dam92; WS07; KP19]. Knowledge-
type assumptions basically state that if an adversary can produce an output,
this adversary must know how he computed this output. To reason about
adversarial knowledge is a common concept in cryptography. Adversarial
knowledge of information is modeled by the ability to algorithmically extract
this information from the adversary’s code using an efficient extractor. Con-
sequently, while escaping the impossibility results of the GGM, the AGM
nevertheless suffers from several inherent obstacles.

Cryptographic hardness assumptions can be classified into falsifiable and
non-falsifiable ones based on the complexity of falsifying them. An assump-
tion is falsifiable if an observation can show it to be false. More precisely, a
cryptographic assumption is falsifiable if the assumption can be formalized
as an interaction between an efficient challenger and an adversary such that

10 introduction

8 The assumption
that IO exists is

falsifiable in the sense
of Naor.

the challenger can efficiently provide the adversary with a challenge and is
able to efficiently verify the adversary’s solution attempt. This classification
was put forth by Naor [Nao03]. Lacking the property of efficient falsifiability
renders assessing the plausibility of assumptions extremely difficult. Hence,
it is (arguably) undesirable to use knowledge-type assumptions (such as the
AGM) in cryptography.

Moreover, the AGM suffers from a further obstacle. Certain knowledge-
type assumptions such as the AGM which allow an additional unstructured
input conflict with IO [BCPR16]. Recall that every adversary in the AGM
must explain his output elements as group operations in terms of his input
elements. Suppose an adversary receives an obfuscated program as addi-
tional input. Suppose further that this obfuscated program, on input of a
group element g, computes gF(g), where F is a pseudorandom function. An
adversary who receives as input a group element g, evaluates this obfuscated
program on g and outputs the result, is certainly unable to explain his output
as algebraic operations in terms of his input group element, and can hence
not be algebraic as per [FKL18].

Therefore, it is impossible to instantiate the AGM from IO. Instead, we aim
at an instantiation of a relaxation of the AGM which preserves the generality
of the AGM and can be based solely on falsifiable assumptions.8 Hence, we
tackle the following intriguing question:

To what extent can knowledge-type properties be simulated
while keeping all assumptions purely falsifiable?

implementing idealized models. The use of idealized models which
protect computations by shielding it from adversaries is a popular paradigm
in cryptography. Aside from cryptographic groups, building blocks which
use cryptographic hash functions are often analyzed in an idealized model
– the random oracle model (ROM). This model was introduced by Bellare
and Rogaway in [BR93] but was implicitly already used in [FS87; GGM84b;
GGM86]. In the random oracle model, cryptographic hash functions are
modeled as oracles, similar in spirit to the generic group model due to Shoup
[Sho97]. Building blocks which come with a proof of security in the ROM
are often considerably more efficient compared to building blocks which are
provably secure in the standard model.

Replacing idealized models with concrete standard-model implementa-
tions is an intriguing problem in cryptography. Hofheinz and Kiltz [HK12]
follow this aim by introducing the notion of programmable hash functions.
Programmable hash functions allow to transport certain proofs from the
random oracle model into the standard model. Following [HK12], a line of
work [FHPS13; HSW13; HSW14] transported proofs from the random oracle
model to the standard model using multilinear maps or IO. Our results
follow this endeavor in the context of cryptographic groups.

instantiating the agm from io. In Part II of this thesis, which is based
on the publication [AHK20], we develop a suitable relaxation of the AGM
and provide an instantiation based on probabilistic IO and further mild and
falsifiable assumptions.

AGM-based proofs heavily rely on the ability to extract a decomposition
of the adversarially produced group elements. However, since we strive to

1.2 protecting computations in cryptographic groups 11

9 The discrete
logarithm dlogg(h)

of h to the basis g is
an integer x such
that gx = h.

avoid knowledge-type assumptions, extracting this information from the
adversary’s code is not a viable option. Hence, an alternative extraction
mechanism needs to be conceived. We seek to extract a decomposition of
group elements from the group elements themselves. This type of extraction must
exclusively be available during a security proof and must be beyond reach
for any user of the group – this includes honest users as well as malicious
entities. Hence, we define a special trapdoor which is associated to the public
parameters of the group to be necessary to extract the decomposition. This
notion of extraction entirely avoids knowledge-type assumptions.

algebraic wrapper. Albrecht, Farshim, Hofheinz, Larraia, and Paterson
[AFH+16] lay the foundations for the construction of groups with non-unique
encodings from IO. Groups with non-unique encodings allow each group
element to carry auxiliary information inside its representation. We utilize
the ability of the [AFH+16] framework to equip any given base group with
non-unique encodings. The resulting group virtually “wraps” the group
elements of the base group while preserving the original group structure
and hardness guarantees. We exploit the thus achieved non-uniqueness of
encodings to let each group element carry an encrypted decomposition of
itself relative to some a priori fixed set of group elements. We refer to this
fixed set of group elements as “basis”.

Hence, any valid group element is bound to contain a decomposition of
itself. See Figure 1.3 for an overview of wrapped group element represen-
tations. In particular, this must be true for any adversarially produced group
element. Consequently, if the corresponding decryption key is known, this
decomposition can be extracted from any such group element representation.
Intuitively, this forces any adversary to be algebraic in a similar sense as in
the AGM. Thus, we denote this notion as “algebraic wrapper”.

h Enc
(︁
“ h = g

z1
1 · · ·g

rℓ
ℓ ”

)︁

π

Figure 1.3: Description of group element representations in the algebraic wrapper.
Each group element h from the base group is accompanied by a ciphertext
containing a decomposition of h with respect to the basis {g1, . . . ,gℓ}.
To ensure consistency between h and the encrypted decomposition, a
non-interactive zero-knowledge proof π accompanies the representation
forcing the encrypted decomposition to match the group element h.

simulating proofs from the agm. For the purpose of proving some
building block secure in the AGM, we need to reduce the hardness of
some conjectured-to-be-hard problem in the group (e. g., finding discrete
logarithms9) to the task of breaking that building block. More precisely,
an AGM-based proof transforms any algebraic adversary on the building
block into a solver for discrete logarithms in the group. In order to simulate
this strategy in the standard model, it is essential to be able to deal with
arbitrary (not necessarily algebraic) adversaries. In other words, we need
to force an arbitrary adversary to provide a decomposition of his output
group elements. The ability to extract the decomposition can be ensured by
the algebraic wrapper as follows. The reduction (i. e., the discrete logarithm

12 introduction

10 Since no public-
key encryption

scheme can be secure
information-
theoretically.

11 Complexity theory
considers the case of
compressing a single

sample, whereas
information theory
clasically considers

compression of
multiple independent

samples.
12 If one-way

functions exist, then
there exist

incompressible
distributions

(observation due to
Levin).

solver) receives a discrete logarithm challenge “dlogg(h) = ” and sets up
parameters for the algebraic wrapper with respect to the given base group.
Hence, the reduction is able to perform extraction since the trapdoor (i. e.,
the decryption key) can be generated alongside the wrapper parameters. The
reduction then uses the wrapper group to simulate the security game for the
adversary on the building block – suitably embedding the discrete logarithm
challenge such that a successful breach of the building block’s security allows
to extract information about the discrete logarithm challenge.

Generally, using the set {g,h} as basis is a good choice. This allows the
reduction to generate the group element wrapping h (from the discrete
logarithm challenge) since producing group elements requires to know their
decomposition with respect to the basis.

limitations. Group element representations can only hide the decompo-
sition they carry computationally, i. e., against computationally bounded ad-
versaries. information-theoretically, this decomposition cannot be hidden.10

However, some AGM proofs require that group element representations
information-theoretically look the same, independently of how they were
derived (or, in our, case which information they carry). These proofs cannot
be simulated using the algebraic wrapper. This includes the tight security
proof of the Boneh-Lynn-Shacham (BLS) [BLS04] signature scheme from
[FKL18].

applications. Using the algebraic wrapper, we are able to transport
several AGM-based proofs into the standard (group) model. For instance,
the algebraic wrapper provides all necessary extraction properties for the
tight security proof of Schnorr-signed ElGamal from [FPS20].

Thus, the algebraic wrapper provides protection of computations in the
wrapped group in a relaxed manner which still suffices for several applica-
tions and can be instantiated from IO. We refer the reader to Part II of this
thesis for more details.

1.3 protecting computations
– using compression?

Lastly, we consider the classical notion of compression. Aside from the field
of information theory [Sha48; Huf52; GM59; Flo64; Sch72; Ris76; Pas77; ZL77;
ZL78; RJ79], starting from the seminal work of Goldberg and Sipser [GS85],
compression has received considerable attention in the field of computational
complexity theory [Wee04; TVZ05; HLR07].11 Informally, given some distri-
bution X, compression aims to efficiently encode samples from X as short
strings while at the same time being able to efficiently recover these samples.

Prior to our work [ACI+20], it was entirely unclear how compression
relates to the protection of computation. In this thesis and [ACI+20], we
rigorously examine the notion and the properties of compression and vary
this notion to escape classical impossibility results.12 Subsequently, we shed
light on an entirely unexpected connection between compression and the
protection of computations in a distributed setting.

1.3 protecting computations – using compression? 13

13 Entropy measures
the uncertainty or
amount of
randomness of a
distribution.

14 This message
distribution is just a
toy example. A more
useful but more
complex message
distribution is the
distribution modeling
natural English
language.

properties of compression. Compression in its “perfect” form guar-
antees that compressed outputs are completely (information-theoretically)
random leaving virtually no room for any further compression without los-
ing information. From this angle, compression can be viewed as unifying two
widely studied problems in computational complexity theory: randomness
condensers [RR99; TV00; TUZ01; DRV12] and resource-bounded Kolmogorov
complexity [Sol64; Kol68; Cha69; LV90; LV19]. Randomness condensers are
functions that efficiently map an input distribution to an output distribu-
tion with higher entropy rate, i. e., with higher entropy per length ratio.13

More precisely, a randomness condenser guarantees that its output entropy
rate is higher than its input entropy rate. A randomness condenser can
be viewed as an efficient compression algorithm – without a correspond-
ing efficient decompression algorithm. On the other hand, the resource-
bounded Kolmogorov complexity of a string is the smallest description
length of an efficient program that outputs this string. For instance, the
string “12121212121212” can be produced by a short program whereas the
string “32576143764251” has no obvious simpler description than the string
itself. Hence, the resource-bounded Kolmogorov complexity provides an
intuitive measure of the amount of “randomness” in a particular string. Such
a shortest program description can be viewed as a compressed string such
that decoding is efficiently possible – while finding this compressed string
may be inefficient.

One central property of perfect compression – unifying the core properties
of both randomness condensers and resource-bounded Kolmogorov com-
plexity [GS85; TVZ05] – is the ability to efficiently map bitstrings from some
distribution to uniformly random-looking bitstrings while at the same time
allowing the original input to be efficiently recovered.

cryptographic applications of compression. To demonstrate the
usefulness of this property, consider the following scenario. Suppose, Alice
wants to confidentially communicate some (random) sequence of seven
English words to Bob.14 However, Alice and Bob only share a common
password with low entropy, i. e., a password which can be efficiently guessed.
Using the password as a secret key to encrypt Alice’s message allows an
eavesdropper to try all (most likely) passwords until decryption with a
candidate password reveals a sequence of seven English words.

This problem appears in the context of, e. g., password-authenticated key
exchange [BM92], honey encryption [JR14] or subliminal communication
and steganography [vHL05; CGOS07; HPRV19]. A natural solution is to use
perfect compression as was done in [BMN01] to extend [BM92] for elliptic
curve groups. Perfect compression maps samples from a distribution to ran-
dom-looking strings. Compressing the message to a random-looking string
before encrypting renders the above brute-force attack useless: decryption
with a wrong password reveals a random-looking plaintext (by a standard
assumption on the used secret-key encryption scheme) which is exactly the
same behavior as decryption with the correct password.

However, perfect compression exists only for a very small number of
message distributions. On the other hand, the core property of compression –
that outputs are smaller than inputs – is not necessary for these applications.
Indeed, efficiently encoding x into a (possibly longer) random-looking string
suffices, provided that x can be efficiently recovered.

14 introduction

relaxing compression. Since compression (particularly perfect com-
pression) only exists for a very small number of distributions, we vary the
notion of compression as follows. We relax perfect compression by eliminat-
ing the requirement for shorter outputs and analyze several variants of the
resulting notion, see also Figure 1.4 for an overview. Moreover, we consider
variants assuming the presence of a trusted setup in the form of a common
reference string.

Xsource

possibly longer

≈ Un

information theoretic or
computationalEX DX

deterministic or
randomized

Figure 1.4: Illustration of our notion of pseudorandom encodings. Compared to
perfect compression, we drop the requirement for shorter outputs, we
consider deterministic and randomized encoding algorithms and we
consider computational and information-theoretic indistinguishability
from randomness. Note that we also study variants assuming a trusted
setup which are are not captured by this visual.

The resulting notion only preserves the properties that encoded samples
can be efficiently recovered and that encoded samples appear to be ran-
dom. For this reason, we refer to this notion as pseudorandom encodings. A
pseudorandom encoding scheme for a distribution X is a tuple (EX, DX),
where EX is an efficient (possibly randomized) encoding algorithm and DX

is an efficient deterministic decoding algorithm satisfying the following two
properties.

correctness. Decoding works with overwhelming probability. More for-
mally,

Pr
[︁
y← Xλ : DX(EX(y)) = y

]︁

is overwhelming.

pseudorandomness. An encoded sample is indistinguishable from true
randomness. More formally,

EX(Xλ) ≈ Un(λ),

where n(λ) is the output length of EX and “≈” denotes some notion of
indistinguishability.

Additionally, we consider distributions X which can accept an input
m ∈ L ⊆ {0, 1}∗, i. e., distribution families (Xm)m∈L. In this case, the above
properties need to hold for all such inputs.

Our main focus is on the hypothesis that all efficiently samplable distri-
butions can be pseudorandomly encoded. We refer to this hypothesis as the
pseudorandom encoding hypothesis (PREH).

1.3 protecting computations – using compression? 15

The above notion offers several degrees of freedom: the encoding algorithm
can be deterministic or randomized and the indistinguishability requirement
can be information-theoretical or computational. Additionally, we may as-
sume a trusted setup, i. e., a globally known common reference string (CRS)
which is set up honestly. If a distribution X admits an input m ∈ L, this fur-
ther entails two different notions: a non-adaptive version, where correctness
and pseudorandomness hold only for inputs m which are independent of
the CRS, and an adaptive version, where correctness and pseudorandom-
ness hold also for inputs m which are chosen depending on the CRS. See
Figure 1.5 for an overview of these notions.

PREHdet
≡s

PREHdet
≈c

PREHrand
≡s

PREHrand
≈c

cPREHdet
≡s

cPREHdet
≈c

cPREHrand
≡s

cPREHrand
≈c

acPREHdet
≡s

acPREHdet
≈c

acPREHrand
≡s

acPREHrand
≈c

Figure 1.5: An overview of the different notions of pseudorandom encodings. The
superscripts “det” and “rand” indicate whether the encoding algorithm
is deterministic or allowed to be randomized. The subscripts “≡s” and
“≈c” indicate whether the guarantees are information-theoretical or com-
putational. The prefixes “c” and “ac” indicate that a trusted setup is
assumed where inputs are required to be chosen statically or adaptively,
respectively.

In Part III of this thesis which is based on the publication [ACI+20], we
provide a classification of pseudorandom encodings and identify compu-
tational, randomized pseudorandom encodings with common setup as the
best possible and useful notion, and instantiate this building block from IO.

In other words, assuming that we can protect the computations inside some
program from the user of the program (i. e., if IO exists), then pseudorandom
encoding schemes exist for all efficiently samplable distributions in their
weakest variant. However, this is not the only common ground between
pseudorandom encodings and the protection of computations as we will
elaborate in the following.

16 introduction

15 We consider the
feasibility of MPC for

all (possibly
randomized)

programs.

protecting computations. Surprisingly, the resulting novel notion
of pseudorandom encodings turns out to be strongly connected to fully
adaptively secure multi-party computation.15 Multi-party computation (MPC)
allows parties to jointly compute any possibly randomized program on their
inputs without revealing them. More precisely, while every party eventually
learns the output, nothing beyond what follows from that party’s input and
output can be inferred. In particular, no inputs from other parties can be
learned.

Security in such a setting is defined by comparing the actual protocol
execution (the real world) with an ideally secure protocol in the presence of
an adversary who may take control of parties. If every adversarial behavior
in the real world can be emulated in the ideally secure world, then the real
world protocol is “at least as secure as” the ideally secure protocol [GMW87].
The greatest challenge pose adaptive adversaries who may adaptively decide
to corrupt any number of participating parties at any time during the protocol
execution. This behavior is particularly challenging to emulate.

In other words, multi-party computation allows for executing protected com-
putations in settings, where many mutually distrustful parties are involved.
This manner of protecting computations should be contrasted with the way
code obfuscation protects computations. Code obfuscation conceals the way
how a program derives outputs from entities who evaluate the program.
In the setting of multi-party computation, on the other hand, every party
may very well know the program which is to be jointly evaluated. However,
multi-party computation guarantees that no party is able to infer a single
intermediate value which does not already follow from that party’s input
and output.

The notion of adaptively secure MPC was first considered in [BH93;
CFGN96]. [BH93] relies on secure and trusted erasures. However, since
erasing data is not verifiable and may be subject to hardware limitations, it is
(arguably) not satisfying to rely on other parties to erase their internal data.
Hence, we only consider a setting, where secure erasures are not assumed.
There are several positive results on the feasibility of adaptive MPC in re-
stricted settings such as the honest majority setting (where a majority of the
parties remains uncorrupted) [CFGN96; Bea97], the all-but-one corruptions
setting (where at least one party remains uncorrupted) [KO04; IPS08; GS12;
HP14; DPR16], or restricting the class of supported functions to so-called
“well-formed” ones (which do not hide their internal randomness) [CLOS02].
We consider the strongest notion of adaptive security for all randomized
functionalities allowing adaptive corruptions of all parties [IKOS10; DKR15;
CPV17]. A setting, where all parties are corrupted may seem unnatural.
However, as outlined in [DKR15], a protocol running a sub-protocol among
a strict subset of the parties should remain secure even if all parties running
the sub-protocol are corrupted.

how to emulate adaptive corruption of all parties. Consider the
adversary who merely observes the entire protocol execution and decides to
corrupt all parties after the protocol has terminated. Since secure erasures
are not assumed, this adversary learns well-distributed random tapes which
explain all messages sent by the individual parties. Recovering such valid-
looking random tapes after the output is fixed is a very challenging task.

1.4 structure of this thesis 17

Naively speaking, invertible sampling constitutes the problem to invert
randomized algorithms, i. e., to produce a valid-looking random tape that
leads to a given output. However, there exist several randomized algorithms
which cannot be inverse sampled to this extent. Consider, for instance, the
algorithm which randomly samples two large prime numbers and outputs
their product. Given our current understanding of computational number
theory, this algorithm cannot be inverse sampled in the above sense. In fact,
invertible sampling due to [CFGN96; DN00; GKM+00; IKOS10] only requires
the existence of an inverse samplable algorithm which induces an output dis-
tribution similar to the output distribution of the actual sampler. This notion
of invertible sampling is exactly what is both necessary and sufficient to emu-
late fully adaptive adversarial behavior. Ishai, Kumarasubramanian, Orlandi,
and Sahai [IKOS10] establish an equivalence between invertible sampling
and fully adaptively secure multi-party computation (MPC). More precisely,
fully adaptively secure multi-party computation is possible if and only if
invertible sampling is possible for all efficiently samplable distributions with
input.

Our study of pseudorandom encodings reveals a surprising connection
between invertible sampling and pseudorandom encodings: our novel notion
of pseudorandom encodings emerges to be equivalent to invertible sampling.
Consequently, pseudorandom encodings are equivalent to fully adaptively
secure MPC – the strongest form of protecting computations in a distributed
setting.

Our study of pseudorandom encodings unveils further unexpected con-
nections between several fields within cryptography, like fully adaptive MPC,
honey encryption and steganography. We refer the reader to Part III of this
thesis for more details.

subsequent work. In [ACI+20], we obtain partial evidence that indistin-
guishability obfuscation is not only sufficient for pseudorandom encodings
but also necessary. Hence, we raised the question whether IO is indeed nec-
essary for pseudorandom encodings. This open question transpired quite
helpful for the development of plausible IO candidates. In fact, shortly after
uploading a preliminary version of [ACI+20] to the IACR cryptology ePrint
archive, Wee and Wichs [WW20] answer our question positively giving rise to
a novel construction of IO from the assumption that pseudorandom encoding
schemes exist for a very small class of distributions (and the learning with
errors assumption).

1.4 structure of this thesis
This thesis is divided into 3 parts. Each part contains an introduction in-
cluding a short summary of the contribution presented in that part and a
discussion setting the results in context to the state-of-the-art. These intro-
ductions are taken verbatim from the works [ACH20; AHK20; ACI+20] with
minor changes.

Before we present our contributions in Parts I, II and III in detail, Chapter 2

introduces basic notation and definitions of cryptographic primitives which
we will use in this thesis. Chapter 2 is in part taken verbatim from the works
[ACH20; AHK20; ACI+20].

18 introduction

• In Part I of this thesis, we present our results regarding probabilistic
indistinguishability obfuscation. We introduce a novel framework called
“doubly-probabilistic indistinguishability obfuscation” which allows to
avoid subexponentially secure IO in several contexts. Part I is taken
verbatim from the publication [ACH20] with minor changes.

• In Part II of this thesis, we present our results on instantiating the
algebraic group model from falsifiable assumptions. We introduce a
novel framework called “algebraic wrapper” which can be instantiated
in the standard model and allows to transport several proofs from
the algebraic group model into the standard model. Part II is taken
verbatim from the publication [AHK20] with minor changes.

• In Part III of this thesis, we introduce our results on pseudorandom
encodings. We introduce the novel notion of pseudorandom encodings
and provide a unified study including positive and negative results on
the feasibility of several flavors of pseudorandom encodings. Further-
more, we demonstrate how pseudorandom encodings relate to various
areas in cryptography and derive new insights for those fields. Part III
is taken verbatim from the publication [ACI+20] with minor changes.

Finally, in Chapter 19, we provide a brief outlook on possible further
research directions.

16 Note that by a
coin-fixing argument,
it is sufficient to
consider non-uniform
deterministic
adversaries. Most of
the results in this
thesis apply for
uniform PPT
adversaries as well.
In case we make
explicit use of the
non-uniformity of the
adversary, we remark
this explicitly.

2 P R E L I M I N A R I E S

In this chapter, we introduce notations and technical preliminaries which are
common to the subsequent Parts I, II and III. The preliminaries are in part
taken verbatim from the works [ACH20; AHK20; ACI+20].

2.1 notations
For n ∈ N, we denote by [n] the set {1, . . . ,n}. We denote the set of all
functions mapping from set X to Y by maps(X,Y). The security parameter is
denoted by λ and is implicitly given to all algorithms in unary. A probabilistic
polynomial time (PPT) algorithm runs in time polynomial in the (implicit)
security parameter λ. We consider non-uniform polynomial time adversaries,
i. e., polynomial time adversaries receiving a polynomially bounded auxiliary
input (also called “advice string”) depending only on the security parame-
ter.16 A function negl : N→ R is negligible in λ if for every constant c ∈N,
there exists a bound nc ∈ N, such that for all n ⩾ nc, |negl(n)| ⩽ n−c. In
asymptotic notation, the set of negligible functions is λ−ω(1). A function g

is overwhelming if 1− g(λ) is a negligible function.
Given a finite set X, the notation x← X means a uniformly random assign-

ment of an element of X to the variable x. Given a probability distribution D,
the notation x← D means sampling an element according to the distribution
D and assigning that element to x. The support of a probability distribu-
tion D is the set of all elements with a non-zero probability to occur and
is denoted by supp(D). We denote the uniform distribution over bitstrings
of length n by Un. We use the notation {C1,C2, . . . ,Cm : D} to denote the
distribution of D which is obtained as the result of the process defined by
the sequence of instructions C1, . . . ,Cm.

Let E1 and E2 be events of some probabilistic process. We denote the
probability that E1 occurs by Pr[E1], and the probability that E1 occurs
conditioned on the fact that the event E2 occurred by Pr[E1 | E2].

Given a possibly randomized algorithm A, the notation y← A(x) means
evaluation of A on input of x with fresh random coins r and assignment to
the variable y. Sometimes we make the random coins r used by A explicit
and write A(x; r). The notation AO indicates that the algorithm A is given
oracle access to O.

When describing security games, we always consider stateful adversaries
unless explicitly stated otherwise. In some cases, we emphasize this by
handling the adversarial state (usually denoted by st) explicitly.

In game based proofs, outi denotes the output of game Gi. Further, we
will use this notation to highlight differences to previous hybrids.

19

20 preliminaries

definition 2.1 (Statistical distance). The statistical distance ∆ between two
probability distributions X and Y (over some set X) is

∆(X, Y) :=
∑︂

x∈X

⃓⃓
Pr[X = x] − Pr[Y = x]

⃓⃓
.

In other words, the statistical distance is the metric induced by the Manhat-
tan norm (or ℓ1 norm) on the probability space. We say that two distributions
are statistically close if their statistical distance is negligible.

definition 2.2 (Min-entropy). The min-entropy of a distribution X is

H∞(X) = − log
(︂

max
x∈supp(X)

Pr[X = x]
)︂

.

In other words, the probability of correctly guessing the outcome of a
probability experiment with min-entropy µ is at most 2−µ.

In many cases, some information Z that is correlated to the actual source
X is known. Since for our purposes, the conditional part Z is not under
adversarial control, we use the notion of average conditional min-entropy as
used in [HLR07; DORS08].

definition 2.3 (Average min-entropy, [HLR07; DORS08]). Let (X,Z) be a
joint distribution. The average min-entropy of X conditioned on Z is

˜︁H∞(X | Z) := − log
(︂

E
z←Z

[︁
max
x

Pr[Xz = x]
]︁)︂

.

Extractors allow to obtain (almost) uniform randomness from samples
from any weakly random source of entropy, as long as a short uniform
random seed is available. Hence, even weakly random distributions can be
useful for cryptography.

definition 2.4 (Extractor, [ILL89]). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ϵ)-extractor if for all distributions X on {0, 1}n with min-entropy
H∞(X) ⩾ k (which are independent of the key K), the statistical distance

∆
(︂{︁

K← Ud : (K, Ext(K,X))
}︁

,
{︁
K← Ud : (K,Um)

}︁)︂

is at most ϵ.

Initially, such extractors were used to reduce the randomness complexity
of algorithms, [Sip88; San87; NZ96].

2.2 hardness assumptions
Cryptography aims to provide an asymmetry between the computational
cost for an honest user and the computational cost for adversaries. The
honest user is provided with computationally affordable mechanisms to,
e. g., protect information, whereas it should be computationally costly for
an adversary to obtain this protected information. Asymptotic security is
the complexity theoretic approach for achieving this. The computational
costs for user and adversary are parametrized by a security parameter λ ∈N.
Tasks that are computable in probabilistic polynomial-time in the security
parameter are considered efficient, all other tasks are considered infeasible

2.2 hardness assumptions 21

17 A reduction from a
problem A to a
problem B is a
probabilistic
polynomial-time
algorithm which
solves problem A

(with non-negligible
probability) given
oracle access to a
problem solver for B.
18 For simplicity, we
do not make a
distinction between
decision and search
problems at this
point.

19 That is, the
advantage is at most
2−λϵ

for some
0 ⩽ ϵ < 1.

(or intractable). The philosophy behind asymptotic security is that one is
able to scale the security guarantee (by choosing a suitable value for λ)
thus covering arbitrarily powerful adversaries. A security proof consists of a
reduction17 of a computational problem to the task of breaking the security
guarantee in question.

The validity of solutions for adversarial tasks in cryptography can be
efficiently tested. In other words, the adversarial tasks of interest to cryptog-
raphy are in NP.18 Thus, a necessary condition for the existence of (most)
cryptographic schemes is BPP ̸⊆ NP (implying P ̸= NP).

The complexity classes P and NP are only concerned with the worst-case
complexity. However, worst-case hardness does not suffice for cryptography
since finding hard instances must be tractable for the honest users (i. e., must
be computable in probabilistic polynomial-time). Therefore, for cryptography,
we assume the average-case hardness of problems in NP.

The fundamental notion of average-case hardness was conceived by Levin
[Lev86]. Average-case hardness against polynomial-time adversaries for com-
putational and decisional problems is roughly defined as follows.

definition 2.5 (Distributional search problem (informal), [Lev86; IL90]).
A distributional search problem is a tuple (S,µ), where S ⊆ {0, 1}∗ × {0, 1}∗ and
µ : {0, 1}∗ → [0, 1] is a distribution over inputs.

definition 2.6 (Distributional decision problem (informal), [Lev86; IL90]).
A distributional decision problem is a tuple (D,µ), where D : {0, 1}∗ → {0, 1} and
µ : {0, 1}∗ → [0, 1] is a distribution over inputs.

A decision problem (D,µ) is in distributional NP if µ is computable in
polynomial time (that is efficiently samplable) and D is an NP-predicate.
Furthermore, the class of distributional NP contains complete problems.

For cryptography, a more direct way of formalizing average-case hardness
emerged. Instead of considering one fixed input distribution, in cryptography,
we consider a sequence of input distributions (µλ)λ∈N such that µλ is a
distribution over {0, 1}λ.

definition 2.7 (Average-case hardness (informal), [Lev86; GM82; BM82;
Yao82]). A distributional decision problem (D, (µλ)λ∈N) (resp., search prob-
lem (S, (µλ)λ∈N)) is hard on the average if (µλ)λ∈N is efficiently samplable
(in λ) and for all PPT adversaries, the probability to correctly solve D is at
most negligibly better than guessing (resp., at most negligible), where the
probability is also over the input choice from (µλ)λ∈N.

subexponential hardness. There are two common ways to define
hardness against subexponential adversaries. The weaker variant requires
the advantage of polynomial-time adversaries to decrease subexponentially
in the security parameter, i. e., requires the advantage to be in 2−o(λ).19 This
definition is commonly used in the context of subexponentially secure IO. The
stronger variant requires the advantage of subexponential-time adversaries
to decrease subexponentially in the security parameter.

non-uniform adversaries. A stronger model of computation considers
so-called non-uniform adversaries. This model of computation originates
from the complexity class P/poly containing all languages which are decidable
by polynomial-sized circuits. A non-uniform (PPT) adversary is a tuple

22 preliminaries

20 The difference
between efficient

falsifiability,
falsifiability and

somewhat
falsifiability is mostly
the runtime to verify

the solution.
21 Using non-

falsifiable
assumptions might be

better than simply
assuming “the

scheme is secure”,
but a security

reduction based on
such assumptions is

(arguably) not
satisfying.

(A, (aλ)λ∈N), where A is a (probabilistic) polynomial-time machine and
(aλ)λ∈N is a sequence of polynomial-sized bitstrings. That is, aλ provides A

with one additional advice string per input length. Note that by a coin-fixing
argument, non-uniform PPT adversaries and non-uniform deterministic
polynomial-time adversaries are equivalent.

2.2.1 Efficient Falsifiability

An assumption is falsifiable if an observation can show it to be false. Be-
ing able to assess the plausibility of hardness assumptions is an important
task. For this purpose, Naor [Nao03] introduces a classification of hardness
assumptions based on the complexity of falsifying them. Informally, a cryp-
tographic assumption is falsifiable if the assumption can be formalized as
an interaction between an efficient challenger and an adversary, such that
the challenger can efficiently provide the adversary with a challenge and
is able to efficiently verify the adversary’s solution attempt. Naor classifies
assumptions into four classes. These are “efficiently falsifiable” assumptions,
“falsifiable” assumptions, “somewhat falsifiable” assumptions20 and “non-
falsifiable assumptions” (ordered decreasing in plausibility). Assumptions
which are at least somewhat falsifiable are acceptable for use in cryptography.
This, however, is (arguably) not true for non-falsifiable assumptions.21

Note that falsifiability is not closed under security reductions. There are
security properties that are non-falsifiable (when formulated as an assump-
tion) but can be instantiated from falsifiable assumptions. For instance, the
soundness property of non-interactive zero-knowledge (NIZK) proof systems
(see Section 2.8) is one such property. In this thesis, we only use falsifi-
able assumptions and security properties which can be based on falsifiable
assumptions.

2.3 one-way functions
Before we define one-way functions, we define the notion of efficiently
computable function family ensembles.

definition 2.8 (Function family ensemble). Let n(λ),m(λ) be polynomi-
ally bounded length functions. A function family ensemble is a tuple of PPT
algorithms F = (Gen, Eval) such that

{︂
Eval(f, ·) : {0, 1}n(λ) → {0, 1}m(λ)

⃓⃓
⃓ f ∈ supp(Gen(1λ))

}︂
λ∈N

is an efficiently computable family of functions.

For ease of notation, we often write f(x) instead of F.Eval(f, x). A one-way
function is a function on bitstrings which can be efficiently evaluated but
which is hard to invert given the image of a random input.

2.4 puncturable pseudorandom functions 23

definition 2.9 (One-way function, [DH76]). A one-way function (OWF)
family ensemble is a function family ensemble F = (Gen, Eval), such that for
all PPT adversaries A,

Advow
F,A(λ) := Pr

⎡
⎢⎢⎢⎣

f ← Gen(1λ)

x ← Un(λ)

x′ ← A(f, f(x))

: f(x′) = f(x)

⎤
⎥⎥⎥⎦

is negligible in λ.

The existence of one-way functions is the most fundamental hardness
assumption in cryptography.

2.4 puncturable pseudorandom functions
Pseudorandom functions are functions on bitstrings which are computation-
ally indistinguishable from truly random functions as long as the function
key remains secret.

definition 2.10 (Pseudorandom function, [GGM86]). A family of pseudo-
random functions (PRFs) is a tuple of PPT algorithms F = (KGen, Eval) and
two computable functions n(λ), m(λ) such that

• KGen(1λ) outputs a key K, and

• Eval(K, ·), given a key K ∈ supp(KGen(1λ)), defines a function mapping
bitstrings of length n(λ) to bitstrings of length m(λ).

A PRF F is required to satisfy the following property.

Advprf
F,A(λ) :=

⃓⃓
⃓ Pr

[︂
K← KGen(1λ) : AF.Eval(K,·)(1λ) = 1

]︂

−Pr
[︂
R← maps({0, 1}n(λ), {0, 1}m(λ)) : AR(·)(1λ) = 1

]︂ ⃓⃓
⃓

is a negligible function in λ.

For ease of notation we often write F(K, x) to denote F.Eval(K, x). Pseudo-
random functions can be constructed from one-way functions [GGM86].

For some applications, it will be useful to generate PRF keys which can be
used to evaluate the PRF everywhere except for a pre-defined subset of pre-
images. This procedure is called “puncturing”. A punctured PRF key is not
only insufficient to evaluate the PRF at a punctured point, but it also does
not leak any information about the actual PRF images at punctured points.

definition 2.11 (Puncturable PRF, [GGM86; BW13; BGI14; KPTZ13]). A
family of puncturable PRFs (pPRFs) is a tuple of PPT algorithms F = (KGen,
Punct, Eval) and two computable functions n(λ), m(λ) such that

• KGen(1λ) outputs a key K,

• Punct(K, T), on input of a key K, and a subset of the input space
T ⊂ {0, 1}n(λ), outputs a punctured key K{T },

• Eval(K′, ·), on input of a key K′ defines a function mapping bitstrings
of length n(λ) to bitstrings of length m(λ). Eval(K{T }, x) on input of a
punctured key K{T } and an x ∈ T , outputs a special symbol ⊥.

24 preliminaries

A pPRF is required to satisfy the following properties.

functionality preserved under puncturing. For all PPT adversaries A
which output a set T ⊆ {0, 1}n(λ), we have that

Pr

⎡
⎢⎢⎢⎣

T ← A(1λ)

K ← KGen(1λ)

K{T } ← Punct(K, T)

:
∀x ∈ {0, 1}n(λ) \ T :

Eval(K, x) = Eval(K{T }, x)

⎤
⎥⎥⎥⎦ = 1.

pseudorandom at punctured points. For all PPT adversaries A,

Advs-pprf
F,A (λ) :=

⃓⃓
⃓Pr
[︂
Exps-pprf

F,A,0(λ) = 1
]︂
− Pr

[︂
Exps-pprf

F,A,1(λ) = 1
]︂⃓⃓
⃓

is negligible, where Exps-pprf
F,A,b(λ) is defined in Figure 2.1.

Exps-pprf
F,A,b(λ)

(T , st)← A(1λ)

K← F.KGen(1λ)

K{T }← F.Punct(K, T)

y0 ← F.Eval(K, T)

y1 ← {0, 1}m(λ)

return A(st,K{T },yb)

Figure 2.1: Selective security game Exps-pprf
F,A,b(λ) for puncturable pseudorandom func-

tions.

[BW13; BGI14; KPTZ13] observed that the original tree-based PRF con-
struction from [GGM86] already satisfies this definition. In this thesis, we
will additionally be concerned with a special type of pPRFs which allow to
extract (almost) uniformly random strings from high-entropy inputs, even
when the function key is public (or not guaranteed to be hidden, as is the
case in many applications involving indistinguishability obfuscation). That
is, pPRFs which also act as randomness extractors (cf. Definition 2.4).

definition 2.12 (Extracting pPRF, [SW14]). An extracting puncturable PRF
family with error ϵ(·) for min-entropy k(·) is a family of puncturable PRFs F
mapping n(λ) bits to m(λ) bits such that for all λ ∈N, if X is a distribution
over {0, 1}n(λ) with min-entropy at least k(λ), then the statistical distance

∆
(︂{︁

K← KGen(1λ) :
(︁
K, F(K,X)

)︁}︁
,
{︁
K← KGen(1λ) :

(︁
K,Um(λ)

)︁}︁)︂

is at most ϵ(λ).

Due to [SW14] (full version, Theorem 3), extracting pPRFs exist assuming
one-way functions. On a high level, Sahai and Waters [SW14] show that
composing a puncturable PRF (which is almost always injective) with a
strong extractor yields an extracting pPRF.

2.5 obfuscation 25

2.5 obfuscation
Code obfuscation has been formally introduced in [Had00; BGI+01; BGI+12].
An obfuscator is an efficient compiler which transforms a given program
into an unintelligible one while preserving its original functionality. Several
notions of “unintelligibility” for program obfuscation have been studied. The
strongest conceivable notion is virtual black-box (VBB) obfuscation. This
notion requires that the obfuscated program is a “virtual black-box”, i. e.,
does not leak anything about the original program except for its input-output
behavior. More formally, everything being efficiently computable given the
obfuscated program, can also be efficiently computed given mere oracle
access to the original program. However, Barak et al. [BGI+01; BGI+12] show
that if one-way functions exist, there are inherently unobfuscatable programs.
On the other hand, the existence of a VBB obfuscator (for a relatively small
class of programs) implies the existence of one-way functions. Hence, VBB
obfuscation is unconditionally impossible.

Barak et al. [BGI+01; BGI+12] also introduce a weaker notion of obfusca-
tion called “indistinguishability obfuscation” (IO). An indistinguishability
obfuscator only guarantees that if two programs are functionally equivalent,
then their obfuscations are computationally indistinguishable. This definition
avoids the black-box paradigm along with the impossibility results for VBB
obfuscation. However, intuitively, this notion is rather limited compared
to VBB since there are no guarantees for circuits which compute different
functions. Barak et al. [BGI+01; BGI+12] show that an inefficient indistin-
guishability obfuscator exists unconditionally. Namely, the obfuscator which
on input of a Boolean circuit C outputs the lexicographically first circuit
which computes the same function as C and has size |C| is an inefficient in-
distinguishability obfuscator. If P = NP, the polynomial hierarchy collapses
and finding such an obfuscation is efficiently possible. Hence, the existence
of an indistinguishability obfuscator cannot imply one-way functions.

Later, Goldwasser and Rothblum [GR07] show that indistinguishability
obfuscation is equivalent to “best-possible” obfuscation. An obfuscator is a
best-possible obfuscator if any information that is not hidden by the obfus-
cated circuit, is also not hidden by any other circuit of similar size which
computes the same function. This is formalized via a simulator. Namely, a
best-possible obfuscator O guarantees that for every adversary (or “learner”)
L, there exists a simulator Sim such that for any pair of functionally equiv-
alent circuits C1, C2 (of identical length), the distributions L(O(C1)) and
Sim(C2) are computationally indistinguishable. That is, no obfuscator can
hide more information than a best-possible obfuscator. Further, Goldwasser
and Rothblum [GR07] show that indistinguishability obfuscation is actually
equivalent to best-possible obfuscation.

indistinguishability obfuscation. Let C = (Cλ)λ∈N be an ensemble
of sets Cλ of Boolean circuits. The set Cλ contains circuits of size λ with input
length n(λ).

definition 2.13 (Indistinguishability obfuscation, [GGH+13]). A uniform
PPT algorithm iO is an indistinguishability obfuscator (IO) for a circuit class
C = (Cλ)λ∈N if the following conditions are satisfied.

26 preliminaries

correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, all
inputs x, we have that

Pr
[︁
Λ← iO(C) : Λ(x) = C(x)

]︁
= 1.

security. For every (possibly non-uniform) PPT distinguisher A, for all
pairs of circuits (C0,C1) ∈ Cλ × Cλ such that for all inputs x, C0(x) =

C1(x), we have that

Advio-ind
iO,A (λ) :=

⃓⃓
⃓Pr
[︂
A(1λ, iO(C0)) = 1

]︂
− Pr

[︂
A(1λ, iO(C1)) = 1

]︂⃓⃓
⃓

is negligible in λ.

Definition 2.13 can also be formulated with respect to an efficient proba-
bilistic circuit sampler D for C. Intuitively, this corresponds to a “legitimate”
adversary choosing the circuit pair (C0,C1) in a “first phase”.

A circuit sampler for C is defined as a family of efficiently samplable dis-
tributions D = (Dλ)λ∈N, where Dλ is a distribution over triplets (C0,C1, z)
with C0,C1 ∈ Cλ such that C0 and C1 take inputs of the same length and
z ∈ {0, 1}poly(λ) is some state information. This state information z allows to
pass information which the circuit sampler D generates alongside (C0,C1)

to the adversary A. We write D(1λ) to denote the efficient sampling process
according to the distribution Dλ.

definition 2.14 (Functionally equivalent circuit sampler). We call a circuit
sampler D = (Dλ)λ∈N a functionally equivalent circuit sampler if D guarantees
that the circuits C0 and C1 are functionally equivalent in the sense that for
all inputs x, we have C0(x) = C1(x).

The alternative definition of indistinguishability obfuscation relative to
functionally equivalent circuit samplers is as follows.

definition 2.15 (Indistinguishability obfuscation (alternative), [GGH+13]).
A uniform PPT algorithm iO is an indistinguishability obfuscator (IO) for a
circuit class C = (Cλ)λ∈N if the following conditions are satisfied.

correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, all
inputs x, we have that

Pr
[︁
Λ← iO(C) : Λ(x) = C(x)

]︁
= 1.

security. For every (possibly non-uniform) PPT distinguisher (D,A), where
D is a functionally equivalent circuit sampler for C, we have that

Advio-ind
iO,D,A(λ) :=
⃓⃓
⃓ Pr

[︂
(C0,C1, z)← Dλ : A(1λ,C0,C1, z, iO(C0)) = 1

]︂

−Pr
[︂
(C0,C1, z)← Dλ : A(1λ,C0,C1, z, iO(C1)) = 1

]︂ ⃓⃓
⃓

is negligible in λ.

For non-uniform adversaries, an indistinguishability obfuscator accord-
ing to Definition 2.13 for a circuit class C is also an indistinguishability
obfuscator according to Definition 2.15 for the circuit class C. This can be
realized by a coin-fixing argument. We can fix a worst-case choice of random

2.5 obfuscation 27

coins r for Dλ. Given random coins r, Dλ produces concrete (C0,C1, z) for
which A’s advantage is still negligible due to Definition 2.13. For this thesis,
Definition 2.15 will be sufficient.

[JLS20] provides the first instantiation of IO based on well-founded falsifi-
able assumptions.

io is efficiently falsifiable. Definition 2.15 enjoys efficient falsifia-
bility due to Naor [Nao03] as opposed to Definition 2.13. The existence of
an indistinguishability obfuscator according to the original definition from
[BGI+12] (see Definition 2.13) falls within the category of non-falsifiable
assumptions. Definition 2.13 can be modeled as a game between an adver-
sary and a challenger. The adversary sends a pair of circuits (C0,C1) to the
challenger who obfuscates a random one of them and returns this obfus-
cation to the adversary who then has to guess which one was obfuscated.
However, the challenger is unable to efficiently test whether the adversarially
chosen circuits C0 and C1 are functionally equivalent, i. e., if for all inputs x,
C0(x) = C1(x). This would require the challenger to solve the SAT instance
C0(x)⊕C1(x).

The alternative formulation from Definition 2.15 requires that no adversary
can distinguish obfuscations of a circuit pair (C0,C1) which is (honestly)
sampled from a functionally equivalent circuit sampler (cf. Definition 2.14).
Hence, Definition 2.15 does satisfy efficient falsifiability.

differing-inputs obfuscation. The notion of differing-inputs obfusca-
tion (dIO) was defined in [BGI+12; BCP14; ABG+13] as a generalization of IO.
The notion of dIO is defined very similarly to Definition 2.15 except that secu-
rity is required to hold not only for functionally equivalent circuit samplers
(see Definition 2.14), but for arbitrary circuit samplers. This definition clearly
leads to problems if the input-output behavior of the sampled circuits C0

and C1 is easily distinguishable. Therefore, [ABG+13] restrict the definition
of dIO to classes of circuits, where given (C0,C1, z) sampled from D, it is
infeasible to find an input x, where C0 and C1 differ. Another possibility is
to require that for every adversary, there exists a suitable extractor recover-
ing an input x, where the sampled circuits differ [BCP14]. The authors of
[BCP14; ABG+13; BP15b] provide several applications of dIO, e. g., functional
witness encryption, adaptively secure functional encryption, multiparty non-
interactive key-exchange (without setup and only logarithmic-size messages),
perfect zero knowledge succinct non-interactive arguments (SNARGs), and
many more. However, there is evidence that dIO for all circuits is implausible
[GGHW17; BP15b].

2.5.1 Probabilistic Indistinguishability Obfuscation

Indistinguishability obfuscation for probabilistic circuits, or probabilistic
indistinguishability obfuscation (pIO), was introduced in [CLTV15]. This
notion generalizes the classical notion of IO from [Had00; BGI+12]. Similar
to Definition 2.15, pIO is defined relative to a class of circuit samplers C. A
circuit sampler is defined as before, see Section 2.5. Informally, a probabilistic
indistinguishability obfuscator allows to obfuscate probabilistic circuits and is
secure relative to a circuit sampler D if obfuscations piO(C0) and piO(C1) of
circuits (C0,C1)← D are indistinguishable. Let C = (Cλ)λ∈N be an ensemble

28 preliminaries

of sets Cλ of probabilistic circuits. The set Cλ contains circuits of size λ with
input length n(λ) expecting (at most) m(λ) random bits.

definition 2.16 (Probabilistic indistinguishability obfuscation for a class
of samplers C, [CLTV15]). A probabilistic indistinguishability obfuscator (pIO)
for a class of samplers C over the probabilistic circuit family C = (Cλ)λ∈N is
a uniform PPT algorithm piO, such that the following properties hold.

correctness. For every PPT adversary A, every C ∈ Cλ, the advantage of
A, given the description of the circuit C, to distinguish oracle access to
the original randomized circuit C from oracle access to piO(C) without
querying the same input more than once, is negligible.

security with respect to C . For all circuit samplers D ∈ C, for all PPT
adversaries A, the advantage

Advpio-ind
piO,D,A(λ) :=
⃓⃓
⃓ Pr

[︂
(C0,C1, z)← Dλ : A(1λ,C0,C1, z, piO(1λ,C0)) = 1

]︂

−Pr
[︂
(C0,C1, z)← Dλ : A(1λ,C0,C1, z, piO(1λ,C1)) = 1

]︂ ⃓⃓
⃓

is negligible.

For the purpose of a versatile notion of probabilistic indistinguishabil-
ity obfuscation, we require security to hold for sampler classes which are
broader than the restrictive class of functionally equivalent samplers from
Definition 2.14. In fact, the power of pIO lies in the generality of feasible
circuit sampler classes.

The broadest class of circuit samplers we consider is the class of dynamic-
input indistinguishable circuit samplers, introduced in [CLTV15]. Informally,
a circuit sampler D is a dynamic-input indistinguishable circuit sampler if
D produces circuit pairs (C0,C1) such that even for adversarially chosen
inputs x, the distributions induced by C0(x) and C1(x) are computationally
indistinguishable.

This class of circuit samplers is the broadest conceivable class which still
results in a feasible notion of pIO. This follows from the observation that if
the output distributions C0(x) and C1(x) are efficiently distinguishable for
some input x, then so are their obfuscations.

definition 2.17 (Dynamic-input indistinguishable samplers, [CLTV15]).
The class Cdyn-ind of dynamic-input indistinguishable samplers for a circuit family
C contains all circuit samplers D = {Dλ}λ∈N for C such that for every (non-
uniform) PPT adversary A, the advantage

Advdyn-ind
D,A (λ) :=

⃓⃓
⃓⃓Pr
[︂
Expdyn-ind

D,A (λ) = 1
]︂
−

1

2

⃓⃓
⃓⃓

is negligible, where the game Expdyn-ind
D,A (λ) is defined in Figure 2.2a.

As observed in [CLTV15], restricting pIO for dynamic-input indistinguish-
able samplers to the circuit class of deterministic circuits results in differing-
inputs obfuscation. More precisely, for every D ∈ C, given (C0,C1, z)← D,
it must be computationally hard to find an input x such that C0(x) ̸= C1(x).
Hence, pIO for dynamic-input indistinguishable samplers inherits the im-
plausibility result from [GGHW17].

2.5 obfuscation 29

Expdyn-ind
D,A (λ)

(C0,C1, z)← Dλ

(x, st)← A(C0,C1, z)

y← Cb(x) for b← {0, 1}

b′ ← A(st,C0,C1, z, x,y)

return b = b′

(a) Game Expdyn-ind
D,A (λ) for the indistin-

guishability property of dynamic-input
samplers.

Expsel-ind
D,A (λ)

(x, st)← A(1λ)

(C0,C1, z)← D(1λ)

b← {0, 1}

y← Cb(x)

b′ ← A(st, (C0,C1, z),y)

return b = b′

(b) Game Expsel-ind
D,A (λ) for the X-indistin-

guishability property of static-input
samplers.

Figure 2.2: Definitions of the security games for dynamic-input indistinguishable
samplers (2.2a) and (static-input) X-ind samplers (2.2b).

static-input pio. The above implausibility suggests the study of a
weaker notion. Canetti et al. [CLTV15] introduce a corresponding “static-
inputs” notion, see Figure 2.2b for the corresponding game. At first, this
definition renders the resulting class of circuit samplers even broader (re-
sulting in an impossible notion). However, Canetti et al. restrict this class of
circuit samplers accounting for the number of inputs, where the sampled
circuits actually behave differently as follows. Informally, let X be (a lower
bound of) the number of inputs, where circuits sampled from D behave
differently. Then, a circuit sampler D is in the class of X-ind samplers if
for every adversary, the distinguishing advantage in the game defined in
Figure 2.2b is upper bounded by negl(λ) ·X−1(λ). Due to [CLTV15], pIO for
this class of samplers is achievable from IO and one-way functions.

definition 2.18 (X-ind sampler, [CLTV15]). Let X(λ) be a function upper
bounded by 2λ. The class CX-ind of X-ind samplers for a circuit family C

contains all circuit samplers D = (Dλ)λ∈N for C such that for all λ ∈ N,
there exists a set Xλ ⊆ {0, 1}∗ with |X| ⩽ X(λ), such that

X-differing inputs. With overwhelming probability over the choice of
(C0,C1, z)← Dλ, for every x ̸∈ Xλ, for all r ∈ {0, 1}m(λ), we have that
C0(x; r) = C1(x; r).

X-indistinguishability. For all (non-uniform) adversaries A, the advan-
tage

X(λ) ·
(︃

Pr
[︂
Expsel-ind

D,A (λ) = 1
]︂
−

1

2

)︃

is negligible, where Expsel-ind
D,A (λ) is defined in Figure 2.2b.

On a high level, the construction of pIO for the sampler class CX-ind from
[CLTV15] works as follows. Given a probabilistic circuit C with size at most
λ, piO(C) samples a PRF key K and obfuscates the deterministic circuit C
which on input of x evaluates the deterministic circuit C(x; F(K, x)).

This construction respects the support of the original randomized circuit,
i. e., the output of the obfuscated circuit is always in the support of the
original circuit (on the same inputs). More formally, for all circuits C ∈ Cλ,

30 preliminaries

all inputs x ∈ {0, 1}∗ (of matching length), all Λ ∈ supp(piO(C)), we have
Λ(x) ∈ supp(C(x)).

notions of correctness. Defining correctness for probabilistic obfusca-
tion is slightly more tricky than for deterministic obfuscation. This is because
an obfuscated program is defined to be deterministic whereas the original
program can use randomness. In [CLTV15], correctness is defined by requir-
ing that evaluations of the obfuscated program must be indistinguishable
from evaluations of the original randomized program, where the random-
ized program must not be called twice on the same input (to exclude trivial
attacks). This definition of correctness is inspired by the security definition a
pseudorandom function, see Definition 2.10, which is used by [CLTV15] to
derive the randomness for the obfuscated circuit.

Another notion of correctness is to require that the obfuscated program
respects the support of the original randomized program. This notion is useful
because, in many cases, it allows to avoid a reduction to the correctness
property above which can simplify proofs.

Dodis et al. [DHRW16] introduce another notion of correctness which guar-
antees that a one-time evaluation of the obfuscated program is distributed
identically to the distribution induced by the original randomized circuit (on
the same input), where the distribution is also over the randomness of the
obfuscator. Clearly, this notion of correctness implies that the obfuscated
circuit respects the support of the original program.

In Part I, we elaborate on these notions in more detail and, in Part II, we
introduce a novel notion of statistical correctness which proves to be quite
useful.

2.6 assuming adversarial knowledge
To make assumptions on adversarial knowledge is a common paradigm used
in cryptography. Such assumptions state that if an adversary is able to derive
some output, then he must know how he computed that output. This kind of
“adversarial knowledge” is modeled by the ability to algorithmically extract
certain information from the adversary’s code (and random tape).

With the knowledge-of-exponent assumption (KEA), Damgård [Dam92]
introduced the first assumption about adversarial knowledge. The KEA is
an assumption on cryptographic groups and informally states that given
two random group generators g and h, then the only way to produce (A,B)
such that dlogA(B) = dlogg(h) is to compute (gc,hc) for some c ∈ Zp.
That is, every adversary producing such (A,B) must know c such that
(A,B) = (gc,hc).

definition 2.19 (Knowledge-of-exponent assumption, [Dam92]). Let G be
a cyclic group with group parameter generation algorithm GGen producing
triplets of the form ppG := (G,p,g). The knowledge-of-exponent assumption

2.6 assuming adversarial knowledge 31

(KEA) holds relative to GGen if for every PPT adversary A, there exists a PPT
extractor E such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

ppG ← GGen(1λ)

x ← Zp

(A,B) ← A(ppG,gx; r)

c ← E(ppG,gx, r)

: Ax = B∧ gc ̸= A

⎤
⎥⎥⎥⎥⎥⎥⎦

is a negligible function in λ.

Note that KEA is only nontrivial if computing discrete logarithms is hard
relative to GGen.

This paradigm of knowledge-type assumptions was later generalized as
extractable functions by Canetti and Dakdouk [CD08; CD09]. These are (one-
way) function families such that every adversary who (given a function
description f) outputs an image y ∈ image(f) must know a pre-image of y
under f.

definition 2.20 (Extractable one-way functions without auxiliary infor-
mation, [BCPR16]). An extractable one-way function (EOWF) family ensemble
without auxiliary information is a function family ensemble F = (Gen, Eval) (cf.
Definition 2.8) if the following two properties are satisfied.

one-wayness. For every PPT adversary A,

Pr
[︂
Expow

F,A(λ) = 1
]︂

is negligible, where Expow
F,A(λ) is defined in Figure 2.3a.

extractability. For every PPT adversary X (using a random tape of length
p(λ)), there exists a PPT algorithm EX such that

Pr
[︂
Expext

F,X,EX
(λ) = 1

]︂

is overwhelming, where Expext
F,X,EX

(λ) is defined in Figure 2.3b.

Expow
F,A(λ)

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

x′ ← A(f,y)

return f(x′) = y

(a) The one-way game.

Expext
F,X,EX

(λ)

f← Gen(1λ)

rX ← {0, 1}p(λ)

y← X(f; rX)

x← EX(f, rX)

return
(︁
f(x) = y

)︁
∨
(︁
∀x′ : f(x′) ̸= y

)︁

(b) The extraction game.

Figure 2.3: One-way and extraction games for EOWFs.

definition 2.21 (Extractable one-way function family ensembles with
common auxiliary information, [BCPR16]). An extractable one-way function
(EOWF) family ensemble with common auxiliary information is a function family
ensemble F = (Gen, Eval) (cf. Definition 2.8) if the following properties are
satisfied.

32 preliminaries

22 Note that Barak
[Bar01] introduces a

non-black-box
technique that does

not rely on
knowledge-type

assumptions.
However, it is not

known whether this
technique extends to

settings other than
zero-knowledge

proofs.

one-wayness. As in Definition 2.20.

one-wayness (stronger). For every PPT adversary A, for every polyno-
mial b and for every z ∈ {0, 1}b(λ),

Pr
[︂
Expow-aux

F,A,z (λ) = 1
]︂

is negligible, where Expow-aux
F,A,z (λ) is defined in Figure 2.4a.

extractability. For every PPT adversary X, there exists a PPT algorithm
EX such that for every polynomial b and every z ∈ {0, 1}b(λ),

Pr
[︂
Expext-aux

F,X,EX,z(λ) = 1
]︂

is overwhelming, where Expext-aux
F,X,EX,z(λ) is defined in Figure 2.4b.

Expow-aux
F,A,z (λ)

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

x′ ← A(f,y, z)

return f(x′) = y

(a) The one-way game.

Expext-aux
F,X,EX,z(λ)

f← Gen(1λ)

rX ← {0, 1}p(λ)

y← X(f, z; rX)

x← EX(f, z, rX)

return
(︁
f(x) = y

)︁
∨
(︁
∀x′ : f(x′) ̸= y

)︁

(b) The extraction game.

Figure 2.4: One-way and extraction game for EOWFs with common auxiliary input.

We note that the weaker notion of one-wayness without auxiliary input is
sufficient for us. Assuming non-uniform adversaries, one-wayness without
auxiliary input and one-wayness with auxiliary input are equivalent. We
emphasize that in contrast to one-wayness, extractability with common aux-
iliary input is strictly stronger than extractability without common auxiliary
input (even when considering non-uniform adversaries).

definition 2.22 (Extractable one-way function family ensembles with b-
bounded common auxiliary information, [BCPR16]). Like Definition 2.21 but
with a fixed polynomial b determining the length of the common auxiliary
information.

In Section 17.2.1 we define further variants of EOWFs.

on the need for non-black-box techniques. The knowledge-of-
exponent assumption [HT98; BP04] as well as extractable one-way functions
[CD09; BCC+17] imply 3-message zero-knowledge protocols. However, this
notion of zero-knowledge protocols is known to be impossible with respect
to black-box simulation [GK96; Kat08; FGJ18]. Hence, constructing EOWFs
(or groups where KEA holds) requires non-black-box techniques. So far, no
such constructions are known.22

falsifiability and plausibility. Furthermore, knowledge-type assump-
tions such as the knowledge-of-exponent assumption or the existence of
extractable one-way functions are not falsifiable in the sense of Naor [Nao03],

2.7 public-key encryption and its variants 33

see Section 2.2.1. Hence, it is difficult to reason about their plausibility. While
assuming KEA or the existence of EOWFs might be better than simply as-
suming “the scheme is secure”, a proof based on such assumptions is not
satisfying.

In Part III of this thesis, we use knowledge-type assumptions “negatively”
in the sense that we prove that the existence of certain knowledge-type
assumptions conflicts with other notions. Furthermore, in Part II of this
thesis, we demonstrate how certain knowledge-type assumptions can be
avoided.

We note that the notion of extractable one-way functions with unbounded
common auxiliary information as per Definition 2.21 conflicts with indistin-
guishability obfuscation [BCPR16] since the common auxiliary information
can contain a circuit which, given a function description f, outputs f(F(K, f))
thus forcing any extractor to break the pseudorandom function F. More pre-
cisely, consider the universal adversary which simply executes all commands
in its auxiliary input. Then, there needs to be one “universal” extractor which
works for all adversarial strategies. Suppose the auxiliary input contains an
obfuscated program which computes f(F(K, f)) as above, then the universal
extractor needs to either break the pseudorandom function F or the security
of the used obfuscator. Hence, it is unlikely that such EOWFs exist (even
heuristically).

2.7 public-key encryption and its variants
Encryption enables users to confidentially communicate messages over in-
secure channels. Secret-key encryption (SKE) assumes both users know a
common secret key which is used for both encryption and decryption. SKE
is known to exist from OWFs [GM84]. In contrast to classical secret-key
encryption, public-key encryption (PKE) schemes use two keys; a public key
for encryption and a secret key for decryption. Currently, it is not known
whether PKE schemes can be constructed from OWFs but there is evidence,
that this might not be possible [IR89; Dac16]. However, if IO exists, then PKE
schemes can be constructed from OWFs.

definition 2.23 (Public-key encryption, [ElG85; Yao82]). A public-key en-
cryption (PKE) scheme for message space M = {Mλ}λ∈N is a tuple of algo-
rithms E = (KGen, Enc, Dec) such that the following properties are satisfied.

perfect correctness. For all λ ∈ N, all (pk, sk) ∈ supp(KGen(1λ)), all
m ∈Mλ,

Pr
[︁
Dec(sk, Enc(pk,m)) = m

]︁
= 1.

ind-cpa security. For all legitimate PPT adversaries A,

Advind-cpa
E,A (λ) :=
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

Pr

⎡
⎢⎢⎢⎣

(pk, sk) ← KGen(1λ)

(m0,m1, st) ← A(pk)

c∗ ← Enc(pk,m0)

: A(pk, c∗, st) = 1

⎤
⎥⎥⎥⎦

34 preliminaries

23 Circular security
means that it is

assumed that the
scheme remains

secure even if an
encryption of the

secret key is known.

−Pr

⎡
⎢⎢⎢⎣

(pk, sk) ← KGen(1λ)

(m0,m1, st) ← A(pk)

c∗ ← Enc(pk,m1)

: A(pk, c∗, st) = 1

⎤
⎥⎥⎥⎦

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

is negligible, where legitimate means that A always outputs two mes-
sages m0,m1 ∈M of identical length.

Without loss of generality, we assume that sk is the random tape used
for key generation. Therefore, making the random tape of KGen explicit, we
write (pk, sk) = KGen(1λ; sk).

Note that IND-CPA security as defined in Definition 2.23 is not the de
facto security for use in practice. However, it suffices as building block for
our applications.

2.7.1 Fully Homomorphic Encryption

Equipping public-key encryption schemes with the additional property that
one can publicly evaluate programs on the contents of ciphertexts was a long
standing open problem since [RAD78] and was resolved by Gentry [Gen09].
This variant of public-key encryption has many applications in theory and
practice. For instance, fully homomorphic encryption allows to outsource
computations on private data without compromising its confidentiality.

Let P = (Pλ)λ∈N be a family of sets of polynomial sized circuits of arity
a(λ), i. e., the set Pλ contains circuits of polynomial size in λ. We assume
that for any λ ∈ N the circuits in Pλ share the common input domain
({0, 1}poly(λ))a(λ) for a fixed polynomial poly(λ). A homomorphic encryption
scheme enables evaluation of circuits on encrypted data.

definition 2.24 (Fully homomorphic encryption, [Gen09]). A fully ho-
momorphic (public-key) encryption (FHE) scheme with message space M =

{Mλ}λ∈N for a deterministic circuit family P = (Pλ)λ∈N of arity a(λ) and in-
put domain ({0, 1}poly(λ))a(λ) is a tuple of PPT algorithms FHE = (KGen, Enc,
Dec, Eval) such that (KGen, Enc, Dec) is a perfectly correct IND-CPA secure
public-key encryption scheme and the following properties are met.

perfect correctness. For all λ ∈N, all m1, . . . ,ma(λ) ∈Mλ, P ∈ Pλ,

Pr

⎡
⎢⎢⎢⎣

(pk, sk) ← KGen(1λ)

ci ← Enc(pk,mi)

c ← Eval
(︁
pk,P, c1, . . . , ca(λ)

)︁
:

Dec(sk, c)

=

P
(︁
m1, . . . ,ma(λ)

)︁

⎤
⎥⎥⎥⎦ = 1.

compactness. The size of the output of Eval is polynomial in λ and inde-
pendent of the size of the circuit P.

The first FHE scheme based on standard lattice assumptions (additionally
assuming circular security) is due to [BV14a; BV11; BV14b].23

Further, due to [CLTV15], probabilistic indistinguishability obfuscation
in conjunction with (slightly super-polynomially secure) perfectly correct
and perfectly re-randomizable public-key encryption yields a perfectly cor-
rect and perfectly re-randomizable fully homomorphic encryption scheme
(without using circular security assumptions).

2.8 non-interactive zero-knowledge proof systems 35

2.8 non-interactive zero-knowledge proof
systems

Zero-knowledge protocols [GMR85] are a fundamental notion in cryptogra-
phy. They allow to prove the validity of statements without revealing any
information beyond that fact. One-way functions are both sufficient [GMR85]
and necessary [OW93] for the existence of interactive zero-knowledge proto-
cols for languages in NP.

Non-interactive zero-knowledge (NIZK) proof systems [BFM88] are the
non-interactive analogue of zero-knowledge protocols, where only one mes-
sage between the prover and the verifier is exchanged. In contrast to inter-
active zero-knowledge protocols, NIZK proof systems in the plain model
are only possible for languages in BPP [GO94]. However, the notion of zero-
knowledge is not meaningful if restricted to BPP since a verifier does not
need the prover to verify the validity of a statement. Hence, NIZK proof
systems for NP only exist in stronger models such as the common reference
string model, where a reference string is generated by a trusted party and
made available to all parties.

NIZK proof systems find use in various areas of cryptography. A NIZK
proof system for a language L with witness relation RL enables to prove
in a non-interactive manner that some statements are in L without leaking
information about corresponding witnesses.

definition 2.25 (Non-interactive zero-knowledge proof system [GOS06]).
A non-interactive zero-knowledge (NIZK) proof system for a language L ∈ NP

(with witness relation RL) is a tuple of PPT algorithms NIZK = (Setup, Prove,
Verify) such that Setup is a common reference string generation algorithm,
Prove is a proving algorithm and Verify is a (deterministic) verification algo-
rithm.

• Setup(1λ) outputs a common reference string σ.

• Prove(σ, x,w), on input of σ, a statement x and a witness w, outputs a
proof π.

• Verify(σ, x,π), on input of σ, a statement x and a proof π, deterministi-
cally outputs either 1 or 0.

A NIZK proof system is required to meet the following properties.

perfect completeness. For every λ ∈ N, every (x,w) ∈ RL with |x| = λ,
we have that

Pr

⎡
⎣ σ ← Setup(1λ)

π ← Prove(σ, x,w)
: Verify(σ, x,π) = 1

⎤
⎦ = 1,

where the probability is over the random coins of Setup and Prove.

statistical soundness. For every λ ∈ N, every x /∈ L (of polynomial
length) and every (possibly unbounded) adversary A,

Advsound
NIZK,A(λ) := Pr

⎡
⎣ σ ← Setup(1λ)

π ← A(σ, x)
: Verify(σ, x,π) = 1

⎤
⎦

< 2−λ,

36 preliminaries

where the probability is over the random coins of Setup and A.

computational zero-knowledge. There exists a PPT algorithm Sim =

(Sim0, Sim1) such that for every PPT adversary A,

Advzk
NIZK,Sim,A(λ) :=
⃓⃓
⃓ Pr

[︂
σ← Setup(1λ) : AProve(σ,·,·)(σ) = 1

]︂

−Pr
[︂
(σ, τΠ)← Sim0(1

λ) : ASim′1(σ,τΠ,·,·)(σ) = 1
]︂ ⃓⃓
⃓

is negligible in λ, where Sim′1(σ, τΠ, x,w) operates like Sim1(σ, τΠ, x)
only if (x,w) ∈ RL and returns ⊥ otherwise.

remark 2.1. The above definition of NIZK proof systems can be strengthened
such that NIZK.Setup is required to produce uniformly random common
reference strings from {0, 1}nΠ(λ), so-called common random strings.

For interactive zero-knowledge proof systems, one-way functions are suffi-
cient [GMW86] (even in the plain model, i. e., without a common reference
string). This is not the case for non-interactive zero-knowledge proof systems.
To date, NIZK proof systems can be built from a variety of assumptions
including assumptions on pairing-friendly groups [GOS06; CH19], certain
trapdoor permutations (and, hence, RSA) [FLS90], the learning-with-errors
(LWE) assumption [PS19] and indistinguishability obfuscation (in conjunction
with one-way functions) [BP15a].

Part I

D O U B LY- P R O B A B I L I S T I C
I N D I S T I N G U I S H A B I L I T Y O B F U S C AT I O N

2.8 non-interactive zero-knowledge proof systems 39

i doubly-probabilistic indistinguishability obfuscation

3 introduction 41

3.1 Technical Overview . 43

4 preliminaries 47

4.1 Perfect Puncturable PRFs . 47

4.2 Extremely Lossy Functions . 47

4.2.1 Instantiating Extremely Lossy Functions 48

5 doubly-probabilistic io 51

6 construction 59

6.1 Overview . 59

6.2 Constructing Doubly-Probabilistic IO 60

7 leveled homomorphic encryption 73

3 I N T R O D U C T I O N

In this part, we present the results of [ACH20]. This part is taken verbatim
from [ACH20] with minor changes.

obfuscation. Code obfuscation has been formalized already in the early
2000s as a cryptographic building block, by Hada [Had00] and Barak et
al. [BGI+01], along with a number of early positive [Can97; LPS04; Wee05;
HRsV07; HMS07] and negative [BGI+01; GK05; Wee05] results. However,
prior to the candidate obfuscation scheme of Garg et al. [GGH+13], only
relatively few positive results on obfuscation were known.

The first candidate obfuscator from [GGH+13] changed things. Their work
identified indistinguishability obfuscation (IO, cf. [BGI+01; GR07]) as an
achievable and useful general notion of obfuscation: it presented a candidate
indistinguishability obfuscator, along with a first highly nontrivial appli-
cation (functional encryption). Since then, a vast number of applications
have been proposed, ranging from functional [GGH+13], deniable [SW14],
and fully homomorphic [CLTV15] encryption, over multi-party computa-
tion (e. g., [GGHR14]), to separation results (e. g., [HRW16]). In the process,
powerful techniques like “puncturing” [SW14] have been discovered, which
have found applications even beyond obfuscation (e. g., in multi-party com-
putation [BL18a; GS18], instantiating the Fiat-Shamir paradigm [CCRR18],
and verifiable random functions [Bit17; GHKW17]). Besides, the notion of IO
itself has been refined, and related to other notions of obfuscation [ABG+13;
BP13; BCP14; BCKP14; CLTV15; IPS15], and various different constructions
of obfuscators have been presented [PST14; Zim15; AJ15; BV15; AS17; Lin17;
LT17; CVW18; GJK18; CHVW19; AJL+19; Agr19; JLMS19; BDGM20a; GJLS20;
JLS20; GP20; AP20; BIJ+20; BDGM20b; WW20].

subexponential assumptions. It is currently hard to find a crypto-
graphic primitive that can not be constructed from IO (in combination with
another mild assumption such as the existence of one-way functions). How-
ever, some of the known IO-based constructions come only with subexponen-
tial reductions to IO. For instance, the only known IO-based constructions
of fully homomorphic encryption [CLTV15], spooky encryption [DHRW16],
and graded encoding schemes [FHHL18] suffer from reductions with a
subexponential loss.

Hence, while IO has generally been recognized as an extremely powerful
primitive (even to the extent being called a “central hub” for cryptogra-
phy [SW14]), it is not at all clear if this also holds for polynomially secure IO.
Indeed, it is conceivable that only polynomially secure IO exists, in which
case much of IO’s power stands in question.

More generally, subexponential reductions (in particular to IO) are unde-
sirable. Namely, the security of existing IO constructions is still not well-
understood, and in particular current state-of-the-art constructions of IO
schemes (such as [AS17; Lin17; LT17]) already require subexponential com-

41

42 introduction

24 That means that
our final schemes
depend on ELFs,

which are currently
only known to be
instantiable from

exponential
assumptions.

However, we stress
that ELFs can be

built from
exponential variants

of very standard
assumptions, such as

the decisional
Diffie-Hellman

(DDH) assumption.

putational assumptions themselves. Hence, assuming subexponential IO is a
particularly risky bet. This suspicion is confirmed in part by Pass and shelat
[Ps16] who separate polynomial and subexponential security for virtual
black-box obfuscation.

Removing subexponential assumptions in general and from IO-based
constructions in particular has already explicitly been considered in [LM16;
GS16] and [GPS16; GPSZ17; LZ17] respectively. These works offer general
techniques and ideas to turn subexponential reductions into polynomial
ones. For instance, [GPSZ17; LZ17] offer ways to replace (subexponential)
IO-based constructions with (polynomial) constructions based on functional
encryption. Of course, this requires a special structure of the primitive to
be implemented, and is demonstrated for several primitives, including non-
interactive key exchange and short signature schemes.

our contribution. In this part, we are also concerned with substituting
subexponential with polynomial reductions in IO-based constructions. Unlike
[GPSZ17; LZ17], however, we do not follow the approach of using functional
encryption directly in place of IO, but instead will employ extremely lossy
functions (ELFs) [Zha16] to “absorb” subexponential complexity.24

We will implement a variant of probabilistic indistinguishability obfus-
cation (pIO, introduced in [CLTV15]) using polynomially secure IO (and
ELFs). A pIO scheme can be used to obfuscate probabilistic (i. e., randomized)
programs, and are currently the only way to obtain, e. g., fully homomorphic
encryption (FHE) schemes without circular security assumptions [CLTV15].
However, the only previous construction of pIO schemes required subexpo-
nentially secure IO [CLTV15]. Hence, our construction yields the first FHE
scheme from polynomially secure IO (and ELFs). Similarly, we can turn the
assumption of subexponentially secure IO into polynomially secure IO (plus
ELFs) in the construction of spooky encryption from [DHRW16].

Both FHE and spooky encryption are quite powerful primitives, and we
obtain several “spin-off results” by revisiting their implications. For instance,
when instantiating the pIO-based FHE construction of [CLTV15] with our
pIO scheme and a suitable public-key encryption scheme, we obtain a fully
key-dependent message (KDM) secure public-key encryption scheme from
(polynomially secure) IO and the exponentially secure DDH assumption (and
no further assumptions). Under the same assumptions, we obtain multi-key
FHE with threshold decryption and function secret sharing schemes from
the spooky encryption construction from [DHRW16].

on the plausibility of elfs. One could argue that we trade one expo-
nential assumption for another, and it is not clear that assuming polynomial
IO and exponential DDH is any better than assuming only subexponential IO
in the first place. Seconding Zhandry [Zha16] here, we think that exponential
DDH is a realistic assumption that is far more popular, better-investigated,
and arguably more plausible than subexponential IO. Much of the currently
deployed cryptography relies on (in fact a strong variant of) exponential
DDH, because parameters are almost always chosen according to the best
known attacks.

on the number of assumptions. Another natural observation is that
IO for general circuits is already an exponential family of assumptions in

3.1 technical overview 43

25 For example, if a
protocol relies on the
subexponential
hardness of LWE
with exponential
modulus-to-noise
ratio, it would be
desirable to achieve
the same while
relying only on
polynomially secure
LWE, even if the
modulus-to-noise
ratio remains
exponential.

26 This is of course an
oversimplification.
Also, [CLTV15]
define several types of
pIO security that
provide a tradeoff
between security and
achievability.

27 Again, we are not
very specific about
the form of desired or
assumed security.
However, we believe
that for this
exposition, these
specifics do not
matter.

itself (one for each obfuscated circuit) [PST14]. It might seem that this lets the
challenge of relying on polynomially secure IO instead of subexponentially
secure IO appear less appealing. We make two comments on that.

• First, being an exponential family of assumptions and assuming resis-
tance against subexponential adversaries are orthogonal issues. Many
cryptographic assumptions have several dimensions of strengths, and
relaxing the assumption in any of these dimensions is desirable.25 In
this part, we make progress in one important dimension. By replac-
ing subexponential IO by polynomial IO plus exponential DDH, we
effectively trade an exponential number of subexponential hardness
assumptions in exchange for a single (plausible, well-studied) exponen-
tial hardness assumption (plus an exponential family of polynomial
hardness assumptions).

• Second, IO being an exponential family of assumptions can be consid-
ered an artificial consequence of working on the general notion of IO
for arbitrary circuits. When using IO in concrete constructions (e. g., in
all the constructions described in this part), one almost never needs
to assume IO for all circuits. It usually suffices to assume IO for a
constant number of specific circuits (namely those being obfuscated
in the construction and the analysis). Hence, IO is a small number of
assumptions when used for building a cryptographic primitive.

3.1 technical overview
the pio construction of canetti et al. To describe our ideas, it
will be helpful to briefly review the work of Canetti et al. [CLTV15]. In a
nutshell, they define the notion of pIO as a way to obfuscate probabilistic
programs, and show how to use pIO to implement the first FHE scheme
without any circular security assumption. Intuitively, where the notion of IO
captures that the obfuscation iO(P) of a deterministic program P does not leak
anything beyond the functionality of P, pIO captures the same for probabilistic
programs P.26

They also show how to implement pIO with an indistinguishability obfus-
cator iO and a pseudorandom function (PRF) F. Namely, in order to obfuscate
a probabilistic program P, Canetti et al. obfuscate the deterministic program
P ′ that, on input x, runs P(x) with random coins r = F(K, x). Here, K is
a PRF key hard-coded into P ′. The security proof uses “puncturing” tech-
niques [SW14] and a hybrid argument over all possible P-inputs x. More
specifically, for each P-input x, separate reductions to the security of iO and
F show that the execution of P ′(x) is secure.27

This proof strategy is very general and does not need to make any specific
assumptions about the structure of P. (In fact, this strategy can be viewed as a
specific form of “complexity leveraging”, technically similar to the conversion
of selective security into adaptive security, e. g., [BB04a].) However, the price
to pay is a reduction loss which is linear in the size of the input domain
(which usually is exponentially large). In particular, even after scaling security
parameters suitably, Canetti et al. still require subexponentially secure IO
and PRFs.

44 introduction

28 Looking ahead, this
“certificate” will be

implemented using a
NIZK in our
construction.

more on previous works to remove subexponentiality. There are
a number of known ways to deal with subexponential reduction losses due
to complexity leveraging (or related techniques). For instance, various semi-
generic (pre-IO) techniques seek to achieve adaptive security (for different
primitives) by establishing an algebraic or combinatorial structure on the
used inputs [BB04b; Wat05; HK08; HW09], and can sometimes be adapted
to the IO setting [HSW14]. But like the already-mentioned, somewhat more
general approaches [GPSZ17; LZ17], these works make specific assumptions
about the structure of the involved computations.

A somewhat more general approach (that works for more general classes
of programs) was outlined by Zhandry [Zha16], who introduces the notion
of “extremely lossy functions” (ELFs). Intuitively, an ELF is an injective
function G that can be switched into an “extremely lossy mode”, in which
its range is polynomially small. Such an ELF can sometimes be used to
“preprocess” inputs in a cryptographic scheme, with the following benefit: a
security reduction can switch the ELF to extremely lossy mode, so that only
a polynomial number of (preprocessed) inputs G(x) need to be considered.
This simplifies a potential hybrid argument over all (preprocessed) inputs
G(x), and can lead to a polynomial (instead of a subexponential) reduction.

However, trying to apply this strategy to the construction and reduction
of Canetti et al. (as sketched above) directly fails. Namely, in their applica-
tion, inputs to the cryptographic scheme will be inputs x to an arbitrary
(probabilistic) program P; preprocessing them with an ELF will destroy
their structure, and it is not clear how to run P on ELF-preprocessed inputs
G(x). Indeed, applying ELFs to realize pIO requires fundamentally different
techniques.

main idea: pio with sparsifiable inputs. Instead, we will restrict
ourselves to programs P that take as input an element x from a small number
of (arbitrary but efficiently samplable) distributions. In other words, all
possible inputs x need to be in the range of one of a small number of
efficient samplers Si. As an example, for i ∈ {0, 1}, sampler Si could sample
ciphertexts C that encrypt plaintext i. Moreover, we require that all inputs to
a program P to be obfuscated are at some point actually sampled from some
Si according to a certain process.

Obfuscating a given probabilistic program P (that takes as inputs one or
more x as above) now consists of two steps:

1. First, we encode all inputs x, in the sense that we compile Si to attach
a “certificate” aux to x. This certificate aux guarantees that x has really
been sampled using Si. Furthermore, the compiled sampler Si uses
preprocessed random coins of the form G(r) (instead of r) for an ELF
G. (When G is in injective mode, this does not affect the distribution of
sampled x.) The certificate aux additionally guarantees this choice of
random coins.28

2. Second, we produce the actual obfuscation of the probabilistic program
P as follows. We use an indistinguishability obfuscator iO to obfuscate
the following (deterministic) variant P ′ of P: on inputs x1, . . . , xℓ with
certificates aux1, . . . , auxℓ, P ′ first checks the certificates auxi and aborts
if one of them is invalid. Next, P ′ runs P(x1, . . . , xℓ), with random

3.1 technical overview 45

coins F(K, (xi)ℓi=1) for a PRF F and a hard-coded PRF key K. Finally, P ′

outputs P’s output.

Maybe the most important property of this setup is that now the sets of
inputs xi are “sparsifiable” in the following sense. If we set G to extremely
lossy mode, then only a polynomial number of different random coins r can
occur. Hence, each Si will output one of only a small number of possible
samples (e. g., encryptions C generated with random coins from a small set).
In that sense, the set of possible inputs xi to P has been “sparsified”, and
a hybrid argument over all possible inputs as in [CLTV15] is possible with
polynomial loss.

We stress that our technique of applying ELFs fundamentally differs
from [Zha16]. In [Zha16], the constructed primitive itself ensures that G

is applied on all inputs. When approaching the challenge of constructing
pIO, however, the input to the primitive must externally be sampled using
random coins that are preprocessed with G. This process is not under the
control of the primitive and therefore requires a mechanism certifying that
inputs are generated according to this specific process. We implement this
mechanism using the combination of compiling the sampler for the input
distribution into a “certifying sampler” (step 1) and restricting correctness of
the obfuscated program (step 2).

Surprisingly, our pIO scheme achieves the notion of “dynamic-input pIO”
[CLTV15], a very strong variant of pIO security. On a high level, dynamic-
input pIO guarantees indistinguishability between obfuscations of probabilis-
tic programs as long as their output distributions on adversarially chosen
inputs are indistinguishable. This constitutes a very strong requirement and,
in fact, implies differing-inputs obfuscation [BGI+01; ABG+13], a notion for
which strong impossibility results exist [GGHW17; BSW16]. However, our
obfuscator produces circuits which are only required to work on inputs
certifiably generated according to a specific process. Hence, our pIO scheme
enjoys a restricted form of correctness. This enables us to circumvent the
impossibility results [GGHW17; BSW16].

applications. One obvious question is of course how restrictive our
assumption on input domains really is. We show that our assumptions
apply to two existing pIO-based constructions, with a number of interesting
consequences.

First, we revisit the pIO-based construction of fully homomorphic encryp-
tion from [CLTV15]. Here, pIO is used to obfuscate the FHE evaluation
algorithm that takes two ciphertexts (say, of two bit plaintexts b0 and b1)
as input, and outputs a ciphertext of the NAND of the two plaintexts (i. e.,
b0∧b1). If we set Sb to be a sampler that samples an encryption of b, this
setting perfectly fits our scheme. Hence, we obtain first a leveled homomor-
phic encryption (LHE) scheme, and from this an FHE scheme using the
high-level strategy from [CLTV15]. Hence, putting this together with our pIO
construction, we obtain an FHE scheme from polynomially secure IO and an
ELF (and no further assumptions).

We note that the above FHE scheme is also fully key-dependent message
(KDM, see [BRS03]) secure when implemented with a suitable basic public-
key encryption scheme (such as the DDH-based scheme of [BHHO08]). In
that case, the FHE is secure even when an encryption of its own secret
key Csk = Enc(pk, sk) is public. However, such an encryption Csk can be

46 introduction

transformed into an encryption Enc(pk, f(sk)) of an arbitrary function of sk
thanks to the fully homomorphic properties of the FHE scheme. This leads
to a conceptually very simple fully KDM-secure encryption scheme from
polynomial assumptions (and ELFs). (We stress that we do not claim novelty
for this observation. The connection between FHE and KDM security has
already been observed in [BHHI10], and [DHRW16] have observed that
the FHE construction of Canetti et al. preserves interesting properties of
the underlying encryption scheme. However, [DHRW16] do not explicitly
mention KDM security, and we find these consequences interesting enough
to point out.)

As a second application, we consider spooky encryption (with CRS) intro-
duced by Dodis et al. [DHRW16]. Note that this is not the contribution of
this author and is hence not included in this thesis. We refer the reader to
the original publication [ACH20] for more details.

We believe that our new notion of obfuscation will prove useful in other
applications; for example, it would likely allow to improve the recent result
[CRRV17], which constructed IND-CCA1-secure FHE from subexponentially
secure IO.

follow-up work. In the recent work [DN18], Döttling and Nishimaki
define the notion universal proxy re-encryption (UPRE). UPRE schemes
allow a proxy to convert any ciphertext under any public key of any existing
PKE scheme into a ciphertext under any public key of any possibly different
existing PKE scheme. [DN18] instantiate UPRE based on probabilistic IO
due to [CLTV15]. UPRE for all PKE schemes (including non re-randomizable
ones) requires dynamic-input pIO, which implies differing-inputs obfusca-
tion. However, [DN18] observe that our notion of doubly-probabilistic IO
suffices which yields an instantiation of UPRE for all PKE schemes based on
polynomial IO and exponential DDH.

4 P R E L I M I N A R I E S

In this chapter, we introduce the necessary preliminaries for this part. In Sec-
tion 4.1, we introduce a variant of pseudorandom functions and in Section 4.2
we introduce extremely lossy functions – the core tool for our construction
in Chapter 6.

4.1 perfect puncturable prfs
In this part, we use puncturable PRFs with the additional property that a
one-time evaluation is uniformly distributed over the output space.

definition 4.1 (Perfect pPRF, [DHRW16]). A perfect puncturable PRF is a
family of puncturable PRFs F mapping n(λ) bits to m(λ) bits such that for
all λ ∈N and all inputs x ∈ {0, 1}n(λ), the distribution

{︁
K← F.KGen(1λ) : F.Eval(K, x)

}︁

is identical to the uniform distribution over {0, 1}m(λ).

Given any puncturable PRF F′, we can build a perfect puncturable PRF
F by sampling two keys K1 ← F′.KGen(1λ) and K2 ← {0, 1}m(λ) in the
key generation algorithm and defining the evaluation algorithm to output
F′.Eval(K1, x)⊕K2 on input of x, see [DHRW16].

4.2 extremely lossy functions
In this section, we present extremely lossy functions (ELFs) introduced in
[Zha16]. Extremely lossy functions are a highly powerful primitive for com-
plexity absorption allowing to replace subexponential or even exponential
security assumptions with polynomial ones.

Informally, an ELF is a function that can be generated in two different
modes, an injective mode and an extremely lossy mode. In injective mode,
the range of the ELF has exponential size whereas the range comprises
only polynomially many elements in extremely lossy mode. However, an
adversary running in time O(

√
r), where r denotes the cardinality of the range

in extremely lossy mode, can distinguish the injective from the extremely
lossy mode by evaluating the function on

√
r inputs until he finds a collision.

Hence, classic security against arbitrary polynomial time distinguishers
between injective and lossy mode is impossible. However, security against
all adversaries running in time at most rc for c < 1/2 is still achievable.
Consequently, the parameter r is chosen depending on the adversary A, such
that for any polynomial time adversary, there exists a polynomial r, such
that A cannot distinguish between injective and lossy mode.

definition 4.2 (Extremely lossy function, [Zha16]). An extremely lossy
function (ELF) is a tuple of PPT algorithms ELF = (Gen, Eval) such that

47

48 preliminaries

• Gen on input of (M, r), where M is an integer and r ∈ [M], outputs a
function description G : [M]→ [N].

• If r = M, G is injective with overwhelming probability (in logM) over
the randomness of Gen(M,M).

• For every r ∈ [M], |G([M])| < r with overwhelming probability (in
logM) over the randomness of Gen(M, r).

• Eval(G, ·) evaluates the function G : [M]→ [N] and runs in polynomial
time in logM.

An extremely lossy function ELF is required to satisfy the following property.

indistinguishability. For every large enough M, every polynomial P, and
every inverse polynomial function δ, there exists a polynomial Q such
that for every adversary A running in time at most P(logM) and every
r ∈ [Q(logM),M], the advantage of A

Advelf
ELF,(M,r),A(logM) :=
⃓⃓

Pr
[︁
G← ELF.Gen(M,M) : A(logM,G) = 1

]︁

−Pr
[︁
G← ELF.Gen(M, r) : A(logM,G) = 1

]︁ ⃓⃓

is upper bounded by δ(logM).

Note that the above definition does not explicitly use a security parameter
λ. Instead, the bitlength of M (i. e., logM) acts as security parameter. As
a shorthand notation, we often write G(x) to denote ELF.Eval(G, x). For
our purpose, we consider extremely lossy functions satisfying additional
properties.

definition 4.3 (Strong regularity, [Zha16]). An extremely lossy function
ELF = (Gen, Eval) is strongly regular if for every polynomial r, with over-
whelming probability over the choice of G ← Gen(M, r), the distribution
{x← [M] : G(x)} is statistically close to the uniform distribution over G([M]).

Note that if an ELF is strongly regular, it is possible to efficiently enumerate
its image. The set of values obtained by evaluating an ELF on log(M) · r ·
log(r) random inputs, where r is an upper bound on the size of its image,
contains the entire image of the ELF with overwhelming probability.

4.2.1 Instantiating Extremely Lossy Functions

In [Zha16], Zhandry provides a construction of strongly regular extremely
lossy functions based on the exponential hardness of the decisional Diffie-
Hellman assumption eDDH (or any of its variants, such as the decision linear
assumption). Let GGen be a group parameter generation algorithm. That is,
GGen samples tuples of the form (G,p,g) such that G is a description of a
cyclic group, p is its order and g is a generator of G.

definition 4.4 (Exponential DDH assumption, [Zha16]). The exponential
decisional Diffie-Hellman (eDDH) assumption is true relative to GGen if there
exists a polynomial q such that the following is true. For every time bound

4.2 extremely lossy functions 49

t and probability ϵ, let λ := logq(t, 1/ϵ). For every adversary A running in
time at most t, the advantage

⃓⃓
⃓⃓
⃓⃓ Pr

⎡
⎣ (G,p,g) ← GGen(1λ)

(a,b, c) ← Z3
p

: A
(︁
G,g,ga,gb,gc

)︁
= 1

⎤
⎦

−Pr

⎡
⎣ (G,p,g) ← GGen(1λ)

(a,b) ← Z2
p

: A
(︁
G,g,ga,gb,gab

)︁
= 1

⎤
⎦
⃓⃓
⃓⃓
⃓⃓ ⩽ ϵ.

As noted in [Zha16], groups based on elliptic curves are plausible candi-
dates where this assumption holds. In practical instantiations of DDH over
elliptic curves, the size of the group is chosen assuming that the best attack
requires time in O(

√
p), hence disproving eDDH (which amounts to showing

that there is an attack which takes time less than pc for any constant c)
would have considerable practical implications. On the other hand, relying
on some form of exponential hardness assumption seems necessary, since
an instantiation from polynomial hardness would have surprising complex-
ity-theoretic implications. More precisely, given access to only some super-
logarithmic amount of non-determinism (i. e., ω(log logM) bits, where [M]

is the domain of the ELF), it is easy to distinguish between injective and
lossy mode of the ELF. This is due to the fact that in lossy mode, the image
of G has only polynomial size which means that the restriction of G to the
set D = [2ω(log logM)] (having super-polynomial cardinality) is guaranteed
to have a collision (which is not the case in injective mode), and using only
ω(log logM) bits of non-determinism this collision can be guessed.

non-black-box techniques. Using extremely lossy function in a proof
of security requires to explicitly use the size of the adversary as a circuit.
Hence, the resulting proof does not treat the adversary as a black-box but
is “slightly non-black-box”. Consequently, in some cases, extremely lossy
functions can be used to avoid black-box impossibility results.

5 D O U B LY-
P R O B A B I L I S T I C I O

In this chapter, we define our novel variant of indistinguishability obfus-
cation for probabilistic circuits, which takes into account the fact that in
many applications, obfuscated (probabilistic) circuits might only have to be
evaluated on inputs coming from specific distributions.

We leverage the fact that obfuscated circuits only have to work when
fed with certain input distributions as follows. By “compiling” the input
sampler Sin into a program which additionally produces auxiliary material
aux, we introduce the possibility to verify that a given input was indeed
produced according to Sin (on some input m ∈ L). We also refer to this
auxiliary material as “certificate”. As a result, an obfuscated circuit can
always verify whether its input was sampled “honestly”. If some input lacks
a valid certificate, the obfuscated program simply outputs some error symbol
⊥. In other words, we restrict the correctness of the obfuscated circuit to only
hold for such well-formed inputs.

However, this approach faces two issues. First, the inputs to an obfuscated
circuit might not be sampled “all at once” from a single distribution; rather,
they can come from different and independent sources. We capture this
behavior by defining ℓ-source obfuscation, to account for the fact that different
inputs might have been sampled independently. Second, when inputs are
sampled by different parties, there might still be interdependencies which
must be accounted for. For example, a party might sample an input (e. g.,
a public key of an encryption scheme), pass it to a second party, who then
samples a second input from a distribution that is parametrized by the first
input (e. g., a ciphertext under that public key). We handle this possibility
by ordering the ℓ inputs to the obfuscated circuit, and by considering a
stateful input sampler Sin: when Sin is used to generate the i’th sample
yi, it receives in addition to its input a state stf(y1, . . . ,yi−1), where stf
is some fixed efficiently computable state function (which depends on the
particular application), and the yj (for j ∈ [i− 1]) are outputs sampled by
the first i− 1 sources. The state function captures the fact that a particular
application might define an arbitrary communication pattern, and specifies
which samples a party should have access to when generating its sample.

In the following, we consider a circuit class C = {Cλ}λ∈N of (probabilistic)
circuits expecting ℓ inputs of length n(λ), such that Cλ only contains circuits
of size λ.

Additionally, we admit the possibility that a sampler produces some
additional correlated output, that will not serve as input to an obfuscated
circuit. Hence, there is no need to “certify” this input using the auxiliary
information, and we call this output unauthenticated output. Continuing
the use case from above, given a sampler producing some public key, the
unauthenticated part of that sampler’s output could be a corresponding
secret key. Figure 5.1 visualizes the typical use case of a 1-source dpIO
scheme (Figure 5.1a) and of an ℓ-source dpIO scheme (Figure 5.1b).

We now define input samplers more formally.

51

52 doubly-probabilistic io

Sin

x

y aux

y′

Γ

(a) A 1-source dpIO scheme.

Γ

Sin

x1

y1 aux1

y′1

Sin

x2

y2 aux2

y′2

y1

Sin

xℓ

yℓ auxℓ

y′ℓ

(y1,y2)

(b) An ℓ-source dpIO scheme.

Figure 5.1: Overview of our formalization for 1-source dpIO and ℓ-source dpIO. Sin

denotes an input sampler, Sin denotes an encoded input sampler and Γ

denotes the obfuscation of a circuit C with respect to the input sampler
Sin. Figure 5.1a depicts a 1-source dpIO scheme. Hence, the input sampler
is stateless. Figure 5.1b depicts an ℓ-source dpIO scheme. The state for the
i-th sample of Sin may depend on all previous (authenticated) outputs
y1, . . . ,yi−1. Formally, the state function derives the state from y1, . . . ,
yi−1, but is omitted for simplicity.

definition 5.1 (Input sampler). An input sampler with input space L and
state space T is a probabilistic algorithm Sin such that Sin(state, x) produces
outputs of the form (y;y′) with y ∈ {0, 1}n(|x|) (for state ∈ T and x ∈ L). A
class of input samplers Sin is an ensemble of input samplers sharing the same
input space and state space.

We will treat Sin(·, ·) as a Boolean circuit. Looking ahead, the first part y
will be used as input to the probabilistic circuit to be obfuscated, and hence
needs to be authenticated. Since the second part y′ is not meant as input
to the probabilistic circuit, y′ will not be authenticated. A state function stf
efficiently maps (ℓ− 1)-tuples from ({0, 1}n(λ) ∪ {⊥})ℓ−1 to states from T.

We are now prepared to define our novel notion of probabilistic indistin-
guishability obfuscation. Since there are two probabilistic processes involved
(the input sampling and the evaluation of the (obfuscated) probabilistic
circuit), we call this notion doubly-probabilistic indistinguishability obfusca-
tion.

definition 5.2 (Doubly-probabilistic indistinguishability obfuscation). Let
ℓ be an integer. Let stf : ({0, 1}n(λ) ∪ {⊥})ℓ−1 → T be an efficiently computable
state function. Let Sin be a class of input samplers with input space L and
state space T. Let C = {Cλ}λ∈N be a family of (probabilistic) circuits expecting
ℓ inputs of length n(λ), and let C be a class of circuit samplers over C. An ℓ-
source doubly-probabilistic indistinguishability obfuscation (dpIO) scheme for (stf,
Sin,C,C) is a triple of PPT algorithms dpiO = (Setup, Encode, Obfuscate) such
that

• Setup(1λ) outputs public parameters pp,

doubly-probabilistic io 53

• Encode(pp,Sin), on input of pp and an input sampler Sin ∈ Sin, the
deterministic algorithm Encode outputs an encoded input sampler Sin,

• Obfuscate(pp,Sin,C), on input of pp, an input sampler Sin ∈ Sin and a
circuit C ∈ Cℓ·λ, Obfuscate outputs a circuit Γ of size poly(λ, |C|). We
call Γ an obfuscation of C with respect to Sin.

A dpIO scheme is required to satisfy simulatability of encodings (Definition 5.3),
restricted correctness (Definition 5.4) and security with respect to the class of circuit
samplers C (Definition 5.5).

Given the definition above, some remarks are in order. A dpIO scheme
is parametrized not only by a circuit class C and a circuit sampler class C,
but also by an input sampler class Sin and a state function stf. Circuits are
always obfuscated with respect to some input sampler Sin. As a consequence,
the obfuscated circuit expects inputs from the corresponding encoded input
sampler Sin. Furthermore, the obfuscation procedure takes circuits C ∈ Cλ as
input. That is, C expects ℓ inputs of length n(λ) and |C| = λ.

Informally, simulatability of encodings ensures that, on any (adversarially
chosen) input x, state state, and input sampler Sin, the encoded sampler Sin,
on input of (state, x), outputs samples of the form (y, aux;y′), where (y;y′) is
distributed as outputs from Sin(state, x), and aux does not leak any nontrivial
information about the inputs. This is formalized by requiring the existence
of a simulator that can simulate aux given only y.

Exp(0)-enc
dpiO,A(λ)

pp← Setup(1λ)

return AO(0)-enc(·,·,·)(pp)

(a) Game for the simulatability of encod-
ings property, where A is given hon-
estly generated public parameters and
triplets (y, aux;y′) produced by the en-
coded sampler.

Exp(1)-enc
Sim,A (λ)

(pp, td)← Sim0(1
λ)

return AO(1)-enc(·,·,·)(pp)

(b) Game for the simulatability of encod-
ings property, where A is fed with sim-
ulated public parameters and simulated
triplets (y, aux;y′).

Oracle O(0)-enc(Sin, state, x)

Sin ← Encode(pp,Sin)

(y, aux;y′)← Sin(state, x)

return (y, aux;y′)

(c) Oracle producing triplets (y, aux;y′)
using the encoded sampler.

Oracle O(1)-enc(Sin, state, x)

(y;y′)← Sin(state, x)

aux← Sim1(pp, td,Sin,y, state)

return (y, aux;y′)

(d) Oracle simulating triplets (y, aux;y′)
using the original input sampler.

Figure 5.2: Definitions of the security games for the simulatability of encodings
property of dpIO schemes. The PPT algorithm A can interact polynomially
many times with either O(0)-enc (Figure 5.2c) or O(1)-enc (Figure 5.2d).
Note that A provides the input sampler Sin as a Boolean circuit.

definition 5.3 (Simulatability of encodings). An ℓ-source dpIO scheme
dpiO for (stf, Sin,C,C) satisfies simulatability of encodings if for every PPT
adversary A, there exists a PPT simulator Sim = (Sim0, Sim1) such that

Advenc
dpiO,Sim,A(λ) :=

⃓⃓
⃓Pr
[︂
Exp(0)-enc

dpiO,A(λ) = 1
]︂
− Pr

[︂
Exp(1)-enc

Sim,A (λ) = 1
]︂⃓⃓
⃓

54 doubly-probabilistic io

is negligible, where the games Exp(0)-enc
dpiO,A(λ) and Exp(1)-enc

Sim,A (λ) are defined in
Figure 5.2.

Intuitively, restricted correctness ensures that in an “honest scenario”, i. e.,
when the inputs (y1, . . . ,yℓ) are sampled using the input sampler Sin, then
the obfuscated circuit is guaranteed to behave “correctly”. More precisely,
restricted correctness guarantees that the support of the original circuit
is respected, that the outputs of the obfuscated (deterministic) circuit are
computationally indistinguishable from once-per-input evaluations of the
original (probabilistic) circuit, and that the output distribution of the obfus-
cated circuit (taken over the random coins of the obfuscator) is one-time
statistically close to the output distribution of the original circuit (taken over
its internal random coins). Note that the statistical indistinguishability does
not extend to multiple evaluations.

To make this definition meaningful, we need a way to let the obfuscated
circuit verify that the inputs are well-formed. We do not require that the
inputs were generated through Sin with uniformly random coins, but only
that they were generated through Sin with some random coins (and some
input). To enable verification, we let the parties generate their input using
the encoded sampler Sin instead. An encoded sampler produces inputs as
Sin, and in addition produces auxiliary information which can be used by
the obfuscated program to verify that the inputs were honestly constructed.
More formally, for a given input y, the obfuscated circuit verifies that there
exists an input x, random coins r, and an unauthenticated part y′ such that
(y;y′) = Sin(x; r).

Exp(0)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ)

pp← Setup(1λ)

Sin ← Encode(pp,Sin)

Γ ← Obfuscate(pp,Sin,C)

for j ∈ [ℓ] do

statej ← stf(y1, . . . ,yj−1,⊥, . . .)

(yj, auxj;y′j)← Sin(statej, xj)

z← Γ(y1, aux1, . . . ,yℓ, auxℓ)

return A(pp,C,Sin, (xi,yi)i∈[ℓ], z)

(a) Closeness game, where A receives a sin-
gle output from the obfuscated circuit.

Exp(1)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ)

pp← Setup(1λ)

for j ∈ [ℓ] do

statej ← stf(y1, . . . ,yj−1,⊥, . . .)

(yj;y′j)← Sin(statej, xj)

z← C(y1, . . . ,yℓ)

return A(pp,C,Sin, (xi,yi)i∈[ℓ], z)

(b) Closeness game, where A receives a sin-
gle output from the original random-
ized circuit.

Figure 5.3: Games Exp(b)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ) (for b ∈ {0, 1}) modeling the statistical

closeness property of an ℓ-source dpIO scheme.

A small technicality is that we must allow the input sampler to depend
on state information, to capture interdependencies between the inputs. This
means that the auxiliary information will have to certify that an input was
generated correctly, with respect to some state that the obfuscated circuit
might not have access to (which would prevent it from verifying the certifi-
cate). However, this issue disappears by restricting the interdependencies to
only involve a state computed from the previous samples (as opposed to more

doubly-probabilistic io 55

complex interdependencies which would involve, for example, the coins
used to produce these samples). See also Figure 5.1b for an overview. In this
case, the obfuscated circuit can test the certificates in an incremental way.
The first test verifies that y1 was correctly constructed with respect to the
state stf(⊥, . . . ,⊥), the second test verifies that y2 was correctly constructed
with respect to the state stf(y1,⊥, . . . ,⊥), and the i-th test verifies that yi
was correctly constructed with respect to the state stf(y1, . . . ,yi−1,⊥, . . . ,⊥).
definition 5.4 (Restricted correctness). An ℓ-source dpIO scheme dpiO
for (stf, Sin,C,C) satisfies restricted correctness if the following properties are
satisfied.

statistical closeness. One-time evaluation of the encoded input sampler
and the obfuscated circuit (on these inputs) is statistically close to one-
time evaluation of the original input sampler and the original circuit
(on these inputs). That is, for every Sin ∈ Sin, (x1, . . . , xℓ) ∈ Lℓ, and
C ∈ Cλ, for every (possibly unbounded) adversary A, the advantage

Advclose
dpiO,Sin,(x1,...,xℓ),C,A(λ) :=
⃓⃓
⃓ Pr

[︂
Exp(0)-close

dpiO,Sin,(x1,...,xℓ),C,A(λ) = 1
]︂

−Pr
[︂

Exp(1)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(b)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ) (for b ∈ {0, 1}) is defined

in Figure 5.3.

computational correctness. Evaluations of an obfuscated program are
computationally indistinguishable from evaluations of the original
randomized program on well-formed inputs. That is, for every Sin ∈ Sin

and C ∈ Cλ, for every PPT adversary A, the advantage

Advrcorr
dpiO,C,A(λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-rcorr

dpiO,C,A(λ) = 1
]︂

−Pr
[︂

Exp(1)-rcorr
dpiO,C,A(λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(b)-rcorr
dpiO,C,A(λ) (for b ∈ {0, 1}) is defined in Fig-

ure 5.4 and the oracles O(0)-rcorr and O(1)-rcorr must not be called twice
on the same input.

support respecting. The encoded sampler Sin and the obfuscated circuit Γ
respect the support of the original sampler Sin and the original circuit C,
respectively. That is, for all pp ∈ supp(Setup(1λ)), Sin := Encode(pp,Sin)

and all Γ ∈ supp(Obfuscate(pp,Sin,C)), we have that

• for all x ∈ L, state ∈ T, (y, aux; ·) ∈ supp(Sin(state, x)), we have that
(y; ·) ∈ supp(Sin(state, x)), and

• for all inputs x1, . . . , xℓ ∈ L, all j ∈ [ℓ], all inputs (yj, auxj; ·) ∈
supp(Sin(statej, xj)), where statej := stf(y1, . . . ,yj−1,⊥, . . . ,⊥), we
have that

Γ
(︁
y1, aux1, . . . ,yℓ, auxℓ

)︁
∈ supp

(︁
C(y1, . . . ,yℓ)

)︁
.

Note that closeness implies that samples produced with the original input
sampler Sin and samples produced with the encoded input sampler Sin are
statistically close.

56 doubly-probabilistic io

Exp(0)-rcorr
dpiO,C,A(λ)

pp← Setup(1λ)

Sin ← Encode(pp,Sin)

Γ ← Obfuscate(pp,Sin,C)

return AO(0)-rcorr
(1λ, pp,C)

(a) Correctness game, where A has oracle
access to obfuscated circuit.

Exp(1)-rcorr
dpiO,C,A(λ)

return AO(1)-rcorr
(1λ, pp,C)

(b) Correctness game, where A has oracle
access to original randomized circuit.

O(0)-rcorr(x1, . . . , xℓ)

for j ∈ [ℓ] do

statej ← stf(y1, . . . ,yj−1,⊥, . . .)

(yj, auxj;y′j)← Sin(statej, xj)

return Γ(y1, aux1, . . . ,yℓ, auxℓ)

(c) Oracle which evaluates the obfuscated
circuit.

O(1)-rcorr(x1, . . . , xℓ)

for j ∈ [ℓ] do

statej ← stf(y1, . . . ,yj−1,⊥, . . .)

(yj;y′j)← Sin(statej, xj)

return C(y1, . . . ,yℓ)

(d) Oracle which evaluates the original ran-
domized circuit.

Figure 5.4: Experiments Exp(0)-rcorr
dpiO,C,A(λ) and Exp(1)-rcorr

dpiO,C,A(λ) modeling the computa-
tional correctness property an ℓ-source dpIO scheme.

Our notion of security is close in spirit to the standard indistinguisha-
bility notion for obfuscation of probabilistic circuits of [CLTV15] (see Def-
inition 2.16). However, in our scenario, the security notion must account
for the fact that public parameters pp are generated in a setup phase; the
indistinguishability property of obfuscated circuits must therefore hold when
many circuits are obfuscated with respect to the same public parameters. This
suggests an oracle-based security notion.

Exp(b)-ind
dpiO,D,A(λ)

pp← Setup(1λ)

return AO(b)-ind(·)(pp)

(a) Game Exp(b)-ind
dpiO,D,A(λ).

Oracle O(b)-ind(Sin)

(C0,C1, z)← Dλ

Γ ← Obfuscate(pp,Sin,Cb)

return (C0,C1, z, Γ)

(b) Oracle O(b)-ind producing obfuscations
for circuit Cb.

Figure 5.5: Definition of the games Exp(b)-ind
dpiO,D,A(λ) (for b ∈ {0, 1}) modeling the indis-

tinguishability property of a dpIO scheme. The adversary A can interact
polynomially many times with the oracle O(b)-ind. Given a description
of an input sampler Sin, the oracle O(b)-ind samples (C0,C1, z) from the
circuit sampler and obfuscates Cb with respect to Sin.

definition 5.5 (Security with respect to C). An ℓ-source dpIO scheme dpiO
for (stf, Sin,C,C) satisfies security with respect to C if for every circuit sampler
D = {Dλ}λ∈N ∈ C, for every PPT adversary A, the advantage

Advind
dpiO,D,A(λ) :=

⃓⃓
⃓Pr
[︂
Exp(0)-ind

dpiO,D,A(λ) = 1
]︂
− Pr

[︂
Exp(1)-ind

dpiO,D,A(λ) = 1
]︂⃓⃓
⃓

doubly-probabilistic io 57

is negligible, where the games Exp(0)-ind
dpiO,D,A(λ) and Exp(1)-ind

dpiO,D,A(λ) are de-
fined in Figure 5.5.

6 C O N S T R U C T I O N

Before describing our construction, we recall some notation for this chapter.
Let ℓ ∈N be some constant. Let C = (Cλ)λ∈N be a circuit class such that Cλ

contains (arbitrary) circuits of size λ. Recall that C = {Cλ}λ∈N is a class of
(probabilistic) circuits expecting ℓ inputs of length n(λ), such that Cλ only
contains circuits of size λ.

Let Sin be a class of (arbitrary) input samplers with polynomially sized input
space L, that is |L∩ {0, 1}λ| = poly(λ) for some polynomial poly(λ). Note that
such input samplers can produce exponentially many y and, in fact, these
are the cases of interest for our applications.

In this chapter, we construct an ℓ-source dpIO scheme, for the input sam-
pler class Sin, and dynamic-input indistinguishable circuit samplers for C.
Our construction relies on polynomially secure indistinguishability obfus-
cation (Definition 2.15), polynomially secure (perfect) puncturable pseudo-
random functions (Definition 4.1), statistically sound non-interactive zero-
knowledge proof systems (Definition 2.25), and an extremely lossy function
(Definition 4.2).

6.1 overview
We start by providing a high-level overview of our construction. The setup
algorithm Setup generates parameters G for the extremely lossy function (in
injective mode) and a common reference string σ for the non-interactive zero-
knowledge proof system.

Given an input sampler Sin ∈ Sin, the encode algorithm Encode compiles
Sin to an encoded input sampler Sin as follows. On input of (state, x; r), Sin

samples (y;y′) using the input sampler Sin(state, x;G(r)), certifies y with

a NIZK proof π =: aux produced via NIZK.Prove(σ,y,LG,Sin

state , (y′, x, r)), and

outputs (y, aux;y′). The language LG,Sin

state contains all values y for which
there exists (y′, x, r) such that (y;y′) = Sin(state, x,G(r)). We refer to values
y ∈ LG,Sin

state as well-formed inputs. Note that if G is in injective mode, LG,Sin

state
is, in general, a trivial language, i. e., the union over all x ∈ L of the first
component of supp(Sin(state, x)). Informally speaking, simulatability of the
encodings directly follows from the injectivity of G, and the zero-knowledge
property of the proof system.

For the sake of simplicity, we describe the intuition behind our construction
for a 1-source dpIO scheme. The obfuscator Obfuscate, on input of an input
sampler Sin and a circuit C, obfuscates C (with respect to Sin) as follows. First,
Obfuscate samples a PRF key K for F. Then, it constructs a Boolean circuit
C which, on input of (y, aux), verifies the certificate aux with NIZK.Verify. If
the test passes, C evaluates the circuit C on input of y and random coins
F(K,y). If the test fails, C outputs an error symbol ⊥. Informally, restricted
correctness follows from the correctness properties of all used components.

59

60 construction

Recall that our main concern in this part is to avoid a subexponential
reduction to indistinguishability obfuscation. Hence, the tricky part is to
achieve security with respect to a preferably large class C of circuit samplers.
Interestingly, we are able to prove our dpIO scheme secure with respect to
the class of dynamic-input indistinguishable samplers Cdyn-ind over the class
of all polynomial sized circuits. This even exceeds the capabilities of the pIO
construction due to [CLTV15], since general pIO for the class of dynamic-
input indistinguishable samplers falls victim to the implausibility result due
to [GGHW17]. We avoid this implausibility by restricting the correctness of
obfuscated programs to only hold for “certified inputs”.

Therefore, to prove indistinguishability between the obfuscations of two
dynamic-input indistinguishable circuits (C0,C1), we resort to the standard
puncturing strategy of [CLTV15]. That is, we proceed through a sequence
of hybrids, successively modifying of the obfuscated circuit, an input at a
time. More precisely, starting with an obfuscation of C0, we program the
obfuscated circuit to behave like C1(y; r) instead of C0(y; r), for each input
y. Using this naive approach directly, each such replacement relies on the
security of the underlying IO scheme (and the security of the PRF, and the
dynamic-input indistinguishability of C0 and C1).

The main issue of this approach is that the number of possible inputs y

(hence the number of hybrids) is exponential – indeed, this is the reason why
the piO scheme of [CLTV15] requires subexponentially secure primitives (iO
and F). To get around this issue, we leverage the origin of inputs to circuits
in conjunction with the power of the extremely lossy function G. We first
switch G to an appropriate extremely lossy mode, which by definition cannot
be distinguished from the injective mode. Now, the soundness of the NIZK
proof system ensures that all valid inputs y originate from Sin(state, x;G(r))

for some (x, r) (omitting y′ for simplicity). For a given state, the quantity
of such values is bounded by the size of the range of G – which is merely
polynomial – times the size of the input domain (of the input sampler)
L∩ {0, 1}λ. Therefore, in all applications where the inputs to the obfuscated
circuit are sampled using sampler inputs from a small domain, we can base
security on polynomially secure iO. Note that for ℓ > 1, the state input state for
the input sampler Sin depends in a deterministic manner (the state function)
from previous samples, which exist only in polynomial quantity. Therefore,
the above approach generalizes to ℓ-source dpIO.

6.2 constructing doubly-probabilistic io
For our construction, we employ a perfectly sound NIZK proof system for
the following (parametrized) language

LG,Sin

state :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
y

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

∃ y′ ∈ {0, 1}∗

∃ x ∈ L∩ {0, 1}λ

∃ r ∈ {0, 1}k(λ)

: (y;y′) = Sin(state, x;G(r))

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

Note that LG,Sin

state is well-defined for arbitrary values of state, i. e., even for
state information which cannot occur during honest use. Looking ahead,

6.2 constructing doubly-probabilistic io 61

validity of the state information is ensured independently by the obfuscated
circuit.

For simplicity in the analysis, we use a NIZK proof system that satis-
fies the following property. With overwhelming probability over the coins
of Setup(1λ), there does not exist any pair (x,π) such that x /∈ L and
NIZK.Verify(σ, x,π) = 1. We call a NIZK that satisfies this property almost
perfectly sound. We note that there is a simple folklore method which allows
to construct an almost perfectly sound NIZK proof system starting from any
statistically sound NIZK proof system. Consider a 2−λ-statistically sound
NIZK proof system, for statements x ∈ {0, 1}n, for some polynomial n = n(λ).
Using parallel repetitions, the soundness of the proof system can be amplified
to 2−λ−n. That is, for any statement x ̸∈ L, the probability

Pr
σ
[∃π : Verify(σ, x,π) = 1] ⩽ 2−λ−n.

Then, it necessarily holds that for all possible σ except a 2−λ fraction of them,
there does not exist any pair (x,π) such that x /∈ L and π is an accepting
proof. To realize this, let Eσ

x denote the event that there exists a proof π such
that Verify(σ, x,π) = 1. Then, by a union bound argument,

Pr
σ
[∃x ∈ {0, 1}n \ L : Eσ

x] ⩽
∑︂

x∈{0,1}n\L

Pr
σ
[Eσ

x] ⩽ 2n · 2−λ−n.

Hence, the NIZK proof system obtained via parallel repetitions is almost
perfectly sound.

Let ℓ ∈N be a constant, let stf : ({0, 1}n(λ) ∪ {⊥})ℓ−1 → T be an efficiently
computable state function, and let C = {Cλ}λ be a family of (randomized)
circuits taking ℓ inputs of size n(λ) such that Cλ only contains circuits of size
λ. Let Sin be a class of (arbitrary) input samplers with randomness space
{0, 1}k(λ) polynomially sized input space L, that is |L∩ {0, 1}λ| = poly(λ) for
some polynomial poly(λ). Further, let Cdyn-ind be the class of dynamic-input
indistinguishable samplers (over C).

theorem 6.1. Let ELF be a strongly regular extremely lossy function, let iO be
a perfectly correct polynomially secure indistinguishability obfuscator, let F be a
polynomially secure (perfect) puncturable PRF, and let NIZK be a statistically sound
and computationally zero-knowledge NIZK proof system for the family of languages
{LG,Sin

state }state,G,Sin . Then, the dpIO scheme dpiO = (Setup, Encode, Obfuscate) de-
fined in Figure 6.1 is an ℓ-source dpIO scheme for (stf, Sin,C,Cdyn-ind).

Statistically sound perfectly correct NIZK proof systems for NP can be
constructed from polynomially secure indistinguishability obfuscation and
extremely lossy functions [BP15a]. Further, ELFs imply the existence of
one-way functions, hence of (perfect) puncturable PRFs [GGM84a; HILL99].
Together with Theorem 6.1, we obtain the following corollary.

corollary 6.1. Assuming polynomially secure indistinguishability obfuscation
and extremely lossy functions, for every constant ℓ, for every class of input samplers
Sin with a polynomial sized input domain, for every state function stf and for every
probabilistic circuit class C, there exists an ℓ-source doubly-probabilistic indistin-
guishability obfuscation scheme for (stf, Sin,C,Cdyn-ind), where Cdyn-ind is the class
of dynamic-input circuit samplers for C.

Proof of Theorem 6.1. We prove that dpiO as defined in Figure 6.1 satisfies
simulatability of encodings (cf. Definition 5.3), statistical restricted correctness
(cf. Definition 5.4), and indistinguishability (cf. Definition 5.5).

62 construction

Setup(1λ)

σ← NIZK.Setup(1λ)

G← ELF.Gen(2k(λ), 2k(λ))

pp := (σ,G)

return pp

(a) Setup algorithm producing public pa-
rameters.

Encode(pp,Sin)

define Sin as follows :

Circuit Sin[pp](state, x; r1, r2)

(y;y′)← Sin(state, x;G(r1))

π← NIZK.Prove
(︁
σ,

st = (G,Sin, state,y),

w = (y′, x, r1); r2
)︁

return (y,π;y′)

return Sin

(b) Encoding algorithm which compiles in-
put samplers Sin to so-called encoded
input samplers Sin.

Obfuscate(pp,Sin,C)

parse pp =: (σ,G)

K← F.KGen(1λ)

define C as follows:

Circuit C[stf, (σ,G),Sin,C,K](ν)

parse ν =:
(︁
(y1, aux1), . . . , (yℓ, auxℓ)

)︁

statej := stf(y1, . . . ,yj−1,⊥, . . . ,⊥) for i ∈ [ℓ]

if ¬
(︂
∀j ∈ [ℓ] : NIZK.Verify

(︁
σ, (G,Sin, statej,yj), auxj

)︁
= 1
)︂

then

return ⊥
r := F.Eval

(︁
K, (y1, . . . ,yℓ)

)︁

µ := C
(︁
(y1, . . . ,yℓ); r

)︁

return µ

Λ← iO(C)

return Γ := Λ

(c) Obfuscate algorithm producing obfuscations Γ of circuits C with respect to an
input sampler Sin.

Figure 6.1: Our construction of an ℓ-source dpIO scheme dpiO = (Setup, Encode,
Obfuscate).

simulatability of encodings. We prove that there exists a PPT simula-
tor Sim = (Sim0, Sim1) such that for every PPT adversary A, the advantage
Advenc

dpiO,Sim,A(λ) is negligible. By the zero-knowledge property of NIZK,
there exists a simulator NIZK.Sim = (NIZK.Sim0, NIZK.Sim1) such that the
advantage Advzk

NIZK,NIZK.Sim,B(λ) is negligible for all PPT adversaries B. In
Figure 6.2, we construct a simulator Sim = (Sim0, Sim1).

Let A be a PPT distinguisher between Exp(0)-enc
dpiO,A(λ) and Exp(1)-enc

Sim,A (λ)

(making at most Q oracle queries for some polynomial Q). We prove indis-
tinguishability between the real and the ideal distribution via a series of
hybrids starting from the ideal distribution Exp(1)-enc

Sim,A (λ).

6.2 constructing doubly-probabilistic io 63

game G0. This game is identical to Exp(1)-enc
Sim,A (λ). We remark that in this

game, the tuple (y;y′) is produced using the adversarially chosen sampler
Sin on input of the adversarially chosen state state and input x, where Sin is
supplied with uniform randomness from {0, 1}k(λ).

game G1. This game is identical to G0 except for the fact that for each query
(Sin, state, x), the sampler Sin is supplied with randomness G(r) for uniform
r (instead of true randomness). Due to the strong regularity of G and by a
standard hybrid argument over all queries, the statistical distance between
G0 and G1 is negligible. More precisely, |Pr[out1 = 1] − Pr[out0 = 1]| ⩽
Q · ϵreg(λ), where Q is a polynomial upper bound for the number of oracle
queries of A.

Sim0(1
λ)

(σ, τΠ)← NIZK.Sim0(1
λ)

G← ELF.Gen(2k(λ), 2k(λ))

pp := (σ,G)

td := τΠ

return (pp, td)

(a) Definition of the first phase of the
simulator Sim0. Sim0 generates a
simulated CRS together with a cor-
responding trapdoor and sets up
the parameters for the ELF in injec-
tive mode.

Sim1(pp, td,Sin,y, state)

parse pp =: (σ,G)

parse td =: τΠ

π← NIZK.Sim1(σ, τΠ, (G,Sin, state,y))

aux := π

return aux

(b) Definition of the second phase of the sim-
ulator Sim1. Sim1 uses the NIZK trapdoor
τΠ to simulate a proof π for y.

Figure 6.2: Definition of the simulator Sim = (Sim0, Sim1) in Figures 6.2a and 6.2b,
respectively, for the proof of the simulatability of encodings property of
dpiO.

game G2. This game is the same as G1 with the difference that σ is pro-
duced honestly using NIZK.Setup(1λ). Additionally, for each adversarial
query (Sin, state, x), the proof π is produced honestly by NIZK.Prove(σ, (G,Sin,
state,y), (y′, x, r)), where G(r) are the random coins supplied to the sampler
Sin. The view of A in game G2 is distributed exactly as in the real game
Exp(0)-enc

dpiO,A(λ).
We construct a PPT adversary B2 for the zero-knowledge property of NIZK.

Given a common reference string σ, B2 samples an ELF G in injective mode
via ELF.Gen(2k(λ), 2k(λ)) and invokes A on input of pp := (σ,G). Each time A

queries his oracle on (Sin, state, x), B2 draws random coins r ∈ {0, 1}k(λ) and
invokes the sampler Sin on input of (state, x) with random coins G(r) to obtain
(y;y′). In order to produce π, B2 calls his prove oracle on input of (G,Sin,
state,y) with witness (y′, x, r). Therefore, if B2 is supplied with an honest CRS
and honestly generated proofs, B2 perfectly simulates G2 for A. Otherwise,
if B2 is supplied with a simulated CRS and simulated proofs, B2 perfectly
simulates G1. Hence, |Pr[out2 = 1] − Pr[out1 = 1]| ⩽ Advzk

NIZK,NIZK.Sim,B2
(λ).

Thus, we have

Adv(0)-enc
dpiO,Sim,A(λ) =

⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓

⩽ Q · ϵreg(λ) + Advzk
NIZK,NIZK.Sim,B(λ)

64 construction

concluding the proof since both terms are negligible in λ.

restricted correctness. Let Sin ∈ Sin be an input sampler, let x1, . . . ,
xℓ be arbitrary inputs from L∩ {0, 1}λ, and let C be a circuit from the family
Cλ. To prove that dpiO satisfies Definition 5.4, we prove that dpiO satisfies
statistical closeness, computational correctness and is support respecting.

Statistical closeness. We begin with statistical closeness and proceed over a
series of hybrids for that purpose.

game G0. This game is the ideal game Exp(1)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ). Note that

the sampler Sin is called using true randomness whereas the experiment
Exp(0)-close

dpiO,Sin,(x1,...,xℓ),C,A(λ) generates samples using G(r), where r is truly
random.

game G1. This game is identical to G0 with the difference that each call of
the sampler Sin is supplied with G(r) as randomness (where r is sampled
uniformly for each call). Due to the strong regularity of G, and by a hybrid
argument over all ℓ calls of Sin, the statistical distance between G1 and G0 is
negligible.

game G2. This game is the real game Exp(0)-close
dpiO,Sin,(x1,...,xℓ),C,A(λ). We now

argue that the view of A in G1 is distributed identically to his view in G2. G2

samples public parameters pp via Setup(1λ) and Sin via Sin ← Encode(pp,Sin).
Further, (yj, auxj) are sampled as statej ← stf(y1, . . . ,yj−1,⊥, . . . ,⊥) and
(yj, auxj,y′j) ← Sin(statej, xj), for j ∈ [ℓ]. Let Γ be the obfuscation Γ ←
Obfuscate(pp,Sin,C) of the circuit C with respect to sampler Sin. Due to
the perfect correctness of iO, Γ computes the same functionality as C[stf,
(σ,G),Sin,C,K], where K is a freshly generated key for the PRF F. Hence, by
the perfect completeness of NIZK, on input of ((y1, aux1), . . . , (yℓ, auxℓ)), Γ
evaluates the circuit C on input of (y1, . . . ,yℓ) with random coins F(K, (y1,
. . . ,yℓ)). Therefore, the view of A in the games G1 and G2 only differs in
the fact that G1 supplies C with true random coins whereas G2 supplies
C with F(K, (y1, . . . ,yℓ)) as randomness. As F is a perfect PRF (see Defini-
tion 4.1), the distribution {K← F.KGen(1λ) : F(K, (y1, . . . ,yℓ))} is identical to
the uniform distribution over the image of F. Therefore, the view of A in G1

and G2 is distributed identically.

Computational correctness. Computational correctness follows from the se-
curity of the PRF. Let C be a probabilistic circuit from Cλ. Consider the
following series of hybrids.

game G0. This game is identical to Exp(1)-rcorr
dpiO,C,A(λ).

game G1. Game G1 is identical to G0 except that initially, a PRF key K is
sampled and the random coins for circuit C are computed as F(K, (y1, . . . ,
yℓ)). Due to the security of F, we have

⃓⃓
Pr
[︁
out1 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ Advprf

F,A(λ).

game G2. G2 is identical to Exp(0)-rcorr
dpiO,C,A(λ). Due to perfect correctness of iO

and perfect completeness of NIZK, we have that Pr[out1 = 1] = Pr[out2 = 1].

6.2 constructing doubly-probabilistic io 65

Support respecting. Since an encoded input sampler Sin produces y by
evaluating Sin with random coins G(r) ⊆ {0, 1}k(λ), we have that for all
pp ∈ supp(Setup(1λ)), all Sin ← Encode(pp,Sin), all x ∈ L, all state ∈ T, and all
(y, aux; ·) ∈ supp(Sin(state, x)), (y; ·) ∈ supp(Sin(state, x)).

Furthermore, by construction, perfect completeness of NIZK and perfect
correctness of iO, for all Γ ← Obfuscate(pp,Sin,C), all j ∈ [ℓ], all inputs
(yj, auxj; ·) ∈ supp(Sin(statej, xj)), where statej := stf(y1, . . . ,yj−1,⊥, . . . ,⊥),
we have that Γ(y1, aux1, . . . ,yℓ, auxℓ) ∈ supp(C(y1, . . . ,yℓ)).

hybrid arguments. In the following, we heavily use a standard technique
called hybrid arguments. Computational indistinguishability of random vari-
ables can easily be seen to satisfy transitivity. That is, if the random variables
X1,X2 and X2,X3 are pairwise computationally indistinguishable, then X1

and X3 are computationally indistinguishable. Basically, this follows from
the triangle inequality. More precisely, for all PPT adversaries A, Pr[A(X1) =

1] − Pr[A(X2) = 1] ⩽ ϵ1(λ) and Pr[A(X2) = 1] − Pr[A(X3) = 1] ⩽ ϵ2(λ) for
some negligible functions ϵ1(λ), ϵ2(λ). Then,

⃓⃓
Pr[A(X1) = 1] − Pr[A(X3) = 1]

⃓⃓

=
⃓⃓
Pr[A(X1) = 1] − Pr[A(X2) = 1] + Pr[A(X2) = 1] − Pr[A(X3) = 1]

⃓⃓

⩽
⃓⃓
Pr[A(X1) = 1] − Pr[A(X2) = 1]

⃓⃓
⏞ ⏟⏟ ⏞

⩽ϵ1(λ)

+
⃓⃓
Pr[A(X2) = 1] − Pr[A(X3) = 1]

⃓⃓
⏞ ⏟⏟ ⏞

⩽ϵ2(λ)

.

However, this transitivity does not immediately generalize to polynomially
many “steps”. This is because negligible functions can be somewhat contrived
such that the sum of polynomially many negligible functions does not turn
out to be negligible. For instance, the functions

ϵi(λ) :=

⎧
⎨
⎩
1 if λ ⩽ i

0 otherwise

are negligible (for every i ∈N), whereas the function f(λ) :=
∑︁λ

i=1 ϵi(λ) is
not negligible. In order to prove indistinguishability of polynomially many
random variables (or security games), we use a standard proof technique
called hybrid arguments. Basically, the above intuition to generalize the
transitivity of indistinguishability to polynomially many steps works if each
pairwise indistinguishability can be upper bounded by the same negligible
function ϵ(λ). Then, intuitively, the triangle inequality yields

⃓⃓
Pr
[︁
A(X1) = 1

]︁
− Pr

[︁
A(Xn) = 1

]︁⃓⃓

⩽
n−1∑︂

i=1

⃓⃓
Pr
[︁
A(Xi = 1)

]︁
− Pr

[︁
A(Xi+1 = 1)

]︁⃓⃓
⏞ ⏟⏟ ⏞

⩽ϵ(λ)

⩽ (n− 1)ϵ(λ).

However, ensuring that all
⃓⃓
Pr[A(Xi = 1)] − Pr[A(Xi+1 = 1)]

⃓⃓
can be upper

bounded by the same negligible function actually requires some extra work.
Suppose the indistinguishability between Xi and Xi+1 can be based on

the same decisional assumption such that a successful distinguisher between
X1 and Xn can be used to construct a single adversary B on that assumption.
Suppose this decisional assumption states that the distributions Y0 and Y1
are indistinguishable. The distinguisher B, on input of a challenge y from

66 construction

Y0 or Y1, guesses an index i ← [n − 1], uses his y to sample x from the
distribution Xi (if y is distributed according to Y0) or from Xi+1 (if y is
distributed according to Y1), and calls A on x. The advantage of B is

Pr
[︁
B(Y0) = 1

]︁
− Pr

[︁
B(Y1) = 1

]︁

=

n−1∑︂

j=1

(︂
Pr
[︁
B(Y0) = 1∧ i = j

]︁
− Pr

[︁
B(Y1) = 1∧ i = j

]︁)︂

=
1

n− 1
·
n−1∑︂

j=1

(︂
Pr
[︁
B(Y0) = 1

⃓⃓
i = j

]︁
− Pr

[︁
B(Y1) = 1

⃓⃓
i = j

]︁)︂

=
1

n− 1
·
n−1∑︂

j=1

(︂
Pr
[︁
A(Xj) = 1

]︁
− Pr

[︁
A(Xj+1) = 1

]︁)︂

=
1

n− 1
·
(︂

Pr
[︁
A(X1) = 1

]︁
− Pr

[︁
A(Xn) = 1

]︁)︂
.

This formally proves that X1 and Xn are indistinguishable.
In order to avoid notational overhead, we will not make each reduction

explicit.

security. Let D ∈ Cdyn-ind be an arbitrary dynamic-input indistinguish-
able circuit sampler over C. Let pC be an upper bound on the size of the
circuits C, C′ and C

′′ (including all hard-coded variables). We assume that
all circuits to be obfuscated using iO are padded to size pC(λ).

To prove that dpiO satisfies indistinguishability (Definition 5.5), we proceed
over a series of hybrids. Toward contradiction, we assume that there exists
an adversary A of polynomial size s who distinguishes Exp(0)-ind

dpiO,D,A(λ) from

Exp(1)-ind
dpiO,D,A(λ) with non-negligible advantage after making a polynomial

number Q of queries to the oracle.

game G0. This game samples a random bit b ← {0, 1}, and simulates the
experiment Exp(b)-ind

dpiO,D,A(λ). More precisely, A has access to the public param-

eters pp and an oracle O(b)-ind(D), which on input of an input sampler Sin,
draws a sample (C0,C1, z) from D and outputs (C0,C1, z) together with an
obfuscation Obfuscate(pp,Sin,Cb). A outputs a guess b ′ and the game returns
1 if and only if b ′ = b. By assumption, the advantage of A in distinguishing
Exp(0)-ind

dpiO,D,A(λ) from Exp(1)-ind
dpiO,D,A(λ) is non-negligible. Hence,

ϵ(λ) :=

⃓⃓
⃓⃓Pr
[︁
out0 = 1

]︁
−

1

2

⃓⃓
⃓⃓

=
1

2
·
⃓⃓
⃓Pr
[︂
Exp(0)-ind

dpiO,D,A(λ) = 1
]︂
− Pr

[︂
Exp(1)-ind

dpiO,D,A(λ) = 1
]︂⃓⃓
⃓

is a non-negligible function in λ.

game G1. This game is identical to G0 except for the fact that the ELF
G is sampled in extremely lossy mode. More precisely, G is sampled via
ELF.Gen(2k(λ), t), where t is a polynomial such that every PPT algorithm of
(circuit) size s has advantage at most ϵ/2 in distinguishing ELF.Gen(2k(λ),
2k(λ)) from ELF.Gen(2k(λ), t). The advantage of A in G1 is therefore lower
bounded by ϵ/2, that is

⃓⃓
⃓⃓Pr
[︁
out1 = 1

]︁
−

1

2

⃓⃓
⃓⃓ ⩾ ϵ

2
. (6.1)

6.2 constructing doubly-probabilistic io 67

Otherwise, A has advantage greater than ϵ/2 in distinguishing ELF.Gen(2k(λ),
2k(λ)) from ELF.Gen(2k(λ), t).

game G2. This game proceeds exactly as G1, except that after sampling
b← {0, 1}, the game always sets up the experiment Exp(1)-ind

dpiO,D,A(λ), but still
returns 1 if and only if A’s guess b ′ equals b. Clearly,

Pr
[︁
out2 = 1

]︁
=

1

2
(6.2)

and the advantage of A in G2 equals 0.
In the following, we prove that
⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out1 = 1

]︁⃓⃓
⩽ Q · negl(λ), (6.3)

where negl is a negligible function and Q is a polynomial in λ. Equation (6.3)
together with Equations (6.1) and (6.2) yields a contradiction to our assump-
tion that ϵ is non-negligible as a function in λ.

In the following, Sin
q denotes the input sampler queried in the q-th oracle

query. The circuits Cq,0 and Cq,1 denote the circuits sampled in the q-th
oracle query using the circuit sampler D. Towards proving Equation (6.3),
we define a sequence of hybrids as follows.

game G1.q. This game is identical to G1 except for the fact that the first q− 1

oracle queries are answered using an obfuscation Γk of Ck,1 instead of Ck,b.
Clearly, we have that

Pr
[︁
out1 = 1

]︁
= Pr

[︁
out1.1 = 1

]︁
(6.4)

Pr
[︁
out2 = 1

]︁
= Pr

[︂
out1.Q+1 = 1

]︂
(6.5)

Furthermore, we have that
⃓⃓
⃓Pr
[︂
out1.Q+1 = 1

]︂
− Pr

[︂
out1.1 = 1

]︂⃓⃓
⃓ (6.6)

⩽
Q∑︂

q=1

⃓⃓
⃓Pr
[︂
out1.q = 1

]︂
− Pr

[︂
out1.q+1 = 1

]︂⃓⃓
⃓ . (6.7)

Due to Equations (6.4), (6.5) and (6.7), it suffices to upper bound the distin-
guishing gap between G1.q and G1.q+1 in order to prove Equation (6.3).

Due to the statistical soundness of NIZK, with overwhelming probability
over the random coins of Setup, for all q ∈ [Q], there is no word w ∈
{0, 1}∗ \ L

G,Sin
q

state such that a valid proof π for the statement w ∈ L
G,Sin

q

state exists.
Hence, every obfuscated circuit Γq, produced by the oracle on input of an
input sampler Sin

q , simulates the randomized computation of the circuit Cq,b
only on well-formed inputs, i. e., on outputs of Sin

q using random coins from
the range of G. Consequently, we only need to perform the hybrid argument
over all circuit inputs from [CLTV15] restricted to well-formed inputs. Since
ELF is in extremely lossy mode, this set of well-formed inputs is extremely
sparse. Let

Bq,j :=

{︄
Sin
q

(︁
stf(y1, . . . ,yj−1), x;G(r)

)︁
⃓⃓
⃓⃓
⃓
x ∈ L , r ∈ {0, 1}k(λ)

k ∈ [j− 1] , yk ∈ Bq,k

}︄

68 construction

29 We remark that the
values of each set

Bq,j can be
computed efficiently

by evaluating Sin on
all possible inputs

and states from
L× (

∏︁j−1
k=1 Bq,k)

and all possible
random coins in the

range of G. Note that
since ELF is strongly
regular, it is possible

to enumerate the
image of G in

polynomial time.

be this set of all well-formed inputs for input position j ∈ [ℓ]. The set Bq,j
contains at most |L| · tj−1 elements. Further, let

γq,1 < · · · < γq,t̄

be the ordered enumeration of all ℓ-tuples in Bq :=
∏︁ℓ

j=1 Bq,j, where t̄

denotes the size of Bq.29 Hence, the total number of well-formed inputs

t̄ :=

ℓ∏︂

j=1

|Bq,j| ⩽
(︂
|L| · tℓ−1

)︂ℓ
⩽ |L|ℓ · t(ℓ2)

is polynomial in λ (given that ℓ is a constant, and |L| and t are polynomial).
Towards proving indistinguishability between G1.q and G1.q+1, we con-

duct a hybrid argument over all well-formed inputs for the obfuscation Γq
and gradually replace the evaluation of circuit Cq,b with Cq,1. From here on,
our proof strategy is similar to the one employed in [CLTV15]. However, we
only need to consider polynomially many hybrids, hence, this strategy only
incurs a polynomial reduction loss relative to the underlying assumptions.

game G1.q.i. The game G1.q.i is identical to game G1.q except that the oracle
answers the q-th query differently using an obfuscation of the circuit

C
′[︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq,γq,i
]︁
,

defined in Figure 6.3, using iO.

Circuit C′[stf, (σ,G),Sin,C0,C1,K,γi](x)

parse x =: ((y1, aux1), . . . , (yℓ, auxℓ))

statej := stf(y1, . . . ,yj−1,⊥, . . . ,⊥)

if ¬
(︁
∀j ∈ [ℓ] : NIZK.Verify(σ, (G,Sin, statej,yj), auxj) = 1

)︁
then

return ⊥
γ := (y1, . . . ,yℓ)

if γ < γi then r := F(K,γ); return C1(γ; r)

if γ = γi then r := F(K,γ); return Cb(γ; r)

if γ > γi then r := F(K,γ); return Cb(γ; r)

Figure 6.3: Definition of the circuit C′.

The circuits

C
[︁
stf, (σ,G),Sin

q ,Cq,b,Kq

]︁
and

C
′[︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq,γq,1
]︁

are functionally equivalent. On input of x = ((y1, aux1), . . . , (yℓ, auxℓ)), both
return Cq,b(y1, . . . ,yℓ) with randomness r = F(Kq, (y1, . . . ,yℓ)). Hence, this
game hop is justified by the security of iO. More formally, for every PPT
adversary A, there exists a functionally equivalent circuit sampler D1.q.1
producing circuits as above and a PPT adversary B1.q.1 such that

⃓⃓
⃓Pr
[︂
out1.q = 1

]︂
− Pr

[︂
out1.q.1 = 1

]︂⃓⃓
⃓ ⩽ Advio-ind

iO,D1.q.1,B1.q.1
(pC(λ)). (6.8)

6.2 constructing doubly-probabilistic io 69

Furthermore, let γq,t̄+1 > γq,t̄, then the circuits

C
′[︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq,γq,t̄+1

]︁
and

C
[︁
stf, (σ,G),Sin

q ,Cq,1,Kq

]︁

are functionally equivalent. Hence, for every PPT adversary A, there exists a
functionally equivalent circuit sampler D1.q+1 producing circuits as above
and a PPT adversary B1.q+1, such that

⃓⃓
⃓Pr
[︂
out1.q.t̄+1 = 1

]︂
− Pr

[︂
out1.q+1 = 1

]︂⃓⃓
⃓

⩽ Advio-ind
iO,D1.q+1,B1.q+1

(pC(λ)). (6.9)

Furthermore, we have that
⃓⃓
⃓Pr
[︂
out1.q.t̄+1 = 1

]︂
− Pr

[︂
out1.q.1 = 1

]︂⃓⃓
⃓

⩽
t̄∑︂

i=1

⃓⃓
⃓Pr
[︂
out1.q.i+1 = 1

]︂
− Pr

[︂
out1.q.i = 1

]︂⃓⃓
⃓ (6.10)

Due to Equations (6.8), (6.9) and (6.10), it suffices to upper bound the distin-
guishing gap between G1.q.i and G1.q.i+1 in order to prove indistinguisha-
bility between G1.q and G1.q+1.

For this purpose, we aim to exploit the dynamic-input indistinguishability
of the circuit sampler D. Therefore, we first need to supply the evaluation
of Cq,b (and Cq,1) at input of γi with true randomness. Hence, we define
another series of hybrids between G1.q.i and G1.q.i+1.

game G1.q.i.1. This game is identical to G1.q.i except for the fact that we use
a punctured PRF key Kq{γq,i} produced via F.Punct(Kq,γq,i) and obfuscate
the circuit

C
′′[︁stf, (σ,G),Cq,b,Cq,1,Kq{γq,i}, Y := Cq,b(γq,i; F(Kq,γq,i)),γq,i

]︁

as defined in Figure 6.4 using iO.
As F preserves the functionality under punctured keys, the circuits

C
′ [︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq,γq,i
]︁

and

C
′′[︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq{γq,i}, Y⏞⏟⏟⏞
:=Cq,b(γq,i;F(Kq,γq,i))

,γq,i
]︁

are functionally equivalent. On input of γq,i, the circuits used in G1.q.i
outputs Cq,b(γq,i) using randomness r := F(Kq,γq,i), and the circuit used
in G1.q.i.1 outputs Y which is computed as Y := Cq,b(γq,i; F(Kq,γq,i)). On
all remaining inputs, these circuits also behave identically as F preserves
functionality under punctured keys. Hence, for all PPT adversaries A, there
exists a functionally equivalent circuit sampler D1.q.i.1 producing circuits as
above distributed as in G1.q.i and G1.q.i.1, respectively, and a PPT adversary
B1.q.i.1 such that

⃓⃓
⃓Pr
[︂
out1.q.i = 1

]︂
− Pr

[︂
out1.q.i.1 = 1

]︂⃓⃓
⃓ ⩽ Advio-ind

iO,D1.q.i.1,B1.q.i.1
(pC(λ)).

(6.11)

70 construction

Circuit C′′[stf, (σ,G),Sin,C0,C1,K{γi}, Y,γi](x)

parse x =: ((y1, aux1), . . . , (yℓ, auxℓ))

statej := stf(y1, . . . ,yj−1,⊥, . . . ,⊥)

if ¬
(︁
∀j ∈ [ℓ] : NIZK.Verify(σ, (G,Sin, statej,yj), auxj) = 1

)︁
then

return ⊥
γ := (y1, . . . ,yℓ)

if γ < γi then r := F(K{γi},γ); return C1(γ; r)

if γ = γi then return Y

if γ > γi then r := F(K{γi},γ); return Cb(γ; r)

Figure 6.4: Definition of the circuit C′′.

We note that the view of A in game G1.q.i.1 does not depend on the PRF
key Kq (only on the punctured PRF key Kq{γq,i}). This enables a reduction
to the selective security of F.

game G1.q.i.2. In this game we replace the randomness F(Kq, (γq,i)) by true
randomness, i. e., we produce Y as Y := Cq,b(γq,i;R) for uniformly random
R← {0, 1}k(λ). This game hop is justified by the selective PRF property. More
formally, for every PPT adversary A, there exists a PPT adversary B1.q.i.2,
such that

⃓⃓
⃓Pr
[︂
out1.q.i.2 = 1

]︂
− Pr

[︂
out1.q.i.1 = 1

]︂⃓⃓
⃓ ⩽ Advs-pprf

F,B1.q.i.2
(λ). (6.12)

game G1.q.i.3. This game is the same as G1.q.i.2 except for the fact that
Y is produced using the circuit Cq,1, i. e., Y := Cq,1(γq,i;R). This game
hop is justified by the fact that the circuit sampler D is a dynamic-input
indistinguishable sampler. More precisely, for every PPT adversary A there
exists a PPT adversary B1.q.i.3 such that

⃓⃓
⃓Pr
[︂
out1.q.i.3 = 1

]︂
− Pr

[︂
out1.q.i.2 = 1

]︂⃓⃓
⃓ ⩽ Advdyn-ind

D,B1.q.i.3
(λ). (6.13)

game G1.q.i.4. This game is the same as G1.q.i.3 with the difference that
we again use pseudorandom coins to compute Y, i. e., Y := Cq,1(γq,i; F(Kq,
γq,i)). For every PPT adversary A, there exists a PPT adversary B1.q.i.4 such
that

⃓⃓
⃓Pr
[︂
out1.q.i.4 = 1

]︂
− Pr

[︂
out1.q.i.3 = 1

]︂⃓⃓
⃓ ⩽ Advs-pprf

F,B1.q.i.4
(λ). (6.14)

Since F preserves functionality under punctured keys, the two circuits

C
′′[︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq{γq,i}, Y⏞⏟⏟⏞
:=Cq,1(γq,i;F(Kq,γq,i))

,γq,i
]︁

C
′ [︁stf, (σ,G),Sin

q ,Cq,b,Cq,1,Kq,γq,i+1

]︁

are functionally equivalent. Therefore, for all PPT avdersaries A, there exists
a functionally equivalent circuit sampler D1.q.i+1 producing circuits as above

6.2 constructing doubly-probabilistic io 71

distributed as in G1.q.i.4 and G1.q.i+1, respectively, and a PPT adversary
B1.q.i+1 such that

⃓⃓
⃓Pr
[︂
out1.q.i+1 = 1

]︂
− Pr

[︂
out1.q.i.4 = 1

]︂⃓⃓
⃓

⩽ Advio-ind
iO,D1.q.i+1,B1.q.i+1

(pC(λ)). (6.15)

Combining Equations (6.11), (6.12), (6.13), (6.14) and (6.15), we obtain
⃓⃓
⃓Pr
[︂
out1.q.i+1 = 1

]︂
− Pr

[︂
out1.q.i = 1

]︂⃓⃓
⃓

⩽ 2 ·Advio-ind
iO,D′,B′(pC(λ)) + 2 ·Advs-pprf

F,B′′ (λ) + Advdyn-ind
D,B′′′ (λ) (6.16)

for PPT adversaries B′, B′′, B′′′ and a functionally equivalent circuit sampler
D′. Since iO is a secure indistinguishability obfuscator, F is a puncturable PRF
and D is a dynamic-input indistinguishable sampler, the above quantities
are negligible in λ.

Combining Equations (6.8), (6.9), (6.10) and (6.16), the advantage in distin-
guishing G1.q and G1.q+1 can be upper bounded by

⃓⃓
⃓Pr
[︂
out1.q+1 = 1

]︂
− Pr

[︂
out1.q = 1

]︂⃓⃓
⃓

⩽ |L|ℓ · tℓ2 · negl(λ) + 2 ·Advio-ind
iO,D′,B′(pC(λ)) (6.17)

for some PPT adversary B′ and some functionally equivalent circuit sampler
D′, which is negligible.

Hence, combining Equations (6.4), (6.5), (6.7) and (6.17), the advantage to
distinguish G1 and G2 is upper bounded by

⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out1 = 1

]︁⃓⃓
⩽ Q · negl′(λ) + 2 ·Advio-ind

iO,D′,B′(pC(λ)),

for some negligible function negl′, for some PPT adversary B′ and some
functionally equivalent circuit sampler D′, which is negligible. This proves
Equation (6.3).

Finally, together with Equations (6.1) and (6.2), we reach a contradiction
concluding the proof.

extension. We note that our notion of doubly-probabilistic IO can be
extended to support a set of independent public parameters such that en-
coded input samplers may depend on different public parameters. Suppose
(Setup, Encode, Obfuscate) is a 5-source dpIO scheme. Then, the obfuscation
Obfuscate(pp1[1-3], pp2[4, 5],Sin,C) of the circuit C requires the first three in-
puts to be sampled with an encoded sampler with respect to pp1 and the last
two inputs to be sampled with an encoded sampler with respect to pp2.

The above prove can be directly extended to this setting by choosing each
extremely-lossy mode such that A has advantage at most ϵ/2ℓ in distinguish-
ing the lossy from the injective mode. For the applications covered in this
thesis, we do not need this extension and refer the reader to the original
publication [ACH20] for more details.

30 It is not known
whether such
structural properties
can be achieved from
IO in conjunction
with unstructured
assumptions, such as
one-way functions.

7
L E V E L E D
H O M O M O R P H I C
E N C R Y P T I O N

In this chapter, we demonstrate that our notion of dpIO from Chapter 5

can be applied to construct leveled homomorphic encryption in a similar
way as in [CLTV15]. This construction leads to a transformation which
operates on an encryption scheme E, satisfying IND-CPA security (and
possibly other security properties, e. g., KDM security), and produces a
leveled homomorphic encryption scheme that retains the security properties
of E. We emphasize that since our notion of dpIO achieves security against
dynamic-input indistinguishable samplers, we do not need to assume any
additional properties for E. This is a further improvement compared to
[CLTV15], where additional structural properties such as lossiness or re-
randomizability are required.30

Let P = (P
λ,˜︁L)λ,˜︁L∈N

be a family of sets of polynomial sized depth-˜︁L
circuits of arity k, i. e., the set P

λ,˜︁L contains circuits of polynomial size in λ

of depth ˜︁L. Further, for any λ, ˜︁L ∈N the circuits in P
λ,˜︁L share the common

input domain {0, 1}k.

definition 7.1 (Leveled homomorphic encryption [Gen09]). A leveled ho-
momorphic encryption (LHE) scheme for message space {0, 1} is a family of
encryption schemes LHE :=

{︁
E˜︁L = (KGen˜︁L, Enc˜︁L, Dec˜︁L, Eval˜︁L)

}︁
˜︁L∈N

such that
each E˜︁L is an IND-CPA secure public-key encryption scheme for message
space {0, 1} which is homomorphic for all polynomial-size depth-˜︁L circuits.
That is, each E˜︁L allows to homomorphically and compactly evaluate any
polynomial-size depth-˜︁L circuit via an evaluation algorithm Eval˜︁L of size poly-
nomial in (λ, ˜︁L), and all the E˜︁L use the same decryption circuit Dec˜︁L = Dec.
An LHE scheme is required to satisfy the following notion of correctness.

correctness. For all λ ∈N, all ˜︁L ∈N, all m1, . . . ,mk ∈Mλ, P ∈ P
λ,˜︁L,

Pr

⎡
⎢⎢⎢⎣

(pk, ek, sk) ← KGen˜︁L(1
λ)

ci ← Enc˜︁L(pk,mi)

c ← Eval˜︁L
(︁
ek,P, c1, . . . , ck

)︁
:

Dec(sk, c)

=

P
(︁
m1, . . . ,mk

)︁

⎤
⎥⎥⎥⎦ = 1.

ind-cpa security. For all ˜︁L ∈N, all PPT adversaries A,

Advind-cpa
LHE,A (λ) :=
⃓⃓
⃓⃓
⃓⃓ Pr

⎡
⎣ (pk, ek, sk) ← KGen˜︁L(1

λ)

c∗ ← Enc˜︁L(pk, 0)
: A
(︁
pk, ek, c∗

)︁
= 1

⎤
⎦

−Pr

⎡
⎣ (pk, ek, sk) ← KGen˜︁L(1

λ)

c∗ ← Enc˜︁L(pk, 1)
: A
(︁
pk, ek, c∗

)︁
= 1

⎤
⎦
⃓⃓
⃓⃓
⃓⃓

is negligible in λ.

73

74 leveled homomorphic encryption

compactness. The size of the output of Eval˜︁L is polynomial in (λ, ˜︁L) and
independent of the size of the circuit P.

Note that Definition 7.1 distinguishes between an evaluation key ek and a
public (encryption) key pk. The evaluation key can equivalently be defined
to be part of the public key pk as in Definition 2.24.

remark 7.1. Note that a leveled (or fully) homomorphic encryption scheme
for message space {0, 1} implies a leveled (or fully) homomorphic encryption
scheme for message space {0, 1}λ.

Let stf be the trivial state function, i. e., stf : (y1,y2) ↦→ ⊥ for each tuple (y1,
y2) ∈ ({0, 1}n(λ) ∪ {⊥})2. Let E = (KGen, Enc, Dec) be an arbitrary IND-CPA
secure public-key encryption scheme. Let the input sampler class Sin

Sin :=
{︂
Sin

pk

⃓⃓
⃓ (pk, ·) ∈ supp(E.KGen(1λ))

}︂
,

where Sin
pk is defined in Figure 7.1. For technical reasons, the input length of

Sin
pk is required to match the security parameter λ (see Definition 5.1). Hence,

the input domain L of the input samplers in Sin equals {0λ, 1λ}. That is, Sin

Sin
pk(state, x)

y := ⊥,y′ := ⊥

y←
{︄

E.Enc(pk, 0) , if x = 0λ

E.Enc(pk, 1) , if x = 1λ

return (y;y′)

Figure 7.1: Input samplers used for the construction of LHE from dpIO.

contains all input samplers Sin
pk which on input of a state state and an input

x ∈ L, sample a ciphertext y encrypting x via y := E.Enc(pk, x) and y′ := ⊥
ignoring state, where pk is a public key in the range of E.KGen(1λ). However,
for a more convenient notation, we will slightly abuse notation and treat Sin

pk
as if its input domain L equals {0, 1}.

Further, let C be the class of polynomial-size randomized circuits and let
Cdyn-ind be the class of dynamic-input indistinguishable samplers over C.

theorem 7.1. Let (Setup, Encode, Obfuscate) be a 2-source dpiO scheme for (stf,
Sin,C,Cdyn-ind) and let E be an IND-CPA secure public-key encryption scheme.
Then, LHE as defined in Figure 7.2 is an IND-CPA secure LHE scheme.

The proof strategy is similar as in [CLTV15]. On a high level, we aim to re-
duce the IND-CPA security of LHE to the IND-CPA security of the underlying
encryption scheme E. However, the evaluation key ek contains information
(even though obfuscated) about the secret decryption keys of each level. For
the purpose of invoking the security of E on the challenge ciphertext, we
need to remove this dependency on sk0. Therefore, we gradually (starting
from level ˜︁L) replace the obfuscations of the circuits C with obfuscations of
trapdoor circuits tC which simply output samples produced by the encoded
sampler Sin

pk(0) on the fixed input 0 (hence, not needing any information on
decryption keys). Let plhe(λ) denote an upper bound on the size of C and tC

including all hard-coded values during the proof. These two circuits sample

leveled homomorphic encryption 75

LHE.KGen(1λ, 1˜︁L)

for i ∈ {0, . . . , ˜︁L} do

(pki, ski)← E.KGen(1λ)

ppi ← Setup(1plhe(λ))

Sin
pki
← Encode(ppi,Sin

pki
)

for i ∈ {1, . . . , ˜︁L} do

Γi ← Obfuscate
(︂

ppi−1,Sin
pki−1

,C[Sin
pki

, ski−1]
)︂

pk := Sin
pk0

, sk := sk˜︁L
ek := (Γ1, . . . , Γ˜︁L)

return (pk, ek, sk)

(a) The key generation algorithm producing a public en-
cryption key pk, a secret decryption key sk and an eval-
uation key ek. The circuit C is defined in Figure 7.3.

LHE.Enc(pk,m ∈ {0, 1})

parse pk =: Sin
pk0

(y, aux,y′)← Sin
pk0

(⊥,m)

return c := (y, aux)

(b) The encryption algorithm
sampling via the encoded in-
put sampler for level 0.

LHE.Dec(sk, c)

parse sk =: sk˜︁L
parse c =: (y,aux)

return E.Dec(sk˜︁L,y)

(c) The decryption algorithm
using the key for level ˜︁L.

LHE.Eval(ek,P, (c1, . . . , ck))

for i ∈ {1, . . . , ˜︁L} do

foreach gate g on level i do

// let αg,βg denote the inputs for gate g

γg := Γi(αg,βg)

// let gout denote the output gate of P

return γgout

(d) The evaluation algorithm using the obfuscated circuits
Γi to homomorphically evaluate circuit P on the ci-
phertexts c1, . . . ,ck.

Figure 7.2: Instantiation of an LHE scheme LHE from some PKE scheme E using a 2-
source dpIO scheme dpiO.

from the same encoded sampler Sin
pk but behave differently in which inputs

they supply Sin
pk with. Due to the simulatability of encodings property of

dpiO and the IND-CPA security of E, these two circuits are dynamic-input
indistinguishable. Hence, by the indistinguishability property of dpiO for
Cdyn-ind, an honest evaluation key and an evaluation key consisting only of
trapdoor circuits are indistinguishable.

Given these modifications, the challenge ciphertext c∗ consists of an en-
cryption of a bit b under pk0 accompanied by some auxiliary information
produced by the corresponding encoded sampler. This auxiliary information
might leak information on the bit b and thereby prevents to directly employ
the IND-CPA security of E. However, as dpiO satisfies simulatability of en-
codings, this auxiliary information can be simulated without knowledge of
b and, hence, contains no information about b. Therefore, by the IND-CPA
security of E, LHE is IND-CPA secure.

76 leveled homomorphic encryption

C[Sin
pk, sk′](xα, xβ)

α← E.Dec(sk′, xα)

β← E.Dec(sk′, xβ)

(y, aux,y′)← Sin
pk(⊥,α∧β)

return (y, aux)

(a) Definition of the probabilistic circuit C
which implements homomorphic evalu-
ation of a single ∧-gate.

tC[Sin
pk](xα, xβ)

(y, aux,y′)← Sin
pk(⊥, 0)

return (y, aux)

(b) Definition of the trapdoor analogue tC

of the circuit C which is unknowing of
any secret decryption keys.

Figure 7.3: Definition of the circuits C and tC.

31 This is without
loss of generality

since ∧-gates are a
functionally complete

set of Boolean
operators.

32 We implicitly use
that the supports of

Sin(⊥,0) and
Sin(⊥,1) are

disjoint.

Proof of Theorem 7.1. We prove that LHE satisfies correctness and IND-CPA
security. Let P be a polynomial sized circuit of depth ˜︁L which consists only
of ∧-gates31 with input space {0, 1}k.

correctness. We prove that on every level i, every gate g in P is evalu-
ated exactly as the original gate given the decrypted inputs.

Let i ∈ [˜︁L] be a level and let g be a gate on level i. Further, let (xα, auxα, ·) be
in the support of Sin

pki−1
(⊥,α) and (xβ, auxβ, ·) be in the support of Sin

pki−1
(⊥,

β). By perfect correctness of E, the circuit C[Sin
pki

, ski−1] on input of (xα,

auxα) and (xβ, auxβ) always outputs an element from the support of Sin
pki

(⊥,

α∧β).32 Furthermore, since dpiO is support respecting (Definition 5.4), both
the encoded sampler Sin and the obfuscated circuit Γ respect the support of
the original sampler Sin and the original circuit C[Sin

pki
, ski−1], respectively.

Hence, the obfuscation Γ of C[Sin
pki

, ski−1] (with respect to Sin
pki−1

) on input
of (xα, auxα) and (xβ, auxβ) always outputs an element from the support of
Sin

pki
(⊥,α∧β). Hence, the probability that gate g is not evaluated correctly is

zero.

security. To prove that LHE is IND-CPA secure, we proceed over a series
of hybrids. Let A be a PPT adversary. Further, let plhe(λ) denote an upper
bound on the size of C and tC including all hard-coded values during the
proof.

game Gb
0 . This game is exactly the IND-CPA game for LHE, where the

challenge ciphertext c∗ contains the bit b.

game Gb
1 . This game is the same as Gb

0 with the difference that the evaluation
key consists of obfuscations tΓi of the circuit tC[Sin

pki
].

claim 7.1. For every PPT adversary A, we have that
⃓⃓
⃓Pr
[︂
outb1 = 1

]︂
− Pr

[︂
outb0 = 1

]︂⃓⃓
⃓ ⩽ negl(λ)

for some negligible function negl.

Proof. We define a series of ˜︁L + 1 hybrid games Gb
0.i for i ∈ {0, . . . , ˜︁L} as

follows.

game Gb
0.i. Gb

0.i is defined in Figure 7.4. Hence, Gb
0.i is identical to Gb

0.i−1

leveled homomorphic encryption 77

Gb
0.i

for i ∈ {0, . . . , ˜︁L} do

(pki, ski)← E.KGen(1λ)

ppi ← Setup(1λ)

Sin
pki
← Encode(ppi,Sin

pki
)

for j ∈ {1, . . . , ˜︁L− i} do

Γj ← Obfuscate
(︂

ppj−1,Sin
pkj−1

,C[Sin
pkj

, skj−1]
)︂

for j ∈ {˜︁L− i+ 1, . . . , ˜︁L} do

tΓj ← Obfuscate
(︂

ppj−1,Sin
pkj−1

, tC[Sin
pkj

]
)︂

pk := Sin
pk0

, sk := sk˜︁L
ek :=

(︂
Γ1, . . . , Γ˜︁L−i

, tΓ˜︁L−i+1
, . . . , tΓ˜︁L

)︂

return (pk, ek, sk)

Figure 7.4: Definition of Gb
0.i.

with the difference that the ˜︁L− i+ 1-th obfuscated circuit in the evaluation
key ek is produced as

Γ˜︁L−i+1
← Obfuscate

(︂
pp˜︁L−i

,Sin
pk˜︁L−i

,C
[︁
Sin

pk˜︁L−i+1
, sk˜︁L−i

]︁)︂

in Gb
0.i−1, and as

tΓ˜︁L−i+1
← Obfuscate

(︁
pp˜︁L−i

,Sin
pk˜︁L−i

, tC
[︁
Sin

pk˜︁L−i+1

]︁)︁

in Gb
0.i. By definition, we have

Pr
[︂
outb0.0 = 1

]︂
= Pr

[︂
outb0 = 1

]︂
and (7.1)

Pr
[︂
outb

0.˜︁L = 1
]︂
= Pr

[︂
outb1 = 1

]︂
. (7.2)

claim 7.2. For every PPT adversary A, there exists a dynamic-input indis-
tinguishable sampler Db

0.i+1 and a PPT adversary Bb
0.i+1, such that

⃓⃓
⃓Pr
[︂
outb0.i = 1

]︂
− Pr

[︂
outb0.i+1 = 1

]︂⃓⃓
⃓ ⩽ Advind

dpiO,Db
0.i+1,Bb

0.i+1
(plhe(λ)).

By a standard hybrid argument and Equations (7.1) and (7.2), we get
|Pr[outb0 = 1] − Pr[outb1 = 1]| ⩽ ˜︁L ·Advind

dpiO,D,B(plhe(λ)) for some dynamic-
input indistinguishable sampler D and some PPT adversary B. By the security
of dpiO, this quantity is negligible.

Proof of Claim 7.2. We first show that there exists a PPT adversary Bb
0.i+1 and

the circuit sampler Db
0.i+1 defined in Figure 7.5, such that the distinguishing

gap between Gb
0.i and Gb

0.i+1 is upper bounded by the advantage of Bb
0.i+1

in the dpiO security game. Then we show that Db
0.i+1 is a dynamic-input

indistinguishable sampler.
We construct a PPT adversary Bb

0.i+1 for the security game of dpiO as fol-
lows. Bb

0.i+1 receives as input public parameters pp′, the circuits C0 and C1

78 leveled homomorphic encryption

Db
0.i+1(1

λ)

pp← Setup(1λ)

(pk, sk)← E.KGen(1λ)

(pk′, sk′)← E.KGen(1λ)

Sin
pk ← Encode(pp,Sin

pk)

C0 := C
[︁
Sin

pk, sk′
]︁

C1 := tC
[︁
Sin

pk
]︁

z := (pk, pk′, sk′, pp)

return (C0,C1, z)

Figure 7.5: Circuit sampler used in the proof of IND-CPA security of LHE.

together with auxiliary information z produced by Db
0.i+1, and an obfusca-

tion Γ ← Obfuscate(pp′,Sin
pk′ ,C˜︁b) for some ˜︁b ∈ {0, 1}. Initially, Bb

0.i+1 samples

parameters as in Gb
0.i embedding his input as pp˜︁L−i−1

:= pp′, pk˜︁L−i−1
:= pk′,

and pk˜︁L−i
:= pk, and defines the public key to be pk := Sin

pk0
for Sin

pk0
←

Encode(pp0,Sin
pk). B

b
0.i+1 produces the obfuscations Γj for j ∈ {1, . . . , ˜︁L− i− 1}

and tΓj for j ∈ {˜︁L− i+ 1, . . . , ˜︁L} as in Gb
0.i and defines the evaluation key as

ek := (Γ1, . . . , Γ˜︁L−i−1
, Γ , tΓ˜︁L−i+1

, . . . , tΓ˜︁L).

Bb
0.i+1 produces the challenge ciphertext c∗ for the bit b as c∗ ← Sin

pk0
(b).

Finally, Bb
0.i+1 calls A on input (pk, ek, c∗) and outputs A’s output. If ˜︁b = 0,

Bb
0.i+1 perfectly simulates Gb

0.i for A, else Bb
0.i+1 perfectly simulates Gb

0.i+1

for A. Hence,
⃓⃓
⃓Pr
[︂
outb0.i+1 = 1

]︂
− Pr

[︂
outb0.i = 1

]︂⃓⃓
⃓ ⩽ Advind

dpiO,Db
0.i+1,Bb

0.i+1
(plhe(λ)).

What remains to prove is that Db
0.i+1 is a dynamic-input indistinguishable

sampler.

claim 7.3. The circuit sampler Db
0.i+1 as defined in Figure 7.5 is a dynamic-

input indistinguishable sampler.

Proof of Claim 7.3. We prove this using a sequence of two hybrids. Let A be a
PPT adversary in the dynamic-input indistinguishability game for the circuit
sampler Db

0.i+1.

game H0. This is the dynamic-input indistinguishability game as defined
in Figure 2.2a. In detail, H0 samples (C0,C1, z) according to Db

0.i+1, gives
C0, C1 together with the state z to A who adaptively chooses an input x.
H0 evaluates the circuit Cb′ (for a random bit b′) at input of x (using fresh
random coins) and sends the output to A.

game H1. By the simulatability of encodings property of dpiO, there exists
a simulator Sim = (Sim0, Sim1), such that outputs of the encoded sampler
(including the auxiliary information aux) and outputs of the original sampler
together with simulated auxiliary information are indistinguishable. The
game H1 is the same as H0 with the difference that the public parameters
are simulated as (pp, td)← Sim0(1

λ). Given the adversarially chosen input

leveled homomorphic encryption 79

x = (xα, xβ), H1 computes (m0,m1) := (α∧β, 0) using the secret key sk′

(which is part of z). Furthermore, H1 produces (y, ·) ← Sin
pk(⊥,mb′) and

aux← Sim1(td,Sin
pk,y,⊥).

In order to upper bound the distinguishing gap between H1 and H0, we
construct an adversary BH.1 for the simulatability of encodings property
of dpiO. On input of public parameters pp, BH.1 uses these as public pa-
rameters and simulates H1 for A. However, instead of sampling y and aux
with Sin

pk(⊥,mb′) and Sim1(td,Sin
pk,y,⊥), respectively, BH.1 calls the encoding

oracle provided by the simulatability game on input of (Sin
pk,⊥,mb′) to ob-

tain y and aux. If BH.1 interacts with Exp(0)-enc
dpiO,BH.1

(plhe(λ)), BH.1 perfectly

simulates H0 for A. Otherwise, if BH.1 interacts with Exp(1)-enc
dpiO,BH.1

(plhe(λ)),
BH.1 perfectly simulates H1 for A. Hence, we have

⃓⃓
⃓Pr
[︂
outH1

= 1
]︂
− Pr

[︂
outH0

= 1
]︂⃓⃓
⃓ ⩽ Advenc

dpiO,Sim,BH.1
(plhe(λ))

which is negligible by the simulatability of encodings property of dpiO.
The advantage of A in game H1 is negligible. To realize that, we construct

an adversary DH.1 for the IND-CPA security of E with respect to the public
key pk. On input of pk, DH.1 samples (C0,C1, z) in the same way as in H1

(embedding pk) and calls A on input of (C0,C1, z) to obtain (x, st). DH.1
decrypts x = (xα, xβ) to obtain α and β using sk′, and outputs (m0,m1) :=

(α∧β, 0) to the IND-CPA game. In return, DH.1 receives a ciphertext c∗,
simulates the corresponding auxiliary information aux ← Sim1(pp, td,Sin

pk,
c∗,⊥), and invokes A on input of his previous state st and (c∗, aux). If c∗

encrypts m˜︁b, y is distributed exactly as in H1 conditioned on b′ = ˜︁b. Finally,
DH.1 outputs A’s output. Hence, by the IND-CPA security of E,

⃓⃓
⃓⃓Pr
[︂
outH1

= 1
]︂
−

1

2

⃓⃓
⃓⃓ ⩽ 1

2
·Advind-cpa

E,DH.1
(λ)

which is negligible. This concludes the proof of Claim 7.3.

Together with Claim 7.3, this concludes the proof of Claim 7.2.

Hence, we have that |Pr[outb1 = 1] − Pr[outb0 = 1]| is negligible in λ, what
was to be demonstrated.

Towards being able to conduct a reduction to the IND-CPA security of E
for the challenge ciphertext, we need to ensure that the auxiliary information
which accompanies the ciphertext from Sin

pk0
(b) does not leak any information

about the plaintext b. This is formalized via another game transition.

game Gb
2 . This game is identical to Gb

1 except for the fact that the public
parameters pp0 are simulated by Sim0 (additionally yielding a trapdoor td0).
Furthermore, the challenge ciphertext c∗ is produced by drawing a sample (y;
y′) from Sin

pk0
(b) and simulating the auxiliary information aux using Sim1(pp0,

td0,Sin
pk0

,y,⊥). We recall that for every PPT adversary A such a simulator
Sim = (Sim0, Sim1) exists as dpiO satisfies simulatability of encodings. Hence,
there exists a PPT adversary Bb

2 , such that the distinguishing gap
⃓⃓
⃓Pr
[︂
outb2 = 1

]︂
− Pr

[︂
outb1 = 1

]︂⃓⃓
⃓ ⩽ Advenc

dpiO,Sim,Bb
2
(plhe(λ))

80 leveled homomorphic encryption

which, by simulatability of encodings, is negligible in λ.
It remains to argue, that the games G0

2 and G1
2 are indistinguishable. This

can be reduced to the IND-CPA security of E with respect to pk0 as in Gb
2

neither the corresponding secret key sk0 nor the plaintext b are necessary for
simulation.

claim 7.4. For every PPT adversary A, the distinguishing gap |Pr[out02 =

1] − Pr[out12 = 1]| is negligible.

Proof. We construct a PPT adversary B′2 against the IND-CPA security of
E. On input of pk, B′2 defines pk0 := pk, samples key pairs (pkj, skj) ←
E.KGen(1λ) for j ∈ {1, . . . , ˜︁L} and produces ek as in G2. B′2 outputs the
messages 0 and 1 to the IND-CPA game and in turn receives a ciphertext c′∗.
Furthermore, B′2 simulates the auxiliary information by aux∗ ← Sim1(pp0,
td0,Sin

pk0
, c′∗,⊥). Finally, B′2 invokes A on input of (pk0, ek, (c′∗, aux∗)) and

outputs A’s output. If c′∗ encrypts 0, B′2 perfectly simulates G0
2 for A, and if

c′∗ encrypts 1, B′2 perfectly simulates G1
2 for A. Hence,

⃓⃓
⃓Pr
[︂
out02 = 1

]︂
− Pr

[︂
out12 = 1

]︂⃓⃓
⃓ ⩽ Advind-cpa

E,B′2
(λ),

which is negligible by the IND-CPA security of E.

Together with Theorem 6.1 from Chapter 6, we obtain the following corol-
lary.

corollary 7.1. Assuming polynomially secure indistinguishability obfuscation
and extremely lossy functions, then there exists a leveled homomorphic encryption
scheme.

Note that IND-CPA secure schemes, as required in our construction, can
be constructed from (polynomially secure) IO and one-way functions (the
latter being implied by ELFs). Previously, constructions of LHE were only
known from the learning with error assumption, or from subexponentially
secure indistinguishability obfuscation (together with lossy encryption, which
can be based, for instance, on DDH, see also Section 9.5).

fully homomorphic encryption. [CLTV15] provide a generic LHE-
to-FHE transformation. We briefly sketch the strategy. If an LHE scheme
can handle a (slightly) super-polynomial number of levels ˜︁L, then it is fully
homomorphic for all polynomial-size circuits. However, this would require
generating and storing a super-polynomial number of evaluation keys (ek1,
. . . , ek˜︁L). To overcome this issue, [CLTV15] (inspired by [BGL+15]) use an
obfuscated master key generation program MProg, which generates the
evaluation keys on the fly: on input of i, MProg returns eki. It was observed
in [CLTV15] that pIO cannot be directly used to obfuscate this program,
because the coins used by MProg must be correlated between two consecutive
levels (for example, in our LHE construction, eki is an obfuscated program
with a secret key ski and a public key pki+1 hard-coded; hence, eki+1 must
contain the matching secret key for pki+1). Nevertheless, “de-randomizing”
this program, using the standard technique of generating the coins using a
pseudorandom function F (the coins for ski are generated as F(K, i), and the

leveled homomorphic encryption 81

coins for pki+1 are generated as F(K, i+ 1), which guarantees the appropriate
correlation between the coins used in eki and eki+1), and obfuscating with
standard IO, allows to prove security of this approach.

Applying this generic transformation, we obtain the following corollary.

corollary 7.2. Assuming slightly super-polynomially secure indistinguisha-
bility obfuscation and extremely lossy functions, there exists a fully homomorphic
encryption scheme.

Previously, constructions of FHE were only known from circular security
assumptions over lattice-based cryptosystems, or subexponentially secure
indistinguishability obfuscation and lossy encryption.

Applying the LHE-toFHE transformation from [CLTV15] requires to use
super-polynomially secure IO. However, using the same techniques as we
used to build dpIO, we can actually base this transformation on polynomially
secure IO and ELFs.

In the original publication [ACH20], we provide an LHE-to-FHE trans-
formation using the techniques developed in this part which only requires
polynomially secure IO and ELFs. This is not part of this thesis.

Part II

I N S TA N T I AT I N G T H E A LG E B R A I C G R O U P
M O D E L F R O M O B F U S C AT I O N

leveled homomorphic encryption 85

ii instantiating the algebraic group model from obfuscation

8 introduction 87

8.1 Technical Overview . 90

8.2 Related Work . 92

9 preliminaries 93

9.1 Notations and Cryptographic Groups 93

9.2 The Algebraic Group Model . 93

9.3 Subset Membership Problem 94

9.4 Dual-mode NIWI Proof System 95

9.5 Re-Randomizable Public-Key Encryption 97

10 statistically correct pio 99

10.1 Statistically Correct pIO . 100

10.2 Puncturable Pseudorandom Functions 102

10.3 Construction . 104

11 how to simulate extraction 109

11.1 Group Schemes and Wrappers 110

11.2 An Algebraic Wrapper . 111

12 construction 115

12.1 Main Theorem and Security Analysis 117

13 signed elgamal 129

33 Other black-box
abstractions of groups
with similar
ramifications
exist [Nec94; BL96].

34 This observation
about algebraic
adversaries has
already been made in
[BV98; PV05]. Also,
similar but more
specific knowledge-
type assumptions
have been used to
prove concrete
cryptographic
constructions secure,
e. g., [Dam92; HT98;
BP04; Den06].

8 I N T R O D U C T I O N

In this part, we present the results of [AHK20]. This part is taken verbatim
from [AHK20] with minor changes.

the generic group model. In order to analyze the plausibility and rela-
tive strength of computational assumptions in cyclic groups, Shoup [Sho97]
and Maurer [Mau05] have proposed the generic group model (GGM). In the
GGM, any adversary can only interact with the modeled group through
an oracle. In particular, all computations in that group must be explicitly
expressed in terms of the group operation. To prevent an adversary from lo-
cally performing computations, that adversary gets to see only truly random
strings (in [Sho97]) or independent handles (in [Mau05]) as representations
of group elements.33

The discrete logarithm and even many Diffie-Hellman-style problems
are hard generically (i. e., when restricting group operations in the above
way) [Sho97; MW98]. Hence, the only way to break such a generically hard
assumption in a concrete group is to use the underlying group representation
in a nontrivial way. In that sense, the GGM can be very useful as a sanity
check for the validity of a given assumption, or even the security of a given
cryptographic scheme. However, generic groups cannot be implemented:
there exist cryptographic schemes that are secure in the GGM, but insecure
when instantiated with any concrete group [Den02].

the algebraic group model. The algebraic group model (AGM), intro-
duced in [FKL18], is a relaxation of the GGM that tries to avoid impossibilities
as in [Den02] while preserving the GGM’s usefulness. Specifically, the AGM
only considers algebraic (rather than generic) adversaries. An algebraic adver-
sary A can make arbitrary use of the representation of group elements, but
must supply an explicit decomposition for any of its output group elements
in terms of input group elements. In other words, A must also output an
explanation of how any group element in its output was computed from its
input using the group operation.

Now [FKL18] show that many GGM proofs only use this type of algebraic-
ity of an adversary, and carry over to the AGM. At the same time, GGM
impossibilities like [Den02] do not apply to the AGM, since algebraic adver-
saries are able to work with the actual group (and not only with random or
abstract representations of group elements).

the agm and knowledge-type assumptions. The AGM is closely
related to the notions of knowledge-type assumptions and extractability.
To illustrate, assume that for any (possibly non-algebraic) adversary A, we
can find an extractor E that manages to extract from A a decomposition
of A’s output in terms of A’s input. Then, composing E and A yields an
algebraic adversary Aalg. In this situation, we can then say that without loss
of generality, any adversary can be assumed to be algebraic.34 Conversely,

87

88 introduction

35 Note that by
“standard model”, we

mean that the group
itself is formulated

without idealizations
and can be concretely

implemented. While
our construction

itself does not rely on
the ROM, we still
can transfer some

ROM proofs in the
AGM to ROM proofs

using our concrete
group instantiation.

We stress that a
standard model

instantiation of the
(full-fledged) AGM

from very strong
non-falsifiable
assumptions is

already known due to
[KP19].

any algebraic adversary by definition yields the results of such an extraction
in its output.

This observation also provides a blueprint to instantiating the AGM: simply
prove that any adversary A can be replaced by an algebraic adversary Aalg,
possibly using an extraction process as above. If this extraction requires A’s
code and randomness but no other trapdoor, we obtain an AGM instantiation
based on a knowledge-type assumption such as the knowledge-of-exponent
assumption [Dam92]. Indeed, this was recently done by [KP19] under a
very strong generalized version of the knowledge-of-exponent assumption
[WS07]. Unfortunately, such knowledge-type assumptions are not falsifiable
in the sense of Naor [Nao03] making them (arguably) undesirable for use
in cryptography. Furthermore, it is not entirely clear how to assess the
plausibility of such a universal and strong knowledge-type assumption.
Naturally, the question arises whether an AGM implementation inherently
requires such strong and non-falsifiable assumptions. Or, more generally:

Can we achieve knowledge-type properties
from falsifiable assumptions?

Note that in the AGM, the discrete logarithm assumption implies the exis-
tence of extractable one-way functions (EOWFs) with unbounded auxiliary
input. The existence of such EOWFs, however, conflicts with the existence of
indistinguishability obfuscation [BCPR16]. Due to this barrier, we can only
hope for an instantiation of some suitably relaxed variant of the AGM from
falsifiable assumptions.

our strategy: private extraction. Since extraction as defined in the
AGM inherently requires knowledge-type assumptions, we need to conceive
a different extraction mechanism. Namely, we show that it is possible to
extract a decomposition of A’s outputs from these outputs if a suitable (secret)
extraction trapdoor is known. In other words, our idea is to avoid non-
falsifiable knowledge-type assumptions by assuming that extraction requires
a special trapdoor which can be generated alongside the public parameters
of the group. This entails a number of technical difficulties (see below), but
allows us to rely entirely on falsifiable assumptions.

Specifically, our main result is an algebraic wrapper that transforms a given
cyclic group into a new one which allows for an extraction of representa-
tions. More specifically, an element of the new group carries an encrypted
representation of this group element relative to a fixed set of group elements
(henceforth denoted “basis”). The group operation guarantees that newly
produced group elements carry decompositions which are consistent with
the decompositions contained in the input group elements. Further, the cor-
responding decryption key (which can be generated alongside the public
parameters) serves as a trapdoor which allows to extract such decomposi-
tions.

our results. Our algebraic wrapper allows us to retrieve several AGM
results (from [FKL18; FPS20]) in the standard model, in the sense that the
group can be concretely implemented from falsifiable assumptions.35 In
particular, we show that in the algebraic wrapper,

introduction 89

36 Tight security
reductions provide a
tight relation between
the security of
cryptographic
schemes and the
hardness of
computational
problems. Apart from
their theoretical
importance, tight
reductions are also
beneficial for practice,
since they allow
smaller keylength
recommendations.

37 Note that
impossibility results
for tight reductions of
schemes like BLS
(e. g., [Cor00]) do not
apply in our case, as
the representation of
our group elements is
not unique.

38 We note that IO
and certain
knowledge-type
assumptions (which
require universal
extraction) contradict
each other [BCPR16].
However, we stress
that the notion of
private extractability
we obtain does not
contradict IO.

(i) the discrete logarithm assumption, the computational Diffie-Hellman
assumption, the square Diffie-Hellman assumption, and the linear-
combination Diffie-Hellman assumption (see [FKL18]) are all equivalent,

(ii) the security of the Schnorr signature scheme [Sch91] can be tightly
reduced to the discrete logarithm assumption escaping impossibility
results due to [FJS19],

(iii) the IND-CCA2 security of Schnorr-signed ElGamal [Jak98; TY98] can
be tightly reduced to the discrete logarithm assumption.36

We stress that Items i and ii are not the contribution of this author and
are hence not included in this thesis. Item iii is detailed in Chapter 13

and the conception and instantiation of the algebraic wrapper are detailed
in Chapters 11 and 12, respectively. We refer the reader to the original
publication [AHK20] for more details on Items i and ii.

While, on a technical level, the AGM proofs from [FKL18; FPS20] need
to be adapted by adding some preparatory steps, the general AGM proof
strategies can be replicated.

limitations. We note that not all known AGM proofs can be transported
to the standard model using the above strategy. For instance, [FKL18] also
prove the Boneh-Lynn-Shacham (BLS) [BLS04] signature scheme tightly
secure in the AGM. Their reduction relies on the fact that the view of a
signature forger is statistically independent of how simulated signatures
are prepared by the reduction. However, with our algebraic wrapper, group
elements (and thus BLS signatures) always carry an encrypted representation.
This representation allows to infer information on how these group elements
were generated. This additional information is problematic in the AGM-
based proof of BLS signatures from [FKL18]. We believe it is an interesting
open problem to obtain a tight security proof for the BLS scheme with our
group.37

Furthermore, the amount of information which can be carried by a group
element is limited by the size of that group element. In particular, in settings
in which no a-priori bound on the size of a desired algebraic representation
is known, our techniques do not apply. This can be problematic, e. g., for
constructions that depend on q-type assumptions.

our assumptions. Our algebraic wrapper relies on a strong but falsi-
fiable computational assumption: the existence of subexponentially strong
indistinguishability obfuscation.38 Additionally, we assume a re-random-
izable encryption scheme. Together with subexponential IO, this implies
a number of other strong primitives that we use: a variant of statistically
correct probabilistic IO (see [CLTV15] and Chapter 10), fully homomorphic
encryption (see [CLTV15]), and dual-mode non-interactive zero-knowledge
(see [HU19]).

interpretation. Due to their inefficiency, we view algebraic wrappers
not as a tool to obtain practical cryptographic primitives. Rather, we believe
that algebraic wrappers show that the AGM is a useful abstraction and proof
strategies developed for the AGM can in fact be replicated in the standard
model, and even without resorting to knowledge-type assumptions.

90 introduction

on implementing idealized models. Replacing idealized (heuristic)
models with concrete standard-model implementations is a widely studied
intriguing problem. A well-known example for this is the line of work on
programmable hash functions. A programmable hash function due to [HK12]
is a cryptographic primitive which can be used to replace random oracles in
several cryptographic schemes. Following their introduction, a line of work
[FHPS13; HSW13; HSW14] leveraged multilinear maps or indistinguisha-
bility obfuscation to transport proofs from the random oracle model to the
standard model. Our results can be interpreted as following this endeavor
by leveraging indistinguishability obfuscation to replace the AGM with a
standard model implementation (from falsifiable assumptions). From this
angle, our algebraic wrapper relates to the AGM as programmable hash
functions relate to the ROM.

8.1 technical overview
algebraic wrappers. We employ the notion of group schemes [AFH+16]
(also called encoding schemes in [GGH13]) as a generalization of groups
with potentially non-unique encodings of group elements. In such a group
scheme, a dedicated algorithm is required to determine if two given group
element encodings are equal. That is, the group is defined as the quotient set
of all well-formed encodings modulo the equivalence relation induced by the
equality test. Our algebraic wrapping process takes group parameters of G

(which we refer to as “base group”) as input, and outputs group parameters
of a new group scheme H which allows for an efficient extraction process.
To be specific, every H-element

)

h can be viewed as a G-element h ∈ G, plus
auxiliary information aux.

The core advantage of group schemes with non-unique encodings lies
in the ability to let group elements carry such auxiliary information aux.
In our algebraic wrapper, aux contains encrypted information expressing h

as a linear combination of fixed base group elements b1, . . . ,bn ∈ G. The
corresponding decryption key (which can be generated alongside the group
parameters) allows to extract this information, and essentially yields similar
information any algebraic adversary (in the sense of the AGM) would have
to provide for any output group element. However, we are facing a number
of technical problems:

(a) Upon creation of each new group element encodings, a valid representa-
tion with respect to the basis elements b1, . . . ,bn needs to be embedded.

(b) It should be possible to unnoticeably switch the basis elements b1, . . . ,
bn to an application-dependent basis. (For instance, in reductions to the
discrete logarithm problem dlogg(h), one would desire to set the basis to
g,h.)

(c) To preserve tightness of reductions from the AGM (which is necessary for
some of our applications), it should be possible to re-randomize group
element encodings statistically.

Our solution largely follows the group scheme from [AFH+16]. In particular,
we address Item a by requiring each group element encoding

)

h ∈H to carry

8.1 technical overview 91

an encrypted linear combination z1, . . . , zn of G ∋ h =
∑︁

i b
zi
i relative to the

basis and force validity of this linear combination using a consistency proof.
Consequently, sampling of new group elements requires explicit knowledge
of such a linear combination. This is also true for the group operation. More
precisely, the group operation may produce the ciphertext for the new group
element encoding via homomorphic evaluation of the input ciphertexts
but is required to extract the contained linear combination to produce the
consistency proof. Note that the adversary must be able to evaluate the
group operation and needs to produce corresponding consistency proofs.
This process, however, particularly the involved random coins must not be
under adversarial control. Thus, the group operation is obfuscated using
probabilistic IO.

For Item b, we adapt a “switching” lemma from [AFH+16]. In [AFH+16],
that lemma allows to switch between two different representations of the
same group element, but under a fixed basis. In our case, we show that
similar techniques allow to additionally switch the group elements that form
this basis. This issue is dealt with by additional linear randomization of the
base group elements. Furthermore, since the basis is computationally hidden,
sampling group element encodings which are tailored to contain a certain
linear combination requires knowledge of a secret trapdoor.

Note that the switching property already implies a notion of computational
re-randomizability. For Item c, we introduce a re-randomization lemma using
techniques from Item b in conjunction with a novel notion for statistically
correct probabilistic IO.

At this point, one main conceptual difference to the line of work [AFH+16;
AH18; FHHL18; AMP20] is that the basis elements b1, . . . ,bn appear as part
of the functionality of the new group scheme H, not only in a proof.

Another main conceptual difference to [AFH+16; AH18; FHHL18; AMP20]
is the notion of statistical re-randomizability of group elements. The group
schemes from [AFH+16; AH18; FHHL18; AMP20] do not satisfy this property.
This will be resolved by developing a stronger notion of statistically correct
probabilistic IO which may be of independent interest.

applications. The applications of our algebraic wrapper have already
been considered for the AGM in [FKL18; FPS20]. Hence, in this description,
we focus on the technical differences that our extraction approach entails for
these proofs. Further, we focus on the applications from [AHK20] which are
the contributions of this author.

Recall that in the AGM by [FKL18], an adversary outputs an algebraic
representation of each output group element to the basis of its input group
elements. Therefore, the choice of this basis depends on the application.

The authors of [FPS20] prove the tight security of Schnorr-signed ElGamal
based on the discrete logarithm assumption (in the AGM and ROM). Schnorr-
signed ElGamal uses a public key of the form (g, Y := gy), where y is
the corresponding secret key. Encryption chooses a random exponent x

and uses a (random oracle) hash H′(Yx) to blind the message. Further, a
Schnorr signature relative to the public key (g,gx) is used to certify gx.
This procedure ensures plaintext-awareness [BR95]. Hence, a ciphertext
consists of a key H′(Yx) and the group element gx and a Schnorr signature
(s := r+H(gr,gx) · x mod p,gr) for a random exponent r.

92 introduction

The reduction from [FPS20] ultimately needs to solve a discrete logarithm
challenge dlogg(Y). We choose the basis for the algebraic wrapper as {g, Y} in
order to enable extraction relative to both g and Y and to allow for (private)
sampling of wrapper group elements which depend on Y (whose discrete
logarithm must not be known during a reduction to the discrete logarithm
problem). For the purpose of reproducing the proof of [FPS20], we first make
a conceptual change as in [FPS20] to choose x depending on y (note that
at this point of time, y is still known to the experiment). Namely, we use
a publicly sampled group element encoding for gr to query the random
oracle H(gr,gx) but do not include this encoding in the signature. Instead,
we sample a fresh encoding for the group element gs−H(gr,gx)·x and use this
in place of the encoding of gr. Since this encoding represents the same group
element, the view of the adversary remains unchanged. Then, we apply
switching to use the basis {g, Y} and sample all encodings using the second
decomposition entry instead of explicitly using y in the first decomposition
entry. These preparations pave the way to conclude the proof following the
lines of [FPS20].

Another technical challenge is to information-theoretically hide whether
group elements were sampled directly or derived using the group operation.
We achieve this by exploiting the statistical re-randomizability of group
elements. This technique is described in this thesis and is required for the
tight security proof of Schnorr signatures which is not part of this thesis.

8.2 related work
This part builds upon the line of work [AFH+16; AH18; FHHL18; AMP20]
who build group schemes from IO. Albrecht et al. [AFH+16] lay the con-
ceptual foundations for the construction of group schemes with non-unique
encodings from IO and use this framework to equip groups with multilinear
maps. [FHHL18] extend this approach by allowing partial evaluations of
the multilinear map yielding a graded encoding scheme. [AMP20] extend
[AFH+16; FHHL18] such that computational assumptions in the base group
hold, thereby proving equivalence between IO and multilinear maps (modulo
subexponential reductions and relatively mild assumptions). In contrast to
[AFH+16; FHHL18], the authors of [AH18] do not extend the functionality of
an underlying group, but build a group scheme with reduced functionality
(group elements lack a unique representation). The resulting group scheme
allows to mimic commonly used proof techniques from the generic group
model. This is demonstrated by proving the validity of an adaptive variant of
the Uber assumption family [Boy08] in the constructed group scheme. Our
results can hence be viewed as an extension of [AH18].

[KP19] make a first step towards instantiating the AGM. The authors
identify an equivalence between the AGM and a very strong generalized
version of the knowledge-of-exponent assumption [Dam92], thus giving rise
to the first instantiation of the AGM.

9 P R E L I M I N A R I E S

In this chapter, we introduce the necessary preliminaries for this part. Since
this part is dedicated to the study of cryptographic groups, we start by
introducing additional notations for this purpose (cf. Section 9.1). In Sec-
tion 9.2 we define the algebraic group model. Subsequently, we introduce
useful cryptographic primitives such as subset membership problems in
Section 9.3 and dual-mode non-interactive witness indistinguishable proofs
in Section 9.4 which are necessary for our construction.

9.1 notations and cryptographic groups
Let K denote a field and let V be a vector space over K of finite dimension n.
For i ∈ [n], ei denotes the unit vector, i. e., the vector which carries 1 in its
i-th entry and 0 in all other entries. Unless stated otherwise, we work with
column vectors.

Let G denote a finite cyclic group with generator g and order p. For x ∈ Zp,
the notation [x]G denotes the group element gx. Note that using this notation
does not imply knowledge of x. The group G is associated with a group
parameter generation algorithm GGen. On input of a security parameter
(in unary), GGen samples the parameters ppG fully describing the group,
such that the group operation can be computed in time polynomial in the
security parameter. We define hardness assumptions always relative to a
group parameter generation algorithm.

definition 9.1 (Discrete logarithm assumption). The discrete logarithm (DL)
assumption holds relative to GGen if for all PPT adversaries A,

Advdl
GGen,A(λ) := Pr

⎡
⎣ ppG ← GGen(1λ)

x ← Zp

: A(ppG,gx) = x

⎤
⎦

is negligible in λ.

9.2 the algebraic group model
The algebraic group model was introduced in [FKL18] as a model that lies
between the generic group model (GGM) [Sho97; Mau05] and the standard
model. The algebraic group model is weaker than the generic group model
in the sense that in the AGM, an adversary has explicit access to (encodings
of) group elements and may very well derive information from them. On the
other hand, the algebraic group model still requires that new group elements
can only be produced by generic group operations. This is formalized by the
ability of the adversary to present a decomposition of all newly produced
group elements relative to given group elements.

93

94 preliminaries

39 “There exists a
group, such that all

adversaries in this
group are algebraic.”

40 Note that unique
witness relations are

related to the
complexity class

unambiguous
polynomial-time

(UP) [Val76].

Formally, [FKL18] only quantify over the set of algebraic adversaries (which
can explain how they produced new group elements).

definition 9.2 (Algebraic algorithm (informal), [FKL18]). An algorithm
A is algebraic if for all group elements h which A outputs, it additionally
provides a linear decomposition of h relative to all input group elements
(only using generic group operations).

[KP19] introduce an equivalent notion of algebraic groups where every
adversary is bound to be algebraic. By this view of the algebraic group model
boils down to an extremely strong knowledge-type assumption since every
adversary who outputs a group element must know how he computed it. More
precisely, [KP19] prove that the AGM is equivalent to an extremely strong
generalized version of the knowledge-of-exponent assumption. That is, the
AGM (formulated as an assumption39) does not enjoy efficient falsifiability
due to Naor [Nao03].

Further, the AGM as in [FKL18] allows algebraic adversaries to receive
“non-group-element inputs” (which are required to be independent of group
elements). However, these “non-group-element inputs” to the adversary may
contain an obfuscation of a program which on input of a group element [1]G
outputs [1]

F(K,[1]G)
G

= [F(K, [1]G)]G (where F is a pseudorandom function and
K is a random PRF key). Clearly, this program description is independent of
group elements (only the input to the program depend on group elements).
An adversary who evaluates this obfuscated program on, e. g., the generator
of the group and outputs the resulting group element is unable to explain
how he computed this group element. In other words, the AGM (defined
via adversarial knowledge as in [KP19]) allowing arbitrarily long unstruc-
tured “non-group-element inputs” implies extractable one-way functions
with unbounded auxiliary information (cf. Definition 2.21) which are known
to conflict with indistinguishability obfuscation [BCPR16].

9.3 subset membership problem
definition 9.3 (Subset membership problem, [CS02]). A hard subset mem-
bership problem (SMP) SMP is defined by an SMP instance generator GenSMP.

• GenSMP, on input of 1λ, samples a description of a language and a
universe L ⊆ X together with a relation R, such that for all x ∈ X,

x ∈ L⇔ ∃!w ∈ {0, 1}poly(λ) : (x,w) ∈ R.

We require that uniform sampling from L (together with the unique witness40)
and uniform sampling from X \ L is efficiently possible. Further, we require
that for every PPT adversary A, the advantage

Advsmp
GenSMP,A(λ) :=

⃓⃓
⃓⃓
⃓⃓ Pr

⎡
⎣ (L,X,R) ← GenSMP(1

λ)

x ← L
: A(1λ, x) = 1

⎤
⎦

−Pr

⎡
⎣ (L,X,R) ← GenSMP(1

λ)

x ← X \ L
: A(1λ, x) = 1

⎤
⎦
⃓⃓
⃓⃓
⃓⃓

is negligible in λ.

9.4 dual-mode niwi proof system 95

Let G be a cyclic group (of prime order) with group parameter generation
algorithm GGen in which DDH is assumed to hold relative to GGen. The Diffie-
Hellman language is a hard subset membership problem. The corresponding
SMP instance generator GenSMP samples ppG ← GGen and a uniformly
random exponent x← Zp, and outputs the language and the universe

LppG,[(1,x)]G
:=

{︁
[(y, xy)]G

⃓⃓
y ∈ Zp

}︁
⊆ G×G =: XppG

and the relation

RppG,x :=
{︁
[(a,b)]G

⃓⃓
b = x · a mod p

}︁
.

Another instantiation of Definition 9.3 is the language containing all com-
mitments to a fixed value using a perfectly binding non-interactive commit-
ment scheme with unique opening. The universe X is then defined as the set
of all valid commitments.

9.4 dual-mode niwi proof system
A dual-mode non-interactive witness indistinguishable (NIWI) proof system
is a variant of general NIWI proofs [FS90] additionally offering two com-
putationally indistinguishable modes to setup the common reference string
(CRS). A CRS generated in binding mode provides perfect soundness guar-
antees whereas a CRS generated in hiding mode provides perfect witness
indistinguishability guarantees.

Note that NIWI proof systems do not inherently require a trusted setup
such as a common reference string, e. g., [BP15a]. These instantiations, how-
ever, do not satisfy perfect soundness and perfect witness-indistinguishability
simultaneously. For our purpose, we require a notion of NIWI proof system
which offers two indistinguishable modes of operation: one satisfying perfect
soundness and the other satisfying perfect witness-indistinguishability.

definition 9.4 (Dual-mode NIWI proof system, [GS08; AFH+16]). A dual
mode non-interactive witness-indistinguishable (NIWI) proof system for a relation
R is a tuple of PPT algorithms NIWI = (Setup, HSetup, Prove, Verify, Ext).

• Setup(1λ) outputs a perfectly binding common reference string σ and a
corresponding extraction trapdoor tdext.

• HSetup(1λ) outputs a perfectly hiding common reference string σ.

• Prove, on input of a CRS σ, a statement x and a corresponding witness
w, produces a proof π.

• Verify, on input of a CRS σ, a statement x and a proof π, deterministi-
cally outputs 1 if the proof is valid and 0 otherwise.

• Ext, on input of the extraction trapdoor tdext, a statement x and a proof
π, outputs a witness w.

We require NIWI to satisfy the following properties.

crs indistinguishability. For all PPT adversaries A,

Advcrs-ind
NIWI,A(λ) :=

⃓⃓
⃓ Pr

[︂
(σ, tdext)← Setup(1λ) : A(1λ,σ) = 1

]︂

−Pr
[︂
σ← HSetup(1λ) : A(1λ,σ) = 1

]︂ ⃓⃓
⃓

96 preliminaries

is negligible.

perfect completeness. For all λ ∈N, all PPT adversaries A, we have that

Pr

⎡
⎢⎢⎢⎣

(σ, ·) ← Setup(1λ)

(x,w) ← A(σ)

π ← Prove(σ, x,w)

:

(x,w) ̸∈ R

∨

Verify(σ, x,π) = 1

⎤
⎥⎥⎥⎦ = 1,

where the probability is over the random coins of Setup, Prove and A.
The same holds for HSetup. In other words, every proof π produced
via Prove for a valid statement-witness-pair will be accepted by Verify.

perfect soundness in binding mode. For all λ ∈N and all PPT adver-
saries A, we have that

Pr

⎡
⎣ (σ, ·) ← Setup(1λ)

(x,π) ← A(σ)
: x ∈ L∧Verify(σ, x,π) = 1

⎤
⎦ = 0,

where the probability is over the random coins of Setup and A. In
other words, all statements x ̸∈ L, there exists no proof such that Verify
accepts.

perfect extractability in binding mode. For all λ ∈N and all PPT ad-
versaries A, we have

Pr

⎡
⎢⎢⎢⎣
(σ, tdext) ← Setup(1λ)

(x,π) ← A(σ)
:

Verify(σ, x,π) = 0

∨
(︁
x, Ext(tdext, x,π)

)︁
∈ R

⎤
⎥⎥⎥⎦ = 1,

where the probability is over the random coins of Setup, A and Ext.
In other words, from every accepting statement-proof-pair (x,π), the
extraction algorithm Ext extracts a witness w such that (x,w) ∈ R.

perfect witness-indistinguishability in hiding mode. For every λ ∈
N, all σ ∈ supp(HSetup(1λ)), all (x,w0), (x,w1) ∈ R (of arbitrary but
polynomial length in λ), the output distributions induced by

Prove(σ, x,w0) and Prove(σ, x,w1)

are identical.

There are several instantiations of dual-mode NIWI proof systems satisfy-
ing the above definition. The construction [GS08] relies on pairing-friendly
groups where either the pairing is asymmetric and the SXDH assumption
holds, or the pairing is symmetric and the DLIN assumption holds. [PS19]
build a (statistically secure, statistically extractable and statistically zero-
knowledge) dual-mode NIZK from the learning with errors assumption. The
recent paper [HU19] proposes an instantiation of (a statistically secure, sta-
tistically extractable and statistically witness-indistinguishable) dual-mode
NIWI proof system based on strong but mostly unstructured assumptions,
namely, subexponentially secure indistinguishability obfuscation, subexpo-
nentially secure one-way functions and a secure lossy encryption scheme.
This instantiation is sufficient for our purpose, but, for simplicity, we work
with dual-mode NIWI proof systems providing perfect guarantees in our
proofs in Chapter 12.

9.5 re-randomizable public-key encryption 97

41 [HLOV11] build a
lossy encryption
scheme from a re-
randomizable
encryption scheme,
where an “injective”
public key contains a
ciphertext C0 of 0
and a ciphertext C1

of 1 and a “lossy”
public key contains
two ciphertexts C0,
C1 of 0. Encryption
of a bit b simply re-
randomizes the
ciphertext Cb and
decryption works as
in the underlying
scheme.

9.5 re-randomizable public-key encryption
A re-randomizable public-key encryption scheme allows to perfectly re-
randomize any ciphertext. This can be a useful property in scenarios, where
it is necessary to information-theoretically hide the randomness which was
used for ciphertext generation.

definition 9.5 (Perfectly re-randomizable public-key encryption, [PR07]).
A perfectly re-randomizable public-key encryption scheme with message space
{0, 1}∗ is a tuple of PPT algorithms E = (KGen, Enc, Dec, Rerand) such that
(KGen, Enc, Dec) is a perfectly correct PKE scheme such that the following
additional properties are met.

• For all (pk, ·) ∈ supp(KGen(1λ)), all messages m ∈ {0, 1}∗, all ciphertexts
C ∈ supp(Enc(pk,m)), Rerand(C) is distributed identically to Enc(pk,
m).

• For all (pk, ·) ∈ supp(KGen(1λ)), all (maliciously chosen) ciphertexts C,
and all C′ ∈ supp(Rerand(C)), Dec(sk,C′) = Dec(sk,C).

For our purposes it suffices to let E.Rerand receive the public key as input.
Furthermore, in contrast to [PR07], we do not require that with overwhelming
probability over the choice of (pk′, ·) ← E.KGen(1λ), the ciphertext spaces
under pk and pk′ are disjoint, i. e., supp(E.Enc(pk, ·))∩ supp(E.Enc(pk′, ·)) = ∅.
The ElGamal encryption scheme [ElG85], the Goldwasser-Micali encryption
scheme [GM84], the Paillier encryption scheme [Pai99] and the Damgård-
Jurik encryption scheme [DJ01] are perfectly re-randomizable public-key
encryption schemes, [PR07; HLOV11].

It is currently unclear, whether lossy PKE schemes (and hence re-random-
izable PKE schemes, [HLOV11]41) can be built from IO in conjunction with
unstructured generic assumptions like OWFs.

Note that the FHE construction due to Canetti et al. [CLTV15] as well as our
FHE construction from Part I preserve re-randomizability of the underlying
PKE scheme. That is, any perfectly re-randomizable PKE scheme can be
converted into a perfectly re-randomizable FHE scheme. Such a FHE scheme
will be necessary for our construction in Chapter 12.

42 One such scenario
is described and
studied later in
Chapter 12.

10 S TAT I S T I C A L LY
C O R R E C T P I O

Probabilistic IO allows to obfuscate a randomized computation such that
the user of the obfuscated code is unable to control the used randomness.
Moreover, the randomness used by the obfuscated circuit is pseudorandom
from the view of the circuit user – even though he possesses the code.
Hence, probabilistic IO can be used to obfuscate a randomized circuit which
produces a ciphertext of some plaintext which should remain hidden from
the circuit user. In other words, pIO enables to protect the randomness of
some probabilistic process from its user. Consequently, pIO fills an important
gap which is left open by (deterministic) indistinguishability obfuscation.

On the other hand, it may be undesirable to leak information on how
some output was computed. In particular, one may be interested to hide
whether the obfuscated circuit or the original randomized circuit (with
fresh randomness) was used. Probabilistic IO hides this information against
computationally bounded observers. However, since the obfuscated program
is deterministic, it is information-theoretically evident whether the original
randomized circuit or the obfuscated (deterministic) circuit was used. This
is an inherent limitation of probabilistic IO. However, there are scenarios,
where the origin of some output is required to be information-theoretically
hidden.42 A natural question that arises is whether this is feasible.

In the following, we define a notion of statistically correct probabilistic
IO and provide an instantiation of this notion. More precisely, we require
statistical closeness between evaluations of the original (probabilistic) circuit
and the obfuscated (deterministic) circuit. By definition of probabilistic IO,
this is impossible since the obfuscated circuit is deterministic and, hence,
has no source of entropy other than its input. However, we observe that as
long as a portion of the circuit’s input is guaranteed to be outside the view
of the adversary (and has sufficiently high min-entropy), the output of the
obfuscated circuit and the actual probabilistic circuit can be statistically close.

For this purpose, we extend the definition of probabilistic IO as follows.
Before obfuscating a probabilistic circuit, we compile this circuit such that it
receives an “auxiliary input” aux but simply ignores this input in its com-
putation. Even though the obfuscated circuit is deterministic, this auxiliary
input can be used as a source of actual entropy.

first try. We recall that the pIO construction from [CLTV15] obfuscates
a probabilistic circuit C by using IO to obfuscate the deterministic circuit
C(x) := C(x; FK(x)). A natural idea to achieve statistical correctness is to
modify this construction such that the auxiliary input aux is directly XORed
on the random tape which is derived using F, i.e. to obfuscate the circuit
C(x, aux; FK(x)⊕ aux). For uniform auxiliary input aux, statistical correctness
follows immediately. However, security breaks down. Consider two circuits
C1 and C2 such that C1 outputs the first bit on its random tape and C2

outputs the second bit on its random tape. Since C1 and C2 produce identical
output distributions, it is desirable that a probabilistic indistinguishability

99

100 statistically correct pio

43 Note that this is
well-defined since we

implicitly fix the
function ℓ(λ) and

require that ℓ(λ) is
strictly increasing.

This is without loss of
generality.

44 Note that since the
compilation process of
Eℓ is reversible, we
could actually omit

C0,C1 from ˆ︁z.

obfuscator conceals which of the two circuits was obfuscated. However,
this construction admits a successful attack. An adversary can evaluate the
obfuscated circuit Λ on inputs (x, aux) and (x, aux⊕ 1). If both evaluations
yield identical outputs, C2 was obfuscated, otherwise C1 was obfuscated.

using an extracting prf. Our construction of statistically correct pIO
applies an extracting puncturable PRF on the entire input of the circuit
to derive the random tape for the probabilistic circuit. An extracting PRF
guarantees that PRF outputs are uniformly distributed (even given the PRF
key) as long as the input has high min-entropy. This is achieved using a
universal hash function and the leftover hash lemma.

outline. In Section 10.1, we formally define statistically correct pIO. In
Section 10.2 we introduce preliminaries which are necessary for our instan-
tiation. Finally, in Section 10.3, we provide an instantiation of statistically
correct pIO.

10.1 statistically correct pio
In this section, we formally define our novel notion of statistically correct in-
put-expanding pIO. We start by defining expanding compilers and expanding
circuit samplers.

definition 10.1 (ℓ-expanding compiler). An ℓ-expanding compiler Eℓ takes
as input a probabilistic circuit C of size p′(λ), expecting inputs x ∈ {0, 1}n

′(λ)

and randomness r ∈ {0, 1}m(λ), and outputs a circuit ˆ︁C of polynomial size
p(λ) = p′(λ) + ℓ(λ) expecting inputs (x, aux) ∈ {0, 1}n

′(λ)× {0, 1}ℓ(λ), random-
ness r ∈ {0, 1}m(λ) such that for all x ∈ {0, 1}n

′(λ), all aux ∈ {0, 1}ℓ(λ) and all
r ∈ {0, 1}m(λ),

C(x; r) = ˆ︁C(x, aux; r).

The compiler Eℓ which simply appends ℓ(λ) input gates (without any
additional edges) to the original circuit satisfies the above definition.

Our construction of pIO will first expand the given circuit as above and
then use a slightly modified version of the pIO scheme of [CLTV15] to
obfuscate the expanded circuit. In the following, we formally define the
properties of this expanding probabilistic indistinguishability obfuscator. Let
C = (Cλ)λ∈N be an ensemble of sets Cλ of probabilistic circuits. The set
Cλ contains circuits of size λ with input length n′(λ) expecting (at most)
m(λ) random bits. Let ˆ︁C = {ˆ︁Cλ}λ∈N be the circuit class which results from ℓ-
expanding the circuit class C. That is, ˆ︁Cλ+ℓ(λ) = Eℓ(Cλ).43

Let D be a circuit sampler for the circuit class C. Let ˆ︁D := {ˆ︁Dλ}λ∈N be the
corresponding ℓ-expanding circuit sampler. More formally, ˆ︁Dλ+ℓ(λ) samples
(C0,C1, z) from the distribution Dλ and outputs the circuits ˆ︁C0 := Eℓ(C0),
ˆ︁C1 := Eℓ(C1) and auxiliary information ˆ︁z := (C0,C1, z).44 The circuit sampler
ˆ︁D is a circuit sampler for the circuit class ˆ︁C.

By the security of pIO for the class of CX-ind due to [CLTV15], our input-
expanding pIO scheme is secure for the following class of input-expanding
X-ind samplers.

10.1 statistically correct pio 101

45 Note that ˆ︁D is
called with security
parameter λ+ ℓ(λ)

to compensate for the
expanded circuit size.

definition 10.2 (ℓ-expanding X-ind sampler). An ℓ-expanding X-ind sampler
D for the circuit class C is a circuit sampler for C such that its corresponding ℓ-
expanding circuit sampler ˆ︁D is an X-ind sampler according to Definition 2.18.
We denote the class of all ℓ-expanding X-ind samplers C

X-(⋆)ind
ℓ .

Unfortunately, not all X-ind samplers D (for C) induce a circuit sampler ˆ︁D
(for ˆ︁C) which is an ˆ︁X-ind sampler. In order for ˆ︁D to satisfy the ˆ︁X-differing
inputs property, we need to set the function ˆ︁X such that ˆ︁X(λ + ℓ(λ)) =

X(λ) · 2ℓ(λ) ⩽ 2λ+ℓ(λ), where λ is the security parameter used for D and
λ+ ℓ(λ) is the security parameter for ˆ︁D.45 ˆ︁X-indistinguishability, however,
requires that

ˆ︁X(λ+ ℓ(λ)) ·Advsel-ind
ˆ︁D, ˆ︁A (λ+ ℓ(λ)) = X(λ) · 2ℓ(λ) ·Advsel-ind

ˆ︁D, ˆ︁A (λ+ ℓ(λ))

is negligible (for all PPT adversaries ˆ︁A). Due to X-indistinguishability of
D, we are only guaranteed that X(λ) ·Advsel-ind

D,A (λ) is negligible (for all PPT
adversaries A), which does not suffice to prove ˆ︁X-indistinguishability of ˆ︁D.

Nevertheless, ℓ-expanding X-ind samplers cover a wide class of circuit
samplers. In the following we present a lemma which facilitates the usage of
ℓ-expanding X-ind samplers.

lemma 10.1. Let D be a circuit sampler for C which outputs two circuits C0 and
C1 such that for all inputs x, C0(x) and C1(x) produce the exact same distribution.
Then, D ∈ C

X-(⋆)ind
ℓ .

Proof. Let ˆ︁D be the ℓ-expanding circuit sampler corresponding to D. Let
ˆ︁X(λ + ℓ(λ)) := 2λ+ℓ(λ) and ˆ︁X := {0, 1}λ+ℓ(λ). Since there is no input for
the circuits which is outside of ˆ︁X, the ˆ︁X-differing inputs property is triv-
ially satisfied. Furthermore, as for all inputs x the distributions C0(x) and
C1(x) are identical, the same holds for the distributions Eℓ(C0)(x, aux)
and Eℓ(C1)(x, aux) for all inputs x and all aux ∈ {0, 1}ℓ(λ). Thus, for all
adversaries A, Expsel-ind

ˆ︁D,A
(λ+ ℓ(λ)) = 1

2 . Hence, ˆ︁D ∈ CX-ind and, therefore,

D ∈ C
X-(⋆)ind
ℓ .

Lemma 10.1 directly yields the following corollary.

corollary 10.1. Let D be a circuit sampler for C which outputs two circuits C0

and C1 which always behave exactly identically on identical inputs and random
tapes. Then, D ∈ C

X-(⋆)ind
ℓ .

Our expanding pIO scheme satisfies similar correctness and security prop-
erties as defined in [CLTV15] but additionally guarantees statistical correct-
ness.

Let C = (Cλ)λ∈N be an ensemble of sets Cλ of probabilistic circuits. The
set Cλ contains circuits of size λ with input length n′(λ) expecting (at most)
m(λ) random bits. Further, let C be a class of circuit samplers over C.

definition 10.3 (ℓ-expanding pIO for the class of samplers C). An ℓ-
expanding probabilistic indistinguishability obfuscator for the class of samplers C

over C is a uniform PPT algorithm piO⋆
ℓ , satisfying the following properties.

input expanding correctness. For all PPT adversaries A and all circuits
C ∈ C,⃓⃓

⃓ Pr
[︂
AOC(·,·)(1λ,C) = 1

]︂

−Pr
[︂
Λ← piO⋆

ℓ(1
λ,C) : AOΛ(·,·)(1λ,C) = 1

]︂ ⃓⃓
⃓

102 statistically correct pio

is negligible as a function in λ, where the oracles OC and OΛ are
defined in Figure 10.1 and must not be called twice on the same input
(x, aux).

OC(x, aux)

r← {0, 1}m(λ)

return C(x; r)

OΛ(x, aux)

return Λ(x, aux)

Figure 10.1: The oracles used in the definition of correctness of ℓ-expanding pIO.

security with respect to C . For all circuit samplers D ∈ C, for all PPT
adversaries A, the advantage

Advpio-ind(⋆)
piO⋆

ℓ ,D,A(λ) :=
⃓⃓
⃓ Pr

[︂
(C0,C1, z)← D(1λ) : A(C0,C1, z, piO⋆

ℓ(1
λ,C0)) = 1

]︂

−Pr
[︂
(C0,C1, z)← D(1λ) : A(C0,C1, z, piO⋆

ℓ(1
λ,C1)) = 1

]︂ ⃓⃓
⃓

is negligible in λ.

support respecting. Let n′(λ) denote the input length of circuits in Cλ.
For all circuits C ∈ Cλ, all inputs x ∈ {0, 1}n

′(λ), all aux ∈ {0, 1}ℓ(λ), all
Λ ∈ supp(piO⋆

ℓ(1
λ,C)), we have that

Λ(x, aux) ∈ supp(C(x)).

statistical correctness with error 2−e(λ) . For all circuits C ∈ Cλ and
all joint distributions (Z1,Z2) over {0, 1}n

′(λ) × {0, 1}ℓ(λ) with average
min-entropy ℓ(λ) ⩾ ˜︁H∞(Z2 | Z1) > m(λ) + 2e(λ) + 2, the statistical
distance

∆

(︃{︂
Λ← piO⋆

ℓ(1
λ,C) : (Λ,Λ(Z1,Z2))

}︂
,

{︂
Λ← piO⋆

ℓ(1
λ,C) : (Λ,C(Z1;Um(λ)))

}︂)︃

is at most 2−e(λ).

Setting ℓ := 0 recovers the original definition of pIO due to [CLTV15],
see Definition 2.16. Furthermore, instantiating an easy modification of the
construction of piO for CX-ind due to [CLTV15] with a suitably extracting PRF
family satisfies our definition of ℓ-expanding pIO.

10.2 puncturable pseudorandom functions
As preparation for our construction, we introduce several variants of punc-
turable pseudorandom functions (pPRFs). Puncturable PRFs allow to punc-
ture a key at a certain amount of inputs, such that the punctured key works
on all remaining inputs as before. Furthermore, evaluations at punctured
points are pseudorandom even given the punctured key. We refer the reader
to Definition 2.11 in Section 2.4 for more details.

10.2 puncturable pseudorandom functions 103

definition 10.4 (Statistically injective puncturable PRF, [SW14]). A statis-
tically injective puncturable PRF family with error ϵ(·) is a family of punc-
turable PRFs F mapping n(λ) bits to m(λ) bits such that F(K, ·) is injective
with probability at least 1− ϵ(λ).

Such PRFs are known to exist from one-way functions [SW14].

lemma 10.2 ([SW14]). If one-way functions exist, then for all efficiently com-
putable functions n(·),m(·), e(·) such that m(λ) ⩾ 2n(λ) + e(λ), there exists a
statistically injective puncturable PRF family with error 2−e(λ) mapping n(λ) bits
to m(λ) bits.

As already indicated, we instantiate the construction of [CLTV15] with
a pPRF which allows to use the entropy provided via the auxiliary input
aux such that the obfuscated circuit is evaluated with statistically uniform
random coins. The following definition which extends the definition of
extracting PRFs (cf. Definition 2.12 in Section 2.4) captures this property.

definition 10.5 (Special extracting puncturable PRF, [SW14]). A special
extracting puncturable PRF family with error ϵ(·) for average min-entropy
k(·) is a family of puncturable PRFs F mapping n(λ) = n′(λ) + n′′(λ) bits
to m(λ) bits such that for all λ and all joint distributions (Z1,Z2) over
{0, 1}n

′(λ) × {0, 1}n
′′(λ) with average min-entropy ˜︁H∞(Z2 | Z1) > k(λ), the

statistical distance

∆
(︂{︁

K← KGen(1λ) :
(︁
K,Z1, F(K,Z)

)︁}︁
,

{︁
K← KGen(1λ) :

(︁
K,Z1,Um(λ)

)︁}︁)︂
⩽ ϵ(λ),

where the distribution Z is defined as Z := (Z1,Z2).

Note that extracting PRFs (cf. Definition 2.12 in Section 2.4) do not suffice
to deal with joint distributions (Z1,Z2), where only a guarantee on the
average min-entropy ˜︁H∞(Z2 | Z1) is known. However, this is required by
Definition 10.3.

The leftover hash lemma states that universal hash functions are good
randomness extractors, cf. Definition 2.4 in Section 2.1. In other words, if
the input of a universal hash function has sufficiently high (average) min-
entropy, the output of that hash function is statistically close to uniform even
given the function description.

lemma 10.3 (Leftover Hash Lemma for average min-entropy, [HILL99]). Let
H be a 2-universal hash function family mapping n to m bits. If ˜︁H∞(Z | E) ⩾ k

and m = k− 2 log(1
2ϵ), then

∆
(︂{︁

H← H :
(︁
H,E,H(Z)

)︁}︁
,
{︁
H← H :

(︁
H,E,Um

)︁}︁)︂
⩽ ϵ.

For our purpose, we require that the statistical distance between
{︁
H← H :

(︁
H,E,H(Z,E)

)︁}︁
and

{︁
H← H :

(︁
H,E,Um

)︁}︁

is at most ϵ. Since ˜︁H∞(Z | E) = ˜︁H∞((Z,E) | E), this is implied by Lemma 10.3.
Now we are prepared to extend Theorem 3 in the full version of [SW14] to

support joint distributions.

104 statistically correct pio

theorem 10.1. If one-way functions exist, then for all efficiently computable func-
tions n′(·),n′′(·),m(·),k(·) and e(·) such that n(λ) = n′(λ) + n′′(λ) ⩾ k(λ) ⩾
m(λ) + 2e(λ) + 2, there exists a special extracting puncturable PRF family mapping
n(λ) bits to m(λ) bits with error 2−e(λ) for average min-entropy k(λ).

Proof. The proof is very similar to the proof of Theorem 3 in the full version
of [SW14]. Let F be a family of statistically injective puncturable PRFs with
error 2−(e(λ)+1) mapping n(λ) bits to 2n(λ) + e(λ) + 1 bits. By Lemma 10.2,
such a PRF family exists from one-way functions. Let H be a family of
2-universal hash functions mapping 2n(λ) + e(λ) + 1 bits to m(λ) bits. In
Figure 10.2, we define a family F′ = (KGen′, Eval′, Punct′) of puncturable
PRFs.

F′.KGen′(1λ)

h← H

K← F.KGen(1λ)

return K′ := (K,h)

(a) The key generation
algorithm KGen′.

F′.Eval′(K′, x)

parse K′ =: (K,h)

return h
(︁
F.Eval(K, x)

)︁

(b) The evaluation algo-
rithm Eval′.

F′.Punct′(K′, T)

parse K′ =: (K,h)

K{T }← F.Punct(K, T)

return K′{T } := (K{T },h)

(c) The key puncturing algo-
rithm Punct′.

Figure 10.2: The definition of our special extracting puncturable PRF F′.

Due to [SW14], F′ is a family of puncturable PRFs mapping n(λ) bits to
m(λ) bits. Let (Z1,Z2) be a joint distribution over {0, 1}n(λ) = {0, 1}n

′(λ) ×
{0, 1}n

′′(λ) such that ˜︁H∞(Z2 | Z1) ⩾ m(λ) + 2e(λ) + 2. Fix a key K such
that F(K, ·) is injective. Hence, ˜︁H∞(Z2 | Z1) = ˜︁H∞(F(K, (Z1,Z2)) | Z1).
Lemma 10.3 implies that the statistical distance

∆
(︂{︁

h← H :
(︁
h,Z1,h

(︁
F(K, (Z1,Z2))

)︁)︁}︁
,

{︁
h← H :

(︁
h,Z1,Um(λ)

)︁}︁)︂

is at most 2−(e(λ)+1). The probability that a randomly sampled key K yields
a non-injective PRF is at most 2−(e(λ)+1). Therefore, the statistical distance

∆
(︂{︁

K′ ← F′.KGen(1λ) :
(︁
K′,Z1, F′(K′, (Z1,Z2))

)︁}︁
,

{︁
K′ ← F′.KGen(1λ) :

(︁
K′,Z1,Um(λ)

)︁}︁)︂
⩽ 2−e(λ)

concluding the proof.

10.3 construction
Figure 10.3 defines our construction of an ℓ-expanding pIO scheme piO⋆

ℓ . We
use the pIO scheme for X-ind samplers piO from [CLTV15] instantiated with
a special extracting pPRF as a subroutine.

theorem 10.2. Let e(λ) be an efficiently computable function. Let F be a subex-
ponentially secure special extracting PRF family with distinguishing advantage
2−λϵ

(for some constant ϵ) and error 2−e(λ) mapping n(λ) := n′(λ) + ℓ(λ) bits
to m(λ) bits which is extracting if the input average min-entropy is greater than

10.3 construction 105

E[C,K](x)

return C(x; F(K, x))

(a) The circuit E[C,K]

used in [CLTV15].

piO(1λ,C)

λ′ := (λ log2(λ))
1/ϵ

K← F.KGen(1λ
′
)

λ′′ := q(λ′)

Λ← iO(1λ
′′

,E[C,K])

return Λ

(b) The construction of
pIO for X-ind sam-
plers from [CLTV15].

piO⋆
ℓ(1

λ,C)

ˆ︁C := Eℓ(C)

Λ← piO(1λ+ℓ(λ), ˆ︁C)
return Λ

(c) Our construction of ℓ-
expanding pIO.

Figure 10.3: Construction of pIO for X-ind samplers from [CLTV15] (Figures 10.3a
and 10.3b) and of ℓ-expanding pIO (Figure 10.3c). Both definitions are
for circuits of size λ. In Figure 10.3b, the polynomial q(λ′) denotes an
upper bound on the size of the circuit E[C,K] and F denotes a special
extracting subexponentially secure pPRF with distinguishing gap 2−λϵ

(for a constant ϵ).

m(λ) + 2e(λ) + 2. Let piO denote the construction of pIO from [CLTV15] instanti-
ated with F (cf. Figure 10.3b). Then, piO⋆

ℓ as defined in Figure 10.3c is a statistically
correct input-expanding pIO for the class of samplers CX-(⋆)ind

ℓ .

Proof. We recall that due to [CLTV15], piO satisfies correctness and security
with respect to X-ind samplers. We now prove that piO⋆

ℓ defined in Figure 10.3
is a statistically correct input expanding pIO scheme for the class of samplers
C
X-(⋆)ind
ℓ .

input expanding correctness. Note that input expanding correctness
does not follow in a black-box manner from the correctness of piO since
input expanding correctness allows an adversary to query the randomized
circuit multiple times on the same input x using different auxiliary inputs
aux. This cannot be simulated by an adversary in the correctness game of
piO, cf. Definition 2.16.

Input expanding correctness follows from pseudorandomness of the PRF
used in the construction of piO and correctness of iO. Let C be a circuit
in Cλ. Let A be a PPT adversary. Let G0 denote the game in which the
adversary gets C as input and has oracle access to OC(·, ·) and let G2 denote
the game in which the adversary gets C as input and has oracle access to
OΛ(·, ·) for Λ ← piO⋆

ℓ(1
λ,C). Both oracles must not be called twice on the

same input. Consider an intermediate game G1, where the oracle OΛ(x,
aux) evaluates the circuit ˆ︁C(x, aux;R(x, aux)) for a truly random function
R ∈ maps({0, 1}n

′(λ)+ℓ(λ), {0, 1}m(λ)). By the security of the PRF F, oracle
access to F(K, ·) (for a random key K) and a truly random function are
indistinguishable. Hence, by perfect correctness of iO and the security of F,
G1 and G2 are indistinguishable. Furthermore, since ˆ︁C(x, aux;R(x, aux)) =
C(x;R(x, aux)) and by perfect correctness of iO, G0 and G1 are identically
distributed.

security with respect to CX- ind . Since piO is secure with respect to
X-ind samplers (and Eℓ(C) ∈ ˆ︁C), piO⋆

ℓ is secure with respect to ℓ-expanding
X-ind samplers.

106 statistically correct pio

More formally, let D ∈ C
X-(⋆)ind
ℓ be a circuit sampler and let A be a PPT

distinguisher for piO⋆
ℓ -obfuscations of C0 and C1 as sampled from D, cf.

Definition 10.3. We construct a circuit sampler ˆ︁D (as described above) and
an adversary B for the security property of piO. Let ˆ︁D be the ℓ-expanding
circuit sampler corresponding to D. That is, ˆ︁Dλ+ℓ(λ), samples from Dλ to
obtain (C0,C1, z) and outputs (Eℓ(C0),Eℓ(C1),ˆ︁z := (z,C0,C1)). On input of
(Eℓ(C0),Eℓ(C1),ˆ︁z,Λ), B calls A on input of (C0,C1, z,Λ) and outputs A’s
output. Hence, for b ∈ {0, 1}, we have

Pr
[︂
(C0,C1, z)← D(1λ) : A

(︁
C0,C1, z, piO⋆

ℓ(1
λ,Cb)

)︁
= 1
]︂

=Pr
[︂(︁
Eℓ(C0),Eℓ(C1), (C0,C1, z)

)︁
← ˆ︁D(1λ+ℓ(λ)) :

B
(︁
Eℓ(C0),Eℓ(C1), (C0,C1, z), piO

(︁
1λ+ℓ(λ),Eℓ(Cb)

)︁)︁
= 1
]︂
.

Therefore, for all D ∈ C
X-(⋆)ind
ℓ , all PPT adversaries A, there exists a sampler

ˆ︁D ∈ CX-ind and a PPT adversary B, such that

Advpio-ind(⋆)
piO⋆

ℓ ,D,A(λ) = Advpio-ind
piO, ˆ︁D,B

(λ+ ℓ(λ))

which is negligible by the security of piO for X-ind samplers and since
ˆ︁D ∈ CX-ind.

support respecting. Let λ ∈N, C ∈ Cλ and Λ ∈ supp(piO⋆
ℓ(1

λ,C)). By
construction of piO⋆

ℓ and piO and perfect correctness of iO, for every input
(x, aux) ∈ {0, 1}n

′(λ) × {0, 1}ℓ(λ), we have that

Λ(x, aux) = Eℓ(C)
(︁
x, aux; F(K, (x, aux))

)︁

= C
(︁
x; F(K, (x, aux))

)︁
∈ supp(C(x)).

statistical correctness with error 2−e(λ) . Let e(λ) be an efficiently
computable function. Let λ ∈ N and C ∈ Cλ be a circuit expecting inputs
x ∈ {0, 1}n

′(λ) and randomness r ∈ {0, 1}m(λ), and let ˆ︁C := Eℓ(C) be its
corresponding ℓ-expanded circuit. Let Z := (Z1,Z2) be a joint distribution
over {0, 1}n

′(λ) × {0, 1}ℓ(λ) with average min-entropy ℓ(λ) ⩾ ˜︁H∞(Z2 | Z1) >

m(λ) + 2e(λ) + 2. Then, by Theorem 10.1, the statistical distance

∆
(︂{︁

K← KGen(1λ) :
(︁
K,Z1, F(K,Z)

)︁}︁
,

{︁
K← KGen(1λ) :

(︁
K,Z1,Um(λ)

)︁}︁)︂

is at most 2−e(λ). Since, for all distributions A,B and for every randomized
function f (see, e. g., [MG02]), the statistical distance between f(A) and f(B)

is upper bounded by the statistical distance between A and B, we have that
the statistical distance

∆
(︂{︁

K← KGen(1λ) : (K,C(Z1; F(K,Z)))
}︁

,
{︁
K← KGen(1λ) : (K,C(Z1;Um(λ)))

}︁)︂

and the statistical distance

∆
(︂{︁

Λ← piO⋆
ℓ(C) :

(︁
Λ,

=Λ(Z1,Z2)⏟ ⏞⏞ ⏟
C(Z1; F(K,Z))

)︁}︁
,

{︁
Λ← piO⋆

ℓ(C) :
(︁
Λ,C(Z1;Um(λ))

)︁}︁)︂

10.3 construction 107

are both upper bounded by 2−e(λ).

remark 10.1. Our construction also achieves security with respect to X-
ind samplers. This, however, comes at the cost of a non-black-box proof
reproducing the hybrid argument of [CLTV15].

11 H O W TO S I M U L AT E
E X T R A C T I O N

In order to instantiate the algebraic group model, we first require an abstract
definitional framework of what it means to be a group in a cryptographic
sense which allows to simulate crucial properties of the AGM. The notion
of a group scheme or encoding scheme [GGH13] abstracts the properties of a
cryptographic group. In a nutshell, a group scheme provides an interface of
algorithms abstracting the handling of a cryptographic group. As we want
to prove hardness of certain problems based on hardness assumptions in
an already existing base group, we incorporate this existing group into our
group scheme. Each element of our group scheme corresponds to exactly
one element from a base group in a structure-preserving way. In other words,
every element group of our group schemes “wraps” an element of the base
group. We call the resulting notion a group wrapper.

For the purpose of simulating extraction properties, we introduce the no-
tion of an algebraic wrapper. An algebraic wrapper is a group wrapper which
provides the additional functionality that group element encodings allow
for efficient extraction of representations which – similar to the algebraic
group model – can be used in a security reduction. A similar approach
has been taken by [KP19]. [KP19] define their group scheme as a linear
subspace of G×G for an existing group G in such a way that the General-
ized Knowledge of Exponent Assumption (GKEA) [WS07] can be used to
extract a representation (membership can for instance be tested via a sym-
metric pairing). However, [KP19] relies on GKEA in the base group which
more or less directly yields an equivalence between algebraic groups and
GKEA. Moreover, the existence of algebraic groups implies the existence
of extractable one-way functions with unbounded auxiliary input as per
Definition 2.21 (since the AGM allows an additional unstructured input from
{0, 1}∗). This notion of extractable one-way functions conflicts with the exis-
tence of indistinguishability obfuscation [BCPR16]. More precisely, consider
the additional unstructured input from {0, 1}∗ encodes an obfuscated circuit
which on input of a group element [a]G computes [a]

FK([a]G)
G

using some
hard-coded PRF key K. An adversary who simply evaluates this circuit on the
group generator and outputs the result is clearly unable to explain how this
output was derived algebraically. Due to this contradiction and the difficulty
to assess the plausibility of knowledge-type assumptions, we strive for a
weaker model which can purely be based on falsifiable assumptions.

extraction trapdoors. In [KP19], extraction is possible as long as the
code and the randomness which were used to produce a group element are
known. Since we seek to avoid non-falsifiable knowledge-type assumptions,
we need to find a different mechanism of what enables extraction. We observe
that in order to reproduce proof strategies from the algebraic group model,
extraction is only necessary during security reductions. Since the reduction to
some assumption in the base group is in control of the parameter generation

109

110 how to simulate extraction

46 For instance,
SamH can be

implemented to
simply raise a fixed
group generator to

the power of a.

47 Previous work
refers to this
algorithm as

extraction algorithm.
However, to avoid

overloading the word
“extraction”, we

rename this algorithm
in this part.

of the wrapper, the reduction may use corresponding trapdoor information
which we define to enable extraction. We call this notion private extractability.

In the following we provide formal definitions of group schemes and our
notion of algebraic wrappers.

11.1 group schemes and wrappers
A group scheme or encoding scheme [GGH13] abstracts the properties of
mathematical groups used in cryptography. Group schemes have recently
been studied in [AFH+16; AH18; FHHL18; KP19; AMP20]. In contrast to
traditional groups, group elements are not bound to be represented by some
unique bitstring – henceforth referred to as encoding. This allows to encode
auxiliary information inside group elements.

Formally, a group scheme H consists of the algorithms (GGenH, SamH,
ValH, AddH, EqH, GetIDH).

• GGenH is a group generation algorithm which, given 1λ, samples group
parameters ppH.

• SamH is a sampling algorithm which, on input of the group parameters
ppH and an exponent a, produces an encoding corresponding to the
exponent a.46

• ValH is a validation algorithm which, given the group parameters ppH

and a bitstring, decides whether the given bitstring is a valid encoding.

• AddH implements the group operation, i. e., AddH expects the group
parameters ppH and two encodings as input, and produces an encoding
of the group element which results from applying the group operation
on its input encodings.

• EqH is an equality testing algorithm. Since group elements do not
necessarily possess unique encodings, EqH enables to test whether
two given encodings correspond to the same group element (with
respect to the given group parameters). Note that EqH(ppH, ·) defines
an equivalence relation on the set of valid bitstrings.

• GetIDH is a “get-identifier” algorithm which, given the group param-
eters ppH and an encoding of a group element, produces a bitstring
which is unique for all encodings of the same group element.47 This,
again, compensates for the non-uniqueness of encodings.

Note that EqH(ppH,a,b) can be implemented using GetIDH by simply com-
paring GetIDH(ppH,a) and GetIDH(ppH,b) as bitstrings. The “get-identifier”
algorithm allows to convert group elements into unique bitstrings which can,
for instance, be used as keys. In some settings, group schemes are addition-
ally equipped with a multilinear map [AFH+16; FHHL18; AMP20]. Hence, a
group schemes supports all features cryptography demands from ordinary
cyclic groups.

For a group scheme it is required that the quotient set
{︂
a∈{0,1}∗ | ValH(ppH,a)=1

}︂
/EqH(ppH, ·)

11.2 an algebraic wrapper 111

equipped with the operation defined via AddH(ppH, ·, ·) defines a mathe-
matical group (with overwhelming probability over the choice of ppH ←
GGenH(1λ)). We say that a bitstring a is (an encoding of) a group element
(relative to ppH), written as a ∈H, if and only if ValH(ppH,a) = 1.

A group scheme requires that encodings corresponding to the same group
element are computationally indistinguishable as formalized by the “Switch-
ing Lemma(s)” in [AFH+16; AH18; FHHL18].

We henceforth use the notation

)

h to mark encodings of a group element.

11.2 an algebraic wrapper
Given a cyclic group, an algebraic wrapper is a group wrapper which equips
a given group G with a notion of extractability while preserving its group
structure and computational hardness guarantees. In particular, we achieve a
property which we refer to as “private extractability” with respect to a given
set of group elements in the base group. More precisely, our group generation
algorithm expects group parameters ppG of the base group together with a
set of group elements [b]G ∈ Gn from that base group – henceforth referred
to as basis – and produces group parameters ppH of the wrapper group
together with a corresponding trapdoor τH. We exploit the non-uniqueness
of encodings to let all encodings carry some representation relative to this
basis [b]G. The trapdoor τH enables to extract this representation from every
encoding. A “representation” of a group element relative to the basis [b]G is
a decomposition of the group element as linear combination of the group
elements in [b]G. Hence, our notion of extractability is strictly weaker than
the notion provided by the algebraic group model (AGM) [FKL18], but also
circumvents the implausibility results entailed by the AGM. Nonetheless,
this notion suffices to simulate proof strategies developed for the algebraic
group model in the very absence of knowledge-type assumptions.

More precisely, encodings which wrap some base group element h ∈ G

carry (computationally hidden) representation vectors z ∈ Zn
p , such that z

contains the coefficients of a linear combination of h relative to [b]G, i. e.,
z⊺ · [b]G = h. Private extraction allows to recover this representation vector.
Given the trapdoor, we require that it is possible to “privately” sample en-
codings which carry some specific dictated representation vector. We require
that publicly sampled encodings and privately sampled encodings are com-
putationally indistinguishable. We refer to this property as “switching”. In
order to preserve tightness of security reductions when implementing AGM
proofs with our algebraic wrapper, we require a statistical re-randomization
property. Furthermore, we require that representation vectors compose addi-
tively (in Zn

p) with the group operation and do not change when encodings
are re-randomized.

Let

Bn
ppG

:=
{︂(︁

[1]G , [x2]G , . . . , [xn]G
)︁⊺ ∈ Gn

⃓⃓
⃓ x2, . . . , xn ∈ Z×p

}︂

be the set of what we call “legitimate basis vectors”. Note that we require
the first group element to be the generator of the base group [1]G to allow
for public sampling (using SamH). This is necessary because SamH must be
able to encode a matching representation vector for every produced group
element encoding.

112 how to simulate extraction

definition 11.1 (Algebraic wrapper for G). An algebraic wrapper H for
G is a tuple of PPT algorithms (GGenH, SamH, ValH, AddH, EqH, GetIDH,
RerandH, PrivSamH, PrivExtH, UnwrapH) such that the tuple (GGenH, SamH,
ValH, AddH, EqH, GetIDH) constitutes a group scheme and the following
properties are satisfied.

G-wrapping. The algorithm UnwrapH(ppH, ·) is deterministic and for all
ppG ∈ supp(GGenG(1

λ)), all legitimate basis vectors [b]G ∈ Bn
ppG

, all
(ppH, τH) ∈ supp(GGenH(ppG, [b]G)),

UnwrapH(ppH, ·) : H→ G

defines a group isomorphism.

extractability. The algorithm PrivExtH is deterministic. Furthermore, for
all ppG ∈ supp(GGenG(1

λ)), all legitimate basis vectors [b]G ∈ Bn
ppG

,

all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), all

)

h ∈ H, we require that
PrivExtH always extracts a representation of [x]G := UnwrapH(ppH,

)

h)

with respect to [b]G, i. e., for z := PrivExtH(τH,

)

h),

[z⊺ ·b]G = UnwrapH(ppH,
)

h).

correctness of extraction. For all ppG ∈ supp(GGenG(1
λ)), all [b]G ∈

Bn
ppG

, all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), all

)

h0,

)

h1 ∈ H, we re-
quire that private extraction respects the group operation in the sense
that for all

)

h2 ∈ supp(AddH(ppH,

)

h0,

)

h1)), z(i) := PrivExtH(τH,

)

hi) for
i ∈ {0, 1, 2}, satisfy

z(2) = z(0) + z(1).

Additionally, for all ppG ∈ supp(GGenG(1
λ)), all [b]G ∈ Bn

ppG
, all (ppH,

τH) ∈ supp(GGenH(ppG, [b]G)), all

)

h ∈ H, we require that re-random-
ization does not interfere with private extraction in the sense that for

all

)

h′ ∈ supp(RerandH(ppH,

)

h)),

PrivExtH(τH,

)

h) = PrivExtH(τH,

)

h′).

correctness of sampling. For all ppG ∈ supp(GGenG(1
λ)), all [b]G ∈

Bn
ppG

, all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), we require that

• for all v ∈ Zn
p , Pr

[︁
PrivExtH

(︁
τH, PrivSamH(τH, v)

)︁
= v
]︁
= 1,

• for all x ∈ Zp, Pr
[︁
PrivExtH

(︁
τH, SamH(ppH, x · e1)

)︁
= x · e1

]︁
= 1.

k-switching. We say a PPT adversary A is a legitimate k-switching ad-
versary if on input of base group parameters ppG, A outputs two
bases ([b(j)]G)j∈{0,1} and two lists comprising k representation vec-
tors (v(j),(i))i∈[k],j∈{0,1} (and an internal state st) such that [b(0)]G,
[b(1)]G ∈ Bn

ppG
and v(0),(i), v(1),(i) ∈ Zn

p for some n ∈ N and all
i ∈ [k] and

[︂
(v(0),(i))⊺ ·b(0)

]︂
G
=
[︂
(v(1),(i))⊺ ·b(1)

]︂
G

for all i ∈ [k].

11.2 an algebraic wrapper 113

Expk-switching
H,A,b (λ)

ppG ← GGenG(1
λ)

(︂(︁[︁
b(j)

]︁
G

)︁
j∈{0,1},(︁

v(j),(i))︁
i∈[k],j∈{0,1}, st

)︂
← A(1λ, ppG)

(ppH, τH)← GGenH(ppG,
[︁
b(b)

]︁
G
)

)

h∗i ← PrivSamH

(︁
τH, v(b),(i))︁

return A(ppH, (

)

h∗i)i∈[k], st)

(a) Definition of the k-switching game
Expk-switching

H,A,b (λ).

Exprerand
H,A,b(λ)

ppG ← GGenG(1
λ)

([b]G , st)← A(1λ, ppG)

(ppH, τH)← GGenH(ppG, [b]G)

(

)

h0,

)

h1, st)← A(ppH, τH, st)

)

h← RerandH(ppH,

)

hb)

return A(

)

h, st)

(b) Definition of the re-randomization
game Exprerand

H,A,b(λ).

Figure 11.1: The re-randomization and k-switching games.

For all legitimate k-switching PPT adversaries A,

Advk-switching
H,A (λ) :=

⃓⃓
⃓ Pr

[︂
Expk-switching

H,A,0 (λ) = 1
]︂

−Pr
[︂

Expk-switching
H,A,1 (λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Expk-switching
H,A,b (λ) (for b ∈ {0, 1}) is defined in Fig-

ure 11.1a.

statistically re-randomizable. We say an unbounded adversary A is
a legitimate re-randomization adversary if, on input of base group
parameters ppG, A outputs [b]G and a state st such that [b]G ∈ Bn

ppG

and, in a second phase, A on input of (ppH, τH, st) outputs two valid
encodings

)

h0,

)

h1 (and a state st) such that

PrivExtH(τH,

)

h0) = PrivExtH(τH,

)

h1).

For all unbounded legitimate re-randomization adversaries A,

Advrerand
H,A (λ) :=

⃓⃓
⃓ Pr

[︂
Exprerand

H,A,0(λ) = 1
]︂

−Pr
[︂

Exprerand
H,A,1(λ) = 1

]︂ ⃓⃓
⃓ ⩽ 1

2λ
,

where Exprerand
H,A,b(λ) (for b ∈ {0, 1}) is defined in Figure 11.1b.

For simplicity, we require that encodings are always in {0, 1}penc(λ) for a
fixed polynomial penc(λ).

The k-switching property allows to simultaneously switch the representa-
tion vectors of multiple group element encodings. It is necessary to switch
all encodings simultaneously since private sampling can only be simulated
knowing the trapdoor τH which is not the case in Expk-switching

H,A,b (λ). More
precisely, suppose we want to apply 1-switching twice. After switching the
first representation, simulation of the resulting hybrid game requires to use
private sampling and, hence, possession of the trapdoor τH. Consequently, a
further reduction to 1-switching is not possible, since an adversary against 1-
switching does not know τH.

Further, we note that group element encodings should always be re-ran-
domized for the following reason. While publicly sampled encodings and

114 how to simulate extraction

privately sampled encodings are indistinguishable due to k-switching (pro-
vided that they encode the same group elements), Definition 11.1 requires no
such indistinguishability guarantee for, e. g., a privately sampled encoding
and an encoding which is computed using the group operation. However,
if these two encodings carry identical representation vectors, statistical re-
randomizability guarantees indistinguishability if these encodings are re-
randomized.

12 C O N S T R U C T I O N

Our construction follows the ideas from [AFH+16; AH18; FHHL18]. Let
GGenG be a group generator for a cyclic group G. Let GenSMP be a hard
subset membership problem. Let FHE = (KGen, Enc, Dec, Eval, Rerand) be a
perfectly correct and perfectly re-randomizable fully homomorphic public-
key encryption scheme. Let ppG be group parameters for G and [Ω]G ∈ Gn

for some n ∈ N. Let L ⊆ X together with the relation R denote a subset
membership problem instance sampled from GenSMP and let y ← X \ L.
Further, let pk be a public key for FHE. For ease of notation, we define
pars := (ppG, (L,X,R),y, pk, [Ω]G). Let NIWI := (Setup, Prove, Verify, HSetup,
Ext) be a perfectly complete, perfectly extractable and perfectly witness-
indistinguishable dual-mode NIWI proof system for the language

L :=
{︁
y :=

(︁
pars, [x]G ,C

)︁ ⃓⃓
∃w : (y,w) ∈ R := R1 ∨R2 ∨R3

}︁
.

The relations R1,R2,R3 are defined as follows.

R1 =

⎧
⎪⎪⎨
⎪⎪⎩

(︂
(pars, [x]G ,C), (sk, v)

)︂
⃓⃓
⃓⃓
⃓⃓
⃓⃓

KGen(1λ; sk) = (pk, sk)

∧ Dec(sk,C) = v

∧ [Ω⊺ · v]G = [x]G

⎫
⎪⎪⎬
⎪⎪⎭

R2 =

{︄(︂
(pars, [x]G ,C), (r, v)

)︂ ⃓⃓
⃓⃓
⃓

Enc(pk, v; r) = C

∧ [Ω⊺ · v]G = [x]G

}︄

R3 =
{︂ (︂

(pars, [x]G ,C), (wy)
)︂ ⃓⃓
⃓ (y,wy) ∈ R

}︂

Encodings

)

h of group elements in H are of the form

)

h =:
(︂
[x]G ,C,π

)︂
,

where [x]G is the “wrapped” element from the base group G, C is a ciphertext
and π is a consistency proof π produced for L. During “honest” use of
the algebraic wrapper, encodings carry proofs produced for relation R1 or
relation R2. Both relations bind a “perturbed” representation vector v to the
base group element [x]G. These two relations only differ in the necessary
witnesses. Relation R1 requires the secret key which is associated with
the public key in the public parameters ppH as witness whereas relation
R2 requires the randomness used for producing the ciphertext C. Hence,
relation R1 can be used in settings, where the ciphertext is not produced
freshly but, for instance, via homomorphic evaluation, but the secret key can
be used. This will be necessary in certain obfuscated circuits. Relation R2, on
the other hand, requires only information which is accessible for an honest
user and, hence, allows public sampling of group elements. Relation R3 is a
trapdoor branch which enables simulation. Note that during “honest” use of
the algebraic wrapper y ̸∈ L and, hence, due to perfect soundness of NIWI,
there exists no proof for relation R3.

115

116 construction

48 With basis we
mean a set of group
elements in the base

group.

With m′(λ) we denote a polynomial upper bound on the number of ran-
dom bits FHE.Rerand(1λ, ·, ·) expects and with m′′(λ) we denote a polynomial
upper bound on the number of random bits NIWI.Prove(1λ, ·, ·, ·) expects. Let
ℓ(λ) := m′(λ) +m′′(λ) + 2(λ+ 1) + 3. Let Cadd := {Cadd,C(1)

add,C(2)
add,C(3)

add} and

let Crerand := {Crerand,C(1)
rerand,C(2)

rerand,C(3)
rerand}, see Figures 12.4, 12.5 and 12.6.

Let piO be a pIO scheme for the class of samplers CX-ind over Cadd and let
piO⋆

ℓ be an ℓ-expanding pIO scheme for the class of samplers C
X-(⋆)ind
ℓ over

Crerand. Further, let padd(λ) denote a polynomial upper bound on the size of
addition circuits in Cadd and prerand(λ) denote a polynomial upper bound on
the size of re-randomization circuits in Cadd.

Our algebraic wrapper H is composed of the PPT algorithms (GGenH,
SamH, ValH, AddH, EqH, RerandH, PrivExtH, PrivSamH, GetIDH, UnwrapH) de-
fined in Figures 12.1 and 12.2. We note that the algorithm ValH which is
evaluated inside Cadd and Crerand only requires a certain part of the pub-
lic parameters as input. In particular, ValH does not depend on Λadd and
Λrerand.

differences to [AFH+16; AH18; FHHL18]. [AFH+16; FHHL18]
introduce similar constructions of a group scheme featuring a multilinear
map and of a graded encoding scheme, respectively. More precisely, [AFH+16;
FHHL18] equip a base group with encodings carrying auxiliary information
which can be used (in an obfuscated circuit) to “multiply in the exponent”.
We observe that these constructions already wrap a given base group in the
sense that “unwrapping” encodings yields a group isomorphism to the base
group.

Our construction builds upon these group schemes. In order to enable
extractability with respect to a dynamically chosen basis48, our group param-
eters must be generated depending on that basis.

This modification, however, comes at the cost of the multilinear map
functionality. This is because any implementation of a multilinear map
requires knowledge of discrete logarithms of each group element encoding
to a fixed generator. This is undesirable for our purposes, since we want to
be able to use sets of group elements as basis which we do not know discrete
logarithms of (for instance group elements provided by a reduction). Thus,
we have to give up the multiplication functionality.

Furthermore, looking ahead, we crucially require that the basis can be
altered via computational game hops during proofs. We solve this problem
by linearly perturbing the given basis [b]G (except for its first entry to enable
meaningful public sampling). We refer to this perturbed basis as [Ω]G. Our
group element encodings are defined to carry representation vectors with
respect to [Ω]G. By construction of Cadd, these representation vectors are
treated homomorphically by the group operation.

To preserve tightness of security reductions, we additionally introduce a
statistical re-randomization mechanism.

As opposed to [AFH+16; FHHL18], [AH18] uses a quite different approach.
In [AH18], the group scheme is constructed from scratch, meaning there is
no necessity for an underlying group. The consequences are twofold. On
one hand, very strong decisional assumptions can be proven to hold in the
resulting group scheme. On the other hand, however, the group scheme from
[AH18] lacks a GetIDH algorithm limiting its applicability.

12.1 main theorem and security analysis 117

remark 12.1. We note that for our construction, we implicitly build a
controlled malleable NIZK as per [CKLM12].

12.1 main theorem and security analysis
In the following, we formally prove that H as defined in Figures 12.1 and 12.2
is an algebraic wrapper.

theorem 12.1. Let (i) GGenG be a group parameter generator for a cyclic group
G, (ii) GenSMP be a hard subset membership problem, (iii) FHE = (KGen, Enc, Dec,
Eval, Rerand) be a perfectly correct and perfectly re-randomizable fully homomorphic
public-key encryption scheme, (iv) NIWI := (Setup, Prove, Verify, HSetup, Ext) be
a perfectly complete, perfectly sound, perfectly extractable and perfectly witness-
indistinguishable dual-mode NIWI proof system for the language L, (v) piO be a
pIO scheme for the class of samplers CX-ind and (vi) piO⋆

ℓ be an ℓ-expanding pIO
scheme for the class of samplers CX-(⋆)ind

ℓ . Then, H defined in Figures 12.1 and 12.2
is an algebraic wrapper.

Proof. Since the algorithms defined in Figure 12.1 equip the base group
G with non-unique encodings but respect its group structure, the tuple
(GGenH, SamH, ValH, EqH, AddH, GetIDH) forms a group scheme such that
UnwrapH(ppH, ·) defines a group isomorphism from H to G. Hence, by the
correctness of FHE, piO, piO⋆

ℓ and the completeness of NIWI, H satisfies G-
wrapping.

lemma 12.1. The group scheme H defined in Figures 12.1 and 12.2 satisfies
extractability.

Proof of Lemma 12.1. The algorithm PrivExtH is deterministic. Let ppG ∈
supp(GGenG(1

λ)), [b]G ∈ Bn
ppG

and (ppH, τH) ∈ supp(GGenH(ppG, [b]G)).
Since y ̸∈ L and because NIWI is perfectly sound, every valid encoding

)

h = ([x]G ,C,π)H must satisfy either relation R1 or R2 with respect to pars.
Hence, decryption of C yields a vector v such that [Ω⊺ · v]G = [x]G or C was
produced as an encryption of a vector v such that the above is true. Due
to perfect correctness of FHE, FHE.Dec(sk,C) recovers this v in both cases.
Therefore, the output z produced by PrivExtH(τH,

)

h) satisfies

(v1 ·α1, . . . , vn ·αn)⏞ ⏟⏟ ⏞
=:z

· [b]G = (v1, . . . , vn) ·

⎡
⎢⎢⎣

b1 ·α1

...

bn ·αn

⎤
⎥⎥⎦

G⏞ ⏟⏟ ⏞
=[Ω]G

= [x]G .

Since [x]G = UnwrapH(ppH,

)

h), extractability follows.

lemma 12.2. The group scheme H defined in Figures 12.1 and 12.2 satisfies
correctness of extraction.

118 construction

GGenH(ppG, [b]G)

parse [b]G =: [(b1, . . . ,bn)⊺]G

α1 := 1,α2, . . . ,αn ← Z×p

[Ω]G := ([b1]
α1

G
, . . . , [bn]αn

G
)⊺

(pk, sk)← FHE.KGen(1λ)

σ← NIZK.Setup(1λ)

(L,X,R)← GenSMP,y← X \ L

Λadd ← piO(1padd(λ),Cadd)

Λrerand ← piO⋆
ℓ (1

prerand(λ),Crerand)

pars := (ppG, (L,X,R),y, pk, [Ω]G)

ppH := (σ, pars,Λadd,Λrerand)

τH := (ppH, sk,α1, . . . ,αn, [b]G)

return (ppH, τH)

(a) The parameter generation algorithm.

SamH(ppH, v ∈ Zn
p)

C = FHE.Enc(pk, v; r)

[x]G := [Ω⊺ · v]G
π = Prove(σ, (pars, [x]G ,C), (r, v))

return

)

h := ([x]G ,C,π)H

(b) The (public) sampling algorithm.

GetIDH(ppH,

)

h)

if ¬ValH((σ, pars),

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

return [x]G

(c) The “extraction” algorithm
producing a unique identifier.

ValH(ppH,

)

h)

parse)

x =: ([x]G ,C,π)H

return Verify(σ, (pars, [x]G ,C),π)

(d) The validation algorithm.

EqH(ppH,

)

h1,

)

h2)

if ∃j ∈ [2] : ¬ValH((σ, pars),

)

hj) then

return ⊥
parse

)

hi =: ([xi]G ,Ci,πi)H

return [x1]G = [x2]G

(e) The equality testing algorithm.

AddH(ppH,

)

h1,

)

h2)

return Λadd(

)

h1,

)

h2)

(f) The algorithm for com-
puting the group oper-
ation.

Cadd[pars,σ, sk](
)

h1,
)
h2; r)

if ∃j ∈ [2] : ¬ValH((σ, pars),
)

hj) then

return ⊥
parse

)

hi =: ([xi]G ,Ci,πi)H

[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk,P(+)[Zn

p],C1,C2)

// P(+)[Zn
p] computes addition in Zn

p

vi ← FHE.Dec(sk,Ci)

vout := v1 + v2

πout ← Prove(σ,

(pars, [xout]G ,Cout), (sk, vout))

return

)

hout := ([xout]G ,Cout,πout)

(g) The group operation circuit which is ob-
fuscated and part of the group parameters.
The algorithm AddH simply evaluates this
obfuscated circuit.

Figure 12.1: Definition of the algorithms GGenH, SamH, ValH, EqH, GetIDH, AddH,
UnwrapH and the circuit Cadd.

12.1 main theorem and security analysis 119

PrivSamH(τH, v ∈ Zn
p)

v∗ := (v1 ·α−1
1 , . . . , vn ·α−1

n)⊺

[x]G := [b⊺ · v]G = [Ω⊺ · v∗]G
C← FHE.Enc(pk, v∗; r)

π← Prove(σ, (pars, [x]G ,C), (sk, v∗))

return ([x]G ,C,π)H

(a) The private sampling algorithm.

PrivExtH(τH,

)

h)

if ¬ValH(ppH,

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

(v1, . . . , vn)⊺ =: v← FHE.Dec(sk,C)

return (v1 ·α1, . . . , vn ·αn)
⊺

(b) The private extraction algorithm.

UnwrapH(ppH,

)

h)

if ¬ValH((σ, pars),

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

return [x]G

(c) The unwrap algorithm which
recovers the original group el-
ement from G from encodings
of group elements from H.

RerandH(ppH,

)

h)

u← {0, 1}ℓ(λ)

return Λrerand(

)

h,u)

(d) The re-randomization
algorithm.

Crerand[pars,σ, sk](

)

h; r1, r2)

if ¬ValH((σ, pars),

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

v← FHE.Dec(sk,C)

Cout ← FHE.Rerand(pk,C; r1)

πout ← Prove(σ,

(pars, [x]G ,Cout), (sk, v); r2)

return

)

hout := ([x]G ,Cout,πout)H

(e) The re-randomization circuit which is
obfuscated and part of the group pa-
rameters. The algorithm RerandH sim-
ply evaluates this obfuscated circuit.

Figure 12.2: Definition of the algorithms PrivSamH, PrivExtH, RerandH, UnwrapH

and the circuit Crerand.

Proof of Lemma 12.2. We first prove, that AddH respects private extraction
in Zn

p . Let ppG ∈ supp(GGenG(1
λ)), let [b]G ∈ Bn

ppG
and let (ppH, τH) ∈

supp(GGenH(ppG, [b]G)). Let

)

h0 =: ([x0]G ,C0,π0)H ∈H with v(0) := Dec(sk,C0)

)

h1 =: ([x1]G ,C1,π1)H ∈H with v(1) := Dec(sk,C1).

Further, let

([x2]G ,C2,π2)H :=

)

h2 := AddH(ppH,

)

h0,

)

h1) with v(2) := Dec(sk,C2).

Since FHE is perfectly correct and piO is support respecting, we have v(2) =

v(0) + v(1) (in Zn
p). Therefore, we have

v(2) ◦ (α1, . . . ,αn)
⊺

⏞ ⏟⏟ ⏞
=PrivExtH(τH,

)

h2)

= v(0) ◦ (α1, . . . ,αn)
⊺

⏞ ⏟⏟ ⏞
=PrivExtH(τH,

)

h0)

+ v(1) ◦ (α1, . . . ,αn)
⊺

⏞ ⏟⏟ ⏞
=PrivExtH(τH,

)

h1)

∈ Zn
p .

120 construction

Note that the operator “◦” denotes the Hadamard product, i. e., (a ◦b)i =
(a)i · (b)i.

Furthermore, RerandH does not interfere with private extraction. Let ppG ∈
supp(GGenG(1

λ)), [b]G ∈ Bn
ppG

and (ppH, τH) ∈ supp(GGenH(ppG, [b]G)). Let

)

h =: ([x]G ,C,π)H ∈H with v := Dec(sk,C). Further, let

(
[︁
x′
]︁

G
,C′,π′)H :=

)

h′ ∈ supp(RerandH(ppH,

)

h)) with

v′ := Dec(sk,C′).

Since FHE is perfectly correct and piO⋆
ℓ is support respecting, v = v′ and thus

PrivExtH(τH,

)

h) = v ◦ (α1, . . . ,αn)
⊺ = PrivExtH(τH,

)

h′).

lemma 12.3. The group scheme H defined in Figures 12.1 and 12.2 satisfies
correctness of sampling.

Proof of Lemma 12.3. Let ppG ∈ supp(GGenG(1
λ)), bases [b]G ∈ Bn

ppG
and

(ppH, τH) ∈ supp(GGenH(ppG, [b]G)).
We prove that PrivExtH(τH, ·) and PrivSamH(τH, ·) act inversely to each

other. Let v ∈ Zn
p and let ([x]G ,C,π)H :=

)

h ∈ supp(PrivSamH(τH, v)). By cor-
rectness of FHE, FHE.Dec(sk,C) = v ◦ (α−1

1 , . . . ,α−1
n)⊺. Hence, the algorithm

PrivExtH(τH,

)

h) outputs ((v1 ·α−1
1) ·α1, . . . , (vn ·α−1

n) ·αn)
⊺ = v.

Next, we prove that PrivExtH(τH, ·) and SamH(ppH, ·) act inversely to
each other for multiples of e1. Let x ∈ Zp and let ([x]G ,C,π)H :=

)

h ∈
supp(SamH(ppH, x · e1)). By correctness of FHE, FHE.Dec(sk,C) = x · e1 ◦
(α−1

1 , . . . ,α−1
n)⊺ = x · e1 since α1 = 1. Hence, PrivExtH(τH,

)

h) outputs (x ·
α1, 0, . . . , 0)⊺ = x · e1 since α1 = 1.

lemma 12.4 (Removing information from ppH). Let GGen′H denote the distri-
bution of public parameters sampled as in GGenH with the difference that y← L is
a yes-instance of the subset membership problem, σ is sampled according to HSetup
and Λadd, Λrerand are produced for the circuits C(3)

add and C
(3)
rerand, see Figures 12.4,

12.5 and 12.6. Then, for all legitimate PPT adversaries A,

Advswap
H,A (λ) :=

⃓⃓
⃓Pr
[︂
Expswap

H,A,0(λ) = 1
]︂
− Pr

[︂
Expswap

H,A,1(λ) = 1
]︂⃓⃓
⃓

is negligible, where Expswap
H,A,b(λ) is defined in Figure 12.3 and where legitimate

means that A on input of ppG guarantees [b]G ∈ Bn
ppG

for some n ∈N.

Proof of Lemma 12.4. The proof strategy is closely related to the proof of the
“swap lemma” from [AFH+16; AH18]. After some preparations, we replace
the no-instance of the subset membership problem with a yes-instance y ∈ L

enabling relation R3 to be satisfied. The extraction trapdoor tdext for σ used
inside the obfuscated circuits can then be replaced by the unique witness wy

for (y,wy) ∈ R. This enables to switch σ from binding to hiding mode. Due
to perfect witness-indistinguishability, the obfuscated circuits can be replaced
by variants which always use wy to simulate proofs. We refer the reader to
Table 12.1 for an overview of the hybrid games. We assume that the circuits
Cadd, C(1)

add, C(2)
add, C(3)

add are padded to size padd(λ) and the circuits Crerand,

12.1 main theorem and security analysis 121

Expswap
H,A,0(λ)

ppG ← GGenG(1
λ)

([b]G , st)← A(1λ, ppG)

(ppH, τH)← GGenH(ppG, [b]G)

return A(ppH, τH, st)

(a) In game Expswap
H,A,0(λ), A has access

to parameters distributed according to
GGenH.

Expswap
H,A,1(λ)

ppG ← GGenG(1
λ)

([b]G , st)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b]G)

return A(ppH, τH, st)

(b) In game Expswap
H,A,1(λ), A has access

to parameters distributed according to
GGen′H.

Figure 12.3: Indistinguishability between GGenH and GGen′H.

Table 12.1: Overview of proof steps of Lemma 12.4. Changes to previous games are
highlighted in boxes.

y ∈ L Λadd Λrerand σ Remark

G0 NO Cadd Crerand Setup

G2 NO C
(1)
add C

(1)
rerand Setup piO and piO⋆

ℓ

G3 YES C
(1)
add C

(1)
rerand Setup subset membership problem

G5 YES C
(2)
add C

(2)
rerand Setup piO and piO⋆

ℓ

G6 YES C
(2)
add C

(2)
rerand HSetup CRS indistinguishability

G8 YES C
(3)
add C

(3)
rerand HSetup piO and piO⋆

ℓ

C
(1)
rerand, C(2)

rerand, C(3)
rerand are padded to size prerand(λ), see Figures 12.4, 12.5

and 12.6.

game G0. This game is identical to Expswap
H,A,0(λ).

game G1. G1 is defined as G0 but Λadd is produced via piO(1padd(λ),C(1)
add),

see Figure 12.4.
Indistinguishability between G0 and G1 follows from the security of piO

with respect to CX-ind. More formally, let A be a legitimate PPT adversary
distinguishing G0 and G1.

Let D1 be the circuit sampler which on input of 1padd(λ) samples ppG ←
GGenG(1

λ), calls A(ppG) to obtain ([b]G , st), produces parameters exactly
as GGenH(ppG, [b]G) (except for the obfuscated circuit Λadd), and outputs

C0 := Cadd, C1 := C
(1)
add and auxiliary information z := (σ, pars = (ppG, (L,

X,R),y, pk, [Ω]G),Λrerand, (sk,α1, . . . ,αn, [b]G), st). Since y ̸∈ L and NIWI is
perfectly sound, the circuits Cadd and C

(1)
add behave exactly identically on

identical inputs and random tapes. Hence, for the function X(λ) := 0 and a
differing domain X := ∅, the circuit sampler D1 satisfies X-differing inputs
and X-indistinguishability and, hence, is an X-ind sampler.

We construct an adversary B1 on the security of piO. On input of (1padd(λ),
C0,C1, z,Λ), B1 defines ppH := (σ, pars,Λ,Λrerand) and τH := (ppH, sk,α1,
. . . ,αn, [b]G), calls A(ppH, τH, st) and outputs A’s output. If Λ is produced
via piO(1padd(λ),Cadd), D1 together with B1 perfectly simulate G0 for A.

122 construction

Otherwise, if Λ is produced via piO(1padd(λ),C(1)
add), D1 together with B1

perfectly simulate G1 for A. Hence,
⃓⃓
Pr
[︁
out1 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ Advpio-ind

piO,D1,B1
(padd(λ)).

game G2. The game G2 is identical to G1 except that Λrerand is produced
via piO⋆

ℓ(1
prerand(λ),C(1)

rerand), see Figure 12.4. Indistinguishability between G1

and G2 follows from the security of piO⋆
ℓ with respect to C

X-(⋆)ind
ℓ . The proof

is very similar to the previous game hop. The main difference is that the
used circuit sampler needs to be in C

X-(⋆)ind
ℓ .

Let A be a legitimate PPT adversary distinguishing G1 and G2. Let
D2 be the circuit sampler which on input of 1prerand(λ) samples ppG ←
GGenG(1

λ), calls A(ppG) to obtain ([b]G , st) and produces parameters as
GGenH(ppG, [b]G) (except for the obfuscated circuit Λrerand and such that

Λadd is produced for C
(1)
add), and outputs C0 := Crerand, C1 := C

(1)
rerand and

auxiliary information z := (σ, pars = (ppG, (L,X,R),y, pk, [Ω]G),Λadd, (sk,α1,
. . . ,αn, [b]G), st). Since y ̸∈ L and NIWI is perfectly sound, the circuits Crerand

and C
(1)
rerand behave exactly identically on identical inputs and random tapes.

Therefore, by Corollary 10.1, D2 ∈ C
X-(⋆)ind
ℓ . Hence, there exists a PPT adver-

sary B2 such that
⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out1 = 1

]︁⃓⃓
⩽ Advpio-ind(⋆)

piO⋆
ℓ ,D2,B2

(prerand(λ)).

game G3. The game G3 is defined as game G2 except that y ← L is a yes-
instance of the subset membership problem. This game hop is justified by
the hardness of the subset membership problem. More precisely, for every
PPT distinguisher A between G2 and G3, there exists an adversary B3 such
that

⃓⃓
Pr
[︁
out3 = 1

]︁
− Pr

[︁
out2 = 1

]︁⃓⃓
⩽ Advsmp

GenSMP,B3
(λ).

game G4. G4 is defined as G3 but Λadd is produced via piO(1padd(λ),C(2)
add),

see Figure 12.5. Due to the perfect extractability of NIWI and the fact that
for every y ∈ L there exists exactly one witness wy for the statement y ∈ L,
the two circuits C

(1)
add and C

(2)
add behave exactly identically on identical inputs

and random tapes. Hence, for every PPT adversary A, there exists a circuit
sampler D4 ∈ CX-ind and a PPT adversary B4 such that

⃓⃓
Pr
[︁
out4 = 1

]︁
− Pr

[︁
out3 = 1

]︁⃓⃓
⩽ Advpio-ind

piO,D4,B4
(padd(λ)).

game G5. The game G5 is identical to G4 except that Λrerand is produced
via piO⋆

ℓ(1
prerand(λ),C(2)

rerand), see Figure 12.5. Indistinguishability between G4

and G5 follows from the security of piO⋆
ℓ with respect to C

X-(⋆)ind
ℓ . Again,

due to the perfect extractability of NIWI and the fact that for every y ∈ L

there exists exactly one witness wy for the statement y ∈ L, the two circuits
C
(1)
rerand and C

(2)
rerand behave exactly identically on identical inputs and random

tapes. Hence, by Corollary 10.1, for every PPT adversary A, there exists a
circuit sampler D5 ∈ C

X-(⋆)ind
ℓ and a PPT adversary B5 such that

⃓⃓
Pr
[︁
out5 = 1

]︁
− Pr

[︁
out4 = 1

]︁⃓⃓
⩽ Advpio-ind(⋆)

piO⋆
ℓ ,D5,B5

(prerand(λ)).

12.1 main theorem and security analysis 123

C
(1)
add[pars,σ, sk, tdext](

)

h1,

)

h2)

if ∃j ∈ [2] : ¬ValH((σ, pars),

)

hj) then

return ⊥
parse

)
hi =: ([xi]G ,Ci,πi)H

[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk,P(+)[Zn

p],C1,C2)

vi ← Dec(sk,Ci)

vout := v1 + v2

if [Ω⊺ · vout]G = [xout]G then

πout ← Prove(σ,

(pars, [xout]G ,Cout), (sk, vout))

else

let j ∈ {1, 2} s.t. [Ω]⊺
G
· vj ̸=

[︁
xj
]︁

G

wy ← Ext(tdext, (pars,
[︁
xj
]︁

G
,Cj),πj)

πout ← Prove(σ,

(pars, [xout]G ,Cout),wy)

return

)

hout := ([xout]G ,Cout,πout)H

(a) Addition circuit C(1)
add.

C
(1)
rerand[pars,σ, sk, tdext](

)

h)

if ¬ValH((σ, pars),

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

v← Dec(sk,C)

Cout ← FHE.Rerand(pk,C)

if [Ω⊺ · v]G = [x]G then

πout ← Prove(σ,

(pars, [x]G ,Cout), (sk, v))

else

wy ← Ext(tdext, (pars, [x]G ,C),π)

πout ← Prove(σ,

(pars, [x]G ,Cout),wy)

return

)

hout := ([x]G ,Cout,πout)H

(b) Re-randomization circuit C(1)
rerand.

Figure 12.4: Addition and re-randomization circuits C
(1)
add and C

(1)
rerand which are

capable to deal with simulated proofs by extracting a witness for relation
R3.

Thus, G5 does not make use of the extraction trapdoor tdext corresponding
to σ anymore.

game G6. The game G6 is defined as G5, except that σ is produced via
HSetup(1λ), i. e., in hiding mode. This game hop is justified by CRS indistin-
guishability of NIWI. Hence, there exists a PPT adversary B6 such that

⃓⃓
Pr
[︁
out6 = 1

]︁
− Pr

[︁
out5 = 1

]︁⃓⃓
⩽ Advcrs-ind

NIWI,B6
(λ).

game G7. G7 is defined as G6 but Λadd is produced via piO(1padd(λ),C(3)
add),

see Figure 12.6. Let D7 be a circuit sampler, which produces public param-
eters as in G6 and outputs the circuits C0 := C

(2)
add and C1 := C

(3)
add (and

suitable auxiliary information z). The circuit sampler D7 is an X-ind sampler
for X(λ) := 22penc(λ) ⩽ 2padd(λ) and X := {0, 1}2penc(λ) since the X-differing
inputs property is trivially satisfied and X-indistinguishability is satisfied
since perfect witness indistinguishability of NIWI implies that for every input
x = (

)

a1,)

a2) ∈ {0, 1}2penc(λ), the output distributions produced by C
(2)
add(x)

and C
(3)
add(x) are identical. Hence, for every PPT adversary A, there exists a

circuit sampler D7 ∈ CX-ind and a PPT adversary B7 such that

⃓⃓
Pr
[︁
out7 = 1

]︁
− Pr

[︁
out6 = 1

]︁⃓⃓
⩽ Advpio-ind

piO,D7,B7
(padd(λ)).

124 construction

C
(2)
add[pars,σ, sk,wy](

)

h1,

)

h2)

if ∃j ∈ [2] : ¬ValH((σ, pars),

)

hj) then

return ⊥
parse

)

hi =: ([xi]G ,Ci,πi)H

[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk,P(+)[Zn

p],C1,C2)

vi ← Dec(sk,Ci)

vout := v1 + v2

if [Ω⊺ · vout]G = [xout]G then

πout ← Prove(σ,

(pars, [xout]G ,Cout), (sk, vout))

else

πout ← Prove(σ,

(pars, [xout]G ,Cout),wy)

return

)

hout := ([xout]G ,Cout,πout)H

(a) Addition circuit C(2)
add.

C
(2)
rerand[pars,σ, sk,wy](

)

h)

if ¬ValH((σ, pars),

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

v← Dec(sk,C)

Cout ← FHE.Rerand(pk,C)

if [Ω⊺ · v]G = [x]G then

πout ← Prove(σ,

(pars, [x]G ,Cout), (sk, v))

else

πout ← Prove(σ,

(pars, [x]G ,Cout),wy)

return

)

hout := ([x]G ,Cout,πout)H

(b) Re-randomization circuit C(2)
rerand.

Figure 12.5: Addition and re-randomization circuits C
(2)
add and C

(2)
rerand which use a

hard-coded witness wy for relation R3.

game G8. The game G8 is identical to G7 except that Λrerand is produced
via piO⋆

ℓ(1
prerand(λ),C(3)

rerand), see Figure 12.6. Indistinguishability between G7

and G8 follows from the security of piO⋆
ℓ with respect to C

X-(⋆)ind
ℓ . Again,

due to the perfect witness indistinguishability of NIWI we have that for every
input x =

)

a ∈ {0, 1}penc(λ), the output distributions produced by C
(2)
rerand(x)

and C
(3)
rerand(x) are identical.

Let D8 be the circuit sampler which on input of 1prerand(λ) samples ppG ←
GGenG(1

λ), calls A(ppG) to obtain ([b]G , st) and produces parameters as in

G7 (except for the obfuscated circuit Λrerand) and outputs C0 := C
(2)
rerand, C1 :=

C
(3)
rerand and auxiliary information z := (σ, pars = (ppG, (L,X,R),y, pk, [Ω]G),

Λadd, (sk,α1, . . . ,αn, [b]G), st). By Lemma 10.1, D8 ∈ C
X-(⋆)ind
ℓ and, thus, for

every PPT adversary A, there exists a circuit sampler D8 ∈ C
X-(⋆)ind
ℓ and a

PPT adversary B8 such that

⃓⃓
Pr
[︁
out8 = 1

]︁
− Pr

[︁
out7 = 1

]︁⃓⃓
⩽ Advpio-ind(⋆)

piO⋆
ℓ ,D8,B8

(prerand(λ))

is negligible.

Note that G8 is defined as Expswap
H,A,1(λ). Therefore,

Advswap
H,A (λ) ⩽

⃓⃓
Pr
[︁
out0 = 1

]︁
− Pr

[︁
out8 = 1

]︁⃓⃓

is negligible in λ.

lemma 12.5. The group scheme H defined in Figures 12.1 and 12.2 satisfies k-
switching.

12.1 main theorem and security analysis 125

C
(3)
add[pars,σ,��sk,wy](

)

h1,

)

h2)

if ∃j ∈ [2] : ¬ValH((σ, pars),

)

hj) then

return ⊥
parse

)
hi =: ([xi]G ,Ci,πi)H

[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk,P(+)[Zn

p],C1,C2)

πout ← Prove(σ,

(pars, [xout]G ,Cout),wy)

return

)

hout := ([xout]G ,Cout,πout)H

(a) Addition circuit C(3)
add.

C
(3)
rerand[pars,σ,��sk,wy](

)

h)

if ¬ValH((σ, pars),

)

h) then

return ⊥
parse

)

h =: ([x]G ,C,π)H

Cout ← FHE.Rerand(pk,C)

πout ← Prove(σ,

(pars, [x]G ,Cout),wy)

return

)

hout := ([x]G ,Cout,πout)H

(b) Re-randomization circuit C(3)
rerand.

Figure 12.6: Addition and re-randomization circuits C
(3)
add and C

(3)
rerand which always

produce consistency proofs for relation R3.

Proof of Lemma 12.5. We recall that an adversary A is a legitimate k-switching
adversary if A, on input of base group parameters ppG, always guarantees
that for all i ∈ [k], [b(0)]G, [b(1)]G ∈ Bn

ppG
and v(0),(i), v(1),(i) ∈ Zn

p and
[︁
x∗i
]︁

G
:=
[︂
(v(0),(i))⊺ ·b(0)

]︂
G
=
[︂
(v(1),(i))⊺ ·b(1)

]︂
G

. We proceed over a series
of hybrids as defined in Figure 12.7.

game Gb
0 . This game is the original switching game Expk-switching

H,A,b (λ) as
defined in Figure 11.1a.

game Gb
1 . The difference between Gb

1 and Gb
0 is only conceptual. The

only difference is that
[︁
x∗i
]︁

G
is computed as

[︂
(b(0))⊺ · v(0),(i)

]︂
G

instead of
[︂
(b(b))⊺ · v(b),(i)

]︂
G

. Since A is legitimate,
[︁
x∗i
]︁

G
=
[︂
(b(0))⊺ · v(0),(i)

]︂
G

=
[︂
(b(1))⊺ · v(1),(i)

]︂
G

,
[︁
x∗i
]︁

G
is independent of b. Hence, Pr[outb1 = 1] =

Pr[outb0 = 1].

game Gb
2 . The only difference between the games Gb

1 and Gb
2 is that ppH

is produced via GGenH(ppG, [b(b)]G) and GGen′H(ppG, [b(b)]G), respectively.
Let A be a distinguisher between Gb

1 and Gb
2 . We construct an adversary

Bb
2 against the property of Lemma 12.4. On input of ppG, Bb

2 calls A on
input of ppG to obtain ([b(0)]G, [b(1)]G, (v(0),(i))i∈[k], (v(1),(i))i∈[k], st). Bb

2

outputs ([b(b)]G, st) and obtains (ppH, τH) which is either sampled accord-
ing to GGenH(ppG, [b(b)]G) or according to GGen′H(ppG, [b(b)]G). Since, τH

contains sk and (α1, . . . ,αn), Bb
2 is able to simulate the game Gb

1 (respec-
tively, Gb

2) for A. More precisely, Bb
2 samples

)

h∗i as in Gb
1 , calls A on input

of (ppH, (

)

h∗i)i∈[k]) and outputs A’s output. If ppH is sampled using GGenH,
Bb

2 perfectly simulates Gb
1 for A and if ppH is sampled using GGen′H, Bb

2

perfectly simulates Gb
2 for A. Hence,

⃓⃓
⃓Pr
[︂
outb2 = 1

]︂
− Pr

[︂
outb1 = 1

]︂⃓⃓
⃓ ⩽ Advswap

H,Bb
2

(λ).

game Gb
3 . Gb

3 is identical to Gb
2 but instead of using the witnesses (sk, v∗i) to

compute the consistency proofs π∗i , Gb
3 uses wy as witness for all consistency

126 construction

Gb
1

ppG ← GGenG(1
λ)

(([b(j)]G)j, (v(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGenH(ppG, [b(b)]G)
[︁
x∗i
]︁

G
:=
[︁
(b(0))⊺ · v(0),(i)]︁

G

v∗i :=
(︂
v
(b),(i)
1 ·α−1

1 , . . . , v(b),(i)
n ·α−1

n

)︂⊺

C∗i := Enc(pk, v∗i)

π∗i ← Prove(σ, (pars,
[︁
x∗i
]︁

G
,C∗i), (sk, v∗i))

)

h∗i := (
[︁
x∗i
]︁

G
,C∗i ,π∗i)H

return A(ppH, (

)

h∗i)i∈[k])

(a) Description of Gb
1 .

Gb
2

ppG ← GGenG(1
λ)

(([b(j)]G)j, (v(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b(b)]G)
[︁
x∗i
]︁

G
:=
[︁
(b(0))⊺ · v(0),(i)]︁

G

v∗i :=
(︂
v
(b),(i)
1 ·α−1

1 , . . . , v(b),(i)
n ·α−1

n

)︂⊺

C∗i := Enc(pk, v∗i)

π∗i ← Prove(σ, (pars,
[︁
x∗i
]︁

G
,C∗i), (sk, v∗i))

)

h∗i := (
[︁
x∗i
]︁

G
,C∗i ,π∗i)H

return A(ppH, (

)

h∗i)i∈[k])

(b) Description of Gb
2 .

Gb
3

ppG ← GGenG(1
λ)

(([b(j)]G)j, (v(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b(b)]G)
[︁
x∗i
]︁

G
:=
[︁
(b(0))⊺ · v(0),(i)]︁

G

v∗i :=
(︂
v
(b),(i)
1 ·α−1

1 , . . . , v(b),(i)
n ·α−1

n

)︂⊺

C∗i := Enc(pk, v∗i)

π∗i ← Prove(σ, (pars,
[︁
x∗i
]︁

G
,C∗i), (wy))

)

h∗i := (
[︁
x∗i
]︁

G
,C∗i ,π∗i)H

return A(ppH, (

)

h∗i)i∈[k])

(c) Description of Gb
3 .

Gb
4

ppG ← GGenG(1
λ)

(([b(j)]G)j, (v(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b(b)]G)
[︁
x∗i
]︁

G
:=
[︁
(b(0))⊺ · v(0),(i)]︁

G

v∗i := (0, . . . , 0)⊺

C∗i := Enc(pk, v∗i)

π∗i ← Prove(σ, (pars,
[︁
x∗i
]︁

G
,C∗i), (wy))

)

h∗i := (
[︁
x∗i
]︁

G
,C∗i ,π∗i)H

return A(ppH, (
)

h∗i)i∈[k])

(d) Description of Gb
4 .

Figure 12.7: Games used in proof of Lemma 12.5. Recall that α1 = 1 and α2, . . . ,αn

are uniformly distributed over Z×p .

proofs. Since σ is produced via HSetup(1λ), the proofs produced in Gb
3 and

Gb
2 are identically distributed due to the perfect witness indistinguishability

of NIWI. Hence, Pr[outb2 = 1] = Pr[outb3 = 1].

game Gb
4 . Gb

4 is identical to Gb
3 except for the fact that Gb

4 always uses the
zero vector (0, . . . , 0)⊺ as v∗i instead of v∗i := (v

(b),(i)
1 ·α−1

1 , . . . , v(b),(i)
n ·α−1

n)⊺.
Note that the secret decryption key sk is not necessary to simulate Gb

3 and
Gb

4 . Additionally, v∗i is only used to call Enc(pk, v∗i) (in Gb
3). This allows to

apply the IND-CPA security of FHE.

claim 12.1. For all legitimate k-switching PPT adversaries A, there exists a
(legitimate) PPT adversary Bb

4 such that
⃓⃓
⃓Pr
[︂
outb4 = 1

]︂
− Pr

[︂
outb3 = 1

]︂⃓⃓
⃓ ⩽ k ·Advind-cpa

FHE,Bb
4

(λ).

Proof of Claim 12.1. We use a standard hybrid argument.

game Gb
3.1. The hybrid game Gb

3.1 is defined as Gb
3 except that for j < i,

C∗j is produced via Enc(pk, 0) and for j ⩾ i, C∗j is produced for Enc(pk, v∗j).
Hence, Gb

3.1 is identical to Gb
3 and Gb

3.k+1 is identical to Gb
4 . We construct an

adversary Bb
3.1 for the IND-CPA security of FHE. On input of pk, Bb

3.1 guesses

12.1 main theorem and security analysis 127

49 Note that since
[b(0)]G,
[b(1)]G ∈ Bn

ppG
, we

have [bi,b]G ̸= [0]G
(for all i ∈ n).

an index ν ∈ [k], samples ppG ← GGenG(1
λ), calls A(ppG), obtains A’s output

(([b(j)]G)j∈{0,1}, (v(j),(i))i∈[k],j∈{0,1}) and produces ppH as in Gb
3 . Note that

Bb
3.1 knows α1, . . . ,αn and wy. For µ ∈ {1, . . . ,ν− 1}, Bb

3.1 produces

)

h∗µ as

in Gb
3 . For µ ∈ {ν+ 1, . . . ,k}, Bb

3.1 produces

)

h∗µ as in Gb
4 . For µ = ν, Bb

3.1
outputs

M0 :=
(︂
v
(b),(µ)
1 ·α−1

1 , . . . , v(b),(µ)
n ·α−1

n

)︂⊺

M1 := (0, . . . , 0)⊺

to the IND-CPA game together with his internal state. On input of C∗, Bb
3.1

uses C∗ as C∗µ, computes

[︁
x∗µ
]︁

G
:=
[︂
(b(0))⊺ · v(0),(µ)

]︂
G

,

π∗µ ← Prove
(︂
σ, (pars,

[︁
x∗µ
]︁

G
,C∗µ), (wy)

)︂
.

Finally, Bb
3.1 calls A on input (ppH, (

)
h∗i)i∈[k]) and outputs A’s output. If

C∗ is an encryption of M0, Bb
3.1 perfectly simulates Gb

3.ν, otherwise Bb
3.1

perfectly simulates Gb
3.ν+1. Hence,

⃓⃓
⃓Pr
[︂
outb4 = 1

]︂
− Pr

[︂
outb3 = 1

]︂⃓⃓
⃓ ⩽ k ·Advind-cpa

FHE,Bb
3.1

(λ).

Recall that every legitimate k-switching adversary always guarantees
[︂
(v(0),(i))⊺ ·b(0)

]︂
G
=
[︂
(v(1),(i))⊺ ·b(1)

]︂
G

and [b(0)]G, [b(1)]G ∈ Bn
ppG

. Therefore, G0
4 and G1

4 only differ in the fact that
in Gb

4 the vector [b(b)]G is used to compute [Ω]G. That is, [Ω]G = ([1]G ,[︁
b2,b

]︁α2

G
, . . . ,

[︁
bn,b

]︁αn

G
)⊺ for α2, . . . ,αn chosen uniformly at random from

Zn
p . Except for [Ω]G, the view of A is independent of α2, . . . ,αn.49 Thus,

Pr[out04 = 1] = Pr[out14 = 1].

Note that since G has unique encodings, A is unable to extract auxiliary
information from the encodings of

[︁
x∗i
]︁

G
. This is crucial since such auxiliary

information may for instance reveal how
[︁
x∗i
]︁

G
was computed.

lemma 12.6. The group scheme H defined in Figures 12.1 and 12.2 satisfies
statistical re-randomizability.

Proof of Lemma 12.6. The circuit Crerand takes inputs from {0, 1}penc(λ) and
expects randomness from {0, 1}m

′(λ) × {0, 1}m
′′(λ). We recall that piO⋆

ℓ is an
ℓ-expanding pIO scheme for ℓ(λ) = m′(λ) +m′′(λ) + 2(λ+ 1) + 3. Since for
every distribution Z1 over {0, 1}penc(λ),

˜︁H∞(Uℓ(λ) | Z1) = ℓ(λ) > m′(λ) +m′′(λ) + 2(λ+ 1) + 2,

the statistical distance

∆
(︂{︁

Λrerand ← piO⋆
ℓ(Crerand) :

(︁
Λrerand,Λrerand(Z1,Z2)

)︁}︁
,

{︁
Λrerand ← piO⋆

ℓ(Crerand) :
(︁
Λrerand,Crerand(Z1;Um′(λ)+m′′(λ))

)︁}︁)︂

(12.1)

128 construction

is at most 2−(λ+1).
Let

)

h0 =: ([x0]G ,C0,π0)H,

)

h1 =: ([x1]G ,C1,π1)H ∈ H be the encodings
chosen by the adversary A. Since A is a legitimate re-randomization adver-
sary, PrivExtH(τH,

)

h0) = PrivExtH(τH,

)

h1). Due to perfect correctness of FHE
and since α1, . . . ,αn ∈ Z×p are invertible, Dec(sk,C0) = Dec(sk,C1). Due to

perfect re-randomizability of FHE, the ciphertexts produced via Crerand(

)

h0)

and Crerand(

)

h1) are identically distributed. Furthermore, since Crerand(

)

hb)

produces the consistency proof using the witness (sk, Dec(sk,Cb)), the statis-
tical distance

∆
(︂
Crerand

(︂)

h0;Um′(λ)+m′′(λ)

)︂
,

Crerand

(︂)

h1;Um′(λ)+m′′(λ)

)︂)︂
= 0. (12.2)

Therefore, combining Equations (12.1) and (12.2) yields

Advrerand
H,A (λ) ⩽ 2 · 2−(λ+1) = 2−λ.

Note that since G has unique encodings, A is unable to extract auxiliary
information from the encodings of UnwrapH(ppH,

)

h). This is crucial since
such auxiliary information may be used to distinguish whether

)

h0 or

)

h1 was
used to derive

)

h.

Theorem 12.1 then follows by combining Lemmas 12.1, 12.2, 12.3, 12.5
and 12.6.

50 The gap Diffie-
Hellman assumption
states that the
computational Diffie-
Hellman problem is
hard even in the
presence of a
decisional Diffie-
Hellman oracle.
51 A cryptographic
building block is
tightly secure under
some assumption A

if every adversary
breaking the building
block can be
transformed into a
problem solver
solving A with
roughly the same
runtime and success
probability as the
adversary.

13 S I G N E D E LG A M A L

The ElGamal public-key encryption scheme [ElG85] is a classical public-
key encryption scheme based on cyclic groups. Given some cyclic group
G of prime order with generator g, a public-key secret-key pair is of the
form (gy,y) for y ∈ Zp. Encryption of some message M ∈ G chooses
a random x ← Zp and outputs the ciphertext (C1,C2) := (gx,gx ·M).
Decryption recovers M by computing C2 · (C1)

−y. The ElGamal encryption
scheme is IND-CPA secure under the DDH assumption in G, [TY98]. That
is, no adversary can distinguish encryptions of two messages, even if the
public key is known. The de-facto security notion for public-key encryption
is IND-CCA2 security introduced in [RS92]. IND-CCA2 security requires
that no adversary is able to distinguish encryptions of two messages even
when granted the ability to decrypt arbitrary ciphertexts during the entire
experiment (even after given the challenge ciphertext), as long as he does not
use this ability to decrypt the challenge ciphertext. The ElGamal encryption
scheme is homomorphic and can hence not be IND-CCA2 secure. As detailed
in [FPS20], the ElGamal encryption scheme can be made IND-CCA2 secure
by making it plaintext-aware [BR95] or by considering its hashed variant
[ABR01].

One possibility of making ElGamal plaintext-aware is to use a Schnorr
signature with gx as public key. The resulting scheme is called Schnorr-
signed ElGamal [Jak98; TY98]. [SJ00] show that Schnorr-signed ElGamal is
IND-CCA2 secure in the generic group model and the random oracle model
and [TY98] prove Schnorr-signed ElGamal IND-CCA2 secure under some
non-standard knowledge-type assumptions on Schnorr signatures.

The hashed variant of the ElGamal encryption scheme derives the key
via H((gy)x) (instead of (gy)x). More precisely, in the hashed ElGamal key-
encapsulation mechanism (KEM), a public key is a group element Y, the
corresponding secret key is y = dlogg(Y). For encryption, one picks a random
exponent x← Zp to compute a key H(Yx) accompanied by an encapsulation
X := gx. Given the encapsulation and the secret key y, the receiver can recover
that key K = H(Xy). In the random oracle model the hashed ElGamal key
encapsulation algorithm (KEM) is IND-CCA2 secure under the gap Diffie-
Hellman assumption50 [CS03].

[FPS20] showed that a combination of Schnorr-signed ElGamal and hashed
ElGamal (henceforth simply called Schnorr-signed ElGamal) is tightly51 IND-
CCA2 secure under the DL assumption in the algebraic group model and
the random oracle model. Schnorr-signed ElGamal (see Figure 13.1) works
similarly as hashed ElGamal but every encapsulation is accompanied by a
Schnorr signature for message X under public key X. Decryption works as
before with the difference that decryption aborts if the provided Schnorr
signature is invalid.

In this chapter, we demonstrate that the algebraic wrapper can be applied
to mimic the proof of tight IND-CCA2 security of Schnorr-signed ElGamal
EsElG from [FPS20]. Note that in contrast to the tight reduction for Schnorr

129

130 signed elgamal

KGen(ppH)

y← Zp

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH, SamH(ppH,y))

pk := (ppH,

)

G,

)

Y)

sk := (pk,y)

return (pk, sk)

(a) The key generation algorithm.

Enc(pk = (ppH,

)

G,

)

Y))

x, r← Zp

)

R← RerandH(ppH, SamH(ppH, r))

)

X← RerandH(ppH, SamH(ppH, x))

k := H′(

)

Y x)

s := r+H(

)

R,

)

X) · x mod p

return
(︁
k, (

)

X,

)

R, s)
)︁

(b) The encapsulation algorithm.

Dec(sk, (

)

X,

)

R, s))

if [s]H ̸=H

)

XH(

)

R,

)

X) ·)

R then

return ⊥

return k := H′(

)

Xy)

(c) The decapsulation algorithm.

Figure 13.1: The Schnorr-signed ElGamal encryption scheme EsElG instantiated with
an algebraic wrapper H. Note that to compensate for the non-unique-
ness of group element encodings, the (random oracle) hash value of
a group element encoding is computed for the identifier produced by
GetIDH(ppH, ·) (which is unique for all group element encodings of
the same group element). The hash function H maps tuples of group
elements from H to elements in K and the hash function H′ maps group
elements from H to Zp elements.

signatures from [AHK20], the tightness for Schnorr-signed ElGamal does
not require the “origin element trick” in combination with statistical re-
randomizability since it is not necessary to switch the representations of
oracle responses. Note that the “origin element trick” is not part of this
thesis.

theorem 13.1. Let GGenG be a group generator for a cyclic group G such that
DL is hard relative to GGenG and let H be an algebraic wrapper for G. Then, EsElG
in H is tightly IND-CCA2 secure in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B and
a legitimate switching adversary A′ both running in time T(B) ≈ T(A) + (qd +

qh) · poly(λ) and T(A′) ≈ T(A) + (qd + qh) · poly(λ) such that

Advind-cca2
EsElG,A (λ) ⩽ Advdl

B,G(λ) + Adv2-switching
A′,H (λ) +

O(qd + qh)

2λ
,

where qh is a polynomial upper bound on the number of random oracle queries,
qd is a polynomial upper bound on the number of decryption queries and poly is a
polynomial independent of qd and qh.

Proof. The proof strategy follows (up to some preparations) the outline of
[FPS20]. The hybrid G0 is identical to Expind-cca2

EsElG,A (λ). The initial game transi-
tions until hybrid G3 are preparation steps due to the algebraic wrapper. The
following hybrids G4, G5 and G6 correspond exactly to the hybrids G1,G2,
G3 used in [FPS20], respectively. The preparation steps set up the random-
ness for the challenge ciphertext as x∗ := z · y. Further, the randomness for

signed elgamal 131

the signature in the challenge ciphertext is chosen using an x∗-component.
Subsequently, re-randomizability and switching are applied such that the
public key

)

Y uses the representation vector (0, 1)⊺ and the randomness for the
challenge ciphertext

)

X∗ uses the representation vector (0, z)⊺. The remaining
proof proceeds as in [FPS20].

For notational convenience, we introduce the notation

)

A =H

)

B for the
equality testing algorithm EqH(ppH,

)

A,

)

B). Note that the hash values for
a group element encoding

)

A are produced for the bitstring derived via
GetIDH(ppH,

)

A) which is guaranteed to be unique for all group element
encodings

)

B satisfying
)

A =H

)

B.
We proceed over a series of games starting from the IND-CCA2 game in the

random oracle model. The hash functions ˜︁H : H×H→ Zp and ˜︁H′ : H→ K

behave exactly as there counterparts H and H′, respectively, and act solely
as helper functions. The adversary A only has access to the oracles H and
H′ (and Dec). Throughout the proof, the behavior of ˜︁H and ˜︁H′ will not be
altered.

game G0. G0 is identical to the IND-CCA2 security game in the random
oracle model, see Figure 13.2.

game G1. We first change how the signature in the challenge ciphertext is
generated. Particularly, the randomness used for the signature is chosen
using a y-component. More precisely, G1 (defined in Figure 13.3) is identical
to G0 except for two key differences. First, x∗ is not sampled directly from Zp

but is computed as z · y for some uniformly chosen z← Zp. Second, in G0,
the first part of the signature

)

R∗ is produced via RerandH(ppH, SamH(ppH,
x∗)) and is used to obtain the hash value c∗ := ˜︁H(

)

R∗,

)

X∗) and is itself part
of the signature. In G1, the group element which is used to obtain the
hash value c∗ and the group element which is actually part of the signature
are decoupled. To obtain c∗, G1 uses

)

R∗1 which is produced as in G0 via
RerandH(ppH, SamH(ppH, x∗)). The group element

)

R∗2 which is part of the
signature is computed later, depending on c∗, via RerandH(ppH, SamH(ppH,
s∗ − c∗ · x∗)).

Since x∗ is in both games uniformly distributed and r∗ = s∗− c∗ ·x∗ mod p

and thus

GetIDH

(︂
ppH,

)

R∗1
)︂
= GetIDH

(︂
ppH,

)

R∗2
)︂

,

the view of A in G0 and G1 is identical and Pr[out0 = 1] = Pr[out1 = 1].

game G2. G2 (see Figure 13.4) is identical to G1 except that the encodings

)

Y,

)

X∗ and

)

R∗2 are produced via private sampling or via the group operation
instead of public sampling. Since these encodings are re-randomized subse-
quently, this game hop is justified by the re-randomizability of the algebraic
wrapper H. More precisely, we successively replace

RerandH

(︁
ppH, SamH(ppH,y)

)︁
by RerandH

(︁
ppH, PrivSamH(τH,y)

)︁
,

RerandH

(︁
ppH, SamH(ppH, x∗)

)︁
by RerandH

(︁
ppH, PrivSamH(τH, x∗)

)︁
,

RerandH

(︁
ppH, SamH(ppH, s∗ − c∗ · x∗)

)︁
by

RerandH

(︂
ppH,

)

G s∗ · (

)

X∗)−c∗
)︂

.

132 signed elgamal

Due to correctness of sampling, we have

PrivExtH

(︁
τH, SamH(ppH,y)

)︁
= y · e1

= PrivExtH (τH, PrivSamH(τH,y)) ,

PrivExtH

(︁
τH, SamH(ppH, x∗)

)︁
= x∗ · e1

= PrivExtH (τH, PrivSamH(τH, x∗)) .

Further, due to correctness of sampling and correctness of extraction,

PrivExtH

(︁
τH, SamH(ppH, s∗ − c∗ · x∗)

)︁

=(s∗ − c∗ · x∗) · e1

=PrivExtH

(︂
τH,

)

G s∗ · (

)

X∗)−c∗
)︂

.

Hence, for each of these changes we can apply statistical re-randomizability
of H,

⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out1 = 1

]︁⃓⃓
⩽

3

2λ
.

game G3. Towards removing the necessity to know y for the simulation,
we change the basis to be [b]G := ([1]G , [y]G)

⊺ and adapt the representation
vectors used for private sampling of

)

Y and
)

X∗ accordingly. More precisely, G3

is identical to G2 except for the fact that instead of the basis ([1]G , [β2]G)
⊺

for some arbitrary β2 ∈ Zp, we use the basis ([1]G , [y]G)
⊺. Additionally,

the encodings

)

Y and

)

X∗ are privately sampled such that they carry the
representation vectors (0, 1)⊺ and (0, z)⊺, respectively. Figure 13.5 provides a
formal definition of G3.

This game hop is justified by 2-switching of H. We construct an adversary
B3 on 2-switching as follows. Initially, on input of ppG, B3 outputs two basis
vectors

[︂
b(G2)

]︂
G
:= ([1]G , [β2]G)

⊺ and
[︂
b(G3)

]︂
G
:= ([1]G , [y]G)

⊺

and representation vectors

v(1),(G2) := (y, 0)⊺, v(2),(G2) := (z · y, 0)⊺

v(1),(G3) := (0, 1)⊺, v(2),(G3) := (0, z)⊺.

In return, B3 receives public parameters ppH and two encodings

)

C(1) and)

C(2). B3 computes

)

Y ← RerandH(ppH,

)

C(1)) and

)

X∗ ← RerandH(ppH,

)

C(2))

and simulates the remaining game as in G2. Note that this is possible since
τH is not necessary. B3 simulates either G2 or G3 for A depending on the
challenge provided by Exp2-switching

H,A,b (λ). Hence,

⃓⃓
Pr
[︁
out3 = 1

]︁
− Pr

[︁
out2 = 1

]︁⃓⃓
⩽ Adv2-switching

H,B3
(λ).

Since B3 is a legitimate adversary, Adv2-switching
H,B3

(λ) is negligible.

game G4. From this point on, we are able to closely follow the lines of [FPS20].
G4 (see Figure 13.6) is identical to G3 except for the following modifications.
In G4, the oracle H stores the private extractions of the encodings used to

signed elgamal 133

52 Recall that T keeps
track of previous
oracle responses of H.

call H in a list U. Furthermore, the decryption oracle obtains representation
vectors corresponding to the supplied encodings

)

R and

)

X by first looking for
a matching entry in U and, if no such entry is present, by applying private
extraction. Let (ν,µ) and (ν′,µ′) be the thus obtained representation vectors
of

)

R and
)

X, respectively. Game G4 additionally introduces an abort condition.
If µ+ µ′ · c = 0 and µ′ ̸= 0, G4 aborts and outputs a random bit. The games
G3 and G4 only differ if G4 aborts.

Note that all values in the table T are set in an adversarial call to either H
or Dec, except for c∗ = T [(GetIDH(ppH,

)

R∗2), GetIDH(ppH,

)

X∗))] which is set
using ˜︁H within the game.52 If Dec(

)

R,

)

X, s) ̸= ⊥, then (

)

R,

)

X) ̸= (

)

R∗2,

)

X∗) since
otherwise s = s∗. Hence, the value c = T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

is independent of (ν,µ,ν′,µ′). Therefore, the probability that G4 aborts is
upper bounded by the probability that c is chosen as c = − µ

µ′ mod p which
can be upper bounded by 1

p ⩽ 2−λ. By a union bound, the probability that
G4 aborts is upper bounded by qd

2λ . Since G3 and G4 behave identical unless
G4 aborts, we have

⃓⃓
Pr
[︁
out4 = 1

]︁
− Pr

[︁
out3 = 1

]︁⃓⃓
⩽

qd

2λ
.

game G5. G5, defined in Figure 13.7, is identical to G4 except for the
following changes. Instead of sampling r∗ and querying ˜︁H for c∗ to ob-
tain s∗ = r∗ + c∗ · x∗, G5 samples s∗ and c∗ independently and computes

)

R∗2 = RerandH(ppH,

)

G s∗ · (

)

X∗)−c∗) as in G4. This behavior is identical to
G4 except for the event that the tuple (

)

R∗2,

)

X∗) already has an entry in T . If
this event occurs, G5 aborts. Since

)

R∗2 and

)

X∗ are uniformly random and
T contains at most qd + qh many entries after at most qd Dec-queries and
qh H-queries, the probability that G5 aborts, but G4 does not, can be upper
bounded by qd+qh

22λ . Hence,

⃓⃓
Pr
[︁
out5 = 1

]︁
− Pr

[︁
out4 = 1

]︁⃓⃓
⩽

qd + qh

22λ
.

game G6. G6 (see Figure 13.8) introduces two further abort conditions (⋆)

and (⋆⋆). G6 aborts as per (⋆) if H′ is called on

)

K such that

)

K =

)

X∗ y and
aborts as per (⋆⋆) if µ+ µ′ · ˜︁H(

)

R,

)

X) ̸= 0 mod p, where µ and µ′ are the [y]G-
components in the decomposition extracted from

)

R and

)

X, respectively.
As in [FPS20], we show that if G6 differs from G5, then we can solve

discrete logarithms.
We construct an adversary B6 on the discrete logarithm problem. Given

(ppG, [1]G , [y]G), B6 produces (ppH, τH) ← GGenH(ppG, ([1]G , [y]G)
⊺) and

simulates G6 for A. Note that

)

Y and

)

X∗ can be sampled without knowing y

(and x∗).

• B6 simulates queries to H′ as follows. When A queries H′ for

)

K, B6

computes (ν′′,µ′′)← PrivExtH(τH,

)

K). Hence,

UnwrapH(ppH,

)

K) = (ν′′,µ′′) · ([1]G , [y]G)
⊺.

To test whether

)

K = (

)

X∗)y which in turn (implicitly) equals

)

G z·y2
, B6

solves the equation

z · y2 − µ′′ · y− ν′′ = 0 mod p

134 signed elgamal

for y. If one solution is the discrete logarithm of the given DL challenge
game G6 aborts and B6 outputs y. (Note that due to (⋆), if the game
does not abort, A’s view is independent if it receives kb or k1.)

• B6 simulates queries to Dec as follows. As argued above, if Dec(

)

R,

)

X, s)
does not return ⊥, then (

)

R,

)

X) ̸= (

)

R∗,

)

X∗). We have that

UnwrapH(ppH,

)

R) = (ν,µ) · ([1]G , [y]G)
⊺ mod p,

UnwrapH(ppH,

)

X) = (ν′,µ′) · ([1]G , [y]G)
⊺ mod p.

If Dec does not return ⊥, we have s = r+ c · x mod p and hence

y · (µ+ µ′ · c) = s− ν− ν′ · c mod p. (13.1)

If µ+ µ′ · c ̸= 0 mod p, G6 aborts and B6 solves Equation (13.1) for y.
If µ+µ′ · c = 0 mod p and µ′ ̸= 0 then both G5 and G6 abort. If µ+µ′ ·
c = 0 mod p and µ′ = 0 then µ = 0 and dlog[1]G(UnwrapH(ppH,

)

X)) =

x = ν′ allowing the reduction to simulate Dec response as k := ˜︁H′()

Y x).

Therefore,
⃓⃓
Pr
[︁
out6 = 1

]︁
− Pr

[︁
out5 = 1

]︁⃓⃓
⩽ Advdl

G,B6
(λ).

signed elgamal 135

G0

ppG ← GGenG(1
λ)

(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)
⊺)

y← Zp

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH, SamH(ppH,y))

pk := (ppH,

)

G,

)

Y)

T , T ′ := []

x∗, r∗ ← Zp

)

X∗ ← RerandH(ppH, SamH(ppH, x∗))

)

R∗ ← RerandH(ppH, SamH(ppH, r∗))

c∗ := ˜︁H(

)

R∗,

)

X∗)

s∗ := r∗ + c∗ · x∗ mod p

k0 := ˜︁H′()

Y x∗
),k1 ← K

b′ ← AH,H′,Dec(pk,kb, (

)

R∗,

)

X∗, s∗))

return b = b′

(a) Description of G0.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G0.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G0.

H′(

)

K)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated
with G0.

Figure 13.2: The description of G0. G0 is identical to Expind-cca2
EsElG,A (λ).

136 signed elgamal

G1

ppG ← GGenG(1
λ)

(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)
⊺)

y← Zp

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH, SamH(ppH,y))

pk := (ppH,

)

G,

)

Y)

T , T ′ = []

z, r∗ ← Zp, x∗ := z · y

)

X∗ ← RerandH(ppH, SamH(ppH, z · y))

)

R∗1 ← RerandH(ppH, SamH(ppH, r∗))

c∗ := ˜︁H(

)

R∗,

)

X∗)

s∗ := r∗ + c∗ · z · y mod p

)

R∗2 ← RerandH

(︁
ppH,

SamH(ppH, s∗ − c∗ · x∗)
)︁

k0 := ˜︁H′()

Y z·y),k1 ← K

b′ ← AH,H′,Dec(pk,kb, (

)

R∗2,

)

X∗, s∗))

return b = b′

(a) Description of G1.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G1.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G1.

H′(

)

K)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated
with G1.

Figure 13.3: The description of G1.

signed elgamal 137

G2

ppG ← GGenG(1
λ)

(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)
⊺)

y← Zp

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH, PrivSamH(τH,y))

pk := (ppH,

)

G,

)

Y)

T , T ′ = []

z, r∗ ← Zp, x∗ := z · y

)

X∗ ← RerandH(ppH, PrivSamH(τH, z · y))

)

R∗1 ← RerandH(ppH, SamH(ppH, r∗))

c∗ := ˜︁H(

)

R∗,

)

X∗)

s∗ := r∗ + c∗ · z · y mod p

)

R∗2 ← RerandH(ppH,

)

G s∗ · (

)

X∗)−c∗
)

k0 := ˜︁H′()

Y z·y),k1 ← K

b′ ← AH,H′,Dec(pk,kb, (

)

R∗2,

)

X∗, s∗))

return b = b′

(a) Description of G2.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G2.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G2.

H′(

)

K)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated
with G2.

Figure 13.4: The description of G2.

138 signed elgamal

G3

ppG ← GGenG(1
λ)

y← Zp

(ppH, τH)← GGenH(ppG, ([1]G , [y]G)
⊺)

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH,

PrivSamH(τH, (0, 1)⊺))

pk := (ppH,

)

G,

)

Y)

T , T ′ = []

z, r∗ ← Zp, x∗ := z · y

)

X∗ ← RerandH(ppH,

PrivSamH(τH, (0, z)⊺))

)

R∗1 ← RerandH(ppH, SamH(ppH, r∗))

c∗ := ˜︁H(

)

R∗,

)

X∗)

s∗ := r∗ + c∗ · z · y mod p

)

R∗2 ← RerandH(ppH,

)

G s∗ · (

)

X∗)−c∗
)

k0 := ˜︁H′()

Y z·y),k1 ← K

b′ ← AH,H′,Dec(pk,kb, (

)

R∗2,

)

X∗, s∗))

return b = b′

(a) Description of G3.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G3.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G3.

H′(

)

K)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated
with G3.

Figure 13.5: The description of G3.

signed elgamal 139

G4

ppG ← GGenG(1
λ)

y← Zp

(ppH, τH)← GGenH(ppG, ([1]G , [y]G)
⊺)

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH,

PrivSamH(τH, (0, 1)⊺))

pk := (ppH,

)

G,

)

Y)

T , T ′ = [],U := []

z, r∗ ← Zp, x∗ := z · y

)

X∗ ← RerandH(ppH,

PrivSamH(τH, (0, z)⊺))

)

R∗1 ← RerandH(ppH, SamH(ppH, r∗))

c∗ := ˜︁H(

)

R∗,

)

X∗)

s∗ := r∗ + c∗ · z · y mod p

)

R∗2 ← RerandH(ppH,

)

G s∗ · (

)

X∗)−c∗
)

k0 := ˜︁H′()

Y z·y),k1 ← K

b′ ← AH,H′,Dec(pk,kb, (

)

R∗2,

)

X∗, s∗))

return b = b′

(a) Description of G4.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗2 ∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥
(ν,µ)← PrivExtH(τH,

)

R)

(ν′,µ′)← PrivExtH(τH,

)

X)

if U[(GetIDH(ppH,

)

R),

GetIDH(ppH,

)

X))] ̸= ⊥ then

(ν,µ,ν′,µ′) := U[(GetIDH(ppH,

)

R),

GetIDH(ppH,

)

X))]

if (µ+ µ′ · c = 0)∧ (µ′ ̸= 0) then

abort and output random bit

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G4.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

U[(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] :=

(PrivExtH(τH,

)

R), PrivExtH(τH,

)

X))

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G4.

H′(

)

K)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated
with G4.

Figure 13.6: The description of G4. This game corresponds to G1 from [FPS20].

140 signed elgamal

G5

ppG ← GGenG(1
λ)

y← Zp

(ppH, τH)← GGenH(ppG, ([1]G , [y]G)
⊺)

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH, PrivSamH(τH, (0, 1)⊺))

pk := (ppH,
)

G,
)

Y)

T , T ′ = [],U := []

z, c∗, s∗ ← Zp, x∗ := z · y

)

X∗ ← RerandH(ppH, PrivSamH(τH, (0, z)⊺))

)

R∗2 ← RerandH(ppH,

)

G s∗ · (
)

X∗)−c∗
)

if T [(GetIDH(ppH,

)

R∗2),

GetIDH(ppH,

)

X∗))] = ⊥ then

T [(GetIDH(ppH,

)

R∗2),

GetIDH(ppH,

)

X∗))] := c∗

else

abort and output random bit

k0 := ˜︁H′()

Y z·y),k1 ← K

b′ ← AH,H′,Dec(pk,kb, (

)

R∗2,

)

X∗, s∗))

return b = b′

(a) Description of G5.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗2 ∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥

(ν,µ)← PrivExtH(τH,

)

R)

(ν′,µ′)← PrivExtH(τH,

)

X)

if U[(GetIDH(ppH,

)

R),

GetIDH(ppH,

)

X))] ̸= ⊥ then

(ν,µ,ν′,µ′) := U[(GetIDH(ppH,

)

R),

GetIDH(ppH,

)

X))]

if (µ+ µ′ · c = 0)∧ (µ′ ̸= 0) then

abort and output random bit

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G5.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

U[(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] :=

(PrivExtH(τH,

)

R), PrivExtH(τH,

)

X))

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G5.

H′(

)

K)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated
with G5.

Figure 13.7: The description of G5. This game corresponds to G2 from [FPS20].

signed elgamal 141

G6

ppG ← GGenG(1
λ)

y← Zp

(ppH, τH)← GGenH(ppG, ([1]G , [y]G)
⊺)

)

G← RerandH(ppH, SamH(ppH, 1))

)

Y ← RerandH(ppH, PrivSamH(τH, (0, 1)⊺))

pk := (ppH,

)

G,

)

Y)

T , T ′ = [],U := []

z, c∗, s∗ ← Zp, x∗ := z · y

)

X∗ ← RerandH(ppH, PrivSamH(τH, (0, z)⊺))

)

R∗2 ← RerandH(ppH,

)

G s∗ · (

)

X∗)−c∗
)

if T [(GetIDH(ppH,

)

R∗2),

GetIDH(ppH,

)

X∗))] = ⊥ then

T [(GetIDH(ppH,

)

R∗2),

GetIDH(ppH,

)

X∗))] := c∗

else

abort and output random bit

k0 := ˜︁H′()

Y z·y),k1 ← K

b′ ← AH,H′,Dec(pk,k1, (

)

R∗2,

)

X∗, s∗))

return b = b′

(a) Description of G6.

Dec(

)

R,

)

X, s)

if

)

R =H

)

R∗2 ∧

)

X =H

)

X∗∧s = s∗ then

return ⊥

c := ˜︁H(

)

R,

)

X)

if [s]H ̸=H

)

R ·)

X c then

return ⊥

(ν,µ)← PrivExtH(τH,

)

R)

(ν′,µ′)← PrivExtH(τH,

)

X)

if µ+ µ′ · c ̸= 0 then

abort and output random bit (⋆⋆)

if U[(GetIDH(ppH,

)

R),

GetIDH(ppH,

)

X))] ̸= ⊥ then

(ν,µ,ν′,µ′) := U[(GetIDH(ppH,

)

R),

GetIDH(ppH,

)

X))]

if (µ+ µ′ · c = 0)∧ (µ′ ̸= 0) then

abort and output random bit

k := ˜︁H′()

Xy)

return k

(b) Decryption oracle associated with G6.

H(

)

R,

)

X)

if T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] = ⊥ then

T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]← Zp

U[(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))] :=

(PrivExtH(τH,

)

R), PrivExtH(τH,

)

X))

return T [(GetIDH(ppH,

)

R), GetIDH(ppH,

)

X))]

(c) Random oracle H associated with G6.

H′(

)

K)

if

)

K =

)

X∗ y then

abort and output random bit (⋆)

if T ′[GetIDH(ppH,

)

K)] = ⊥ then

T ′[GetIDH(ppH,

)

K)]← K

return T ′[GetIDH(ppH,

)

K)]

(d) Random oracle H′ associated with G6.

Figure 13.8: The description of G6. This game corresponds to G3 from [FPS20].

Part III

O N P S E U D O R A N D O M E N C O D I N G S

signed elgamal 145

iii on pseudorandom encodings

14 introduction 147

14.1 Flavors of Pseudorandom Encodings 149

14.1.1 Randomized, Computational Pseudorandom Encodings 151

14.2 Implications of our Results . 154

14.2.1 New Results for Adaptively Secure Computation . . . 154

14.2.2 Steganography and Covert Multi-Party Computation . 154

14.2.3 Other Results . 156

14.3 Negative Results . 156

14.3.1 Deterministic, Statistical Pseudorandom Encodings . . 156

14.3.2 Deterministic, Computational Pseudorandom Encodings157

14.3.3 Randomized, Statistical Pseudorandom Encodings . . 157

14.4 Open questions and subsequent work 158

14.5 Overview of Techniques . 159

15 the pseudorandom encoding hypothesis 165

15.1 The Pseudorandom Encoding Hypothesis with Setup 169

15.2 Static-to-Adaptive Transformation 171

16 pseudorandom encodings and invertible sampling 177

16.1 The Invertible Sampling Hypothesis 177

16.2 The Invertible Sampling Hypothesis with Setup 178

16.3 Equivalence between PREH and ISH 181

16.3.1 Every Inverse Samplable Distribution can be Pseudo-
randomly Encoded . 181

16.3.2 Every Pseudorandomly Encodable Distribution can be
Inverse Sampled . 184

17 a taxonomy of pseudorandom encodings 189

17.1 Deterministic Encoding Algorithm 189

17.1.1 Information-theoretic Guarantees and Compression . 190

17.1.2 Computational Guarantees and Pseudoentropy 195

17.2 Randomized Encoding Algorithm 200

17.2.1 (Generalized) Extractable One-way Functions 200

17.2.2 Information-theoretic Guarantees and Privately Verifi-
able GEOWFs . 201

17.2.3 Computational Guarantees and EOWFs with Common
Auxiliary Information 204

17.3 Static Pseudorandom Encodings from IO 212

146 signed elgamal

17.4 Bootstrapping Pseudorandom Encodings with URC 216

18 applications of pseudorandom encodings 221

18.1 Adaptively Secure Multi-Party Computation 221

18.1.1 Adaptive MPC . 221

18.1.2 Pseudorandom Encodings Imply Adaptive MPC . . . 224

18.1.3 Adaptive MPC Implies Pseudorandom Encodings . . 226

18.2 Honey Encryption . 229

18.3 Keyless Steganography . 231

18.4 Deniable Encryption . 233

18.5 Non-Committing Encryption 237

18.6 Super-Polynomial Encoding . 238

14 I N T R O D U C T I O N

In this part, we present the results of [ACI+20]. This part is taken verbatim
from [ACI+20] with minor changes.

The problem of compression has been extensively studied in the field of
information theory and, more recently, in computational complexity and
cryptography [GS85; Wee04; TVZ05; HLR07]. Informally, given a distribu-
tion X, compression aims to efficiently encode samples from X as short
strings while at the same time being able to efficiently recover these samples.
While the typical information-theoretic study of compression considers the
case of compressing multiple independent samples from the same source X,
its study in computer science, and in particular in this part, considers the
“single-shot” case. Compression in this setting is closely related to randomness
condensers [RR99; TV00; TUZ01; DRV12] and resource-bounded Kolmogorov
complexity [Sol64; Kol68; Cha69; LV90; LV19] – two well-studied problems in
computational complexity. Randomness condensers, which relax randomness
extractors, are functions that efficiently map an input distribution into an
output distribution with a higher entropy rate. A randomness condenser can
be viewed as an efficient compression algorithm, without a corresponding
efficient decompression algorithm. The resource-bounded Kolmogorov com-
plexity of a string is the smallest description length of an efficient program
that outputs this string. This program description can be viewed as a com-
pressed string, such that decoding is efficiently possible, while finding the
compressed string may be inefficient.

An important property of efficient compression algorithms, which com-
bines the efficiency features of randomness condensers and resource-bounded
Kolmogorov complexity, is their ability to efficiently produce “random-look-
ing” outputs while allowing the original input to be efficiently recovered.
Despite the large body of work on compression and its computational vari-
ants, this fundamental property has, to our knowledge, never been the subject
of a dedicated study. In this part, we fill this gap by initiating such a study.
Before formalizing the problem, we give a simple motivating example.

Consider the goal of encrypting a sample x from a distribution X (say, a
random 5-letter English word from the Merriam-Webster Dictionary) using
a low-entropy secret key k. Applying a standard symmetric-key encryption
scheme with a key derived from k gives rise to the following brute-force
attack: Try to decrypt with different keys until obtaining x′ in the support of
X. In the typical case that wrong keys always lead to x′ outside the support of
X, this attack successfully recovers x. Variants of this attack arise in different
scenarios, including password-authenticated key exchange [BM92], honey
encryption [JR14], subliminal communication and steganography [vHL05;
CGOS07; HPRV19], and more. A natural solution is to use perfect compres-
sion: if x can be compressed to a uniformly random string x̂ ∈ {0, 1}n before
being encrypted, it cannot be distinguished from another random string
x̂′ ∈ {0, 1}n obtained by trying the wrong key. Note, however, that compres-
sion may be an overkill for this application. Instead, it suffices to efficiently

147

148 introduction

53 Without this
requirement, the

problem can be solved
using non-interactive
commitment schemes

with the additional
property that

commitments are
pseudorandom (which
exist under standard

cryptographic
assumptions).

encode x into a (possibly longer) pseudorandom string from which x can be
efficiently decoded. This more general solution motivates the question we
consider in this part.

encoding into the uniform distribution. We initiate the study of
encoding distributions into a random-looking distribution. Informally, we
say that a distribution ensemble Xλ admits a pseudorandom encoding if there
exist efficient encoding and decoding algorithms (EX, DX), where DX is
deterministic, such that

Pr
[︁
y← Xλ : DX(EX(y)) = y

]︁
is overwhelming and (14.1)

{︁
y← Xλ : EX(y)

}︁
≈ Un(λ). (14.2)

Here, “≈” denotes some notion of indistinguishability (we will consider
both computational and statistical indistinguishability), and the probability
is over the randomness of both EX and Xλ. The polynomial n(λ) denotes the
output length of the encoding algorithm EX. We refer to Equation (14.1) as
correctness and to Equation (14.2) as pseudorandomness. It will also be useful
to consider distribution ensembles parameterized by an input m from a
language L. We say that such a distribution ensemble (Xm)m∈L admits a
pseudorandom encoding if there exist efficient algorithms (EX, DX) as above
satisfying correctness and pseudorandomness for all m ∈ L, where EX and
DX both additionally receive m as input. Note that we insist on the decoding
algorithm being efficient. This is required for our motivating applications.53

Note also that encoding and decoding above are keyless; that is, we want
encoded samples to be close to uniform even though anyone can decode them.
This is a crucial distinction from, for instance, encryption schemes with
pseudorandom ciphertexts, which look uniformly distributed to everyone
except the owner of the decryption key, and cannot be efficiently decrypted
without knowing the decryption key. Here, we seek to simultaneously achieve
pseudorandomness and correctness for all parties.

Our motivation for studying pseudorandom encodings stems from the
fact that this very natural problem appears in a wide variety of – sometimes
seemingly unrelated – problems in cryptography. We already mentioned
steganography, honey encryption, and password-authenticated key exchange;
we will cover more such connections in this part. Yet, this notion of encoding
has to our knowledge never been studied systematically. In this part, we
study several natural flavors of this notion, obtain positive and negative
results about realizing them, and map their connections with other problems
in cryptography.

The main focus of this part is on the hypothesis that all efficiently samplable
distributions admit a pseudorandom encoding. Henceforth, we refer to this
hypothesis as the pseudorandom encoding hypothesis (PREH).

For describing our results, it will be convenient to use the following general
notion of efficiently samplable distributions. A distribution family ensemble
(Xm)m∈L (for some language L ⊆ {0, 1}∗) is efficiently samplable if there
exists a probabilistic polynomial time (PPT) algorithm S such that S(m) is
distributed according to Xm for every m ∈ L. In case the distribution does
not depend on additional inputs, L can be considered equal to N.

overview of contributions. Following is a brief summary of our main
contributions along with pointers to the relevant technical chapters. We

14.1 flavors of pseudorandom encodings 149

54 The subscripts ≡s
and ≈c denote
statistical and
computational
guarantees,
respectively. The
superscripts det and
rand indicate
whether the encoding
algorithm is
deterministic or
randomized.

will give an expanded overview of the contributions and the underlying
techniques in the rest of this chapter.

• We provide a unified study of different flavors of pseudorandom en-
codings (PRE) and identify computational, randomized PRE in the
CRS model as a useful and achievable notion (Chapter 17 and Theo-
rem 17.13).

• We establish a two-way relation between PRE and the previously stud-
ied notion of invertible sampling (Theorem 16.1). This reveals unex-
pected connections between seemingly unrelated problems in cryp-
tography (e. g., between adaptively secure computation for general
functionalities and “honey encryption”).

• We bootstrap “adaptive PRE” from “static PRE” (Theorem 15.1). As a
consequence, one can base succinct adaptively secure computation on
standard IO as opposed to subexponential IO [CsW19] (Corollary 16.3).

• In [ACI+20], we use PRE to obtain a compiler from standard secure
multiparty computation (MPC) protocols to covert MPC protocols. This
result is not part of this thesis.

14.1 flavors of pseudorandom encodings
The notion of pseudorandom encoding has several natural flavors, depend-
ing on whether the encoding algorithm is allowed to use randomness or
not, and whether the pseudorandomness property satisfies a computational
or information-theoretic notion of indistinguishability. We denote the cor-
responding hypotheses that every efficiently samplable distribution can
be pseudorandomly encoded according to the above variants as PREHrand

≈c ,
PREHrand

≡s , PREHdet
≈c and PREHdet

≡s .54

We note that not all efficiently samplable distributions can be pseudo-
randomly encoded with a deterministic encoding algorithm. For instance,
a distribution which has one very likely event and many less likely ones
requires one specific encoding to appear with high probability. Thus, we
formally restrict the deterministic variants of the pseudorandom encoding
hypothesis to only hold for “compatible” samplers, which still results in
interesting connections. In this overview, however, we ignore this restriction.

Further, we explore relaxations which rely on a trusted setup assumption:
we consider the pseudorandom encoding hypothesis in the common reference
string model, in which a common string sampled in a trusted way from some
distribution is made available to the parties. This is the most common setup
assumption in cryptography and it is standard to consider the feasibility of
cryptographic primitives in this model to overcome limitations in the plain
model. That is, we ask whether for every efficiently samplable distribution
X, there exists an efficiently samplable CRS distribution and efficient encod-
ing and decoding algorithms (EX, DX) as above, such that correctness and
pseudorandomness hold, where the encoding and decoding algorithm as
well as the distinguisher receive the CRS as input, and the distributions in
Equations (14.1) and (14.2) are additionally over the choice of the CRS.

Considering distributions which may depend on an input m ∈ L further
entails two different flavors. On the one hand, we consider the notion where

150 introduction

55 The prefix “c”
denotes the static

variants with a CRS
and the prefix “ac”

denotes the adaptive
variants with a CRS.

56 If perfect
compression exists,

pseudorandom
generators cannot
exist (observation

attributed to Levin in
[GS85]).

inputs m are chosen adversarially but statically (that is, independent of the
CRS) and, on the other hand, we consider the stronger notion where inputs m
are chosen adversarially and adaptively depending on the CRS. We henceforth
denote these variants by the prefix “c” and “ac”, respectively.55

static-to-adaptive transformation. The adaptive notion, where in-
puts may be chosen depending on the CRS, is clearly stronger than the static
notion. However, surprisingly, the very nature of pseudorandom encodings
allows one to apply an indirection argument similar to the one used in
[HJK+16; CPR17; CPV17], which yields a static-to-adaptive transformation.

theorem (informal). If all efficiently samplable distributions can be pseudoran-
domly encoded in the CRS model with a static choice of inputs, then all efficiently
samplable distributions can be pseudorandomly encoded in the CRS model with an
adaptive choice of inputs.

Static-to-adaptive transformations in cryptography are generally nontrivial,
and often come at a big cost in security when they rely on a “complexity lever-
aging” technique. This connection and its application we will discuss below
are a good demonstration of the usefulness of the notion of pseudorandom
encodings.

relaxing compression. The notion of statistical deterministic pseudo-
random encodings recovers the notion of perfect compression. Hence, this
conflicts with the existence of one-way functions.56 In our systematic study of
pseudorandom encodings, we gradually relax perfect compression in several
dimensions, while maintaining one crucial property – the indistinguishability
of the encoded distribution from true randomness.

example. To illustrate the importance of this property, we elaborate on
the example we outline at the beginning of this chapter, focusing more specif-
ically on password-authenticated key exchange (PAKE). A PAKE protocol
allows two parties holding a (low entropy) common password to jointly and
confidentially generate a (high entropy) secret key, such that the protocol is
resilient against offline dictionary attacks, and no adversary can establish
a shared key with a party if he does not know the matching password. A
widely used PAKE protocol due to Bellovin and Merritt [BM92] has a very
simple structure: the parties use their low-entropy password to encrypt the
flows of a key-exchange protocol using a block cipher. When the block ci-
pher is modeled as a random cipher, it has the property that decrypting a
ciphertext (of an arbitrary plaintext) under an incorrect secret key yields a
fresh random plaintext. Thus, Bellovin and Merritt point out that the security
of their PAKE protocol requires that “the message to be encrypted by the
password must be indistinguishable from a random number.” This is easy
to achieve for Diffie-Hellman key exchange over the multiplicative group
of integers modulo a prime p. However, for elliptic curve groups this is no
longer the case, and one needs to resort to alternative techniques including
nontrivial point compression algorithms that compress the representation of a
random group element into a nearly uniform bitstring [BMN01].

Clearly, our relaxation of compression does not preserve the useful prop-
erty of obtaining outputs that are shorter than the inputs. However, the

14.1 flavors of pseudorandom encodings 151

remaining pseudorandomness property is good enough for many applica-
tions.

In the following, we elaborate on our weakest notion of pseudorandom
encodings, that is, pseudorandom encodings allowing the encoding algo-
rithm to be randomized and providing a computational pseudorandomness
guarantee. We defer the discussion on the stronger statistical or deterministic
variants to Section 14.3, where we derive negative results for most of these
stronger notions, which leaves computational randomized pseudorandom
encodings as the “best possible” notion that can be realized for general
distributions.

14.1.1 Randomized, Computational Pseudorandom Encodings

Computational randomized pseudorandom encodings allow the encoding
algorithm to be randomized and require only computational pseudorandom-
ness.

relation to invertible sampling. We show a simple but unexpected
connection with the notion of invertible sampling [CFGN96; DN00; GKM+00].
Informally, invertible sampling refers to the task of finding, given samples
from a distribution, random coins that explain the sample. Invertible sam-
pling allows to obliviously sample from distributions, that is, sampling from
distributions without knowing the corresponding secrets. This can be useful for,
e. g., sampling common reference strings without knowing the random coins
or public keys without knowing the corresponding secret keys. A natural
relaxation of this notion was systematically studied by Ishai, Kumarasubra-
manian, Orlandi, and Sahai [IKOS10]. Concretely, a PPT sampler S is inverse
samplable if there exists an alternative PPT sampler S and a PPT inverse
sampler S−1 such that

{︁
y← S(1λ) : y

}︁
≈c

{︁
y← S(1λ) : y

}︁
,

{︁
y← S(1λ; r) : (r,y)

}︁
≈c

{︁
y← S(1λ) : (S

−1
(1λ,y),y)

}︁
.

Note that the inverse sampling algorithm is only required to efficiently
inverse-sample from another distribution S, but this distribution must be
computationally close to the distribution induced by S. The main question
studied in [IKOS10] is whether every efficient sampler admits such an invert-
ible sampler. They refer to this hypothesis as the invertible sampling hypothesis
(ISH), and show that ISH is equivalent to adaptive MPC for general random-
ized functionalities that may hide their internal randomness. In this part, we
show the following two-way relation with pseudorandom encoding.

theorem (informal). A distribution admits a pseudorandom encoding if and only
if it admits invertible sampling.

Intuitively, the efficient encoding algorithm corresponds to the inverse sam-
pling algorithm, and decoding an encoded string corresponds to sampling
with the de-randomized alternative sampler S. This equivalence immediately
extends to all variants of pseudorandom encodings and corresponding vari-
ants of invertible sampling we introduce in this part. Invertible sampling is
itself connected to other useful cryptographic notions, such as oblivious sam-
pling, trusted common reference string generations, and adaptively secure
computation (which we will elaborate upon below).

152 introduction

Building on this connection, the impossibility result of [IKOS10] translates
to our setting. On a high level, extractable one-way functions (EOWFs)
conflict with invertible sampling because they allow to extract a “secret” (in
this case a pre-image) from an image, independently of how it was computed.
This conflicts with invertible sampling because invertible sampling is about
sampling without knowing the secrets.

theorem (informal, [IKOS10]). Assuming the existence of extractable one-way
functions (EOWF) and a non-interactive zero-knowledge proof system, PREHrand

≈c

does not hold.

This suggests that towards a realizable notion of pseudorandom encodings,
a further relaxation is due. Thus, we ask whether the above impossibility
result extends to the CRS model. In the CRS model, the above intuition why
ISH conflicts with EOWFs fails, because the CRS can contain an obfuscated
program that samples an image using some secret, but does not output this
secret.

Dachman-Soled, Katz, and Rao [DKR15] (building on the universal de-
niable encryption construction of Sahai and Waters [SW14]) construct a
so-called “explainability compiler” that implies cISHrand

≈c based on indistin-
guishability obfuscation (IO). By our equivalence theorem above, this implies
pseudorandom encodings for all efficiently samplable distributions in the
CRS model, with static choice of inputs, from IO. Invoking the static-to-
adaptive transformation detailed above, this also applies to the adaptive
variant.

theorem (informal). Assuming the existence of (polynomially secure) indistin-
guishability obfuscation and one-way functions, acPREHrand

≈c holds.

Note that [IKOS10] claim that their impossibility result extends to the CRS
model, whereas the above theorem seems to suggest the opposite. We show
that technically the result of [IKOS10] does extend to the CRS model at the
cost of assuming unbounded auxiliary-input extractable one-way functions,
a strong flavor of EOWFs that seems very unlikely to exist but cannot be
unconditionally ruled out.

theorem (informal). Assuming the existence of extractable one-way functions
with unbounded common auxiliary input and a non-interactive zero-knowledge
proof system, cPREHrand

≈c does not hold.

In fact, this apparent contradiction has been the source of some confusion
in previous works: the work of [IKOS10] makes an informal claim that their
impossibility result for ISH extends to the CRS model. However, due to
the connection between ISH and adaptively secure MPC (which we will
discuss in more details later on), this claim was challenged in [DKR15]: the
authors achieve a construction of adaptively secure MPC for all functionalities
assuming IO, which seemingly contradicts the claim of [IKOS10]. The authors
of [DKR15] therefore stated that the “impossibility result of Ishai et al. [...]
does not hold in the CRS model.” Our extension clarifies that the distinction
is in fact more subtle: the result of [IKOS10] does extend to the CRS model,
but at the cost of assuming EOWF with unbounded auxiliary inputs. This does
not contradict the constructions based on IO, because IO and EOWF with
unbounded auxiliary inputs are known to be contradictory [BCPR16].

14.1 flavors of pseudorandom encodings 153

PREHdet
≡s

ISHdet
≡s

Th. 16.1

PREHdet
≈c

ISHdet
≈c

Th. 16.1

PREHrand
≡s

ISHrand
≡s

Th. 16.1

PREHrand
≈c

ISHrand
≈c

Th. 16.1

cPREHdet
≡s

cISHdet
≡s

Th. 16.1

cPREHdet
≈c

cISHdet
≈c

Th. 16.1

cPREHrand
≡s

cISHrand
≡s

Th. 16.1

cPREHrand
≈c

cISHrand
≈c

acPREHrand
≈c

acISHrand
≈c

Th. 16.1 Th. 16.1
Th. 15.1

compression
to Hϵ

∞(X)

Th. 17.1
∄ OWF

Th. 17.2

compression
to HHILL(X)

Th. 17.3
and 17.4

¬ QRA

[HLR07;
LMs05]

∄ priv. verifiable
GEOWFs

Th. 17.7 ¬ subexp.
LWE

[BCPR16]

Honey encryption

[JR
1
4
]

∄ EOWFs
+NIZK

[IKOS10]

(computational)
honey encryption[JR14]

adaptive MPC[IKOS10]

Deniable
encryption

+PKE

Th. 18.6

∄ EOWFs
with aux. input

+NIZK

Th. 17.10

keyless
steganography

with global setup

Th. 18.5

(computational)
honey encryption
with global setup

[JR14]

non-committing
encryption

with global setup

+PKE

Th. 1
8
.7, [C

DM
W

0
9
]

adaptive MPC
with global setup

Th.
1
8.3, [DKR

1
5]

succinct adaptive
2-round MPC

with global setup

+aLW
E

[CsW
1
9]

covert MPC compiler
with global setup

[A
C

I+
2
0](poly) IO + OWF

[SW14; DKR15],
Th. 17.13

Figure 14.1: An overview of the connections of the pseudorandom encoding hypothesis and
other fields of cryptography and computational complexity theory. For simplicity, our static-to-
adaptive transformation only appears in the computational, randomized setting in this overview,
but also applies to the other settings. (Since the deterministic variants of the pseudorandom
encoding hypothesis are impossible for some pathologic samplers, the arrows between deter-
ministic and randomized variants of the pseudorandom encoding hypothesis are to be read as
if the deterministic variant is true for some sampler, then the corresponding randomized variant
is true for that sampler.)

overview. In Figure 14.1, we provide a general summary of the many
flavors of the pseudorandom encoding hypothesis, and how they relate to a
wide variety of other primitives.

further relaxation. We further study an additional relaxation of pseu-
dorandom encodings, where we allow the encoding algorithm to run in
super-polynomial time. We show that this relaxed variant can be achieved
from cryptographic primitives similar to extremely lossy functions [Zha16],
which can be based on the exponential hardness of the decisional Diffie-
Hellman problem – a strong assumption, but (still) more standard than
indistinguishability obfuscation. However, the applicability of the resulting
notion turns out to be rather restricted.

154 introduction

57 Adaptively well-
formed functionalities

do not hide internal
randomness.

58 Together with the
conflict between
cPREHrand

≈c and
EOWFs with

unbounded auxiliary
input, this corrects a

claim made in
[DKR15] that the

impossibility result of
adaptive MPC from

[IKOS10] would not
extend to the CRS

model.

14.2 implications of our results
In this section, we elaborate on the implications of the techniques we develop
and the results we obtain for a variety of other cryptographic primitives.

14.2.1 New Results for Adaptively Secure Computation

As mentioned above, a sampler admits invertible sampling if and only if
it can be pseudorandomly encoded. Ishai et al. [IKOS10] establish a two-
way connection between invertible sampling and adaptively secure MPC
for general randomized functionalities. An MPC protocol allows two or
more parties to jointly evaluate a (possibly randomized) functionality F on
their inputs without revealing anything to each other except what follows
from their inputs and outputs. This should hold even in the presence of an
adversary who can corrupt any number of parties in an adaptive (sequential)
fashion. When we write “adaptive MPC”, we mean adaptive MPC for all
randomized functionalities. This should be contrasted with weaker notions of
adaptive MPC for strict subsets of corrupted parties [BH93; CFGN96; GS12]
or for adaptively well-formed functionalities57 [CLOS02] which can both
be achieved from mild assumptions. The connection from [IKOS10] shows
that adaptive MPC for all randomized functions is possible if and only if
every PPT sampler admits invertible sampling, i. e., the invertible sampling
hypothesis is true.

We show that this result generalizes to the global CRS model. More pre-
cisely, we prove the adaptive variant of the pseudorandom encoding hypoth-
esis in the CRS model acPREHrand

≈c to be equivalent to adaptive MPC in the
global CRS model.58

As detailed above, the static variant of the pseudorandom encoding hy-
pothesis cPREHrand

≈c in the CRS model follows from IO (and one-way func-
tions). Applying our static-to-adaptive transformation, the same holds for
the adaptive variant. Thus, we obtain the first instantiation of an adaptive
explainability compiler [DKR15] without complexity leveraging and, hence,
based only on polynomial hardness assumptions. The recent work of Cohen,
shelat, and Wichs [CsW19] uses such an adaptive explainability compiler to
obtain succinct adaptive MPC, where “succinct” means that the communi-
cation complexity is sublinear in the complexity of the evaluated function.
Due to our instantiation of acPREHrand

≈c from polynomial IO, we improve the
results of [CsW19] by relaxing the requirement for subexponentially secure
IO to polynomially secure IO in a black-box way.

corollary (informal). Assuming the existence of polynomially secure indis-
tinguishability obfuscation and the adaptive hardness of the learning with errors
problem, then malicious, two-round, UC-secure adaptive MPC and sublinear com-
munication complexity is possible (in the local CRS model, for all deterministic
functionalities).

14.2.2 Steganography and Covert Multi-Party Computation

We explore the connection of the pseudorandom encoding hypothesis to
various flavors of steganography. The goal of steganography, informally, is
to embed secret messages in distributions of natural-looking messages, in

14.2 implications of our results 155

order to hide them from external observers. While the standard setting for
steganography relies on shared secret keys to encode the messages, we show
that pseudorandom encodings naturally give rise to a strong form of keyless
steganography. Namely, one can rely on pseudorandom encodings to encode
any message into an innocent-looking distribution, without truly hiding
the message (since anyone can decode the stream), but providing plausible
deniability, in the sense that, even with the decoded message, it is impossible
to tell apart whether this message was indeed encoded by the sender, or
whether it is simply the result of decoding the innocent distribution.

corollary (informal). Assuming pseudorandom encodings, then there exists a
keyless steganographic protocol which provides plausible deniability.

Plausible deniability is an important security notion; in particular, an im-
portant cryptographic primitive in this area is the notion of (sender-)deniable
encryption [CDNO97], which is known to exist assuming indistinguishability
obfuscation [SW14]. Deniable encryption enables to “explain” ciphertexts
produced for some message to any arbitrary other message by providing
corresponding random coins for a faked encryption process. We view it as
an interesting open problem to build deniable encryption under the pseu-
dorandom encoding hypothesis together with more standard cryptographic
primitives; we make a first step in this direction and show the following:
the statistical variant of pseudorandom encodings, together with the exis-
tence of public-key encryption, implies deniable encryption. Interestingly,
we also show that the computational randomized pseudorandom encoding
hypothesis suffices to imply non-committing encryption, a weaker form of
deniable encryption allowing to explain only simulated ciphertexts to arbitrary
messages [CFGN96].

covert secure computation. Covert MPC [vHL05; CGOS07] is an
intriguing flavor of MPC that aims at achieving the following strong security
guarantee: if the output of the protocol is not “favorable”, the transcript of the
interaction should not leak any information to the parties, including whether
any given party was actually taking part in the protocol. This strong form of
MPC aims at providing security guarantees when the very act of starting
a computation with other parties should remain hidden. As an example,
[vHL05] suppose that a CIA agent who infiltrated a terrorist group wants to
make a handshake with another individual to find out whether she is also
a CIA agent. Here, we show that pseudorandom encodings give rise to a
general compiler transforming a standard MPC protocol into a covert one, in
a round-preserving way. The idea is to encode each round of the protocol
such that encoded messages look random. Together with the equivalence
between adaptively secure MPC and pseudorandom encodings, this gives a
connection between two seemingly unrelated notions of secure computation.

corollary (informal). Assuming adaptively secure MPC for all functionalities,
there exists a round-preserving compiler that transforms a large class of “natural”
MPC protocols into covert MPC protocols (in the static, semi-honest setting).

We emphasize that the result on covert secure computation is not part of
this thesis. We refer the reader to the original publication [ACI+20] for more
details on this result.

156 introduction

14.2.3 Other Results

Due to our infeasibility results of PREHrand
≡s , distribution transforming en-

coders (DTEs) for all efficiently samplable distributions are infeasible. Even
the computational relaxation of DTEs is infeasible assuming extractable one-
way functions. Since all currently known constructions of honey encryption
rely on DTEs, we conditionally refute the existence of honey encryption
based on the DTE-then-encrypt framework from [JR14]. On the positive side,
due to our feasibility result of acPREHrand

≈c , computational honey encryption
is feasible in the CRS model.

theorem (informal). Assuming acPREHrand
≈c and a suitable symmetric-key en-

cryption scheme (modeled as a random cipher), computational honey encryption for
all efficiently samplable distributions exists in the CRS model.

14.3 negative results for stronger notions
Below we describe how we gradually relax perfect compression via different
notions of pseudorandom encodings and derive infeasibility results for all
variants of pseudorandom encodings which restrict the encoding algorithm
to be deterministic or require an information-theoretic pseudorandomness
guarantee. This leaves computational randomized pseudorandom encodings
as the best possible achievable notion.

14.3.1 Deterministic, Statistical Pseudorandom Encodings

The notion of pseudorandom encodings with a deterministic encoding algo-
rithm and information-theoretic indistinguishability is perhaps the simplest
notion one can consider. As we will prove in this paper, this notion recovers
the notion of perfect compression: since the encoding algorithm for some
source X is deterministic, it can be seen with an entropy argument that the
output size of EX must be at most H∞(X), the min-entropy of X; otherwise,
the distribution {EX(X)} can necessarily be distinguished from random with
some statistically non-negligible advantage. Therefore, EX is a perfect and
efficient compression algorithm for X, with decompression algorithm DX;
this is true even for the relaxation in the CRS model. The existence of efficient
compression algorithms for various categories of samplers was thoroughly
studied [TVZ05]. In particular, the existence of compression algorithms for
all efficiently samplable sources implies the inexistence of one-way functions
(this is an observation attributed to Levin in [GS85]) since compressing the
output of a pseudorandom generator to its entropy would distinguish it
from a random string, and the existence of one-way functions implies the
existence of pseudorandom generators [HILL99].

theorem (informal). Assuming the existence of one-way functions, then neither
PREHdet

≡s nor cPREHdet
≡s hold.

This is a strong impossibility result, as one-way functions dwell among
the weakest assumptions in cryptography, [Imp95]. One can circumvent
this impossibility by studying whether compression can be achieved for
more restricted classes of distributions, as was done for instance in [TVZ05].

14.3 negative results 157

Our work can be seen as pursuing an orthogonal direction. We seek to
determine whether a relaxed notion of compression can be achieved for all
efficiently samplable distributions. The relaxations we consider comprise
the possibility to use randomness in the encoding algorithm, and relaxing
the requirement on the encoded distribution to be only computationally
indistinguishable from random. Clearly, these relaxations remove one of
the most important features of compression algorithms, which is that their
outputs are smaller than their inputs (i. e., they compress). Nevertheless, the
indistinguishability of the encoded distribution from the uniform distribution
is another crucial feature of perfect compression algorithms, which has
independent applications.

14.3.2 Deterministic, Computational Pseudorandom Encodings

We now turn towards a relaxation where the encoded distribution is only
required to be computationally indistinguishable from random, but the en-
coding algorithm is still required to be deterministic. This flavor is strongly
connected to an important problem in cryptography: the problem of sep-
arating HILL entropy [HILL99] from Yao entropy [Yao82]. HILL and Yao
entropy are different approaches of formalizing computational entropy, i. e.,
the amount of entropy a distribution appears to have from the viewpoint of
a computationally bounded entity. Informally, a distribution has high HILL
entropy if it is computationally close to a distribution with high min-entropy;
a distribution has high Yao entropy if it cannot be compressed efficiently.
Finding a distribution which, under standard cryptographic assumptions,
has high Yao entropy, but low HILL entropy constitutes a long standing open
problem in cryptography. Currently, only an oracle separation [Wee04] and a
separation for conditional distributions [HLR07] are known. To establish the
connection between PREHdet

≈c and this problem, we proceed as follows: in-
formally, a deterministic pseudorandom encoding must necessarily compress
its input to the HILL entropy of the distribution. That is, the output size of the
encoding cannot be much larger than the HILL entropy of the distribution.
This, in turn, implies that a distribution which admits such a pseudorandom
encoding cannot have high Yao entropy.

In this work, we formalize the above argument, and show that the condi-
tional separation of HILL and Yao entropy from [HLR07] suffices to refute
PREHdet

≈c . This separation holds under the assumption that non-interactive
zero-knowledge proofs with some appropriate structural properties exist
(which in turn can be based on standard assumptions such as the quadratic
residuosity assumption). Thus, we obtain the following infeasibility result:

theorem (informal). If the quadratic residuosity assumption (QRA) holds, then
PREHdet

≈c does not hold.

Hence, we may conclude that towards a feasible variant of pseudorandom
encodings for all efficiently samplable distributions, requiring the encoding
algorithm to be deterministic poses a strong restriction.

14.3.3 Randomized, Statistical Pseudorandom Encodings

We now consider the relaxation of perfect compression by allowing the
encoding algorithm to be randomized while still requiring information-

158 introduction

theoretic indistinguishability from randomness. This flavor of pseudorandom
encoding was used in the context of honey encryption [JR14]. Honey encryption
is a cryptographic primitive which has been introduced to mitigate attacks
on encryption schemes resulting from the use of low-entropy passwords.
Honey encryption has the property that decrypting a ciphertext with an
incorrect key always yields a valid-looking plaintext which seems to come
from the expected distribution, thereby mitigating brute-force attacks. This
is the same property that was useful in the previous PAKE example.

The study of honey encryption was initiated in [JR14], where it was shown
that honey encryption can naturally be constructed by composing a block
cipher (modeled as a random cipher) with a distribution transforming encoder
(DTE), a notion which is equivalent to our notion of pseudorandom encoding
with randomized encoding and statistical pseudorandomness. The focus
of [JR14] was on obtaining such DTEs for simple and useful distributions.
In contrast, we seek to understand the feasibility of this notion for arbitrary
distributions. Intuitively, it is not straightforward to encode any efficient
distribution into the uniform distribution; consider for example the distri-
bution over RSA moduli, i. e., products of two random n-bit primes. Since
no efficient algorithm is known to test membership in the support of this
distribution, natural approaches seem to break down. In fact, we show in this
work that this difficulty is inherent: building on techniques from [BCPR16;
IKOS10], we demonstrate the impossibility of (randomized, statistical) pseu-
dorandom encodings for all efficiently samplable distributions, under a
relatively standard cryptographic assumption.

theorem (informal). Assuming the subexponential hardness of the learning with
errors (LWE) problem, PREHrand

≡s does not hold.

This result directly implies that under the same assumption, there exist
efficiently samplable distributions (with input) for which no distribution
transforming encoder exists. We view it as an interesting open problem
whether this result can be extended to rule out the existence of honey
encryption for arbitrary distributions under the same assumption.

14.4 open questions and subsequent work
The most intriguing question left open by our work is whether the weakest
variant of the pseudorandom encoding hypothesis cPREHrand

≈c , which is
implied by IO, also implies IO. Very recently, this question was settled in
the affirmative by Wee and Wichs [WW20] under the LWE assumption.
More concretely, by modifying a heuristic IO construction of Brakerski et
al. [BDGM20a], they show that IO is implied by LWE if one is additionally
given an oblivious LWE-sampler in the CRS model. Such a sampler, given a
matrix A ∈ Zm×n

q , generates outputs that are indistinguishable from LWE
samples A · s+e without knowing the secrets s or the noise e. The existence
of an oblivious LWE sampler is nontrivial even under the LWE assumption,
because A can be such that A · s+ e is not pseudorandom; however, such
a sampler still follows from the invertible sampling hypothesis [IKOS10],
which we show to be equivalent to the pseudorandom encoding hypothesis.
By proposing an explicit heuristic construction of (a relaxed flavor of) an

14.5 overview of techniques 159

oblivious LWE sampler, the end result of [WW20] is a construction of IO
from a new “falsifiable” assumption.

Whether cPREHrand
≈c implies IO under weaker or different assumptions

than LWE remains open. A potentially easier goal is using cPREHrand
≈c to

construct public-key encryption from one-way functions. This is related to the
possibility of constructing oblivious transfer from any public-key encryption
in which public keys and ciphertexts are obliviously samplable [EGL85;
GKM+00], which is implied by public-key encryption and cPREHrand

≈c . Here
cPREHrand

≈c is used to bypass the black-box separation between public-key
encryption and oblivious transfer [GKM+00].

Finally, there is a lot of room for relaxing the intractability assumptions
we use to rule out the statistical (cPREHrand

≡s) and deterministic (cPREHdet
≈c)

flavors of pseudorandom encodings.

14.5 overview of techniques
In this section, we elaborate on some of our technical results in more detail.
In the following, we identify a PPT sampler S with the distribution (family)
ensemble it induces.

the relation to invertible sampling. In this paragraph, we elabo-
rate on the equivalence between pseudorandom encodings and invertible
sampling. Recall that a PPT sampler S is inverse samplable [CFGN96; DN00;
GKM+00], if there exists an alternative sampler S inducing a distribution
which is computationally indistinguishable to the distribution induced by
S such that the computations of S can be efficiently inverted. Efficiently
inverting the computation of S means that there exists an efficient inverse
sampler S−1 which, given an output of S, recovers a well-distributed random
tape for S to compute the given output in the following sense. The inverse
sampled random tape is required to be computationally indistinguishable
from the actually used random tape. More formally, a PPT sampler S is
inverse samplable if there exists an efficient alternative sampler S and an
efficient inverse sampler S−1 such that

{︁
y← S(1λ) : y

}︁
≈c

{︁
y← S(1λ) : y

}︁
, (14.3)

{︁
y← S(1λ; r) : (r,y)

}︁
≈c

{︁
y← S(1λ) : (S

−1
(1λ,y),y)

}︁
. (14.4)

We refer to Equation (14.3) as closeness and to Equation (14.4) as invertibility.
If the sampler S admits an input m, the above is required to hold for all
inputs m in the input space L, where S and S

−1 both additionally receive
m as input. In accordance with [IKOS10], we refer to the hypothesis that all
PPT algorithms with input are inverse samplable as the invertible sampling
hypothesis. Restricting the invertible sampling hypothesis to algorithms which
do not admit inputs is denoted the weak invertible sampling hypothesis.

The concepts of inverse samplability and pseudorandom encodings are
tightly connected. Suppose a PPT algorithm S is inverse samplable. Then,
there exists an alternative and an inverse sampler (S,S−1

) satisfying close-
ness and invertibility. Invertibility guarantees that the inverse sampler S−1 on
input of a sample y from S(1λ), outputs a computationally well-distributed

160 introduction

random tape r. Hence, with overwhelming probability over the choice of
y← S(1λ) and r← S

−1
(y), the alternative sampler on input of r, recovers y.

In other words, the inverse sampler S−1 can be seen as encoding a given sam-
ple y, whereas the de-randomized alternative sampler S given this encoding
as random tape, is able to recover y. Looking through the lens of pseudo-
random encoding, this almost proves correctness except that y is sampled
according to S(1λ) instead of S(1λ). This difference can be bridged due to
closeness. We now turn towards showing pseudorandomness of the encoded
distribution. Due to closeness, the distributions {y← S(1λ) : (S

−1
(1λ,y),y)}

and {y ← S(1λ) : (S
−1

(1λ,y),y)} are computationally indistinguishable. In-
vertibility guarantees that, given a sample y from S(1λ), an encoding of y
is indistinguishable to uniformly chosen randomness conditioned on the
fact that decoding yields y. Removing y from this distribution almost corre-
sponds to pseudorandomness, except that y is sampled according to S(1λ)

instead of S(1λ). Again, we are able to bridge this gap due to closeness. Note
that we crucially use the fact that the initial randomness used by S resides
outside of the view of an adversary. Summing up, if a PPT sampler S is
inverse samplable, then it can be pseudorandomly encoded.

Interestingly, this connection turns out to be bidirectional. Suppose a PPT
algorithm S can be pseudorandomly encoded. Then, there exists an efficient
encoding algorithm ES and an efficient deterministic decoding algorithm DS

satisfying correctness and pseudorandomness. Looking through the lens of
invertible sampling, we identify the decoding algorithm to correspond to the
alternative sampler (viewing the random tape of the alternative sampler as
explicit input to DS) and the encoding algorithm to correspond to the inverse
sampler. Pseudorandomness guarantees that ES(S(1

λ)) is indistinguishable
from uniform randomness. Hence, applying the decode algorithm DS on
uniform randomness is indistinguishable from applying DS to outputs of
ES(S(1

λ)). Correctness guarantees that DS(ES(y)) for y sampled according
to S(1λ) recovers y with overwhelming probability. Thus, the distribution
induced by applying DS on uniform randomness is computationally close to
the distribution induced by S(1λ). This shows closeness. For the purpose of
arguing about invertibility, consider the distribution A := {y← DS(r) : (r,y)}.
Due to pseudorandomness r can be considered an encoded sample from
S(1λ). Hence, A is indistinguishable to the distribution, where r is produced
by ES(y

′) for some independent y′ ← S(1λ), i. e.,
{︁
y← DS(r) : (r,y)

}︁
≈c

{︁
y′ ← S(1λ), r← ES(y

′),y← DS(r) : (r,y)
}︁

.

Note that by correctness, y and y′ are identical with overwhelming proba-
bility. Therefore, A is indistinguishable to

{︁
y′ ← S(1λ), r← ES(y

′) : (r,y′)
}︁

.
Since sampling y′ via DS applied on uniform randomness is computationally
close to the above distribution due to closeness, invertibility follows. Sum-
ming up, a sampler S can be pseudorandomly encoded if and only if it is
inverse samplable.

Likewise to the variations and relaxations described for pseudorandom
encodings, we vary and relax the notion of invertible sampling. The inverse
sampler can be required to be deterministic or allowed to be randomized. Fur-
ther, closeness and invertibility can be required to hold information-theoreti-
cally or computationally. We denote these variants as ISHrand

≈c , ISHrand
≡s , ISHdet

≈c

and ISHdet
≡s . To circumvent impossibilities in the plain model, we also define

14.5 overview of techniques 161

the relaxations in the common reference string model in static and adaptive
flavors, denoted by the prefix “c” and “ac”, respectively. The above equiv-
alence extends to all introduced variations of the pseudorandom encoding
and invertible sampling hypotheses.

the static-to-adaptive transformation. The static variant of pseu-
dorandom encodings in the CRS model only guarantees correctness and
pseudorandomness as long as the input m for the sampler S is chosen in-
dependently of the CRS. The adaptive variant, on the other hand, provides
correctness and pseudorandomness even for adaptive choices of inputs.
Adaptive notions always imply their static analogues. Interestingly, for pseu-
dorandom encodings, the opposite direction is true as well. The core idea
is to use an indirection argument (similar to [HJK+16; CPR17; CPV17]) to
delay CRS generation until during the actual encoding process. Thus, the
advantage stemming from adaptively choosing the input is eliminated.

Suppose that the static variant of the pseudorandom encoding hypothesis
in the CRS model is true and let S be some PPT sampler. Since S can be
pseudorandomly encoded in the CRS model with static choice of inputs,
there exist algorithms (Setup′, E′, D′) such that static correctness and pseudo-
randomness hold. Further, the algorithm Setup′ can also be pseudorandomly
encoded as above. Let (Setup′′, E′′, D′′) be the corresponding algorithms such
that static correctness and pseudorandomness hold. Note that since the
sampler Setup′ does not expect an input, static and adaptive guarantees are
equivalent.

Then, the sampler S can be pseudorandomly encoded in the CRS model
with adaptive choice of inputs as follows. Initially, we sample a common
reference string crs′′ via Setup′′(1λ) and make it available to the parties. Given
crs′′ and a sample y from S(m), adaptive encoding works in two phases. First,
a fresh CRS crs′ is sampled via Setup′(1λ) and pseudorandomly encoded via
r1 ← E′′(crs′′, crs′). Second, the given sample y is pseudorandomly encoded
via r2 ← E′(crs′,m,y). The encoding of y then consists of (r1, r2). To decode,
the CRS crs′ is restored via D′′(crs′′, r1). Then, using crs′, the original sample
y is recovered via D′(crs′,m, r2).

Since crs′ is chosen freshly during the encoding process, the input m which
may depend on crs′′, cannot depend on crs′. Further, the distribution Setup′′

does not expect an input. Hence, static guarantees suffice.
To realize that adaptive pseudorandomness holds, consider the encoding

of S(m) for some adaptively chosen message m. Since the view of A when
choosing the message m is independent of crs′, static pseudorandomness
can be applied to replace the distribution E′(crs′,m,S(m)) with uniform ran-
domness. Further, since the sampler Setup′ does not expect any input, static
pseudorandomness suffices to replace the distribution E′′(crs′′, Setup′(1λ))
with uniform randomness. This proves adaptive pseudorandomness.

The adaptive variant of correctness follows similarly from the static variant
of correctness. Consider the distribution of decoding an encoded sample of
S(m), where m is adaptively chosen. Since the sampler Setup′ does not expect
an input, static correctness can be applied to replace decoding D′′(crs′′, r1)
with the crs′ sampled during encoding. Again, since crs′ does not lie in
the view of the adversary when choosing the message m, static correctness
guarantees that decoding succeeds with overwhelming probability. This
proves adaptive correctness.

162 introduction

deterministic pseudorandom encoding and compression. The
notion of pseudorandom encoding is inspired by the notion of compression.
A tuple of deterministic functions (EX, DX) is said to compress a source Xλ

to length m(λ) with decoding error ϵ(λ), if (i) Pr[DX(EX(Xλ)) ̸= Xλ] ⩽ ϵ(λ)

and (ii) E[|EX(Xλ)|] ⩽ m(λ), see [Wee04; TVZ05]. Pseudorandom encoding
partially recovers the notion of compression if we require the encoding
algorithm to be deterministic. If a source Xλ can be pseudorandomly encoded
with a deterministic encoding algorithm having output length n(λ), then Xλ

is compressible to length n(λ). Note, however, that the converse direction
is not true. Compression and decompression algorithms for a compressible
source do not necessarily encode that source pseudorandomly. The output
of a compression algorithm is not required to look pseudorandom and, in
some cases, admits a specific structure which makes it easily distinguishable
from uniform randomness, e. g., instances using Levin search, [TVZ05].

Clearly, the requirement for correctness poses a lower bound on the encod-
ing length n(λ) [Sha48]. Conversely, requiring the encoding algorithm EX to
be deterministic means that the only source of entropy in the distribution
EX(Xλ) originates from the source Xλ itself. Hence, for the distributions
EX(Xλ) and the uniform distribution over {0, 1}n(λ) to be indistinguishable,
the encoding length n(λ) must be “sufficiently small”. We observe that
correctness together with the fact that EX is deterministic implies that the
event EX(DX(EX(Xλ))) = EX(Xλ) occurs with overwhelming probability. Ap-
plying pseudorandomness yields that EX(DX(Un(λ))) = Un(λ) holds with
overwhelming probability, wherefore we can conclude that DX operates al-
most injectively on the set {0, 1}n(λ). Hence, the (smooth) min-entropy of
DX(Un(λ)) is at least n(λ).

Considering information-theoretical pseudorandomness, the distributions
DX(Un(λ)) and Xλ are statistically close. Hence, by the reasoning above, the
encoding length n(λ) is upper bounded by the (smooth) min-entropy of the
source Xλ. In conclusion, if a distribution can be pseudorandomly encoded
such that the encoding algorithm is deterministic satisfying statistical pseu-
dorandomness, then this distribution is compressible to its (smooth) min-
entropy. Using a technical “Splitting Lemma”, this extends to the relaxed
variant of the pseudorandom encoding hypothesis in the CRS model.

Considering computational pseudorandomness, by a similar argument as
above, we obtain that Xλ is computationally close to a distribution with min-
entropy n(λ). This does not yield a relation between the encoding length and
the min-entropy of the source. However, we do obtain relations to computa-
tional analogues of entropy. Computational entropy is the amount of entropy
a distribution appears to have from the perspective of a computationally
bounded entity. The notion of HILL entropy [HILL99] is defined via the
computational indistinguishability from a truly random distribution. More
formally, a distribution Xλ has HILL entropy at least k, if there exists a
distribution with min-entropy k which is computationally indistinguishable
from Xλ. Hence, the encoding length n(λ) is upper bounded by the HILL
entropy of the source Xλ. Another important notion of computational en-
tropy is the notion of Yao entropy [Yao82]. Yao entropy is defined via the
incompressibility of a distribution. More precisely, a distribution Xλ has Yao
entropy at least k if Xλ cannot be efficiently compressed to length less than k

(and successfully decompressed). If a distribution can be pseudorandomly
encoded with deterministic encoding, then it can be compressed to the en-

14.5 overview of techniques 163

59 Let (X,Z) be a
joint distribution.
The conditional
computational
entropy is the entropy
X appears to have to
a bounded adversary
when additionally
given Z.

coding length n(λ). This poses an upper bound on the Yao entropy of the
source. In summary, this yields

n(λ) ⩽ HHILL(Xλ) and HYao(Xλ) ⩽ n(λ). (14.5)

However, due to [HLR07; LMs05], if the Quadratic Residuosity Assumption
(QRA) is true, then there exist distributions which have low conditional HILL
entropy while being conditionally incompressible, i. e., have high conditional
Yao entropy.59 The above observations, particularly Equation (14.5), can be
extended to conditional HILL and conditional Yao entropy, by considering
PREHdet

≈c for PPT algorithms with input. Therefore, if the Quadratic Residu-
osity Assumption is true, PREHdet

≈c cannot be true for those distributions.
Unfortunately, we do not know whether this extends to the relaxed variants

of the pseudorandom encoding hypothesis admitting access to a CRS. On
a high level, the problem is that the HILL entropy, in contrast to the min-
entropy, does not remain untouched when additionally conditioning on some
common reference string distribution, even though the initial distribution is
independent of the CRS. Hence, the splitting technique cannot be applied
here.

15
T H E P S E U D O R A N D O M
E N C O D I N G
H Y P OT H E S I S

A source X is a probability distribution on strings. A family of sources
is a probability ensemble (Xλ)λ∈N, where Xλ is distributed over {0, 1}k(λ)

for some polynomial p. A family of sources (Xm)m∈L can also be indexed
by strings from some language L ⊆ {0, 1}+, where Xm is distributed over
{0, 1}k(|m|) for some polynomial p. We say that a source Xλ is efficiently sam-
plable if there is a PPT algorithm S such that S(1λ) is distributed according
to Xλ for all λ ∈N (using random coins from {0, 1}p(λ)). We further say that
a source Xm indexed by strings is efficiently samplable if there exists a PPT
algorithm S such that S(m) is distributed according to Xm for all m ∈ L

(using random coins from {0, 1}p(|m|)).
We initiate the study of the ability to encode efficiently samplable distribu-

tions into the uniform distribution. In the following, an efficiently samplable
distribution will be defined by the corresponding sampler S with input space
L. A distribution defined via S can be pseudorandomly encoded if there
exists an efficient potentially randomized encoding algorithm ES and an
efficient deterministic decoding algorithm DS such that for all m ∈ L, the
probability for the event DS(ES(S(m))) = S(m) is overwhelming and the dis-
tribution ES(S(m)) is indistinguishable from the uniform distribution Un(λ).
We work with the hypothesis that every efficiently samplable distribution
can be pseudorandomly encoded. In this chapter, we formally define the
pseudorandom encoding hypothesis and its variants.

definition 15.1 (Pseudorandom encoding hypothesis, PREHrand
≈c). For

every PPT algorithm S, there exist efficient algorithms ES (the encoding algo-
rithm) with output length n(λ) and DS (the decoding algorithm), where DS is
deterministic and ES is randomized satisfying the following two properties.

correctness. For all inputs m ∈ L,

ϵdec-error
(ES,DS),m(λ) := Pr

[︁
y← S(m) : DS(m, ES(m,y)) ̸= y

]︁

is negligible.

pseudorandomness. For all PPT adversaries A and all inputs m ∈ L,

Advpre
(ES,DS),A,m(λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-pre

(ES,DS),A,m(λ) = 1
]︂

−Pr
[︂

Exp(1)-pre
(ES,DS),A,m(λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exppre
A,m,0 and Exppre

A,m,1 are defined in Figure 15.1.

remark 15.1. Definition 15.1 formulated for PPT algorithms S which do not
admit an input m is called the weak PREHrand

≈c .

definition 15.2 (PREHdet
≈c , PREHrand

≡s , PREHdet
≡s). Definition 15.1 can be

tuned in two dimensions: the encode algorithm can be required to be deter-
ministic or allowed to be randomized, and the pseudorandomness property

165

166 the pseudorandom encoding hypothesis

Exp(0)-pre
(ES,DS),A,m(λ)

r← {0, 1}p(λ)

y← S(m; r)

return A(m, ES(m,y))

(a) Pseudorandomness game using en-
coded samples.

Exp(1)-pre
(ES,DS),A,m(λ)

u← {0, 1}n(λ)

return A(m,u)

(b) Pseudorandomness game using true
randomness.

Figure 15.1: The pseudorandomness games.

can be required to hold statistically or computationally. We denote these
variants as PREHβ

α, where α ∈ {≈c,≡s} and β ∈ {rand, det}.

remark 15.2. Definition 15.1 demands indistinguishability between encoded
samples and the uniform distribution over all bitstrings of some length n(λ).
This requirement can be relaxed to indistinguishability from the uniform
distribution over some efficiently samplable and efficiently recognizable set
R of size N, where elements in R can be represented with O(logN) bits.

deterministic encoding and compatible samplers. Requiring the
encoding algorithm ES to be deterministic entails the existence of what we
call “incompatible samplers” for which PREHdet

≡s and even PREHdet
≈c are un-

conditionally false. For instance, consider the sampler S∗ which on input of
1λ uniformly chooses an element from the set {00, 01, 10} ⊂ {0, 1}2. Assume
PREHdet

≈c is true for S∗. Then, correctness requires that with overwhelm-
ing probability over the sampling process y ← S∗(1λ), DS∗(ES∗(y)) = y.
Hence, ES∗ must map into the set {0, 1}k for k ⩾ 2 (otherwise there is
an correctness error of at least 1

3). Pseudorandomness, on the other hand,
requires that ES∗(S

∗(1λ)) is computationally indistinguishable from the uni-
form distribution over {0, 1}k. However, since ES∗ is a deterministic algo-
rithm, |supp(ES∗(S

∗(1λ)))| = 3. Therefore, there exists at least one element in
{0, 1}k \ supp(ES∗(S

∗(1λ))). An adversary can easily determine this element
by evaluating ES∗ on each element in the support of S∗ (if the support of
the sampler was super-polynomial, this would not be possible for a PPT
adversary, but very well possible for an unbounded one).

Another example of such an incompatible sampler is a sampler with large
support but low min-entropy (i. e., a sampler that has (at least one) very
likely output and many much less likely outputs). For instance, consider the
sampler S′ with probability distribution

Pr
[︁
S′(1λ) = 0λ

]︁
=

1

2
,

Pr
[︁
S′(1λ) = 1 ∥ x

]︁
=

1

2λ
for each x ∈ {0, 1}λ−1.

Assume PREHdet
≈c is true for S′. Then, correctness requires that an overwhelm-

ing fraction of the elements of the form 1 ∥ x for x ∈ {0, 1}λ−1 are correctly
decodable. Furthermore, since the element 0λ has a non-negligible probabil-
ity to occur, it needs to be correctly decodable. Let the support of ES′(S

′(1λ))
be (a subset of) {0, 1}λ−1. Pseudorandomness requires that ES′(S

′(1λ)) is in-
distinguishable from the uniform distribution over {0, 1}λ−1. However, since

the pseudorandom encoding hypothesis 167

ES′ is deterministic, the value ES′(0
λ) occurs with probability at least 1

2 and,
due to correctness, all other values ES′(1 ∥ x) occur with far lower probability.

In order to obtain a meaningful definition of PREHdet
≈c and PREHdet

≡s , we
restrict these hypotheses to only hold for specific classes which we refer to
as “compatible samplers” S≈c and S≡s , respectively.

definition 15.3 (Compatibility with deterministic encodings). A sampler
S is statistically compatible with deterministic encodings if there exists a set A
whose cardinality is a power of 2, such that Pr[S(1λ) ∈ A] is overwhelming,
and S is ϵ-flat on A, i. e., for all a ∈ A we have |Pr[S(1λ) = a] − 1

|A|
| ⩽ ϵ(λ),

for some negligible function ϵ. The class S≡s contains all samplers which are
statistically compatible with deterministic encodings.

A sampler S is computationally compatible with deterministic encodings if S ∈
S≡s or if |supp(S(1λ))| is super-polynomial and the min-entropy H∞(S(1λ)) ∈
ω(log(λ)) (i. e., the most likely event occurs with negligible probability). The
class S≈c contains all samplers which are computationally compatible with
deterministic encodings.

If S admits an input z ∈ L, S is statistically or computationally compatible
with deterministic encodings if the corresponding criterion is met for all
z ∈ L.

The above criterion for S≡s may seem unnatural. We note that by relaxing
Definition 15.1 as noted in Remark 15.2, requiring high min-entropy suffices
for a sampler to be statistically compatible with deterministic encodings.

Note that ϵ-flatness is a weaker criterion than statistical closeness to the
uniform distribution over A. ϵ-flatness on A corresponds to closeness to
the uniform distribution over A with respect to the infinity norm. Statistical
closeness, however, is formalized with respect to the Manhattan norm. The
deterministic pseudorandom encodings restricted to compatible samplers
still has interesting connections.

Let iPRG be an injective PRG with stretch ℓ. Let S be the sampler which on
input of 1λ draws a uniform seed s ∈ {0, 1}λ and outputs iPRG(s) ∈ {0, 1}ℓ(λ).
Clearly, S is statistically compatible with deterministic encodings.

lemma 15.1. Let PRG be a PRG with stretch ℓ and let S be the sampler which on
input of 1λ produces the distribution PRG(Uλ). Then, S ∈ S≡s .

Proof. Let A′ := PRG({0, 1}λ) and let A′′ ⊆ {0, 1}ℓ(λ) \A′ such that for A :=

A′ ∪A′′ we have |A| = 2λ. We have Pr[S(1λ) ∈ A] = 1.
For flatness on A, we upper bound the probability of the most likely event

in A. Due to pseudorandomness of PRG, all (non-uniform) PPT adversaries
distinguishing the distributions S(1λ) and Uℓ(λ) have a negligible advantage.
Assume there exists an a ∈ A′, such that Pr[S(1λ) = a] ⩾ δ(λ), for a non-
negligible function δ. Then, the most likely value in A′ could be used as
polynomial advice string allowing a non-uniform adversary to recognize the
distribution S(1λ) with non-negligible probability δ(λ). (A uniform adversary
can sample a random seed and evaluate the PRG. The thereby obtained
output equals the most likely event a with probability δ(λ). Hence, a uniform
adversary has advantage at least δ(λ)2 in distinguishing.) Therefore, for all
a ∈ A′, Pr[S(1λ) = a] ⩽ ϵ(λ) for some negligible function ϵ. Hence, for all
a ∈ A, we have |Pr[S(1λ) = a] − 1

|A|
| ⩽ ϵ(λ) + 2−λ which is negligible.

168 the pseudorandom encoding hypothesis

lemma 15.2. Let PRG be a PRG with stretch ℓ. Let S be the sampler which on
input of x ∈ L produces the distribution {y1 ← PRG(U|x|),y2 ← Dx,y1

: (y1,y2)}
for any distribution D. Then, S ∈ S≈c .

Proof. Let λ := |x|. Using the argument of Lemma 15.1, all bitstrings in
PRG({0, 1}λ) have only a negligible probability to occur. Therefore, for all x ∈
L and all (y1,y2) ∈ supp(S(x)), we have Pr[S(1λ, x) = (y1,y2)] is negligible.
Therefore, S ∈ S≈c .

impossibility of universal encoding. It is essential that the decoding
algorithm DS depends on the sampler S, since due to pseudorandomness,
DS on input of a random string needs to produce a sample that is in some
sense close to the distribution produced by S. This argument does not hold
necessarily for the encode algorithm. For instance, in the context of compres-
sion, the encoding algorithm does not necessarily depend on the distribution
to be compressed. [TVZ05] study the notion of universal compression. This
translates to the following definition of PREH with universal encoding.

definition 15.4 (PREHβ
α with universal encoding). Let S be a class of sam-

pling algorithms. We say PREHβ
α with universal sampling is true for the class

S, if there exists a universal encoding algorithm E, such that for every PPT
algorithm S ∈ S, there exists an efficient deterministic decoding algorithm
DS, such that correctness and pseudorandomness are satisfied.

In contrast to universal compression, pseudorandom encoding with uni-
versal encoding is impossible.

lemma 15.3. PREH with universal encoding is false.

Proof. Consider the class of samplers S = {S1,S2,S3} over {0, 1}k(λ) with
support Yi,λ := supp(Si(1λ)). We require that for i ∈ {1, 2}, |Yi,λ| = 2k+1,
|Y1,λ ∩ Y2,λ| = 2k, Y1,λ ∩ Y2,λ = Y3,λ for k ∈ O(log λ), and that S1, S2 and
S3 produce uniform samples over their support (i. e., correspond to flat
distributions). We note that S1,S2,S3 ∈ S≡s . For notational convenience we
omit the dependency on λ in the following.

Let α ∈ {≈c,≡s} and β ∈ {rand, det}. Assume toward a contradiction, that
PREHβ

α with universal encoding is true for the class S of sampling algorithms
above. Let {0, 1}n(λ) be the range of E. Due to correctness, for i ∈ {1, 2}, there
is a negligible function ϵ, such that

Pr
y←Yi

[︁
DSi

(E(y)) ̸= y
]︁
=

∑︂

y′∈Yi

Pr
y←Yi

[︁
DSi

(E(y)) ̸= y∧ y = y′
]︁

=
1

|Yi|

∑︂

y′∈Yi

Pr
y←Yi

[︁
DSi

(E(y)) ̸= y | y = y′
]︁

⩽ ϵ(λ).

Since |Yi| is polynomial, for each y ∈ Yi, Pr[DSi
(E(y)) = y] ⩾ 1 − ϵ′(λ)

for some negligible function ϵ′, where the probability is solely over the
randomness of E. Hence, for all y ∈ Y3 = Y1 ∩ Y2,

Pr
[︁
u← E(y) : y = DS1

(u) = DS2
(u) = DS3

(u)
]︁
⩾ 1− ϵ′′(λ)

for some negligible function ϵ′′.

15.1 the pseudorandom encoding hypothesis with setup 169

Due to Theorem 16.1 (see Section 16.3), for i ∈ {1, 2, 3}, the distribution
{u← Un(λ) : DSi

(u)} is computationally (statistically) close to the distribu-
tion produced by Si(1

λ). Hence, (up to some negligible fraction ϵ′′′) the
algorithms DS1

and DS2
map at most half of the strings in {0, 1}n(λ) into the

same set Y1 ∩ Y2 = Y3.
We build an adversary A on pseudorandomness with respect to sampler

S3 as follows. On input of u, A outputs 1 if and only if DS1
(u) = DS2

(u).

Pr
[︂
Exp(0)-pre

(ES,DS),A(λ) = 1
]︂
⩾ 1− ϵ′′(λ)

Pr
[︂
Exp(1)-pre

(ES,DS),A(λ) = 1
]︂
⩽

1

2
− ϵ′′′(λ)

Therefore, A has a non-negligible advantage Advpre
(E,DS3

),A(λ).

15.1 the pseudorandom encoding hypothe-
sis with setup

We obtain a natural relaxation of the pseudorandom encoding hypothesis by
introducing public parameters. We refer to these public parameters as global
or non-programmable common reference string. That is, a distribution defined
via S can be pseudorandomly encoded in this relaxed sense, if there exists
a probabilistic setup algorithm SetupS and encode and decode algorithms
as before such that for all m ∈ L, the event DS(crs, ES(crs,S(m))) = S(m) is
overwhelming, where the probability is also over the choice of crs, and the
distribution (SetupS(1λ), ES(SetupS(1λ),S(m))) is indistinguishable from the
distribution (SetupS(1λ),Un(λ)).

definition 15.5 ((Static) pseudorandom encoding hypothesis with setup,
cPREHrand

≈c). For every PPT algorithm S, there exist a PPT algorithm SetupS
and efficient algorithms (ES, DS), where DS is deterministic and ES is ran-
domized (with output length n(λ)) satisfying the following two requirements.

correctness. For all PPT adversaries A,

ϵc-dec-error
(SetupS,ES,DS),A(λ) :=

Pr

⎡
⎢⎢⎢⎣

m ← A(1λ)

crs ← SetupS(1λ)

y ← S(m)

: DS(crs,m, ES(crs,m,y)) ̸= y

⎤
⎥⎥⎥⎦

is negligible.

pseudorandomness. For all PPT adversaries A,

Advcrs-pre
(SetupS,ES,DS),A(λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-crs-pre

(SetupS,ES,DS),A(λ) = 1
]︂

−Pr
[︂

Exp(0)-crs-pre
(SetupS,ES,DS),A(λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(0)-crs-pre
(SetupS,ES,DS),A(λ) and Exp(1)-crs-pre

(SetupS,ES,DS),A(λ)

are defined in Figure 15.2.

170 the pseudorandom encoding hypothesis

Exp(0)-crs-pre
(SetupS,ES,DS),A(λ)

m← A(1λ)

crs← SetupS(1λ)

r← {0, 1}p(λ)

y← S(m; r)

return A(crs,m, ES(crs,m,y))

(a) Pseudorandomness game using en-
coded samples.

Exp(1)-crs-pre
(SetupS,ES,DS),A(λ)

m← A(1λ)

crs← SetupS(1λ)

u← {0, 1}n(λ)

return A(crs,m,u)

(b) Pseudorandomness game using true
randomness.

Figure 15.2: The static games experiments with setup.

We note that assuming non-uniform adversaries, correctness and pseu-
dorandomness defined in Definition 15.5 can be equivalently defined by
quantifying over all messages m ∈ L. Definition 15.5 is static in the sense that
the inputs m ∈ L are required to be chosen statically, i. e., independently of
crs. In the following, we define the corresponding adaptive variant.

definition 15.6 (Adaptive pseudorandom encoding hypothesis with setup,
acPREHrand

≈c). For every PPT algorithm S, there exist a PPT algorithm SetupS
and efficient algorithms (ES, DS), where DS is deterministic and ES is ran-
domized (with output length n(λ)) satisfying the following two requirements.

correctness. For all PPT adversaries A,

ϵac-dec-error
(SetupS,ES,DS),A(λ) :=

Pr

⎡
⎢⎢⎢⎣

crs ← SetupS(1λ)

m ← A(crs)

y ← S(m)

: DS(crs,m, ES(crs,m,y)) ̸= y

⎤
⎥⎥⎥⎦

is negligible.

pseudorandomness. For all PPT adversaries A,

Adva-crs-pre
(SetupS,ES,DS),A(λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-a-crs-pre

(SetupS,ES,DS),A(λ) = 1
]︂

−Pr
[︂

Exp(1)-a-crs-pre
(SetupS,ES,DS),A(λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(0)-a-crs-pre
(SetupS,ES,DS),A(λ) and Exp(1)-a-crs-pre

(SetupS,ES,DS),A(λ)

are defined in Figure 15.3.

definition 15.7 (cPREHdet
≈c , cPREHrand

≡s , cPREHdet
≡s , acPREHdet

≈c , acPREHrand
≡s ,

acPREHdet
≡s). Definitions 15.5 and 15.6 can be tuned in two dimensions: the

encoding algorithm can be required to be deterministic or allowed to be
randomized, and the correctness and pseudorandomness properties can be
required to hold statistically or computationally. We denote these variants as
cPREHβ

α and acPREHβ
α, respectively, where α ∈ {≈c,≡s} and β ∈ {rand, det}.

remark 15.3 (Universal setup). In Definitions 15.5 and 15.6, we allow the
algorithm SetupS to depend on the sampler S. A natural (but somewhat in-
comparable) variant of this definition is to require the existence of a (bounded-

15.2 static-to-adaptive transformation 171

Exp(0)-a-crs-pre
(SetupS,ES,DS),A(λ)

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}p(λ)

y← S(m; r)

return A(crs,m, ES(crs,m,y))

(a) Pseudorandomness game using en-
coded samples.

Exp(1)-a-crs-pre
(SetupS,ES,DS),A(λ)

crs← SetupS(1λ)

m← A(crs)

u← {0, 1}n(λ)

return A(crs,m,u)

(b) Pseudorandomness game using true
randomness.

Figure 15.3: The adaptive pseudorandomness games with setup.

60 For notational
convenience, we do
not write the sampler
Setup′S as index.

circuit-size) universal setup algorithm Setup(1λ,B) for B ∈N which provides
the above guarantees for all samplers which can be represented with B

bits. We refer to this variant as universal cPREHβ
α and universal acPREHβ

α,
respectively.

remark 15.4 (Common random string). We will denote the strengthening
of the pseudorandom encoding hypothesis as in Definitions 15.5 and 15.6,
where the setup algorithm SetupS is required to sample uniform random
strings, as the pseudorandom encoding hypothesis with a common random
string or uniformly random CRS (URC).

Note that in Definitions 15.5 and 15.6, we implicitly only consider legitimate
adversaries which guarantee that m ∈ L. For the sake of avoiding notational
overhead, we do not make this explicit.

15.2 static-to-adaptive transformation
Clearly, Definition 15.6 implies Definition 15.5. Interestingly, the opposite
direction is true as well by an “indirection” argument similar to the one from
the work on universal samplers [HJK+16]. A similar technique was also used
in the context of non-committing encryption [CPR17] and adaptively secure
MPC [CPV17].

theorem 15.1. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If cPREHβ
α is true, then

acPREHβ
α is true.

Proof. We prove the statement for the computational randomized case. The
proof directly extends to the remaining cases.

Let S be a PPT sampler with input space L. Since cPREHrand
≈c is true, for

the PPT sampler S, there exist (Setup′S, E′S, D′S) with output length n′(λ)
such that correctness and pseudorandomness hold (statically) as in Defini-
tion 15.5. Again, since cPREHrand

≈c is true, for the PPT sampler Setup′S, there
exist (Setup′′, E′′, D′′) with output length n′′(λ) such that correctness and
pseudorandomness hold (statically).60 Note that Setup′S does not expect an
input.

In Figure 15.4, we define algorithms (SetupS, ES, DS) satisfying adaptive
correctness and pseudorandomness, as in Definition 15.6.

172 the pseudorandom encoding hypothesis

SetupS(1λ)

crs′′ ← Setup′′(1λ)

crs := crs′′

return crs

(a) Setup algorithm.

ES(crs,m,y)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

r2 ← E′S(crs′,m,y)

return r1 ∥ r2
(b) Encoding algorithm.

DS(crs,m, r)

parse r =: r1 ∥ r2
crs′ ← D′′(crs′′, r1)

y← D′S(crs′,m, r2)

return y

(c) Decoding algorithm.

Figure 15.4: Adaptive pseudorandom encodings.

Intuitively, since crs′ is chosen freshly and independently after the adver-
sary fixes the message m, selective security suffices. Furthermore, since the
distribution of crs′ has no input, selective security is sufficient.

adaptive correctness. We define a series of hybrid games to prove
correctness, see Figure 15.5.

game G0. This game corresponds to encoding and decoding a sample from
S(m) for some adversarially and adaptively chosen message m. G0 outputs
1 if decoding succeeds.

game G1. G1 is identical to G0 except for some reordering. That is, the game
hop from G0 to G1 is only conceptional and Pr[out0 = 1] = Pr[out1 = 1].

game G2. G2 is identical to G1 except that for decoding yD, G2 uses the
originally sampled CRS crs′ instead of the decoded CRS crs′D.

claim 15.1. For all PPT adversaries A, there exists a PPT adversary B2, such
that |Pr[out2 = 1] − Pr[out1 = 1]| ⩽ ϵc-dec-error

(Setup′′,E′′,D′′),B2

(λ).

Proof. The games G1 and G2 proceed exactly identically if crs′D = crs′. Let E
be the event that crs′ ̸= crs′D. We have that out1 = 1∧¬E ⇔ out2 = 1∧¬E.
Due to correctness of (Setup′′, E′′, D′′),

Pr[E] = Pr

⎡
⎢⎢⎢⎢⎣

crs′′ ← Setup(1λ)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

crs′D ← D′′(crs′′, r1)

: crs′D ̸= crs′

⎤
⎥⎥⎥⎥⎦

is negligible. Hence, the Difference Lemma (due to Shoup [Sho04]) upper
bounds

⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out1 = 1

]︁⃓⃓
⩽ Pr[E].

game G3. G3 is identical to G2 except that r1 and crs′D are not produced and
that crs′ is sampled after the adversary chooses the message m (depending
on crs′′). Hence, the game hop from G2 to G3 is only conceptional and
Pr[out2 = 1] = Pr[out3 = 1].

claim 15.2. For all PPT adversaries A, there exists a PPT adversary B3, such
that Pr[out3 = 1] ⩾ 1− ϵc-dec-error

(Setup′S,E′S,D′S),B3

(λ).

15.2 static-to-adaptive transformation 173

G0

crs′′ ← Setup′′(1λ)

m← A(crs′′)

y← S(m)

// encode

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

r2 ← E′S(crs′,m,y)

// decode

crs′D ← D′′(crs′′, r1)

yD ← D′S(crs′D,m, r2)

return yD = y

(a) Description of G0.

G1

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

crs′D ← D′′(crs′′, r1)

m← A(crs′′)

y← S(m)

r2 ← E′S(crs′,m,y)

yD ← D′S(crs′D,m, r2)

return yD = y

(b) Description of G1.

G2

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

crs′D ← D′′(crs′′, r1)

m← A(crs′′)

y← S(m)

r2 ← E′S(crs′,m,y)

yD ← D′S(crs′,m, r2)

return yD = y

(c) Description of G2.

G3

crs′′ ← Setup′′(1λ)

m← A(crs′′)

crs′ ← Setup′S(1
λ)

y← S(m)

r2 ← E′S(crs′,m,y)

yD ← D′S(crs′,m, r2)

return yD = y

(d) Description of G3.

Figure 15.5: Hybrid games for the proof of adaptive correctness.

Proof. Due to correctness of (Setup′S, E′S, D′S), we have that for all PPT adver-
saries B,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m ← B(1λ)

crs′ ← Setup′S(1
λ)

y ← S(m)

r ← E′S(crs′,m,y)

yD ← D′S(crs′,m, r)

: y = yD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is overwhelming. Consider the PPT adversary B3 who proceeds as in Fig-
ure 15.6.

Therefore, for all PPT adversaries A, Pr[out3 = 1] is overwhelming.

Thus, we have

ϵac-dec-error
(SetupS,ES,DS),A(λ) ⩽ ϵc-dec-error

(Setup′′,E′′,D′′),B(λ) + ϵc-dec-error
(Setup′S,E′S,D′S),B′

(λ)

174 the pseudorandom encoding hypothesis

B3(1
λ)

crs′′ ← Setup′′(1λ)

m← A(crs′′)

return m

Figure 15.6: Adversary B3 used for the game hop from G2 to G3.

for some PPT adversaries B and B
′.

adaptive pseudorandomness. We define a series of hybrid games to
prove pseudorandomness, see Figure 15.7.

G0

crs′′ ← Setup′′(1λ)

m← A(crs′′)

y← S(m)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

r2 ← E′S(crs′,m,y)

return A(crs′′,m, r1 ∥ r2)

(a) Description of G0.

G1

crs′′ ← Setup′′(1λ)

m← A(crs′′)

y← S(m)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

r2 ← {0, 1}n
′(λ)

return A(crs′′,m, r1 ∥ r2)

(b) Description of G1.

G2

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1
λ)

r1 ← E′′(crs′′, crs′)

m← A(crs′′)

r2 ← {0, 1}n
′(λ)

return A(crs′′,m, r1 ∥ r2)

(c) Description of G2.

G3

crs′′ ← Setup′′(1λ)

r1 ← {0, 1}n
′′(λ)

m← A(crs′′)

r2 ← {0, 1}n
′(λ)

return A(crs′′,m, r1 ∥ r2)

(d) Description of G3.

Figure 15.7: Hybrid games for the proof of adaptive pseudorandomness.

game G0. G0 is identical to Exp(0)-a-crs-pre
(SetupS,ES,DS),A(λ).

game G1. G1 is identical to G0 except for the fact that in G0, r2 is an
encoding of y, whereas in G1, r2 is a uniformly random bitstring.

claim 15.3. For all PPT adversaries A, there exists a PPT adversary B1, such
that |Pr[out1 = 1] − Pr[out0 = 1]| ⩽ Advcrs-pre

(Setup′S,E′S,D′S),B1

(λ).

Proof. Construct an adversary B1 on static pseudorandomness relative to
(Setup′S, E′S, D′S) as follows. On input of 1λ, B1 samples crs′′ ← Setup′′(1λ),
calls A on input of crs′′, and outputs the message m produced by A. In
return, B1 receives crs′ ← Setup′S(1

λ) and either u := E′S(crs′,m,S(m)) or

15.2 static-to-adaptive transformation 175

a uniform random string u ← {0, 1}n
′(λ) from Exp(b)-crs-pre

(Setup′S,E′S,D′S),A
(λ). A1

computes r1 ← E′′(crs′′, crs′), calls A on input of (crs′′,m, r1 ∥u) and returns
A’s output. See Figure 15.8 for a description of B1.

B1(1
λ)

crs′′ ← Setup′′(1λ)

crs := crs′′

m← A(crs′′)

return m

(a) First phase of B1.

B1(crs′,m,u)

// u← E′
S(crs′,m,S(m)) or u← {0,1}n

′(λ)

r1 ← E′′(crs′′, crs′)

return A(crs′′,m, r1 ∥u)

(b) Second phase of B1.

Figure 15.8: Adversary B1 used for the game hop from G0 to G1.

If B1 plays Exp(0)-crs-pre
(Setup′S,E′S,D′S),B1

(λ), then it perfectly simulates G0. On the

other hand, if B1 plays Exp(1)-crs-pre
(Setup′S,E′S,D′S),B1

(λ), then it perfectly simulates

G1. Hence, we have
⃓⃓
Pr
[︁
out1 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ Advcrs-pre

(Setup′S,E′S,D′S),B1

(λ).

game G2. G2 is identical to G1 except for some reordering. More precisely,
crs′ and r1 are sampled before A chooses the message m. The difference
between G1 and G2 is only conceptional and Pr[out2 = 1] = Pr[out1 = 1].

game G3. G3 is identical to G2 except that in G2, r1 is produced as an
encoding of crs′ whereas in G3, r1 is sampled uniformly at random. Hence,
G3 is distributed identically to Exp(1)-a-crs-pre

(SetupS,ES,DS),A(λ).

claim 15.4. For all PPT adversaries A, there exists a PPT adversary B3, such
that |Pr[out3 = 1] − Pr[out2 = 1]| ⩽ Advcrs-pre

(Setup′′,E′′,D′′),B3

(λ).

Proof. Construct an adversary B3 on static pseudorandomness relative to
(Setup′′, E′′, D′′) as follows. On input of 1λ, B3 returns⊥ since the input space
L of the sampler Setup′S(1

λ) is empty. In return, B3 receives crs′′ sampled
via Setup′′(1λ) and u which is either produced via E′′(crs′′, Setup′(1λ)) or via
uniform sampling from {0, 1}n

′′(λ). B3 calls A on input of crs′′ and receives
a message m from A. Finally, B3 samples r2 ← {0, 1}n

′(λ), calls A on input
of (crs′′,m,u ∥ r2) and outputs his output. See Figure 15.9 for a description
of B3.

If B3 plays Exp(0)-crs-pre
(Setup′′,E′′,D′′),B3

(λ), then it perfectly simulates G2. On the

other hand, if B3 plays Exp(1)-crs-pre
(Setup′′,E′′,D′′),B3

(λ), then it perfectly simulates

G3. Hence, we have
⃓⃓
Pr
[︁
out3 = 1

]︁
− Pr

[︁
out2 = 1

]︁⃓⃓
⩽ Advcrs-pre

(Setup′′,E′′,D′′),B3

(λ).

176 the pseudorandom encoding hypothesis

B3(1
λ)

return ⊥

(a) First phase of B3.

B3(crs′′,u)

// u← E′′(crs′′, Setup′(1λ)) or u← {0,1}n
′′(λ)

m← A(crs′′)

r2 ← {0, 1}n
′′(λ)

return A(crs′′,m,u ∥ r2)

(b) Second phase of B3.

Figure 15.9: Adversary B3 used for the game hop from G2 to G3.

Therefore, we have

Adva-crs-pre
(SetupS,ES,DS),A(λ) =

⃓⃓
Pr
[︁
out3 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓

⩽ Advcrs-pre
(Setup′′,E′′,D′′),B

(λ)

+ Advcrs-pre
(Setup′S,E′S,D′S),B′

(λ)

for some PPT adversaries B and B
′.

16
P S E U D O R A N D O M
E N C O D I N G S A N D
I N V E R T I B L E S A M P L I N G

In this chapter, we explain the relation between pseudorandom encodings
and invertible sampling, [DN00]. In Sections 16.1 and 16.2, we restate the in-
vertible sampling hypothesis of [IKOS10] and define several variants thereof.
In Section 16.3, we prove that a distribution can be pseudorandomly encoded
if and only if it is inverse samplable. This extends to all of the introduced
variations of the pseudorandom encoding hypothesis and the invertible
sampling hypothesis.

16.1 the invertible sampling hypothesis
A PPT algorithm S is inverse samplable according to [DN00; IKOS10] if
there exists an alternative PPT algorithm S and a corresponding inverse
sampler S

−1 such that S (on every input) induces a distribution which is
computationally indistinguishable from the distribution induced by S (on
identical inputs) and S

−1 inverses the computation of S. That is, S−1 on
input of an output produced by S produces computationally well-distributed
random coins for S to produce the given output.

definition 16.1 (Invertible sampling hypothesis, ISHrand
≈c , [IKOS10]). For

every PPT algorithm S, there exists a PPT algorithm S (the alternate sampler)
with randomness space {0, 1}n(λ) and an efficient randomized algorithm S

−1

(the inverse sampler), satisfying the following two properties.

closeness. For all PPT adversaries A and all inputs m ∈ L,

Advclose
(S,S−1

),A,m
(λ) :=

⃓⃓
⃓⃓ Pr

[︃
Exp(0)-close

(S,S−1
),A,m

(λ) = 1

]︃

−Pr
[︃

Exp(1)-close
(S,S−1

),A,m
(λ) = 1

]︃ ⃓⃓
⃓⃓

is negligible, where Exp(0)-close
(S,S−1

),A,m
(λ) and Exp(1)-close

(S,S−1
),A,m

(λ) are de-

fined in Figure 16.1.

invertibility. For all PPT adversaries A and all inputs m ∈ L,

Advinv
(S,S−1

),A,m
(λ) :=

⃓⃓
⃓⃓ Pr

[︃
Exp(0)-inv

(S,S−1
),A,m

(λ) = 1

]︃

−Pr
[︃

Exp(1)-inv
(S,S−1

),A,m
(λ) = 1

]︃ ⃓⃓
⃓⃓

is negligible, where Exp(0)-inv
(S,S−1

),A,m
(λ) and Exp(1)-inv

(S,S−1
),A,m

(λ) are de-

fined in Figure 16.1.

177

178 pseudorandom encodings and invertible sampling

Exp(0)-close
(S,S−1

),A,m
(λ)

r← {0, 1}p(λ)

y← S(m; r)

return A(m,y)

(a) Closeness game using the original sam-
pler.

Exp(1)-close
(S,S−1

),A,m
(λ)

r← {0, 1}n(λ)

y← S(m; r)

return A(m,y)

(b) Closeness game using the alternative
sampler.

Exp(0)-inv
(S,S−1

),A,m
(λ)

r← {0, 1}n(λ)

y← S(m; r)

return A(m, r,y)

(c) Invertibility game using the actually
used randomness.

Exp(1)-inv
(S,S−1

),A,m
(λ)

r← {0, 1}n(λ)

y← S(m; r)

r← S
−1

(m,y)

return A(m, r,y)

(d) Invertibility game using the inverse sam-
pled randomness.

Figure 16.1: The closeness and invertibility experiments.

definition 16.2 (ISHdet
≈c , ISHrand

≡s , ISHdet
≡s). Definition 16.1 can be tuned in

two dimensions: the inverse sampler can be required to be deterministic or
allowed to be randomized, and the closeness and invertibility properties can
be required to hold statistically or computationally. We denote these variants
as ISHβ

α, where α ∈ {≈c,≡s} and β ∈ {rand, det}.

16.2 the invertible sampling hypothesis
with setup

The invertible sampling hypothesis can be naturally relaxed by introducing
public parameters (or global CRS), henceforth denoted crs. This allows the
alternative sampler and the inverse sampler to use crs. Closeness and in-
vertibility are defined against adversaries knowing the crs but choosing the
inputs statically.

definition 16.3 (Invertible sampling hypothesis with setup, cISHrand
≈c).

For every PPT algorithm S there exists a PPT algorithm SetupS, a PPT
algorithm S (with randomness space {0, 1}n(λ)) and an efficient randomized
S
−1 satisfying the following two properties.

closeness. For all PPT adversaries A,

Advcrs-close
(SetupS,S,S−1

),A
(λ) :=

⃓⃓
⃓⃓ Pr

[︃
Exp(0)-crs-close

(SetupS,S,S−1
),A

(λ) = 1

]︃

−Pr
[︃

Exp(1)-crs-close
(SetupS,S,S−1

),A
(λ) = 1

]︃ ⃓⃓
⃓⃓

is negligible, where Exp(0)-crs-close
(SetupS,S,S−1

),A
(λ) and Exp(1)-crs-close

(SetupS,S,S−1
),A

(λ)

are defined in Figure 16.2.

16.2 the invertible sampling hypothesis with setup 179

invertibility. For all PPT adversaries A,

Advcrs-inv
(SetupS,S,S−1

),A
(λ) :=

⃓⃓
⃓⃓ Pr

[︃
Exp(0)-crs-inv

(SetupS,S,S−1
),A

(λ) = 1

]︃

−Pr
[︃

Exp(1)-crs-inv
(SetupS,S,S−1

),A
(λ) = 1

]︃ ⃓⃓
⃓⃓

is negligible, where Exp(0)-crs-inv
(SetupS,S,S−1

),A
(λ) and Exp(1)-crs-inv

(SetupS,S,S−1
),A

(λ)

are defined in Figure 16.2.

Exp(0)-crs-close
(SetupS,S,S−1

),A
(λ)

m← A(1λ)

crs← SetupS(1λ)

r← {0, 1}p(λ)

y← S(m; r)

return A(crs,y)

(a) Closeness game using the original sam-
pler.

Exp(1)-crs-close
(SetupS,S,S−1

),A
(λ)

m← A(1λ)

crs← SetupS(1λ)

r← {0, 1}n(λ)

y← S(crs,m; r)

return A(crs,y)

(b) Closeness game using the alternative
sampler.

Exp(0)-crs-inv
(SetupS,S,S−1

),A
(λ)

m← A(1λ)

crs← SetupS(1λ)

r← {0, 1}n(λ)

y← S(crs,m; r)

return A(crs, r,y)

(c) Invertibility game using the actually
used randomness.

Exp(1)-crs-inv
(SetupS,S,S−1

),A
(λ)

m← A(1λ)

crs← SetupS(1λ)

r← {0, 1}n(λ)

y← S(crs,m; r)

r← S
−1

(crs,m,y)

return A(crs, r,y)

(d) Invertibility game using the inverse sam-
pled randomness.

Figure 16.2: The static closeness and invertibility experiments with setup.

Definition 16.3 is static in the sense that closeness and invertibility adver-
saries are required to statically choose the challenge input m ∈ L. In the
following, we define the corresponding adaptive version, where adversaries
are allowed to choose the challenge input m ∈ L depending on crs.

definition 16.4 (Adaptively secure invertible sampling hypothesis with
setup, acISHrand

≈c). For every PPT algorithm S, there exists a PPT algorithm
SetupS, a PPT algorithm S (with randomness space {0, 1}n(λ)) and an efficient
randomized S

−1 satisfying the following two properties.

(adaptive) closeness. For all PPT adversaries A,

Adva-crs-close
(SetupS,S,S−1

),A
(λ) :=

⃓⃓
⃓⃓ Pr

[︃
Exp(0)-a-crs-close

(SetupS,S,S−1
),A

(λ) = 1

]︃

−Pr
[︃

Exp(1)-a-crs-close
(SetupS,S,S−1

),A
(λ) = 1

]︃ ⃓⃓
⃓⃓

180 pseudorandom encodings and invertible sampling

is negligible, where Exp(0)-a-crs-close
(SetupS,S,S−1

),A
(λ) and Exp(1)-a-crs-close

(SetupS,S,S−1
),A

(λ)

are defined in Figure 16.3.

(adaptive) invertibility. For all PPT adversaries A,

Adva-crs-inv
(SetupS,S,S−1

),A
(λ) :=

⃓⃓
⃓⃓ Pr

[︃
Exp(0)-a-crs-inv

(SetupS,S,S−1
),A

(λ) = 1

]︃

−Pr
[︃

Exp(1)-a-crs-inv
(SetupS,S,S−1

),A
(λ) = 1

]︃ ⃓⃓
⃓⃓

is negligible, where Exp(0)-a-crs-inv
(SetupS,S,S−1

),A
(λ) and Exp(1)-a-crs-inv

(SetupS,S,S−1
),A

(λ)

are defined in Figure 16.3.

Exp(0)-a-crs-close
(SetupS,S,S−1

),A
(λ)

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}p(λ)

y← S(m; r)

return A(y)

(a) Closeness game using the original sam-
pler.

Exp(1)-a-crs-close
(SetupS,S,S−1

),A
(λ)

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← S(crs,m; r)

return A(y)

(b) Closeness game using the alternative
sampler.

Exp(0)-a-crs-inv
(SetupS,S,S−1

),A
(λ)

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← S(crs,m; r)

return A(r,y)

(c) Invertibility game using the actually
used randomness.

Exp(1)-a-crs-inv
(SetupS,S,S−1

),A
(λ)

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← S(crs,m; r)

r← S
−1

(crs,m,y)

return A(r,y)

(d) Invertibility game using the inverse sam-
pled randomness.

Figure 16.3: The adaptive closeness and invertibility experiments with setup.

definition 16.5 (cISHdet
≈c , cISHrand

≡s , cISHdet
≡s , acISHdet

≈c , acISHrand
≡s , acISHdet

≡s).
Definitions 16.3 and 16.4 can be tuned in two dimensions: the inverse sampler
can be required to be deterministic or allowed to be randomized, and the
closeness and invertibility properties can be required to hold statistically or
computationally. We denote these variants as cISHβ

α and acISHβ
α, respectively,

where α ∈ {≈c,≡s} and β ∈ {rand, det}.

remark 16.1 (Universal setup). In Definitions 16.3 and 16.4, we allow the
algorithm SetupS to depend on the sampler S. A natural (but somewhat in-
comparable) variant of this definition is to require the existence of a (bounded-
circuit-size) universal setup algorithm Setup(1λ,B) for B ∈N which provides
the above guarantees for all samplers which can be represented with B bits.
We refer to this variant as universal cISHβ

α and universal acISHβ
α, respectively.

16.3 equivalence between preh and ish 181

remark 16.2 (Common random string). We will denote the strengthening
of the invertible sampling hypothesis as in Definitions 16.3 and 16.4, where
the setup algorithm SetupS is required to sample uniform random strings, as
the invertible sampling hypothesis with a common random string or uniformly
random CRS (URC).

Again, in Definitions 16.3 and 16.4, we implicitly only consider legitimate
adversaries which guarantee that m ∈ L.

16.3 equivalence of pseudorandom encod-
ings and invertible sampling

We prove the following theorem.

theorem 16.1. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. PREHβ
α is true if and only

if ISHβ
α is true.

It is straight forward to extend Theorem 16.1 to the non-adaptive and
adaptive variants with setup.

16.3.1 Every Inverse Samplable Distribution can be Pseudorandomly
Encoded

lemma 16.1. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If ISHβ
α holds, then PREHβ

α

holds.

Proof. We prove this for the computational randomized case. The remaining
cases are similar.

Assume ISHrand
≈c holds. Let S be a PPT algorithm. ISHrand

≈c implies that there
exists an alternative sampler S (with randomness space {0, 1}n(λ)) and a
corresponding inverse sampler S−1 satisfying closeness and invertibility.

For m ∈ L, y ∈ {0, 1}∗, r ∈ {0, 1}n(λ), we define the encode and decode
algorithms as follows:

ES(m,y) := S
−1

(m,y),

DS(m, r) := S(m; r).

correctness. We consider a series of hybrids, see Figure 16.4. In the first
game, DS(m, r) = S(m; r) = y. Since all games are computationally close,
this must hold for the last game as well.

game G0. G0 is identical to Exp(0)-inv
(S,S−1

),A,m
(λ).

game G1. G1 is identical to Exp(1)-inv
(S,S−1

),A,m
(λ). Hence, we have |Pr[out1 =

1] − Pr[out0 = 1]| ⩽ Advinv
(S,S−1

),A,m
(λ).

game G2. G2 is identical to G1 except that in G1 y is sampled using the
alternative sampler whereas in G2, y is sampled using the original sampler
S.

182 pseudorandom encodings and invertible sampling

G0

r← {0, 1}n(λ)

y← S(m; r)

return A(m, r,y)

(a) Description of G0.

G1

r← {0, 1}n(λ)

y← S(m; r)

r← S
−1

(m,y)

return A(m, r,y)

(b) Description of G1.

G2

r← {0, 1}p(λ)

y← S(m; r)

r← S
−1

(m,y)

return A(m, r,y)

(c) Description of G2.

Figure 16.4: Hybrids used in the proof of correctness of Lemma 16.1.

claim 16.1. For all PPT adversaries A, for all m ∈ L, there exists a PPT
adversary B2, such that |Pr[out2 = 1] − Pr[out1 = 1]| ⩽ Advclose

(S,S−1
),B2,m

(λ).

Proof. Construct an adversary B2 breaking closeness. On input of (m,y),

B2 computes r ← S
−1

(m,y), calls A on input of (m, r,y) and outputs
the resulting output. If y is sampled using S(m; r) (for r ← {0, 1}n(λ)), B2

perfectly simulates game G1 for A. If y is sampled using S(m; r) (for r ←
{0, 1}p(λ)), B2 perfectly simulates game G2 for A. Therefore,

Pr
[︁
out1 = 1

]︁
= Pr

[︃
Exp(1)-close

(S,S−1
),B2,m

(λ) = 1

]︃
and

Pr
[︁
out2 = 1

]︁
= Pr

[︃
Exp(0)-close

(S,S−1
),B2,m

(λ) = 1

]︃
.

Thus, we have that
⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ Advclose

(S,S−1
),B,m

(λ)

+ Advinv
(S,S−1

),B′,m
(λ)

for some PPT adversaries B and B
′. Consider the adversary A distinguishing

between game G0 and game G2 who on input of (m, r,y), outputs 0 if
S(m; r) = y and outputs 1 otherwise. By definition, A always outputs 0 in
G0. Hence,

ϵdec-error
(ES,DS),m(λ) = Pr

[︂
y← S(m) : S

(︁
m,S−1

(m,y)
)︁
̸= y

]︂

= Pr
[︁
out2,A = 1

]︁

=
⃓⃓
Pr
[︁
out2,A = 1

]︁
− Pr

[︁
out0,A = 1

]︁⃓⃓

⩽ Advclose
(S,S−1

),B,m
(λ) + Advinv

(S,S−1
),B′,m

(λ).

pseudorandomness. We consider a sequence of hybrids starting from
Exp(0)-pre

(ES,DS),A,m(λ) and concluding with Exp(1)-pre
(ES,DS),A,m(λ), see Figure 16.5.

game G0. G0 is identical to Exp(0)-pre
(ES,DS),A,m(λ).

game G1. G1 is identical to G0 except that in G0, y is sampled using the
original sampler S whereas in G1, y is sampled using the alternative sampler
S.

16.3 equivalence between preh and ish 183

G0

r← {0, 1}p(λ)

y← S(m; r)

u← S
−1

(m,y)

return A(m,u)

(a) Description of G0.

G1

r← {0, 1}n(λ)

y← S(m; r)

u← S
−1

(m,y)

return A(m,u)

(b) Description of G1.

G2

r← {0, 1}n(λ)

return A(m, r)

(c) Description of G2.

Figure 16.5: Hybrids used in the proof of pseudorandomness of Lemma 16.1.

claim 16.2. For all PPT adversaries A, for all m ∈ L, there exists a PPT
adversary B1, such that |Pr[out1 = 1] − Pr[out0 = 1]| ⩽ Advclose

(S,S−1
),B1,m

(λ).

Proof. Construct a PPT adversary B1 on the closeness property as follows.

On input of (m,y), B1 calls A on input of (m,S−1
(m,y)) and outputs the

resulting output. If B1 plays Exp(0)-close
(S,S−1

),B1,m
(λ), he simulates game G0.

Otherwise, if B1 plays Exp(1)-close
(S,S−1

),B1,m
(λ), he simulates game G1. Hence,

Pr
[︁
out0 = 1

]︁
= Pr

[︃
Exp(0)-close

(S,S−1
),B1,m

(λ) = 1

]︃
and

Pr
[︁
out1 = 1

]︁
= Pr

[︃
Exp(1)-close

(S,S−1
),B1,m

(λ) = 1

]︃
.

game G2. G2 is identical to G1 except for the following difference. In G1,
u is produced as inverse sampled random coins for y, whereas in G2 u,
is a uniformly random bitstring from {0, 1}n(λ). Hence, G2 is distributed
identically to Exp(1)-pre

(ES,DS),A,m(λ).

claim 16.3. For all PPT adversaries A, for all m ∈ L, there exists a PPT
adversary B2, such that |Pr[out2 = 1] − Pr[out1 = 1]| ⩽ Advinv

(S,S−1
),B2,m

(λ).

Proof. We construct a PPT adversary B2 on the invertibility property. On
input of (m, r,y), B2 calls A on input of (m, r) and outputs A’s output. If B2

plays the game Exp(0)-inv
(S,S−1

),B2,m
(λ), he perfectly simulates G1. If B2 plays

Exp(1)-inv
(S,S−1

),B2,m
(λ), he perfectly simulates G2. Therefore,

Pr
[︁
out1 = 1

]︁
= Pr

[︃
Exp(0)-inv

(S,S−1
),B2,m

(λ) = 1

]︃
and

Pr
[︁
out2 = 1

]︁
= Pr

[︃
Exp(1)-inv

(S,S−1
),B2,m

(λ) = 1

]︃
.

Hence,

Advpre
(ES,DS),A,m(λ) =

⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓

⩽ Advclose
(S,S−1

),B,m
(λ) + Advinv

(S,S−1
),B′,m

(λ)

for some PPT adversaries B and B
′.

184 pseudorandom encodings and invertible sampling

16.3.2 Every Pseudorandomly Encodable Distribution can be Inverse
Sampled

lemma 16.2. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If PREHβ
α holds, then ISHβ

α

holds.

Proof. We prove the statement for the computational randomized case. The
remaining cases are similar.

Assume PREHrand
≈c holds. Let S be a PPT algorithm. PREHrand

≈c implies that
for S there exist efficient algorithms ES (possibly randomized) with output
length n(λ) and DS (deterministic) satisfying correctness and pseudoran-
domness.

For m ∈ L, r ∈ {0, 1}n(λ), y ∈ {0, 1}∗, we define the alternative sampler and
the inverse sampler as follows:

S(m; r) := DS(m, r),

S
−1

(m,y) := ES(m,y).

closeness. Let A be an adversary breaking closeness. We consider a
sequence of games starting from the game Exp(0)-close

(S,S−1
),A,m

(λ) and concluding

with Exp(1)-close
(S,S−1

),A,m
(λ), see Figure 16.6.

G0

rS ← {0, 1}p(λ)

yS ← S(m; rS)

return A(m,yS)

(a) Description of G0.

G1

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← ES(m,yS)

yD ← DS(m, rD)

return A(m,yS)

(b) Description of G1.

G2

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← ES(m,yS)

yD ← DS(m, rD)

return A(m,yD)

(c) Description of G2.

G3

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← {0, 1}n(λ)

yD ← DS(m, rD)

return A(m,yD)

(d) Description of G3.

G4

rD ← {0, 1}n(λ)

yD ← DS(m, rD)

return A(m,yD)

(e) Description of G4.

Figure 16.6: Hybrids used in the proof of closeness of Lemma 16.2.

game G0. G0 is identical to Exp(0)-close
(S,S−1

),A,m
(λ).

game G1. G1 is the same as G0 except for the conceptional difference that G1

additionally samples rD ← ES(m,yS) and yD ← DS(m, rD). This difference
is only conceptional since the view of the adversary is not affected. Hence,
Pr[out0 = 1] = Pr[out1 = 1].

16.3 equivalence between preh and ish 185

game G2. G2 is identical to G1 except that G2 passes the value yD to A

instead of the value yS.
Hence, G1 and G2 proceed exactly identical if yS = yD. More formally, let

F be the event that yS ̸= yD. Then, out1 = 1∧¬F ⇔ out2 = 1∧¬F. Hence,
the Difference Lemma (due to Shoup [Sho04]) bounds

⃓⃓
Pr
[︁
out2 = 1

]︁
− Pr

[︁
out1 = 1

]︁⃓⃓
⩽ Pr[F].

Furthermore, correctness guarantees that for all m ∈ L,

Pr[F] = Pr
[︁
yS ← S(m) : DS(m, ES(m,yS)) ̸= yS

]︁
= ϵdec-error

(ES,DS),m(λ)

is negligible.

game G3. G3 is identical to G2 except for one difference. In G2, rD is pro-
duced as ES(m,yS), whereas in G3, rD is sampled uniformly from {0, 1}n(λ).

claim 16.4. For all PPT adversaries A, for all m ∈ L, there exists a PPT
adversary B3, such that |Pr[out3 = 1] − Pr[out2 = 1]| ⩽ Advpre

(ES,DS),B3,m(λ).

Proof. Construct an adversary B3 breaking pseudorandomness as follows.
On input of (m,u =: rD), B3 calls A on input (m, DS(m, rD)) and outputs
the resulting output. If u is produced via ES(m,yS) for yS ← S(m), B3

perfectly simulates game G2. Otherwise, if u is uniformly random over
{0, 1}n(λ), B3 perfectly simulates game G3. Hence,

Pr
[︁
out3 = 1

]︁
= Pr

[︂
Exp(1)-pre

(ES,DS),B3,m(λ) = 1
]︂

and

Pr
[︁
out2 = 1

]︁
= Pr

[︂
Exp(0)-pre

(ES,DS),B3,m(λ) = 1
]︂

.

game G4. The game G4 is identical to G3 except for the conceptional differ-
ence that G4 does not sample rD and yD since these values are never used.
Hence, Pr[out3 = 1] = Pr[out4 = 1]. G4 is identical to Exp(1)-close

(S,S−1
),A,m

(λ).

Hence,

Advclose
(S,S−1

),A,m
(λ) =

⃓⃓
Pr
[︁
out4 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓

⩽ Advpre
(ES,DS),B,m

(λ) + ϵdec-error
(ES,DS),m(λ)

for some PPT adversary B.

invertibility. We consider a sequence of hybrids starting from the game
Exp(1)-inv

(S,S−1
),A,m

(λ) and concluding with Exp(0)-inv
(S,S−1

),A,m
(λ), see Figure 16.7.

game G0. G0 is identical to Exp(1)-inv
(S,S−1

),A,m
(λ).

game G1. G1 is identical to G0 up to a small difference. In G0, y is sampled
using DS on uniform randomness. In G1, y is sampled using the original
sampler S.

claim 16.5. For all PPT adversaries A, for all m ∈ L, there exists a PPT
adversary B1, such that |Pr[out1 = 1] − Pr[out0 = 1]| ⩽ Advpre

(ES,DS),B1,m(λ) +

ϵdec-error
(ES,DS),m(λ).

186 pseudorandom encodings and invertible sampling

G0

r← {0, 1}n(λ)

y← DS(m, r)

r← ES(m,y)

return A(m, r,y)

(a) Description of G0.

G1

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← ES(m,yS)

return A(m, rD,yS)

(b) Description of G1.

G2

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← ES(m,yS)

yD ← DS(m, rD)

return A(m, rD,yS)

(c) Description of G2.

G3

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← ES(m,yS)

yD ← DS(m, rD)

return A(m, rD,yD)

(d) Description of G3.

G4

rS ← {0, 1}p(λ)

yS ← S(m; rS)

rD ← {0, 1}n(λ)

yD ← DS(m, rD)

return A(m, rD,yD)

(e) Description of G4.

G5

rD ← {0, 1}n(λ)

yD ← DS(m, r)

return A(m, rD,yD)

(f) Description of G5.

Figure 16.7: Hybrids used in the proof of invertibility of Lemma 16.2.

Proof. Let A be an adversary distinguishing G0 and G1. Construct an ad-
versary B1 on the closeness property. On input of (m,y), B1 computes
r ← ES(m,y) and calls A on input (m, r,y). If y is sampled via S(m), B1

simulates game G0 for A. Else, if y is sampled via S(m), B1 simulates game
G1 for A. Hence,

⃓⃓
Pr
[︁
out1 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ Advclose

(S,S−1
),B1,m

(λ).

game G2. G2 is identical to G1 except for the conceptional difference that
G2 additionally computes yD as DS(m, rD) but never uses this value. Hence,
Pr[out1 = 1] = Pr[out2 = 1].

game G3. G3 is identical to G2 except that G3 passes the value yD to A

instead of the value yS. G2 and G3 behave identical if yD = yS. Let F

denote the failure event yD ̸= yS. Hence, out2 = 1∧¬⇔ out3 = 1∧¬F. The
Difference Lemma (due to Shoup [Sho04]) bounds

⃓⃓
Pr
[︁
out3 = 1

]︁
− Pr

[︁
out2 = 1

]︁⃓⃓
⩽ Pr[F].

Due to correctness, for all m ∈ L,

Pr[F] = Pr
[︁
yS ← S(m) : DS(m, ES(m,yS)) ̸= yS

]︁
= ϵdec-error

(ES,DS),m(λ)

is negligible.

game G4. G4 is identical to G3 except that G3 produces rD via ES(m,yS),
whereas G4 samples rD uniformly from {0, 1}n(λ).

16.3 equivalence between preh and ish 187

claim 16.6. For all PPT adversaries A, for all m ∈ L, there exists a PPT
adversary B4, such that |Pr[out4 = 1] − Pr[out3 = 1]| ⩽ Advpre

(ES,DS),B4,m(λ).

Proof. Construct a PPT adversary B4 breaking the pseudorandomness prop-
erty. On input of (m,u), B4 calls A on input of (m,u =: rD, DS(m,u) =: yD)

and outputs the resulting output. If u is sampled via ES(m,y) for y← S(m),
B4 perfectly simulates game G3 for A. Otherwise, if u is uniformly random
over {0, 1}n(λ), B4 perfectly simulates game G4 for A. Hence,

Pr
[︁
out3 = 1

]︁
= Pr

[︂
Exp(0)-pre

(ES,DS),B4,m(λ) = 1
]︂

and

Pr
[︁
out4 = 1

]︁
= Pr

[︂
Exp(1)-pre

(ES,DS),B4,m(λ) = 1
]︂

.

game G5. The difference between G4 and G5 is that G5 does not produce the
obsolete values rS and yS. Hence, this game hop is again only conceptional
and Pr[out4 = 1] = Pr[out5 = 1].

Hence,
⃓⃓
Pr
[︁
out5 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ 2 ·Advpre

(ES,DS),B,m
(λ)

+ 2 · ϵdec-error
(ES,DS),m(λ)

for some PPT adversary B.

The above proof directly generalizes to the non-adaptive and adaptive
variants of pseudorandom encodings and invertible sampling with public
parameters. See Figure 16.8 for a proof sketch for the adaptive version.

Theorem 16.1 together with Theorem 15.1 yields the following corollaries.

corollary 16.1. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If cPREHβ
α is true, then

acISHβ
α is true.

corollary 16.2. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If cISHβ
α is true, then

acISHβ
α is true.

This is an excellent example of the potential pseudorandom encodings
offer. Looking through the lens of invertible sampling, it is rather unclear how
the static and adaptive notions relate, whereas pseudorandom encodings
directly provide a static-to-adaptive transformation.

Particularly, Corollary 16.2 together with [DKR15] yields the first instantia-
tion of an adaptive explainability compiler without complexity leveraging and,
hence, based only on polynomial hardness assumptions. The recent paper
[CsW19] uses such an adaptive explainability compiler to obtain adaptive
MPC with communication complexity which is sublinear in the circuit size.
Their construction relies on complexity leveraging which entails a subex-
ponential loss relative to IO and one-way functions. Hence, we obtain the
following corollary improving on Theorem 7 in the proceedings version of
[CsW19] in a black-box way.

corollary 16.3. Assuming polynomially secure IO and the adaptive hardness of
LWE, then succinct adaptive two-round MPC in the malicious setting is possible
(for all deterministic n-party functionalities f : ({0, 1}ℓin)n → {0, 1}ℓout with circuit
depth d) in the global CRS model such that the size of the CRS, the communication
complexity, and online-computational complexity of the protocol are polynomial in λ,
ℓin, ℓout, d and n.

188
pseudorandom

encodings
and

invertible
sam

pling

G0

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← S(crs,m; r)

return A(crs,m, r,y)

G1

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← S(crs,m; r)

r← S
−1

(crs,m,y)

return A(crs,m, r,y)

G2

crs← SetupS(1λ)

m← A(crs)

y← S(m)

r← S
−1

(crs,m,y)

return A(crs,m, r,y)

(a) Adaptive correctness. In G0, for adaptively chosen m, we have
DS(crs,m, r) = S(crs,m; r) = y. Game hop from G0 to G1

follows by adaptive invertibility. Game hop from G1 to G2 fol-
lows from adaptive closeness. Hence, in G2, DS(crs,m, r) =

S(crs,m; r) = y, where r = ES(crs,m,y) = S
−1

(crs,m,y).

G0

crs← SetupS(1λ)

m← A(crs)

y← S(m)

u← S
−1

(crs,m,y)

return A(crs,m,u)

G1

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← S(crs,m; r)

u← S
−1

(crs,m,y)

return A(crs,m,u)

G2

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

return A(crs,m, r)

(b) Adaptive pseudorandomness. G0 corresponds to adaptive
pseudorandomness game, where adversary receives en-
coded randomness, that is ES(crs,m,y) = S

−1
(crs,m,y).

Game hop from G0 to G1 is justified by adaptive closeness.
Game hop from G1 to G2 is justified by adaptive invertibil-
ity. G2 corresponds to adaptive pseudorandomness game,
where adversary receives true randomness.

G0

crs← SetupS(1λ)

m← A(crs)

yS ← S(m)

return A(crs,m,yS)

G1

crs← SetupS(1λ)

m← A(crs)

yS ← S(m)

rD ← ES(crs,m,yS)

yD ← DS(crs,m, rD)

return A(crs,m,yD)

G2

crs← SetupS(1λ)

m← A(crs)

rD ← {0, 1}n(λ)

yD ← DS(crs,m, rD)

return A(crs,m,yD)

(c) Adaptive closeness. G0 corresponds to the adaptive closeness game,
where A receives a sample from S. If yS and yD are identical,
G0 and G1 are identical. Adaptive correctness guarantees this
with overwhelming probability. The game hop from G1 to G2 is
justified by adaptive pseudorandomness. G2 corresponds to the
adaptive closeness game, where A receives a sample from S.

G0

crs← SetupS(1λ)

m← A(crs)

r← {0, 1}n(λ)

y← DS(crs,m, r)

r← ES(crs,m,y)

return Adv(crs,m, r,y)

G1

crs← SetupS(1λ)

m← A(crs)

yS ← S(m)

rD ← ES(crs,m,yS)

return Adv(crs,m, rD,yS)

G2

crs← SetupS(1λ)

m← A(crs)

yS ← S(m)

rD ← ES(crs,m,yS)

yD ← DS(crs,m, rD)

return Adv(crs,m, rD,yD)

G3

crs← SetupS(1λ)

m← A(crs)

rD ← {0, 1}n(λ)

yD ← DS(crs,m, rD)

return Adv(crs,m, rD,yD)

(d) Adaptive invertibility. Game G0 corresponds to the adaptive invertibility game, where A receives inverse
sampled random coins. The game hop from G0 to G1 is justified by adaptive closeness which follows
from adaptive correctness and adaptive pseudorandomness. The game hop from G1 to G2 is justified by
adaptive correctness and the game hop from G2 to G3 is justified by adaptive pseudorandomness. G3

corresponds to the adaptive invertibility game, where A receives the actual randomness.

Figure 16.8: Proof sketch for the equivalence of the adaptive notions of pseudorandom encodings and invertible sampling.

61 We note that if
some distribution X

is ϵ-close to a
distribution Y,
H∞(X) ⩾
− log(2−H∞(Y) +

ϵ(λ)) =

H∞(Y)− log(1+

ϵ(λ)2H∞(Y)).

17
A TA X O N O M Y O F
P S E U D O R A N D O M
E N C O D I N G S

In this chapter we classify the different variants of the pseudorandom en-
coding hypothesis. In Section 17.1, we study the pseudorandom encoding
hypothesis with deterministic encoding algorithm and identify a relation
to compression. In Section 17.2, we study the pseudorandom encoding hy-
pothesis with randomized encoding and its conflicts with extractable one-
way functions. In Section 17.3, we describe an instantiation of cPREHrand

≈c

(with and without universal setup) based on indistinguishability obfuscation
and one-way functions due to [SW14; DKR15]. Finally, in Section 17.4, we
bootstrap cPREHrand

≈c with a common random string from the construction
in Section 17.3 in conjunction with weak cPREHrand

≈c with a common random
string for the setup algorithm from Section 17.3.

17.1 deterministic encoding algorithm
For the purpose of classifying pseudorandom encodings with a determin-
istic encoding algorithm, we first introduce some notions of entropy and
computational analogues thereof.

Min-entropy captures the ability to guess the value of a distribution in a
single attempt, cf. Definition 2.2. However, this is a very pessimistic view. For
many purposes, it suffices to work with a distribution which is statistically
close (i. e., has negligible statistical distance) to a distribution with high min-
entropy.61

definition 17.1 (ϵ-smooth min-entropy, [Rey11]). A source X has ϵ-smooth
min-entropy at least k, denoted as Hϵ

∞(X) ⩾ k, if there exists a distribution X′

with ∆(X,X′) ⩽ ϵ such that H∞(X′) ⩾ k.

In many cases, some information Z that is correlated to the actual source X

is known. Since for our purposes, the conditional part Z is not under adver-
sarial control, we use the notion of average conditional min-entropy as used in
[HLR07; DORS08], cf. Definition 2.3. That is, the average min-entropy of some
distribution X conditioned on Z is defined as − log(Ez←Z[maxx Pr[Xz = x]]).

The notion of average min-entropy can be relaxed in a similar way as
Definition 17.1 as follows.

definition 17.2 (Average ϵ-smooth min-entropy, [DORS08; Rey11]). Let
(X,Z) be a joint distribution. The distribution X has average ϵ-smooth min-
entropy at least k conditioned on Z, denoted as ˜︁Hϵ

∞(X | Z) ⩾ k, if there exists a
joint distribution (X′,Z′) with ∆((X,Z), (X′,Z′)) ⩽ ϵ such that ˜︁H∞(X′ | Z′) ⩾
k.

Let X be an efficiently samplable distribution. In the literature, there are
several computational notions of entropy. HILL entropy [HILL99] constitutes
a natural computational variant of min-entropy. A source has high HILL

189

190 a taxonomy of pseudorandom encodings

entropy, if it is computationally indistinguishable from a source that has high
min-entropy.

definition 17.3 (HILL entropy, [HILL99; BSW03]). A distribution X has
HILL entropy at least k, denoted by HHILL

ϵ,s (X) ⩾ k, if there exists a distribution
Y such that H∞(Y) ⩾ k and |Pr[x← X : A(x) = 1] − Pr[y← Y : A(y) = 1]| ⩽ ϵ

for all A of size at most s.

Shannon’s source coding theorem [Sha48] states that the minimum com-
pression length (over all compression and decompression algorithms) of a
distribution equals its average entropy (up to small additive terms). Yao
entropy [Yao82] constitutes the corresponding computational counterpart. In-
tuitively, a source has high Yao entropy, if it cannot be efficiently compressed.

definition 17.4 (Yao entropy, [Yao82; BSW03]). A distribution X has Yao
entropy at least k, denoted by HYao

ϵ,s(X) ⩾ k, if for every pair of circuits (E, D)

of total size s with outputs of E having length ℓ, Prx←X[D(E(x)) = x] ⩽
2ℓ−k + ϵ.

When we omit the subscripts for HHILL and HYao, we mean HHILL
ϵ,s and HYao

ϵ,s
for any negligible ϵ and polynomial s, respectively. Since compressibility
implies distinguishability, HILL entropy implies Yao entropy. The converse,
however, is believed to be false, [Wee04; HLR07].

definition 17.5 (Conditional HILL entropy, [HLR07]). For a distribution
(X,Z), we say that X has HILL entropy at least k conditioned on Z, denoted
by HHILL

ϵ,s (X | Z) ⩾ k, if there exists a collection of distributions Yz giving
rise to a joint distribution (Y,Z), such that ˜︁H∞(Y | Z) ⩾ k and |Pr[(x, z) ←
(X,Z) : A(x, z) = 1] − Pr[(y, z)← (Y,Z) : A(y, z) = 1]| ⩽ ϵ for all circuits A of
size at most s.

Conditional Yao entropy is defined by simply giving the compressor and
decompressor algorithm the value z as input.

definition 17.6 (Conditional Yao entropy, [HLR07]). For a distribution
(X,Z), we say that X has Yao entropy at least k conditioned on Z, denoted by
HYao

ϵ,s(X | Z) ⩾ k, if for every pair of circuits (E, D) of total size at most s with
outputs of E having length ℓ, Pr(x,z)←(X,Z)[D(z, E(z, x)) = x] ⩽ 2ℓ−k + ϵ.

17.1.1 Information-theoretic Guarantees and Compression

Traditionally, the theory of compression mostly considers families of sources
that are not indexed by strings. Let Σ be some alphabet. In this part, we
always consider Σ := {0, 1}. Let X be a source.

definition 17.7 ([Wee04; TVZ05]). Let EX : Σ∗ → Σ∗ and DX : Σ∗ → Σ∗ be
functions. We say (EX, DX) compresses source X to length m with decoding error
ϵ if

• Pr
[︁
x← X : DX(EX(x)) ̸= x

]︁
⩽ ϵ, and

• E
[︁
|EX(X)|

]︁
⩽ m.

definition 17.8 ([Wee04; TVZ05]). We say source X is compressible to length
(exactly) m if there exist functions EX and DX such that (EX, DX) compresses
X to length (exactly) m.

17.1 deterministic encoding algorithm 191

The decoding error can be eliminated at the cost of longer codewords.

lemma 17.1 ([TVZ05]). Let Xλ be a source on {0, 1}λ which is compressible to
length m with decoding error ϵ by algorithms (EX, DX). Further, let m0 ∈ N be
a lower bound on the output length of EX, i. e., such that for all x ∈ supp(Xλ),
|EX(x)| ⩾ m0. Then, Xλ is compressible to length m+ϵ(λ−m0)+1 with decoding
error 0.

Proof sketch. To show this, [TVZ05] construct an encoding algorithm E′X
which on input of x tests if DX(EX(x)) = x. If this is the case, E′X outputs
0 ∥EX(x). Else, E′X outputs 1 ∥ x.

The statistical deterministic variant of the pseudorandom encoding hy-
pothesis is strongly related to compression.

theorem 17.1. If (weak) PREHdet
≡s is true for X, i. e., there exist deterministic

algorithms (EX, DX) with EX having output length n satisfying correctness and
pseudorandomness. Then, the ϵ-smooth min-entropy Hϵ

∞(X) ⩾ n for some negligible
function ϵ.

Proof. Consider the distribution Y′ := DX(Un). As already seen in the proof
of Theorem 16.1, Y′ and X are statistically indistinguishable due to correctness
and pseudorandomness. Hence, the statistical distance ∆(X, Y′) ⩽ δ(λ) for
some negligible δ.

Due to correctness and since EX is deterministic,

Pr
[︁
x← X : DX(EX(x)) = x

]︁
= Pr

[︁
x← X : EX(DX(EX(x))) = EX(x)

]︁

⩾ 1− ν(λ)

for some negligible function ν. Applying pseudorandomness, we get that the
probability

Pr
[︁
u← Un : EX(DX(u)) = u

]︁
⩾ 1− ν′(λ)

for some negligible function ν′, where the probability is only over the choice
of u. Therefore, DX operates almost injectively on the set {0, 1}n. More
formally, let V0 ⊂ {0, 1}n denote the set of all u such that EX(DX(u)) =

u and let V1 := {0, 1}n \ V0. We have that, |V1|/|{0,1}n| ⩽ ν′(λ). Let V1 be
some arbitrary subset of {0, 1}k(λ) \DX(V0) such that |V1| = |V1| (for some
polynomial k). Let Y′′ be the uniform distribution over DX(V0) ∪ V1. Note
that |DX(V0) ∪ V1| = 2n and Pr[Y′ ∈ V1] ⩽ Pr[Y′ ̸∈ DX(V0)] ⩽ ν′(λ). The
statistical distance between Y′ and Y′′ is

∆(Y′, Y′′) =
∑︂

a∈DX(V0)∪V1

⃓⃓
Pr[Y′ = a] − Pr[Y′′ = a]

⃓⃓

=
∑︂

a∈DX(V0)

⃓⃓
Pr[Y′ = a] − Pr[Y′′ = a]

⃓⃓

⏞ ⏟⏟ ⏞
⩽1−|V0|·2−n⩽1−(1−ν′(λ))

+
∑︂

a∈V1

⃓⃓
Pr[Y′ = a] − Pr[Y′′ = a]

⃓⃓

⏞ ⏟⏟ ⏞
⩽∑︁

a∈V1
(Pr[Y′=a]+Pr[Y′′=a])⩽2·ν′(λ)

⩽ 3 · ν′(λ)

192 a taxonomy of pseudorandom encodings

and hence negligible. Furthermore, since Y′′ is the uniform distribution
over a set of size 2n, its min-entropy equals n. Since ∆(X, Y′) ⩽ δ(λ) and
∆(Y′, Y′′) ⩽ 3ν′(λ) for negligible functions δ and ν′, we have

Hδ+3ν′
∞ (X) ⩾ H∞(Y′′) = n.

Theorem 17.1 directly yields the following corollary.

corollary 17.1. If PREHdet
≡s is true for some source X, there exists an n ⩽

Hϵ
∞(X) (for some negligible function ϵ), such that X is compressible to length

exactly n. The decoding error can then be eliminated applying Lemma 17.1.

Hence, for PREHdet
≡s to be true for a source X, it is necessary that X is

efficiently compressible. However, this is not a sufficient criterion since
a compression algorithm can have some structure which makes it easily
distinguishable from uniform randomness (e. g., the compression algorithm
used in the proof of Lemma 17.1).

The distribution induced by pseudorandom generators can provably not be
compressed. However, those distributions have low ϵ-smooth min-entropy.

lemma 17.2. Let iPRG be an injective pseudorandom generator with polynomial
stretch poly(·) and let ϵ be a negligible function. Then, Hϵ

∞(iPRG(Uλ)) ⩽ λ+ δ(λ)

for some negligible function δ.

Proof. Since iPRG(Uλ) is a uniform distribution over iPRG({0, 1}λ), it suf-
fices to consider all ϵ-close flat distributions over {0, 1}poly(λ) to obtain an
upper bound on Hϵ

∞(iPRG(Uλ)). Let D be the uniform distribution over
iPRG({0, 1}λ)∪A, for some set A such that iPRG({0, 1}λ)∩A = ∅. Let |A| := k.
Then,

∆(iPRG(Uλ),D) =
∑︂

a∈iPRG({0,1}λ)

⃓⃓
⃓⃓ 1
2λ

−
1

2λ + k

⃓⃓
⃓⃓+

∑︂

a∈A

⃓⃓
⃓⃓ 1

2λ + k

⃓⃓
⃓⃓

= 1−
2λ

2λ + k
+

k

2λ + k
=

2k

2λ + k
.

Hence, for ∆(iPRG(Uλ),D) ⩽ ϵ(λ), k is upper bounded by

k ⩽ k(2− ϵ(λ)⏞ ⏟⏟ ⏞
⩾1

) ⩽ 2λ · ϵ(λ).

Therefore, the min-entropy of D is at most H∞(D) = log(2λ + k) ⩽ log(2λ +

2λϵ) = λ+ log(1+ϵ), which is negligibly close to λ. Hence, Hϵ
∞(iPRG(Uλ)) ⩽

λ+ δ(λ) for some negligible function δ.

Thus, if injective PRGs exist (and since the distribution induced by iPRG is
clearly compatible, cf. Definition 15.3), then PREHdet

≡s is false. We can further
strengthen this result by considering general PRGs.

lemma 17.3. Let PRG be a pseudorandom generator with polynomial stretch
poly(·) and let ϵ be a negligible function. Then, Hϵ

∞(PRG(Uλ)) ⩽ λ+ δ(λ) for
some negligible function δ.

17.1 deterministic encoding algorithm 193

Proof. Due to Lemma 15.1, there exists a uniform distribution D over a set of
size 2λ such that PRG(Uλ) and D are statistically close. By a similar argument
as in Lemma 17.2, in order to upper bound the ϵ-smooth min-entropy of
PRG(Uλ), it suffices to consider all ϵ-close flat distributions. Then, by the
same computations as in the proof of Lemma 17.2, Lemma 17.3 follows.

Theorem 17.1 together with Lemmas 15.1 and 17.3 yield the following
corollary.

corollary 17.2. If one-way functions exist, PREHdet
≡s is false.

information-theoretic guarantees with setup. Intuitively, a com-
mon reference string cannot add additional entropy to EX(crs,X). That is,
if cPREHdet

≡s is true for some source X, the algorithms (EX, DX) implied by
cPREHdet

≡s compress that source to its ϵ-smooth min-entropy. To prove this,
we introduce the following technical lemma.

lemma 17.4 (Splitting lemma). Let X and Yx be distributions giving rise to
a joint distribution (Y,X). Let A ⊂ supp(Y,X) such that Pr(y,x)←(Y,X)[(y, x) ∈
A] ⩾ 1− µ(λ) for some negligible function µ. Further, for all x ∈ supp(X), let
px := Pry←Yx

[(y, x) ∈ A]. Then, there exist negligible functions ν,ν′ and a set
G ⊆ supp(X), such that for all x ∈ G, px ⩾ 1 − ν(λ) and Prx←X[x ∈ G] ⩾
1− ν′(λ).

Proof. Let µ(λ) be some negligible function. Define Gn := {x ∈ supp(X) : px ⩾
1−n · µ(λ)}. Then,

1− µ(λ) ⩽ Pr
(y,x)←(Y,X)

[(y, x) ∈ A]

=
∑︂

x∈Gn

Pr[X = x] · px⏞⏟⏟⏞
⩽1

+
∑︂

x ̸∈Gn

Pr[X = x] · px⏞⏟⏟⏞
<1−n·µ(λ)

< Pr
x←X

[x ∈ Gn] + (1−n · µ(λ)) ·
∑︂

x ̸∈Gn

Pr[X = x]

⏞ ⏟⏟ ⏞
=1−Prx←X[x∈Gn]

= Pr
x←X

[x ∈ Gn] + 1−n · µ(λ) − Pr
x←X

[x ∈ Gn]

+n · µ(λ) · Pr
x←X

[x ∈ Gn]

= 1− µ(λ) ·
(︂
n−n · Pr

x←X
[x ∈ Gn]

)︂
.

Hence,

Pr
x←X

[︁
x ∈ Gn

]︁
⩾ 1−

1

n
.

Without loss of generality, we assume µ(λ) > 0 for all λ ∈N. (If µ(λ) = 0 for
some λ, then for G := supp(X), px = 1 for all x ∈ G, and Prx←X[x ∈ G] = 1.)

Then,
√︁
µ(λ) is well-defined and negligible. Let n :=

√︁
µ(λ)

−1
. Then, by

definition of Gn, for all x ∈ Gn, px ⩾ 1−n · µ(λ) = 1−
√︁
µ(λ). Furthermore,

Prx←X[x ∈ Gn] ⩾ 1− 1
n = 1−

√︁
µ(λ).

theorem 17.2. If (weak) cPREHdet
≡s is true for X, i. e., there exist a setup algorithm

SetupX and deterministic algorithms (EX, DX) with EX having output length n

satisfying correctness and pseudorandomness. Then, the ϵ-smooth min-entropy
Hϵ

∞(X) ⩾ n for some negligible function ϵ.

194 a taxonomy of pseudorandom encodings

Proof. Note that Hϵ
∞(X) = ˜︁Hϵ

∞(X | SetupX(1λ)) as the distribution X is inde-
pendent of the CRS. Hence, it suffices to upper bound the average ϵ-smooth
min-entropy ˜︁Hϵ

∞(X | SetupX(1λ)).
The proof is similar to the proof of Theorem 17.1. We consider the distri-

bution Y′crs := DX(crs,Un). Due to Theorem 16.1, the distributions
{︁

crs← SetupX(1
λ),u← Un :

(︁
crs, DX(crs,u)

)︁}︁
and

{︁
crs← SetupX(1

λ),y← X : (crs,y)
}︁

are statistically indistinguishable. Hence,

∆
(︁
(X | SetupX(1

λ), (Y′ | SetupX(1
λ)
)︁
⩽ δ(λ)

for some negligible function δ.
Further, by a similar argument as in Theorem 17.1, due to correctness and

pseudorandomness we have

Pr
[︁
crs← SetupX(1

λ),u← Un : EX

(︁
crs, DX(crs,u)

)︁
= u

]︁
⩾ 1− ν′(λ)

for some negligible function ν′, where the probability is over the choice of
crs and u.

The Splitting lemma (Lemma 17.4) implies that there exists a set G ⊆
supp(SetupX(1λ)) such that Pr[crs ← SetupX(1λ) : crs ∈ G] ⩾ 1− ν′′(λ) and
for all crs ∈ G, Pr[u ← Un : EX(crs, DX(crs,u)) = u] ⩾ 1− ν′′′(λ) for some
negligible functions ν′′,ν′′′. Hence, conditioned on crs ∈ G, DX(crs, ·) op-
erates almost injectively on the set {0, 1}n. More formally, let Vcrs

0 ⊂ {0, 1}n

denote the set of all u such that EX(crs, DX(crs,u)) = u and let Vcrs
1 :=

{0, 1}n \ Vcrs
0 . For crs ∈ G, we have |Vcrs

1 |/|{0,1}n| ⩽ ν′′′(λ). Let Vcrs
1 be some

arbitrary subset of {0, 1}k(λ) \DX(crs,Vcrs
0) such that |Vcrs

1 | = |Vcrs
1 | (for some

polynomial k). Let Y′′ be the uniform distribution over DX(V
crs
0)∪ Vcrs

1 . Note
that |DX(crs,Vcrs

0) ∪ Vcrs
1 | = 2n, and for crs ∈ G we have Pr[Y′crs ∈ Vcrs

1] ⩽
Pr[Y′crs ̸∈ DX(crs,Vcrs

0)] ⩽ ν′(λ). We have that

∆
(︁
(Y′, SetupX), (Y

′′, SetupX)
)︁

=
∑︂

crs∈supp(SetupX)
a∈{0,1}k(λ)

⃓⃓
⃓ Pr

[︁
(Y′, SetupX) = (a, crs)

]︁

− Pr
[︁
(Y′′, SetupX) = (a, crs)

]︁⃓⃓
⃓

=
∑︂

crs∈G
Pr[SetupX = crs] ·

∑︂

a∈{0,1}k(λ)

⃓⃓
⃓Pr[Y′crs = a] − Pr[Y′′crs = a]

⃓⃓
⃓

+
∑︂

crs̸∈G
Pr[SetupX = crs] ·

∑︂

a∈{0,1}k(λ)

⃓⃓
⃓Pr[Y′crs = a] − Pr[Y′′crs = a]

⃓⃓
⃓

(17.1)

The separate terms can be upper bounded as follows.

∑︂

crs∈G
Pr
[︁
SetupX = crs

]︁
·

∑︂

a∈{0,1}k(λ)

⃓⃓
⃓Pr

[︁
Y′crs = a

]︁
− Pr

[︁
Y′′crs = a

]︁⃓⃓
⃓

=
∑︂

crs∈G
Pr
[︁
SetupX = crs

]︁
·

⎛
⎜⎜⎜⎜⎝

∑︂

a∈DX(crs,Vcrs
0)

⃓⃓
⃓Pr

[︁
Y′crs = a

]︁
− Pr

[︁
Y′′crs = a

]︁⃓⃓
⃓

+
∑︂

a∈Vcrs
1

⃓⃓
⃓Pr

[︁
Y′crs = a

]︁
− Pr

[︁
Y′′crs = a

]︁⃓⃓
⃓

⎞
⎟⎟⎟⎟⎠

17.1 deterministic encoding algorithm 195

⩽
∑︂

crs∈G
Pr
[︁
SetupX = crs

]︁
·
(︄
1−

|Vcrs
0 |

2n
+Pr

[︁
Y′crs ∈ Vcrs

1

]︁

+Pr
[︁
Y′′crs ∈ Vcrs

1

]︁
)︄

⩽
∑︂

crs∈G
Pr
[︁
SetupX = crs

]︁
·
(︄
|Vcrs

1 |

2n
+ Pr

[︁
Y′crs ̸∈ DX(crs,Vcrs

0)
]︁
+

|Vcrs
1 |

2n

)︄

⩽ 3 · ν′′′(λ) (17.2)

∑︂

crs̸∈G
Pr
[︁
SetupX = crs

]︁
·

∑︂

a∈{0,1}k(n)

⃓⃓
⃓Pr

[︁
Y′crs = a

]︁
− Pr

[︁
Y′′crs = a

]︁⃓⃓
⃓

⩽
∑︂

crs̸∈G
Pr
[︁
SetupX = crs

]︁
· 2

⩽ 2 · ν′′(λ) (17.3)

Combining Equations (17.1), (17.2) and (17.3) we have

∆
(︁
(Y′, SetupX), (Y

′′, SetupX)
)︁
⩽ 2 · ν′′(λ) + 3 · ν′′′(λ).

Furthermore, since for all crs ∈ supp(SetupX(1λ)), Y′′crs is the uniform
distribution over a set of 2n elements,

˜︁H∞
(︁
Y′′ | SetupX(1

λ)
)︁
= − log

(︂
E

crs←SetupX(1λ)
max
a

Pr[Y′′crs = a]
)︂

= n.

Therefore, we have

Hδ+2ν′′+3ν′′′
∞ (X) = ˜︁Hδ+2ν′′+3ν′′′

∞ (X | SetupX(1
λ)) ⩾ n,

where δ, ν′′, ν′′′ are negligible functions.

Theorem 17.2 together with Lemmas 15.1 and 17.3 yield the following
corollary.

corollary 17.3. If one-way functions exist, cPREHdet
≡s is false.

17.1.2 Computational Guarantees and Pseudoentropy

We study the relation of the pseudorandom encoding hypothesis with deter-
ministic encoding algorithm to HILL and Yao entropy. Interestingly, PREHdet

≈c

poses a lower bound on the HILL entropy of a source and an upper bound
on its Yao entropy.

hill entropy. The algorithms (EX, DX) implied by PREHdet
≈c compress a

source X to its HILL entropy.

theorem 17.3. If (weak) PREHdet
≈c is true for X, i. e., there exist deterministic

algorithms (EX, DX) with EX having output length n satisfying correctness and
pseudorandomness. Then, HHILL(X) ⩾ n.

Proof. We employ a similar strategy as in the proof of Theorem 17.1. Let
Y′ := DX(Un). As already seen in the proof of Theorem 16.1, Y′ and X are

196 a taxonomy of pseudorandom encodings

computationally indistinguishable due to correctness and pseudorandom-
ness.

Due to correctness, Pr[x ← X : DX(EX(x)) = x] ⩾ 1 − ν(λ) for some
negligible function ν. Since EX is required to be deterministic, we get
Pr[x ← X : EX(DX(EX(x))) = EX(x)] ⩾ 1− ν(λ). Applying pseudorandom-
ness, we have

Pr
[︁
u← Un : EX

(︁
DX(u)

)︁
= u

]︁
⩾ 1− ν′(λ)

for some negligible function ν′, where the probability is only over the choice
of u. Let V0 ⊂ {0, 1}n denote the set of all u such that EX(DX(u)) = u and
let V1 := {0, 1}n \ V0. We have that, |V1|/|{0,1}n| ⩽ ν′(λ).

Let V1 be some arbitrary subset of {0, 1}k(λ) \DX(V0) such that |V1| = |V1|

(for some polynomial k). Let Y′′ be the uniform distribution over DX(V0)∪V1.
The min-entropy of Y′′ equals n. By the same argument as in the proof of
Theorem 17.1, the statistical distance between Y′ and Y′′ is negligible.

Therefore, the distributions X and Y′′ are computationally indistinguish-
able and, hence, HHILL(X) ⩾ n.

This result can be generalized to conditional HILL entropy using general
(as opposed to weak) PREHdet

≈c .

theorem 17.4. Let (X,Z) be a joint distribution. More precisely, let Z be a
distribution over words of length λ. For z ∈ supp(Z), let Xz denote the conditional
distribution when Z = z. If (general) PREHdet

≈c is true for X, i. e., there exist two
deterministic polynomial time algorithms (EX, DX) with EX having output length
n satisfying correctness and pseudorandomness. Then, HHILL(X | Z) ⩾ n.

Proof. For each z ∈ supp(Z), consider the distribution Y′z := DX(z,Un). Due
to Theorem 16.1, for all adversarially chosen z, the distributions {(Y′z, z)}
and {(Xz, z)} are computationally indistinguishable due to correctness and
pseudorandomness.

Due to correctness, for all adversarially chosen z, the probability Pr[x←
Xz : DX(z, EX(z, x)) = x] ⩾ 1− ν(λ) for some negligible function ν. Since EX

is required to be deterministic, we have that for all adversarially chosen z,
Pr[x ← Xz : EX(z, DX(z, EX(z, x))) = EX(z, x)] ⩾ 1− ν(λ). Applying pseudo-
randomness, we get that there exists a negligible function ν′ such that for all
adversarially chosen z,

Pr
[︁
u← Un : EX

(︁
z, DX(z,u)

)︁
= u

]︁
⩾ 1− ν′(λ),

where the probability is only over the choice of u. Let V0,z ⊆ {0, 1}n denote
the set of all u ∈ {0, 1}n such that EX(z, DX(z,u)) = u holds and let V1,z :=

{0, 1}n \ V0,z. We have that |V1,z|/|{0,1}n| ⩽ ν′(λ).
Let V1,z be some arbitrary subset of {0, 1}k(λ) \ DX(z,V0,z) such that

|V1,z| = |V1,z| (for some polynomial k). Let Y′′z be the uniform distribution
over DX(z,V0,z)∪ V1,z. Clearly,

˜︁H∞(Y′′ | Z) = − log
(︂

E
z←Z

[︁
max

y∈supp(Y′′z)
Pr[Y′′z = y]

]︁)︂

= n.

17.1 deterministic encoding algorithm 197

62 Note that here we
use that the adversary
is non-uniform.

By a similar argument as in the proof of Theorem 17.1, for all adversarially
chosen z, the statistical distance between Y′z and Y′′z is negligible:

∆(Y′z, Y′′z) =
∑︂

a∈DX(z,Vz,0)

⃓⃓
Pr[Y′z = a] − Pr[Y′′z = a]

⃓⃓

⏞ ⏟⏟ ⏞
⩽ 1−|V0,z|·2−n ⩽ 1−(1−ν′(λ))

+
∑︂

a∈V1,z

⃓⃓
Pr[Y′ = a] − Pr[Y′′ = a]

⃓⃓

⏞ ⏟⏟ ⏞
⩽ ∑︁

a∈V1,z
(Pr[Y′=a]+Pr[Y′′=a]) ⩽ 2·ν′(λ)

⩽ 3 · ν′(λ)

Hence, the (joint) distributions (X,Z) and (Y′′,Z) are computationally indis-
tinguishable. Therefore, HHILL(X | Z) ⩾ n.

We recall that in the proof of Theorem 17.2, we used the observation
that independent random variables A and B satisfy H∞(A) = H∞(A | B).
However, this does not necessarily extend to the computational case, meaning
that in our case HHILL(X | SetupX(1λ),Z) and HHILL(X | Z) are not equal
even though the random variables X and SetupX are independent. Hence,
in order to extend Theorem 17.4 to cPREHdet

≈c , we need that there exists a
“good” CRS crs such that Y′crs,z is almost injective on {0, 1}n and such that
{(crs,y)} and {(crs, DX(crs, z,u))} are computationally indistinguishable for
this fixed crs. However, since the adversary is quantified after the crs, a non-
uniform adversary could know the randomness which was used to generate
crs compromising all security guarantees. Therefore, we can only hope to
obtain an upper bound on n depending on the conditional HILL entropy
HHILL(X | SetupX(1λ),Z).

theorem 17.5. Let (X,Z) be a joint distribution. More precisely, let Z be a
distribution over words of length λ. For z ∈ supp(Z), let Xz denote the conditional
distribution when Z = z. If (general) cPREHdet

≈c is true for X, i. e., there exists a PPT
algorithm SetupX and two deterministic polynomial time algorithms (EX, DX) with
EX having output length n satisfying correctness and pseudorandomness. Then,
HHILL(X | SetupX(1λ),Z) ⩾ n.

Proof. The proof is similar to the proof of Theorem 17.4. We consider the
distribution Y′crs,z := DX(crs, z,Un).

Due to Theorem 16.1, we have that for all adversarially chosen z, the dis-
tributions {crs← SetupX(1λ),y← Xz : (crs, z,y)} and {crs← SetupX(1λ),u←
Un : (crs, z, DX(crs, z,u))} are computationally indistinguishable.

Due to correctness and pseudorandomness we have that there exists a
negligible function ν′, such that for all adversarially chosen z,

Pr
[︁
crs← SetupX(1

λ),u← Un : EX

(︁
crs, z, DX(crs, z,u)

)︁
= u

]︁

⩾ 1− ν′(λ),

where the probability is over the choice of crs and u. The Splitting lemma
(Lemma 17.4) implies that for all z,62 there exists a set Gz ⊆ supp(SetupX(1λ))
such that Pr[crs ← SetupX(1λ) : crs ∈ Gz] ⩾ 1− ν′′z(λ) and for all crs ∈ Gz,
Pr[u ← Un : EX(crs, z, DX(crs, z,u)) = u] ⩾ 1− ν′′′z (λ) for some negligible
functions ν′′z ,ν′′′z . Hence, conditioned on crs ∈ Gz, DX(crs, z, ·) operates
almost injectively on the set {0, 1}n.

198 a taxonomy of pseudorandom encodings

Let Vcrs
0,z ⊆ {0, 1}n denote the set of all u ∈ {0, 1}n such that EX(crs, z,

DX(crs, z,u)) = u holds and let Vcrs
1,z := {0, 1}n \ Vcrs

0,z. For crs ∈ Gz, we have
|Vcrs

1,z|/|{0,1}n| ⩽ ν′′′z (λ).
Let Vcrs

1,z be some arbitrary subset of {0, 1}k(λ) \ DX(crs, z,Vcrs
0,z) such that

|Vcrs
1,z| = |Vcrs

1,z| (for some polynomial k). Let Y′′crs,z be the uniform distribution
over DX(crs, z,Vcrs

0,z)∪ Vcrs
1,z. Then,

˜︁H∞
(︁
Y′′
⃓⃓
SetupX(1

λ),Z
)︁

= − log

⎛
⎜⎝ E

crs←SetupX(1λ)
z←Z

[︄
max

y∈supp(Y′′crs,z)
Pr
[︁
Y′′crs,z = y

]︁
]︄⎞
⎟⎠

= n.

Furthermore, a similar computation as in the proof of Theorem 17.2, for all
adversarially chosen z, the statistical distance between (Y′z, SetupX(1λ)) and
(Y′′z , SetupX(1λ)) is negligible. Hence, the (joint) distributions (X, SetupX(1λ),
Z) and (Y′′, SetupX(1λ),Z) are computationally indistinguishable. Therefore,
HHILL(X | SetupX(1λ),Z) ⩾ n.

yao entropy. On the other hand, the existence of algorithms (EX, DX) as
implied by PREHdet

≈c give an upper bound for the Yao entropy of a source.

lemma 17.5. If (weak) PREHdet
≈c is true for X, i. e., there exist deterministic

algorithms (EX, DX) with EX having output length n satisfying correctness and
pseudorandomness. Then, HYao(X) < n+ δ(λ) for some negligible δ.

Proof. Due to correctness, there exists a pair of efficient algorithms (EX, DX)

(with EX having output length n) such that

Pr
x←X

[︁
DX(EX(x)) = x

]︁
⩾ 1− ν(λ)

for some negligible function ν. Hence, by Definition 17.4, HYao(X) < k, for
all k satisfying

1− ν(λ) ⩾ 2n−k + ϵ(λ)

⇐⇒ 2k · (1− ν(λ) − ϵ(λ)) ⩾ 2n

⇐⇒ k ⩾ n− log
(︁
1− ν(λ) − ϵ(λ)

)︁
.

This result can be generalized to conditional Yao entropy as follows.

lemma 17.6. Let (X,Z) be a joint distribution. More precisely, let Z be a dis-
tribution over words of length λ. For z ∈ supp(Z), let Xz denote the conditional
distribution when Z = z. If (general) PREHdet

≈c is true for X, i. e., there exist two
deterministic polynomial time algorithms (EX, DX) with EX having output length
n satisfying correctness and pseudorandomness. Then, HYao(X | Z) < n+ δ(λ) for
some negligible δ.

Proof. Due to correctness, for all adversarially chosen z,

Pr
x←Xz

[︁
DX(z, EX(z, x)) = x

]︁
⩾ 1− ν(λ)

17.1 deterministic encoding algorithm 199

63 Note that here we
use that the adversary
is non-uniform.

for some negligible function ν. Hence, by Definition 17.6, HYao(X | Z) < k,
for all k satisfying

k ⩾ n− log
(︁
1− ν(λ) − ϵ(λ)

)︁
.

This result can further be extended to the case of a common setup.

lemma 17.7. Let (X,Z) be a joint distribution. More precisely, let Z be a dis-
tribution over words of length λ. For z ∈ supp(Z), let Xz denote the conditional
distribution when Z = z. If (general) cPREHdet

≈c is true for X, i. e., there exists a
setup algorithm Setup and two deterministic polynomial time algorithms (EX, DX)

with EX having output length n satisfying correctness and pseudorandomness. Then,
HYao(X | Z) < n+ δ(λ) for some negligible δ.

Proof. The Splitting lemma (Lemma 17.4) implies that for all z,63 there is a set
Gz ⊆ supp(SetupX(1λ)) such that Pr[crs← SetupX(1λ) : crs ∈ Gz] ⩾ 1−ν′′z(λ)
and for all crs ∈ Gz,

Pr
[︁
u← Un : EX

(︁
crs, z, DX(crs, z,u)

)︁
= u

]︁
⩾ 1− ν′′′z (λ)

for some negligible functions ν′′z , ν′′′z .
We exploit the non-uniformity of the definition (Definitions 17.4 and 17.6).

In particular, we define the compression and decompression circuits as
E′X(y, z; auxλ) := EX(auxλ, z,y) and D′X(u, z; auxλ) := DX(auxλ, z,u), where
auxλ denotes the non-uniform auxiliary input providing a “good” CRS.

Due to [HLR07], assuming suitable non-interactive zero-knowledge proof
systems and pseudorandom generators, there exists a joint distribution (X,Z)
with high conditional Yao entropy but low conditional HILL entropy. The
sampler S from [HLR07] takes as input a NIZK common random string σ,
samples a seed from Uλ and outputs y1 := PRG(s) together with a proof y2
that y1 is in the image of PRG. Due to Lemma 15.2, S ∈ S≈c . This yields the
following corollary.

corollary 17.4. If there exist a pseudorandom generator and a (single-theorem)
NIZK proof system such that (i) for an overwhelming fraction of common random
strings, the number of accepting proofs for each statement is limited, and (ii) the
simulated random string is independent of the statement as in [HLR07]. Then
PREHdet

≈c is false.

A Blum integer is a natural number N = p · q such that p,q are primes
with p ≡ q ≡ 3 mod 4. The quadratic residuosity assumption (QRA) states
that for a randomly chosen Blum integer N = p · q, the distributions {y ←
Z×N s.t.

(︂
y
p

)︂
=
(︂
y
q

)︂
= 1 : (N,y)} and {y ← Z×N s.t.

(︁ y
N

)︁
= 1 : (N,y)} are

computationally indistinguishable.
Due to [LMs05], a (single-theorem) NIZK proof system which is suitable for

Corollary 17.4 can by instantiated from the quadratic residuosity assumption
(QRA).

corollary 17.5. If the quadratic residuosity assumption is true, then PREHdet
≈c

is false.

200 a taxonomy of pseudorandom encodings

on refuting cPREHdet
≈c . Theorem 17.5 only yields an upper bound on

the encoding length n depending on HHILL(X | SetupX(1λ),Z). Since the
Yao entropy of any source HYao(X | SetupX(1λ),Z) is upper bounded by
n+ negl(λ), we cannot apply the result from [HLR07] to refute cPREHdet

≈c .

on refuting weak PREHdet
≈c . It is currently not known if plain HILL

and plain Yao entropy can be separated as in [HLR07]. Such a separation
would refute weak PREHdet

≈c .

17.2 randomized encoding algorithm
In the following we prove positive and negative results on the validity of the
pseudorandom encoding hypothesis with a randomized encoding algorithm.
In particular, in Section 17.2.2 we refute PREHrand

≡s based on subexponential
LWE, in Section 17.2.3 we refute cPREHrand

≈c based on extractable one-way
functions with unbounded auxiliary input. On the positive side, in Section 17.3,
we give a construction of perfectly correct cPREHrand

≈c with and without uni-
versal setup based on indistinguishability obfuscation and one-way functions
following [SW14; DKR15] together with Theorem 16.1. In Section 17.4, we
bootstrap cPREHrand

≈c with a common random string from the construction in
Chapter 6 additionally assuming weak cPREHrand

≈c with a common random
string. Since cPREHrand

≈c with a common random string in conjunction with
NIZK proof systems contradicts EOWFs with common but benign auxiliary
information, this refutes even weak cPREHrand

≈c with common random string.

17.2.1 (Generalized) Extractable One-way Functions

In this section, we define generalized extractable one-way functions (with
respect to common auxiliary input) as in [BCPR16].

definition 17.9 (Generalized extractable one-way function family ensem-
bles with common auxiliary information, [BCPR16]). A generalized one-way
extractable function (GEOWF) family ensemble with common auxiliary information,
with respect to a relation RF

f over triplets (f,y, x) ∈ Gen(1λ)× {0, 1}n(λ) ×
{0, 1}m(λ), is a function family ensemble F = (Gen, Eval) (cf. Definition 2.8) if
the following properties are satisfied.

RF -hardness. For every PPT adversary A, for every polynomial b and
every z ∈ {0, 1}b(λ),

Pr
[︂
Expg-hard-aux

F,A,z (λ) = 1
]︂

is negligible, where Expg-hard-aux
F,A,z (λ) is defined in Figure 17.1a.

RF -extractability. For every PPT adversary X, there exists a PPT algo-
rithm EX such that for every polynomial b and every z ∈ {0, 1}b(λ),

Pr
[︂
Expg-ext-aux

F,X,EX,z(λ) = 1
]︂

is overwhelming, where Expg-ext-aux
F,X,EX,z(λ) is defined in Figure 17.1b.

17.2 randomized encoding algorithm 201

We call F
• publicly verifiable if there exists a PPT algorithm T such that

T(f, f(x), x′) = 1⇔ RF
f (f(x), x

′) = 1.

• privately verifiable if there exists a PPT algorithm T such that

T(f, x, x′) = 1⇔ RF
f (f(x), x

′) = 1.

Expg-hard-aux
F,A,z (λ)

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

x′ ← A(f,y, z)

return RF
f (y, x′)

(a) The RF-hardness game.

Expg-ext-aux
F,X,EX,z(λ)

f← Gen(1λ)

rX ← {0, 1}p(λ)

y← X(f, z; rX)

x← EX(f, z, rX)

return
(︁
RF
f (y, x)

)︁
∨
(︁
∀x′ : f(x′) ̸= y

)︁

(b) The RF-extraction game.

Figure 17.1: RF-hardness and RF-extraction game for GEOWFs (with common aux-
iliary input).

definition 17.10 (Generalized extractable one-way function family en-
sembles with b-bounded common auxiliary information, [BCPR16]). Like
Definition 17.9 but with a fixed polynomial b determining the length of the
common auxiliary information.

Due to [BCPR16], privately verifiable generalized extractable one-way func-
tions with bounded auxiliary input can be instantiated based on falsifiable
assumptions.

theorem 17.6 ([BCPR16]). Assuming the learning with errors problem is subex-
ponentially hard, then there exists a (b(λ) −ω(1))-bounded privately verifiable
GEOWF family ensemble.

17.2.2 Information-theoretic Guarantees and Privately Verifiable
GEOWFs

Assuming a pseudorandom encoding scheme providing information-theo-
retic guarantees, we can consider unbounded adversaries. In this setting,
private verifiability is not a restriction.

theorem 17.7. If privately verifiable generalized extractable one-way functions
without auxiliary information exist, then PREHrand

≡s is false.

Proof. The proof strategy follows the ideas of [IKOS10]. Let F be a privately
verifiable GEOWF (without auxiliary input) with respect to relation RF.

PREHrand
≡s implies that for the algorithm S (given in Figure 17.2a) there

exist an alternative sampler S and a corresponding inverse sampler S
−1

satisfying closeness and invertibility of Definition 16.1 against unbounded
adversaries. Since F is a GEOWF, for the algorithm S, there exists an ex-
tractor ES satisfying extractability from Definition 17.9 (without auxiliary
information).

202 a taxonomy of pseudorandom encodings

S(f)

x← {0, 1}n(λ)

y := f(x)

return y

(a) Sampler mapping a random pre-image
with f.

A(1λ, f,y)

r′
S
← S

−1
(f,y)

x′ ← ES(f, r
′
X)

return x′

(b) An adversary breaking one-wayness.

Figure 17.2: Description of the sampler S and of the adversary A breaking one-
wayness of the privately verifiable GEOWF.

64 Since F is
privately verifiable,

an efficient algorithm
computing the

relation RF
f

additionally requires
the pre-image of y as

an input. For our
purpose, it suffices to
consider an inefficient

testing algorithm ˜︁T .

We prove that for A given in Figure 17.2b,

Pr
[︂
Expg-hard

F,A (λ) = 1
]︂

is overwhelming.

Let ˜︁T be an unbounded algorithm that given (f,y, x), computes the relation
RF
f (y, x).64 We proceed over a series of hybrids, see Figure 17.3.

G0

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

x′ ← A(f,y)

return ˜︁T(f,y, x′)

(a) Description of G0.

G1

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

r′
S
← S

−1
(f,y)

x′ ← ES(f, r
′
S
)

return ˜︁T(f,y, x′)

(b) Description of G1.

G2

f← Gen(1λ)

y← S(f)

r′
S
← S

−1
(f,y)

x′ ← ES(f, r
′
S
)

return ˜︁T(f,y, x′)

(c) Description of G2.

G3

f← Gen(1λ)

y← S(f)

r′
S
← S

−1
(f,y)

x′ ← ES(f, r
′
S
)

return ˜︁T(f,y, x′)

(d) Description of G3.

G4

f← Gen(1λ)

rS ← {0, 1}n(λ)

y← S(f; rS)

r′
S
← S

−1
(f,y)

x′ ← ES(f, r
′
S
)

return ˜︁T(f,y, x′)

(e) Description of G4.

G5

f← Gen(1λ)

rS ← {0, 1}n(λ)

y← S(f; rS)

x′ ← ES(f, rS)

return ˜︁T(f,y, x′)

(f) Description of G5.

Figure 17.3: Hybrids used in the proof of Theorem 17.7.

game G0. G0 corresponds to Expg-hard
F,A (λ) using the inefficient algorithm ˜︁T

to test whether (f(x), x′) ∈ RF
f .

game G1. G1 is identical to G0 except that the implementation of A is
explicit in G1. Hence, Pr[out0 = 1] = Pr[out1 = 1].

game G2. G2 is identical to G1 except that y := f(x) for x ← {0, 1}n(λ) is
replaced with y← S(f) which proceeds identically, see Figure 17.2a. Hence,
Pr[out1 = 1] = Pr[out2 = 1].

17.2 randomized encoding algorithm 203

game G3. G3 is identical to G2 except that G2 samples y using S(f) whereas
G3 samples y using S(f).

claim 17.1. There exists an unbounded adversary B3 such that |Pr[out3 =

1] − Pr[out2 = 1]| ⩽ Advclose
(S,S−1

),B3,f
(λ) (for some f ∈ supp(Gen(1λ))).

Proof. Construct an adversary B3 breaking statistical closeness. B3 receives
as input a key f and some y that has either been sampled via S(f) or via S(f).
B3 computes r′

S
and x′ as in game G2, calls the (inefficient) testing algorithm

˜︁T on input of (f,y, x′) and outputs the resulting output. Hence, we have

Pr
[︃

Exp(0)-close
(S,S−1

),B3,f
(λ) = 1

]︃
= Pr

[︁
out2 = 1

⃓⃓
f = f

]︁
and

Pr
[︃

Exp(1)-close
(S,S−1

),B3,f
(λ) = 1

]︃
= Pr

[︁
out3 = 1

⃓⃓
f = f

]︁
,

and, since Advclose
(S,S−1

),B3,f
(λ) is negligible for all f ∈ supp(Gen(1λ)),

⃓⃓
Pr
[︁
out3 = 1

]︁
− Pr

[︁
out2 = 1

]︁⃓⃓

=
∑︂

f∈supp(Gen(1λ))

Pr
f←Gen(1λ)

[f = f] ·Advclose
(S,S−1

),B3,f
(λ),

is negligible.

game G4. G4 is identical to G3 except that the random coins rS used for S

are made explicit. Hence, Pr[out3 = 1] = Pr[out4 = 1].

game G5. G5 is identical to G4 except that ES is called using rS instead of
the inverse sampled random coins r′

S
.

claim 17.2. There exists an unbounded adversary B5 such that |Pr[out5 =

1] − Pr[out4 = 1]| ⩽ Advinv
(S,S−1

),B5,f
(λ) (for some f ∈ supp(Gen(1λ))).

Proof. Construct an unbounded adversary B5 breaking statistical invertibility.
On input of (f, r,y), B5 calls ES on input of (f, r) and obtains x′. Finally, B5

calls the inefficient testing algorithm ˜︁T on input of (f,y, x′) and outputs the
resulting output. If B5 plays the experiment Exp(0)-inv

(S,S−1
),B5,f

(λ), he perfectly

simulates game G5 and

Pr
[︃

Exp(0)-inv
(S,S−1

),B5,f
(λ) = 1

]︃
= Pr

[︁
out5 = 1

⃓⃓
f = f

]︁
.

If, on the other hand, B5 plays the experiment Exp(1)-inv
(S,S−1

),B5,f
(λ), he perfectly

simulates game G4 and

Pr
[︃

Exp(1)-inv
(S,S−1

),B5,f
(λ) = 1

]︃
= Pr

[︁
out4 = 1

⃓⃓
f = f

]︁
.

Thus, the claim follows.

Summing up, we have that |Pr[out0 = 1] − Pr[out5 = 1]| is negligible.

lemma 17.8. Pr[out5 = 1] is overwhelming.

204 a taxonomy of pseudorandom encodings

Proof of Lemma 17.8. Since F is a GEOWF, we have that

PrG5

[︁
RF
f (y, x′) = 1∨ y ̸∈ image(f)

]︁

is overwhelming. Using a union bound, we get

PrG5

[︁
RF
f (y, x′) = 1∨ y ̸∈ image(f)

]︁

⩽ PrG5

[︁
RF
f (y, x′) = 1

]︁
+ PrG5

[︁
y ̸∈ image(f)

]︁
.

In the following, we prove that PrG5
[y ̸∈ image(f)] is negligible. Conse-

quently, PrG5

[︁
RF
f (y, x′) = 1

]︁
= Pr[out5 = 1] is overwhelming.

By construction, S on input of f always produces values y ∈ image(f).
If PrG5

[︁
y ̸∈ image(f)

]︁
= Pr

[︁
f ← Gen(1λ),y ← S(f) : y ̸∈ image(f)

]︁
is non-

negligible, then an unbounded adversary can distinguish between outputs
of S(f) and outputs of S(f) simply by testing all possible pre-images. Let B
be the adversary who outputs 1 if and only if y ̸∈ image(f). Hence,

PrG5

[︁
y ̸∈ image(f)

]︁
=

∑︂

f∈supp(Gen(1λ))

Pr[f = f] ·Advclose
(S,S−1

),B,f
(λ).

Since for all f ∈ supp(Gen(1λ)), Advclose
(S,S−1

),B,f
(λ) is negligible, PrG5

[︁
y ̸∈

image(f)
]︁

is negligible.

This concludes the proof of Theorem 17.7.

From Theorem 17.7 together with Theorem 17.6, we obtain the following
corollary.

corollary 17.6. Assuming the learning with errors problem is subexponentially
hard, then PREHrand

≡s is false.

The above proof extends to cPREHrand
≡s at the cost of assuming privately

verifiable GEOWFs with unbounded auxiliary information. We omit the details
here since no instantiation of this variant of GEOWFs is known and refer
the reader to the proof of Theorem 17.10 for an example how to extend this
strategy to the CRS case.

theorem 17.8. If privately verifiable generalized extractable one-way functions
with unbounded auxiliary information exist, then cPREHrand

≡s is false.

17.2.3 Computational Guarantees and EOWFs with Common Auxiliary
Information

Assuming a pseudorandom encoding scheme providing computational guar-
antees, the above proof strategy must be adapted since the adversary actually
uses the alternative sampler of a sampler which outputs an image in the
range of the EOWF. Computational indistinguishability does not suffice to
force the alternative sampler to output an image in the range of the EOWF.
Hence, for the purpose to force the alternative sampler to output an image
of a given extractable one-way function, we follow the lines of [IKOS10] and
require the original sampler to additionally provide a non-interactive zero-
knowledge proof certifying that the provided image is in the range of the
given EOWF.

By this strategy [IKOS10] prove that PREHrand
≈c in conjunction with NIZK

proof systems conflicts with EOWFs (without auxiliary input).

17.2 randomized encoding algorithm 205

theorem 17.9 ([IKOS10]). If extractable one-way functions without auxiliary
information and NIZK proof systems for NP exist, then PREHrand

≈c is false.

This result can be extended to cPREHrand
≈c at the cost of assuming EOWFs

with unbounded common auxiliary inputs.

theorem 17.10. If there exist extractable one-way functions with unbounded
common auxiliary information and NIZK proof systems for NP, then cPREHrand

≈c is
false.

Proof. We adapt the proof from [IKOS10]. Let F be an extractable one-way
function with common auxiliary information. Let

Lλ :=

{︄
(f,y) ∈ supp(Gen(1λ))× {0, 1}m(λ)

⃓⃓
⃓⃓
⃓
∃x ∈ {0, 1}n(λ) s.t.

f(x) = y

}︄
.

Let (Setup, Prove, Verify) be a NIZK proof system for Lλ such that Setup
produces uniform random strings from {0, 1}nΠ(λ).

cPREHrand
≈c implies that for the PPT algorithm S (see Figure 17.4), there exist

a PPT algorithm SetupS, an alternative sampler S and a corresponding inverse
sampler S−1 satisfying closeness and invertibility as in Definition 16.3.

S(f,σ)

x← {0, 1}n(λ)

y := f(x)

π← Prove(σ, (f,y), x)

return (y,π)

(a) Sampler mapping a random pre-image
with f and proving membership in the
range of f.

X(f, z =: crs;σ ∥ rS)

(y,π)← S(crs, (f,σ); rS)

return y

(b) An adversary producing an image of f.

A(1λ, f,y)

crs← SetupS(1λ)

(σ, τΠ)← Sim0(1
λ)

π← Sim1(τΠ, (f,y))

r′
S
← S

−1
(crs, (f,σ), (y,π))

r′X := σ ∥ r′
S

x′ ← KX(f, crs, r′X)

return x′

(c) An adversary breaking one-wayness.

Figure 17.4: Description of the sampler S, of the adversary X against extractability of
the EOWF and of the adversary A against one-wayness of the EOWF.
Note that depending on the definition of one-wayness, the CRS crs could
also be auxiliary input to A.

The common auxiliary input is necessary to give the adversary X and the
extractor EX access to the same common reference string. Further, it is crucial

206 a taxonomy of pseudorandom encodings

to assume unbounded auxiliary input since the adversary X can be considered
to be a universal adversary who simply executes the code which is contained
in the auxiliary input. Since the size of the adversary cannot be bounded in
advance, neither can the size of the auxiliary input.

Since F is an extractable one-way function with common auxiliary infor-
mation, we have that for the algorithm X (see Figure 17.4b), there exists
an extractor EX such that for every polynomial b and every crs ∈ {0, 1}b(λ)

(hence, in particular, for every z := crs produced by SetupS(1λ)),

Pr
[︂
Expext-aux

F,X,EX,z(λ) = 1
]︂

is overwhelming.
We prove that adversary A given in Figure 17.4c has an overwhelming

probability to break the one-wayness of F. We proceed over a sequence of
hybrids, see Figures 17.5 and 17.6.

G0

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

x′ ← A(f,y)

return f(x′) = y

(a) Description of G0.

G1

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

crs← SetupS(1λ)

(σ, τΠ)← Sim0(1
λ)

π← Sim1(τΠ, (f,y))

r′
S
← S

−1
(crs, (f,σ), (y,π))

r′X := σ ∥ r′
S

x′ ← EX(f, crs, r′X)

return f(x′) = y

(b) Description of G1.

G2

f← Gen(1λ)

x← {0, 1}n(λ)

y := f(x)

crs← SetupS(1λ)

σ← {0, 1}nΠ(λ)

π← Prove(crs, (f,y), x)

r′
S
← S

−1
(crs, (f,σ), (y,π))

r′X := σ ∥ r′
S

x′ ← EX(f, crs, r′X)

return f(x′) = y

(c) Description of G2.

G3

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

(y,π)← S(f,σ)

r′
S
← S

−1
(crs, (f,σ), (y,π))

r′X := σ ∥ r′
S

x′ ← EX(f, crs, r′X)

return f(x′) = y

(d) Description of G3.

Figure 17.5: Hybrids used in the proof of Theorem 17.10.

17.2 randomized encoding algorithm 207

G4

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

(y,π)← S(crs, (f,σ))

r′
S
← S

−1
(crs, (f,σ), (y,π))

r′X := σ ∥ r′
S

x′ ← EX(f, crs, r′X)

return f(x′) = y

(a) Description of G4.

G5

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

rS ← {0, 1}n(λ)

(y,π)← S(crs, (f,σ); rS)

r′
S
← S

−1
(crs, (f,σ), (y,π))

r′X := σ ∥ r′
S

x′ ← EX(f, crs, r′X)

return f(x′) = y

(b) Description of G5.

G6

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

rS ← {0, 1}n(λ)

(y,π)← S(crs, (f,σ); rS)

r′X := σ ∥ rS
x′ ← EX(f, crs, r′X)

return f(x′) = y

(c) Description of G6.

G7

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

rS ← {0, 1}n(λ)

r′X := σ ∥ rS
y← X(f, crs; r′X)

x′ ← EX(f, crs, r′X)

return f(x′) = y

(d) Description of G7.

Figure 17.6: Hybrids used in the proof of Theorem 17.10.

game G0. G0 corresponds to Expow
F,A(λ).

game G1. G1 is identical to G0 except that the implementation of A is
explicit in G1. Hence, Pr[out0 = 1] = Pr[out1 = 1].

game G2. G2 is identical to G1 except that in G1 σ and π are simulated
using (Sim0, Sim1), whereas in G2, σ is sampled uniformly at random from
{0, 1}nΠ(λ) and π is produced via Prove(σ, (f,y), x).

claim 17.3. There exists a PPT adversary B2, such that |Pr[out2 = 1] −

Pr[out1 = 1]| ⩽ Advzk
NIZK,Sim,B2

(λ).

Proof. Construct adversary B2 against the zero-knowledge property of NIZK.
Initially, B2 receives σ as input, produces f, x, y and crs as in G1 and
calls the prove oracle on input of the statement (f,y) together with a wit-
ness x. In return, B2 receives a proof π and proceeds as in G1 to pro-
duce r′

S
, r′X and x′. Finally, B2 outputs 1 if f(x′) = y and 0 otherwise.

If B2 receives a simulated CRS produced via Sim0(1
λ) and a simulated

proof produced via Sim1(σ, τΠ, (f,y)), B2 perfectly simulates G1. If, on
the other hand, σ is uniformly random from {0, 1}nΠ(λ) and the proof π

208 a taxonomy of pseudorandom encodings

is produced by Prove(σ, (f,y), x), then B2 perfectly simulates G2. Hence,
|Pr[out2 = 1] − Pr[out1 = 1]| ⩽ Advzk

NIZK,Sim,B2
(λ) = 1.

game G3. G3 and G2 are almost identical except for the difference that G3

does not produce y and π explicitly but uses S(f,σ) to produce them. This
difference is only conceptual and Pr[out2 = 1] = Pr[out3 = 1].

game G4. G4 is identical to G3 except that G3 samples (y,π) using S(f)

whereas G4 samples (y,π) using S(f).

claim 17.4. There exists a PPT adversary B4, such that |Pr[out4 = 1] −

Pr[out3 = 1]| ⩽ Advcrs-close
(SetupS,S,S−1

),B4

(λ).

Proof. Construct a PPT adversary B4 against (static) closeness. Initially, B4

produces (f,σ) as in G3 and outputs them. In the second phase, B4 receives
crs and (y,π), where (y,π) has either been sampled using S(f,σ) or using
S(crs, (f,σ)). Further, B4 proceeds as in G3 producing r′

S
, r′X and x′. Finally,

B4 outputs f(x′) = y. Hence,

Pr
[︁
out3 = 1

]︁
= Pr

[︃
Exp(0)-crs-close

(SetupS,S,S−1
),B4

(λ) = 1

]︃
and

Pr
[︁
out4 = 1

]︁
= Pr

[︃
Exp(1)-crs-close

(SetupS,S,S−1
),B4

(λ) = 1

]︃
.

game G5. G5 is identical to G4 except that the random coins rS used for
S are made explicit. This difference is only conceptual and Pr[out4 = 1] =

Pr[out5 = 1].

game G6. G6 uses rS for r′X instead of the inverse sampled r′
S

. Apart from
this difference, G6 is identical to G5.

claim 17.5. There exists a PPT adversary B6, such that |Pr[out6 = 1] −

Pr[out5 = 1]| ⩽ Advcrs-inv
(SetupS,S,S−1

),B6

(λ).

Proof. Construct a PPT adversary B6 on (static) invertibility. Initially, B6

(statically) produces (f,σ) as in G5 and outputs them to the experiment. In
the second phase, B6 receives (crs, r∗, (y,π)), where (y,π) has been sampled
using S(crs, (f,σ)) and r∗ either is the actual randomness used for that
sampling process, or the inverse sampled randomness produced via S

−1
(crs,

(f,σ), (y,π)). Afterwards, B6 proceeds as in G5 producing r′X := σ ∥ r∗ and
x′. Finally, B6 outputs f(x′) = y. Hence,

Pr
[︁
out5 = 1

]︁
= Pr

[︃
Exp(1)-crs-inv

(SetupS,S,S−1
),B6

(λ) = 1

]︃
and

Pr
[︁
out6 = 1

]︁
= Pr

[︃
Exp(0)-crs-inv

(SetupS,S,S−1
),B6

(λ) = 1

]︃
.

game G7. G7 is identical to G6 except for the conceptional difference that
G7 computes y using X(f, crs; r′X) and does not produce the proof π. Since π

is not used anymore, this difference is only conceptual and Pr[out6 = 1] =

Pr[out7 = 1].

Thus, we have that |Pr[out0 = 1] − Pr[out7 = 1]| is negligible.

17.2 randomized encoding algorithm 209

lemma 17.9. Pr[out7 = 1] is overwhelming.

Proof of Lemma 17.9. Since F is an extractable one-way function, we have that

PrG7

[︁
f(x′) = y∨ (f,y) ̸∈ Lλ

]︁

⩽ PrG7

[︁
f(x′) = y

]︁
+ PrG7

[︁
(f,y) ̸∈ Lλ

]︁

is overwhelming. In the following, we prove that PrG7

[︁
(f,y) ̸∈ Lλ

]︁
is negli-

gible. We proceed over a series of hybrids, see Figure 17.7.

H0

f← Gen(1λ)

σ ∥ rS = rX ← {0, 1}p(λ)

= {0, 1}nΠ(λ)+n(λ)

crs← SetupS(1λ)

y = X(f, crs; rX)

return (f,y) ̸∈ Lλ

(a) Description of H0.

H1

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

(y,π) = S(crs, (f,σ))

return (f,y) ̸∈ Lλ

(b) Description of H1.

H2

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

(y,π) = S(crs, (f,σ))

return (f,y) ̸∈ Lλ

∧ Verify(σ, (f,y),π) = 0

(c) Description of H2.

H3

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

(y,π) = S(crs, (f,σ))

return Verify(σ, (f,y),π) = 0

(d) Description of H3.

H4

f← Gen(1λ)

σ← {0, 1}nΠ(λ)

crs← SetupS(1λ)

(y,π) = S(f,σ)

return Verify(σ, (f,y),π) = 0

(e) Description of H4.

Figure 17.7: Hybrids used in the proof of Lemma 17.9.

game H0. H0 is identical to G7 except that H0 returns (f,y) ̸∈ Lλ. That is,
Pr[outH0

= 1] = PrG7

[︁
(f,y) ̸∈ Lλ

]︁
.

game H1. H1 is identical to H0 except for the conceptual difference, that
the algorithm X is replaced with its implementation. Hence, Pr[outH0

= 1] =

Pr[outH1
= 1].

210 a taxonomy of pseudorandom encodings

game H2. H2 is identical to H1 except that it returns 1 only if (f,y) ̸∈
Lλ and Verify(σ, (f,y),π) = 0.

claim 17.6. There exists a PPT adversary BH.2 such that |Pr[outH2
= 1] −

Pr[outH1
= 1]| ⩽ Advsound

NIZK,BH.2
(λ).

Proof. The only possibility that the output of H1 and H2 differ is the case
that (f,y) ̸∈ Lλ but Verify(σ, (f,y),π) = 1 (assuming, that the output of Verify
is binary). Hence,

⃓⃓
⃓Pr
[︂
outH2

= 1
]︂
− Pr

[︂
outH1

= 1
]︂⃓⃓
⃓ ⩽ PrH1

⎡
⎣ (f,y) ̸∈ Lλ ∧

Verify(σ, (f,y),π) = 1

⎤
⎦

⩽ Advsound
NIZK,BH.2

(λ).

The second inequality follows from the statistical soundness of NIZK. More
precisely, construct an (unbounded) adversary BH.2 on statistical soundness
of the NIZK proof system. On input of σ, BH.2 produces f, crs, (y,π) as in
H1 and outputs the statement (f,y) and the proof π.

game H3. The distribution underlying H2 and H3 is identical. The only
difference between these games is that the condition that H3 outputs 1 is less
restrictive than the one of H2, hence, Pr[outH2

= 1] ⩽ Pr[outH3
= 1].

Note that in contrast to the preceding games, the simulation of game H3

is efficient.

game H4. H4 is identical to H3 except that in H3, (y,π) is produced using
the alternative sampler S and in H4, (y,π) is produced using the original
sampler S.

claim 17.7. There exists a PPT adversary BH.4 such that |Pr[outH4
= 1] −

Pr[outH3
= 1]| ⩽ Advcrs-close

(SetupS,S,S−1
),BH.4

(λ).

Proof. Construct a PPT adversary BH.4 against static closeness. Initially, BH.4
produces (f,σ) as in H3 and outputs it to the experiment. On input of (crs,
y := (y,π)), where y is either sampled via S(f,σ) or via S(crs, (f,σ)), BH.4
outputs Verify(σ, (f,y),π) = 0. We have that

Pr
[︂
outH3

= 1
]︂
= Pr

[︃
Exp(1)-crs-close

(SetupS,S,S−1
),BH.4

(λ) = 1

]︃
and

Pr
[︂
outH4

= 1
]︂
= Pr

[︃
Exp(0)-crs-close

(SetupS,S,S−1
),BH.4

(λ) = 1

]︃
.

Finally, due to the definition of S and the completeness of the NIZK proof
system NIZK,

Pr
[︂
outH4

= 1
]︂
= 0.

This proves that

Pr
[︂
outH0

= 1
]︂

is negligible concluding the proof of Lemma 17.9.

17.2 randomized encoding algorithm 211

65 By malicious
obfuscation we mean
an obfuscated circuit
which renders
extraction from an
adversary who simply
executes the
obfuscated circuit on
the given key
infeasible, see
[BCPR16].

This concludes the proof of Theorem 17.10.

By an easy modification of the above proof, we can refute cPREHrand
≈c with

universal setup.

theorem 17.11. If there exist extractable one-way functions with unbounded
common auxiliary information and NIZK proof systems for NP, then cPREHrand

≈c

with universal setup is false.

on the need for unbounded common auxiliary input. We stress
that assuming unbounded common auxiliary input is necessary since the
adversary X can be considered the universal adversary. On a technical level,
the common auxiliary input which leads to a contradiction is an output of
the universal setup algorithm Setup on input of a sufficiently large bound B

on the supported circuit size, or the “special” setup algorithm SetupS. This
bound B as well as the output size of SetupS depend on the sampler size S

and, hence, on the size of the adversary X.

discussion. We stress that we are able to prove that EOWFs with un-
bounded common auxiliary input (in conjunction with NIZK proof sys-
tems) implies that cPREHrand

≈c is false. Furthermore, due to [DKR15] and
Theorem 16.1 (or alternatively Theorems 17.13 and 17.14 in Section 17.3),
cPREHrand

≈c can be instantiated from indistinguishability obfuscation and one-
way functions. We restate a theorem from [BCPR16].

theorem 17.12 ([BCPR16]). Assuming indistinguishability obfuscation for all
circuits, neither EOWFs nor GEOWFs exist with respect to unbounded common
auxiliary information.

Thus, the above is not a contradiction because due to Theorem 17.12,
indistinguishability obfuscation for all polynomial sized circuits does not
exist assuming EOWFs with unbounded common auxiliary input.

common but benign auxiliary information. The definition due to
[BCPR16] of (G)EOWFs with common auxiliary input requires that ex-
tractability holds for all common auxiliary inputs and hence also for a
worst-case choice of common auxiliary input. This requirement can be weak-
ened such that the common auxiliary input is drawn from some specific
distribution. This distribution is called benign if it is unlikely that a common
auxiliary input sampled according to this distribution encodes a malicious
obfuscation65. In particular, the uniform distribution over {0, 1}b(λ) is con-
jectured to be benign. This notion of (G)EOWFs with common but benign
auxiliary information does not contradict IO.

However, by an easy modification of the proof of Theorem 17.10, the
existence of (G)EOWFs with common but benign auxiliary input (drawn
uniformly at random from {0, 1}b(λ)) contradicts cPREHrand

≈c with common
random string.

corollary 17.7. If there exist extractable one-way functions with common but
benign auxiliary information, particularly for auxiliary inputs drawn uniformly at
random from {0, 1}b(λ), and NIZK proof systems for NP, then cPREHrand

≈c , where
the setup algorithm produces uniform random strings, is false.

212 a taxonomy of pseudorandom encodings

66 For weak
PREHrand

≈c , the
NIZK proof system

must be replaced by a
NIWI proof system
(without CRS) and

therefore the sampler
S samples two

images of the EOWF
and a NIWI proof

using one of the pre-
images as witness.

key-less eowfs. Definitions 2.20, 2.22 and 17.10 can be defined for key-
less function ensembles, where the key space supp(Gen(1λ)) contains exactly
one element (for every λ). This poses much stronger requirements on one-
wayness and extractability since these properties are bound to be met for one
fixed key as opposed to the keyed variants.

As observed in [IKOS10], Theorems 17.7 and 17.9 can be adapted to
the weak variants of PREHrand

≈c and PREHrand
≡s , respectively.66 However, key-

less (G)EOWFs with unbounded auxiliary input are impossible since the
adversary might get a random image of the (fixed) (G)EOWF as auxiliary
input. An extractor given the output of the adversary together with his
random tape and the same auxiliary input must break one-wayness in order
to produce a pre-image. Hence, Theorem 17.10 cannot be adapted to refute
weak cPREHrand

≈c .

17.3 static pseudorandom encodings from
indistinguishability obfuscation

(Static) cISHrand
≈c (and hence cPREHrand

≈c) is implied by the existence of an
explainability compiler [DKR15] which can be built from indistinguishability
obfuscation and one-way functions. Using the ideas from [SW14; DKR15], we
obtain perfectly correct cPREHrand

≈c with and without universal setup. Note
that perfect correctness does not follow from Theorem 16.1. Let S be a PPT
algorithm and let UB(C, x; r) be the universal circuit that accepts any circuit
C which can be represented with B bits and evaluates C on input x and
randomness r.

Let B be an upper bound on the bitlength which is necessary to describe
a sampler. Let ℓin = |m| be an upper bound on the bitlength of the inputs,
ℓout be an upper bound on bitlength of the outputs and ℓr be an upper
bound on the bitlength of random tape of such samplers. Let PRG be a
PRG that maps {0, 1}λ to {0, 1}2λ. Let |u1| = ℓ1 = 2B+ 2ℓin + 2ℓout + 5λ and
|u2| = ℓ2 = B+ ℓin + ℓout + 2λ.

theorem 17.13. Let iO be a perfectly correct indistinguishability obfuscator, F1,
F2, F3 be puncturable PRFs satisfying the following additional properties
• F1 is extracting when the input min-entropy is greater than ℓr + 2(λ+ 1) + 2

with error less than 2−(λ+1) and has input length ℓ1 + ℓ2 + ℓin + B and
output length ℓr (such a PRF exists from one-way functions since ℓ1 + ℓ2 +

ℓin +B ⩾ ℓr + 2(λ+ 1) + 2),
• F2 is statistically injective and has input length B + ℓin + ℓout + 2λ and

output length ℓ1 (such a PRF exists from one-way functions since ℓ1 ⩾
2(B+ ℓin + ℓout + 2λ) + λ),

• F3 has input length ℓ1 and output length ℓ2.
Then, perfectly correct cPREHrand

≈c with universal setup is true.

Proof. We prove that (Setup, ES, DS) defined in Figure 17.8 satisfies perfect
correctness and pseudorandomness.

perfect correctness. Let crs =: (ΛE,ΛD) be parameters in the support
of Setup(1λ,B). Let S be a PPT algorithm represented as a polynomial sized

17.3 static pseudorandom encodings from io 213

Setup(1λ,B)

ΛE ← iO(CE[k2,k2])

ΛD ← iO(CD[k1,k2,k2])

return crs := (ΛE,ΛD)

(a) The universal setup algorithm.

ES(crs,m,y; r)

return ΛE(S,m,y, r)

(b) The encoding algorithm.

DS(crs,m,u)

return ΛD(S,m,u)

(c) The decoding algorithm.

CE[k2,k3](S,m,y, r)

e1 ← F2(S,m,y, PRG(r))

e2 ← F3(e1)⊕(S,m,y, PRG(r))

return (e1, e2)

(d) The encoding circuit.

CD[k1,k2,k3](S,m,u)

(S′,m′,y′, r′)← F2(u1)⊕u2

if
(︂
(S′,m′) = (S,m) ∧

u1 = F2(S
′,m′,y′, r′)

)︂
then

return y′

x := F1(S,m,u)

return UB(S,m; x)

(e) The decoding circuit.

Figure 17.8: Instantiation of perfectly correct cPREHrand
≈c due to [SW14; DKR15] with

universal setup.

circuit, m ∈ L be an input for S and let y ∈ supp(S(m)). Due to perfect
correctness of iO we have

DS

(︂
crs,m, ES

(︁
crs,m,y; r

)︁)︂

= CD

(︂
S,m,CE

(︁
S,m,y, r

)︁)︂

= CD

(︂
S,m,

(︁
F2(S,m,y, PRG(r))⏞ ⏟⏟ ⏞

=e1

, F3(e1)⊕(S,m,y, PRG(r))⏞ ⏟⏟ ⏞
=e2

)︁)︂
= y.

pseudorandomness. The proof can be divided into two main steps. In
Figure 17.9, we define the corresponding hybrids.

game G0. G0 corresponds to Exp(b)-crs-pre
(Setup,ES,DS),A(λ).

game G1. G1 is identical to G0 except that x∗ (i. e., the randomness used
by S) is produced differently. In G0, x∗ is sampled uniformly at random,
whereas in G1, x∗ produced is via F1(S

∗,m∗,u∗) (for uniformly random u∗).

claim 17.8. For all (potentially unbounded) adversaries A, |Pr[out1 = 1] −

Pr[out0 = 1]| is negligible.

The proof works as the proof of IND-CPA security of the deniable encryp-
tion scheme from [SW14] or the proof of statistical functional equivalence
from [DKR15].

game G2. G2 is identical to G1 except that A does not receive the “explained”
randomness e∗ but the uniformly sampled randomness u∗ as input.

214 a taxonomy of pseudorandom encodings

claim 17.9. For all PPT adversaries A, |Pr[out2 = 1] − Pr[out1 = 1]| is negli-
gible.

The proof works as the proof of explainability of the deniable encryption
scheme from [SW14] or the proof of explainability from [DKR15].

G0

m∗ ← A(1λ)

ki ← Fi.KGen(1λ) (for i ∈ [3])

r∗ ← {0, 1}λ

x∗ ← {0, 1}ℓr

y∗ ← S∗(m∗; x∗)

e∗1 ← F2(S
∗,m∗,y∗, PRG(r∗))

e∗2 ← F3(e
∗
1)⊕(S∗,m∗,y∗, PRG(r∗))

ΛE ← iO(CE[k2,k3])

ΛD ← iO(CD[k1,k2,k3])

crs := (ΛE,ΛD)

return A(crs, e∗)

(a) Description of G0.

G1

m∗ ← A(1λ)

ki ← Fi.KGen(1λ) (for i ∈ [3])

r∗ ← {0, 1}λ,u∗ ← {0, 1}ℓ1+ℓ2

x∗ ← F1(S
∗,m∗,u∗)

y∗ ← S∗(m∗; x∗)

e∗1 ← F2(S
∗,m∗,y∗, PRG(r∗))

e∗2 ← F3(e
∗
1)⊕(S∗,m∗,y∗, PRG(r∗))

ΛE ← iO(CE[k2,k3])

ΛD ← iO(CD[k1,k2,k3])

crs := (ΛE,ΛD)

return A(crs, e∗)

(b) Description of G1.

G2

m∗ ← A(1λ)

ki ← Fi.KGen(1λ) (for i ∈ [3])

r∗ ← {0, 1}λ,u∗ ← {0, 1}ℓ1+ℓ2

x∗ ← F1(S
∗,m∗,u∗)

y∗ ← S∗(m∗; x∗)

e∗1 ← F2(S
∗,m∗,y∗, PRG(r∗))

e∗2 ← F3(e
∗
1)⊕(S∗,m∗,y∗, PRG(r∗))

ΛE ← iO(CE[k2,k3])

ΛD ← iO(CD[k1,k2,k3])

crs := (ΛE,ΛD)

return A(crs,u∗)

(c) Description of G2.

Figure 17.9: Hybrids used in the proof of pseudorandomness for Theorem 17.13.

By allowing the setup algorithm SetupS to depend on S and replacing the
universal circuit in CD with S, we obtain cPREHrand

≈c without universal setup.
Let S be a PPT sampler. Let ℓin = |m| be an upper bound on the bitlength

of the inputs, ℓout be an upper bound on bitlength of the outputs and ℓr
be an upper bound on the bitlength of random tape of S. Let PRG be a
PRG that maps {0, 1}λ to {0, 1}2λ. Let |u1| = ℓ1 = 2ℓin + 2ℓout + 5λ+ ℓr and
|u2| = ℓ2 = ℓin + ℓout + 2λ.

theorem 17.14. Let iO be a perfectly correct indistinguishability obfuscator, F1,
F2, F3 be puncturable PRFs satisfying the following additional properties

17.3 static pseudorandom encodings from io 215

• F1 is extracting when the input min-entropy is greater than ℓr + 2(λ+ 1) + 2

with error less than 2−(λ+1) and has input length ℓ1 + ℓ2 + ℓin and output
length ℓr (such a PRF exists from one-way functions since ℓ1+ ℓ2+ ℓin + ℓr ⩾
ℓr + 2(λ+ 1) + 2),

• F2 is statistically injective and has input length ℓin + ℓout + 2λ and output
length ℓ1 (such a PRF exists from one-way functions since ℓ1 ⩾ 2(ℓin + ℓout +

2λ) + λ),
• F3 has input length ℓ1 and output length ℓ2.

Then, perfectly correct cPREHrand
≈c is true.

The proof of Theorem 17.14 proceeds identically to Theorem 17.13 with
(SetupS, ES, DS) as defined in Figure 17.10. The only differences are changed
input and output lengths for the pseudorandom functions.

Theorems 17.13 and 17.14 together with Theorem 15.1 yield the following
corollary.

corollary 17.8. Assuming polynomially secure IO for all circuits and one-way
functions, then perfectly correct acPREHrand

≈c (with or without universal setup) is
true.

Setup′S(1
λ)

ΛE ← iO(C′E[S,k2,k2])

ΛD ← iO(C′D[S,k1,k2,k2])

return crs := (ΛE,ΛD)

(a) The setup algorithm for S.

E′S(crs,m,y; r)

return ΛE(m,y, r)

(b) The encoding algorithm.

D′S(crs,m,u)

return ΛD(m,u)

(c) The decoding algorithm.

C′E[S,k2,k3](m,y, r)

e1 ← F2(m,y, PRG(r))

e2 ← F3(e1)⊕(m,y, PRG(r))

return (e1, e2)

(d) The encoding circuit.

C′D[S,k1,k2,k3](m,u)

(m′,y′, r′)← F2(u1)⊕u2

if
(︂
m′ = m ∧

u1 = F2(m
′,y′, r′)

)︂
then

return y′

x := F1(m,u)

return S(m; x)

(e) The decoding circuit.

Figure 17.10: Instantiation of perfectly correct cPREHrand
≈c due to [SW14; DKR15]

without universal setup.

216 a taxonomy of pseudorandom encodings

17.4 bootstrapping pseudorandom encod-
ings with a common random string

Recall that cPREHrand
≈c where the setup algorithm produces uniform random

strings (i. e., in the common random string model) conflicts with EOWFs
with common but benign auxiliary input – an assumption which we believe
to be true. However, the very nature of pseudorandom encodings allows to
bootstrap pseudorandom encodings in the common random string model
from pseudorandom encodings with arbitrary setup if this setup algorithm –
interpreted as a sampler – can be pseudorandomly encoded such that the
corresponding setup algorithm produces common random strings. Note that
this sampler does not expect an input. Via this bootstrapping, we are able
to refute even the weak pseudorandom encoding hypothesis with common
random string (URC).

theorem 17.15. Assume (i) cPREHrand
≈c is true for all PPT samplers, i. e., for all

PPT algorithms S, there exists a pseudorandom encoding scheme (Setup′S, E′S, D′S),
and (ii) weak cPREHrand

≈c is true for the class of PPT algorithms Setup′S such that
the corresponding setup algorithm Setup′′Setup′S

produces uniform random strings.

Then, cPREHrand
≈c with common random strings is true for all PPT samplers.

Proof. Item i implies that for all PPT algorithms S, there exists a pseudo-
random encoding scheme (Setup′S, E′S, D′S). Further, Item ii guarantees the
existence of a pseudorandom encoding scheme (Setup′′Setup′S

, E′′Setup′S
, D′′Setup′S

)

such that Setup′′Setup′S
produces uniform random strings. Let {0, 1}n

′′(λ) be the

range of E′′Setup′S
(note that {0, 1}n

′′(λ) is allowed to depend on the sampler

Setup′S). For notational convenience, we henceforth omit the dependency on
the sampler Setup′S.

Let S be some PPT algorithm. We define (SetupS, ES, DS) corresponding
to S as in Figure 17.11.

SetupS(1
λ)

crs′′ ← Setup′′(1λ)

u′′ ← {0, 1}n
′′(λ)

crs := crs′′ ∥u′′

return crs

(a) Setup algorithm.

ES(crs,m,y)

parse crs =: crs′′ ∥u′′

crs′ ← D′′(crs′′,u′′)

u ← E′S(crs′,m,y)

return u

(b) Encoding algorithm.

DS(crs,m,u)

parse crs =: crs′′ ∥u′′

crs′ ← D′′(crs′′,u′′)

y← D′S(crs′,m,u)

return y

(c) Decoding algorithm.

Figure 17.11: Algorithms for cPREHrand
≈c with common random string.

correctness. We use a sequence of hybrids, see Figure 17.12.

game G0. G0 encodes and decodes a sample y (using a statically chosen
input m) using (SetupS, ES, DS).

game G1. G1 is identical to G0 except that G1 uses the implementations of
SetupS, ES and DS explicitly. This difference is only conceptual and Pr[out0 =

1] = Pr[out1 = 1].

17.4 bootstrapping pseudorandom encodings with urc 217

G0

m← A(1λ)

crs ← SetupS(1
λ)

y← S(m)

u ← ES(crs,m,y)

yD ← DS(crs,m,u)

return y = yD

(a) Description of G0.

G1

m← A(1λ)

crs′′ ← Setup′′(1λ)

u′′ ← {0, 1}n
′′(λ)

y← S(m)

crs′ ← D′′(crs′′,u′′)

u ← E′S(crs′,m,y)

yD ← D′S(crs′,m,u)

return y = yD

(b) Description of G1.

G2

m← A(1λ)

y← S(m)

crs′ ← Setup′S(1
λ)

u ← E′S(crs′,m,y)

yD ← D′S(crs′,m,u)

return y = yD

(c) Description of G2.

Figure 17.12: Hybrids used in the proof of correctness of Theorem 17.15.

game G2. G2 is identical to G1 except that crs′ is sampled using Setup′S(1
λ)

instead of decoding u′′ using D′′(crs′′,u′′).
Due to Lemma 16.2, by correctness and pseudorandomness of (Setup′′, E′′,

D′′), the two distributions
{︂

crs′′ ← Setup′′(1λ), crs′ ← Setup′S(1
λ) : (crs′′, crs′)

}︂
and

{︂
crs′′ ← Setup′′(1λ), crs′ ← D′′(crs′′,Un′′(λ)) : (crs′′, crs′)

}︂

are computationally indistinguishable. Hence, |Pr[out2 = 1] − Pr[out1 = 1]| is
negligible.

Due to correctness of (Setup′S, E′S, D′S), for all PPT adversaries A,

Pr

⎡
⎢⎢⎢⎣

m ← A(1λ)

crs′ ← Setup′S(1
λ) : D′S(crs′,m, E′S(crs′,m,y)) = y

y ← S(m)

⎤
⎥⎥⎥⎦

and, hence, Pr[out2 = 1] are overwhelming.

Before we prove pseudorandomness, we introduce a technical lemma.

lemma 17.10. Let S be a PPT sampler such that cPREHrand
≈c is true for S and let

(SetupS, ES, DS) be the corresponding algorithms (such that ES has output length
n(λ)). Then, for all PPT adversaries A,

⃓⃓
⃓⃓
⃓⃓
⃓⃓
Pr

⎡
⎢⎢⎢⎢⎣

m ←A(1λ)

crs← SetupS(1λ)

y ← S(m)

u ← ES(crs,m,y)

: A(crs,m,y,u) = 1

⎤
⎥⎥⎥⎥⎦

−Pr

⎡
⎢⎢⎢⎢⎣

m ←A(1λ)

crs← SetupS(1λ)

u ← {0, 1}n(λ)

y ←DS(crs,m,u)

: A(crs,m,y,u) = 1

⎤
⎥⎥⎥⎥⎦

⃓⃓
⃓⃓
⃓⃓
⃓⃓

is negligible.

218 a taxonomy of pseudorandom encodings

Proof of Lemma 17.10. We proceed over a series of hybrids, see Figure 17.13.

game H0. H0 corresponds to the left-hand-side of the difference, where
A receives a sample y from S(m) and the corresponding encoded sample
u← ES(crs,m,y).

game H1. H1 is identical to H0 except that A receives the decoded sample
yD instead of the actual sample yS. If yS = yD both games behave identically,
hence, by correctness, |Pr[outH1

= 1] − Pr[outH0
= 1]| ⩽ ϵc-dec-error

(SetupS,ES,DS),A(λ).

game H2. H2 is identical to H1 except that u is not produced as an en-
coding of y, but sampled uniformly at random from {0, 1}n(λ). This game
hop is justified by pseudorandomness |Pr[outH2

= 1] − Pr[outH1
= 1]| ⩽

Advcrs-pre
(SetupS,ES,DS),A(λ).

H0

m← A(1λ)

crs← SetupS(1λ)

yS ← S(m)

u← ES(crs,m,y)

return A(crs,m,yS,u)

(a) Description of H0.

H1

m← A(1λ)

crs← SetupS(1λ)

yS ← S(m)

u← ES(crs,m,y)

yD ← DS(crs,m,u)

return A(crs,m,yD,u)

(b) Description of H1.

H2

m← A(1λ)

crs← SetupS(1λ)

u← {0, 1}n(λ)

yD ← DS(crs,m,u)

return A(crs,m,yD,u)

(c) Description of H2.

Figure 17.13: Hybrids used in the proof of Lemma 17.10.

This concludes the proof of Lemma 17.10.

pseudorandomness. To prove pseudorandomness, we proceed over a
sequence of hybrids, see Figure 17.14.

G0

m← A(1λ)

crs′′ ← Setup′′(1λ)

u′′ ← {0, 1}n
′′(λ)

crs′ ← D′′(crs′′,u′′)

crs := crs′′ ∥u′′

y← S(m)

u ← E′S(crs′,m,y)

return A(crs,u)

(a) Description of G0.

G1

m← A(1λ)

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1
λ)

u′′ ← E′′(crs′′, crs′)

crs := crs′′ ∥u′′

y← S(m)

u ← E′S(crs′,m,y)

return A(crs,u)

(b) Description of G1.

G2

m← A(1λ)

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1
λ)

u′′ ← E′′(crs′′, crs′)

crs := crs′′ ∥u′′

y← S(m)

u ← {0, 1}n
′(λ)

return A(crs,u)

(c) Description of G2.

Figure 17.14: Hybrids used in the proof of pseudorandomness of Theorem 17.15.

game G0. G0 corresponds to Exp(0)-crs-pre
(SetupS,ES,DS),A(λ).

game G1. G1 is identical to G0 except for the following difference. G1

produces crs′ directly via Setup′S(1
λ) and produces u′′ via encoding crs′

17.4 bootstrapping pseudorandom encodings with urc 219

with E′′(crs′′, crs′). G0, on the other hand, samples u′′ uniformly at random
from {0, 1}n

′′(λ) and produces crs′′ via decoding u′′ as D′′(crs′′,u′′). Due to
Lemma 17.10, |Pr[out1 = 1] − Pr[out0 = 1]| is negligible.

game G2. G2 is identical to G1 except that G2 samples u uniformly at
random from {0, 1}n

′(λ), whereas G1 produces u as E′S(crs′,m,y). For all
PPT adversaries A, |Pr[out2 = 1] − Pr[out1 = 1]| is negligible due to pseudo-
randomness of (Setup′S, E′S, D′S).

Combining Theorem 17.15 and Corollary 17.7, we obtain the following
corollary refuting weak cPREHrand

≈c with common random string.

corollary 17.9. If there exist extractable one-way function family ensembles
with common but benign auxiliary information and indistinguishability obfuscation
for all circuits, then weak cPREHrand

≈c with common random string (URC) is false.

remark 17.1. If weak cPREHrand
≈c was true such that the setup algorithms

always produce uniform random strings, then the global common reference
string model could be replaced with the global common random string
model (or the non-programmable random oracle model) in several settings
in cryptography.

18
A P P L I C AT I O N S O F
P S E U D O R A N D O M
E N C O D I N G S

In this chapter we describe further applications of pseudorandom encodings.
This unifies several areas in cryptography. In Section 18.1, we show that
adaptively secure pseudorandom encodings with setup are equivalent to
fully adaptive multi-party computation in the global CRS model for all PPT
functionalities (that includes non-adaptively-well-formed functionalities).
This extends the results from [IKOS10] and clarifies a claim made in [DKR15].
In Section 18.2, we show that pseudorandom encodings yield honey encryp-
tion due to [JR14] for arbitrary message distributions, even such which admit
inputs. In Section 18.3, we define a keyless version of steganography. That
is, in contrast to symmetric-key or public-key steganography, parties do not
need any secret information in order to covertly communicate with each
other. In Sections 18.4 and 18.5, we analyze the relation of pseudorandom
encodings and certain PKE variants which are known to imply variants of
adaptive MPC.

18.1 adaptively secure multi-party compu-
tation

Due to the equivalence of pseudorandom encodings and invertible sam-
pling, we obtain an equivalence between pseudorandom encodings and fully
adaptively secure multi-party computation. Due to [IKOS10], PREHrand

≈c in
conjunction with some adaptively secure oblivious transfer protocol im-
plies fully adaptively secure multi-party computation for all randomized
functionalities in the plain model.

In Section 18.1.1, we introduce some preliminaries on adaptive multi-party
computation, henceforth denoted AMPC. In Sections 18.1.2 and 18.1.3, we
extend the results on the relation between the invertible sampling hypothesis
and AMPC from [IKOS10] to the global CRS model. This is directly possible
since, due to Theorem 15.1 and Corollary 16.1, we have an instantiation of
acISHrand

≈c .

18.1.1 Adaptive MPC

The definition of security of multi-party protocols follows the real/ideal
model paradigm, [GMW87; Can00]. A protocol Π is said to be secure if
the output of the real execution of the protocol is indistinguishable from
the output of an ideal computation, where a trusted third party exists. The
behavior of this trusted third party is defined via a functionality F.

Let F be a PPT functionality. Let xi be the input to party Pi. We only
consider semi-honest adversaries. Semi-honest adversaries are bound to
follow the protocol specification while trying to obtain as much information

221

222 applications of pseudorandom encodings

as possible. There are general techniques to transform protocols which are
secure with respect to semi-honest adversaries to protocols which are secure
with respect to malicious adversaries at the cost of a local CRS which is
inherent for malicious security, [CLOS02]. In the following, we describe the
stand-alone model for adaptive MPC on a very high level. We refer the reader
to [Can00; Lin09] for more details.

the ideal execution. The ideal execution involves an ideal PPT adver-
sary Sim (also called the simulator), a PPT environment Z and a trusted
third party T . The ideal execution proceeds through several stages. In the
first corruption stage, Sim adaptively decides to corrupt parties. When Sim
corrupts a party, Sim learns that party’s input and Z learns the identity of the
corrupted party. In the computation stage, the uncorrupted and the corrupted
parties send their inputs (which are determined by the environment) to T .
The trusted party T evaluates the (possibly randomized) function (z1, . . . ,
zn)← F(x1, . . . , xn) and sends the output to the respective parties. In the sec-
ond corruption stage, Sim learns the outputs of the corrupted parties and again
adaptively decides to corrupt a party. Upon corruption of a party, Sim learns
that party’s input and output and Z learns the corrupted party’s identity. In
the output stage, the uncorrupted parties output what they received from T to
Z, the corrupted parties output ⊥ to Z and Sim outputs an arbitrary string to
Z. Finally, in the post-execution corruption stage, as long as the environment Z
did not halt, Z sends corruption requests to Sim. Sim generates an arbitrary
answer based on its view so far. Furthermore, Sim may additionally corrupt
parties as in the second corruption stage.

Let ZSim,F(1λ) denote the output distribution of the environment Z when
interacting as described above with the simulator Sim and parties P1, . . . ,Pn
on inputs x1, . . . , xn chosen by Z.

the real execution. Initially, the environment Z (adaptively) chooses
inputs x1, . . . , xn and sends each party Pi its input. Before the communication
rounds start, the adversary A receives an initial message from Z. While there
exist uncorrupted parties which did not halt, A may adaptively decide to
corrupt new parties. Upon corruption of Pi, Z learns the identity of Pi, A
learns the input xi, Pi’s internal state (i. e., its random tape) and all messages
received so far. From that time on, A is in control of the messages this party
sends. Furthermore, if a corrupted party receives a message, A also learns
that message. Additionally, A determines the order in which the uncorrupted
parties are activated. If all parties are corrupted or all uncorrupted parties
halted, each uncorrupted party and A produce outputs. The environment Z
learns all of these outputs. Similarly to the post-execution corruption stage in
the ideal execution, while Z did not halt, Z may instruct A to corrupt more
parties or A may decide himself to corrupt more parties. Upon corruption, A
learns Pi’s input, randomness and all messages received so far and Z learns
the corrupted party’s identity. Additionally, A sends Pi’s internal state to Z.

Let ZA,Π(1λ) denote the output of the environment Z when interacting
with the adversary A and parties P1, . . . ,Pn running the protocol Π on inputs
x1, . . . , xn chosen by Z.

definition 18.1 (Adaptive security in the stand-alone model, [Can00]). We
say a protocol Π computes functionality F in the adaptive semi-honest model if for

18.1 adaptively secure multi-party computation 223

every PPT adversary A, there exists a PPT simulator Sim, such that for all
PPT environments Z,

⃓⃓
⃓Pr
[︂
ZA,Π(1λ) = 1

]︂
− Pr

[︂
ZSim,F(1λ) = 1

]︂⃓⃓
⃓

is negligible.

common reference string model. In the common reference string
(CRS) model, all parties have access to a string which is honestly generated
by a trusted third non-participating party. There are two widely used variants
of the CRS model. In the programmable or local CRS model, the simulator
may generate the CRS. This enables the simulator to sample the CRS along
with corresponding trapdoors which results in an asymmetry between the
simulator and the adversary facilitating simulation. However, as soon as two
different protocols use the same programmable CRS, all security guarantees
related to that CRS break down, see [CDPW07]. In the non-programmable or
global CRS model, the simulator receives the CRS as input and, hence, has
no additional power compared to the adversary. A global CRS can be made
public and used by any number of protocols without compromising security.

Adaptive security in the global CRS model (with respect to some efficiently
samplable CRS distribution Setup) is defined as Definition 18.1 with the
difference that all parties including the environment, the adversary and the
simulator receive the CRS as input. We stress that the environment may
decide on the inputs for the parties adaptively after seeing the CRS.

the universal composability framework. The following paragraph
describes the universal composability (UC) framework on a very high level.
We refer the reader to [Can01] for more details on the model.

In contrast to the stand-alone model for secure computation, the UC model
allows the environment to be interactive. In particular, every message that is
transmitted between parties is sent to the environment which can arbitrarily
decide how to deal with it. The strongest possible adversary in this model
is the so-called dummy adversary who simply forwards all instructions he
receives from the environment. The UC framework offers a set of security-
preserving composition theorems which allow for a modular analysis. If a
protocol Π UC-realizes a functionality F, a protocol Π′ which uses protocol
Π as a subroutine can be proven to securely realize a functionality F′ in the
F-hybrid model, that is having access to the ideal functionality F.

definition 18.2 (Adaptive UC-security, [Can01]). Let A be the dummy
adversary and let θ denote the dummy protocol. We say a protocol Π UC-
realizes a functionality F in the G-hybrid model in the presence of semi-honest
adaptive adversaries if for all PPT environments Z, there exists a simulator Sim,
such that

⃓⃓
⃓Pr
[︂
real[Z,A,πG](λ) = 1

]︂
− Pr

[︂
ideal[Z, Sim, θF](λ) = 1

]︂⃓⃓
⃓

is negligible, where real[Z,A,πG](λ) denotes the output distribution of Z

when interacting in the real world with A and πG and ideal[Z, Sim, θF](λ)
denotes the output distribution of Z when interacting in the ideal world with
Sim and θF.

UC-security is a stronger notion than stand-alone security. More precisely,
if there exists a protocol which UC-realizes a functionality according to

224 applications of pseudorandom encodings

67 This is because we
consider semi-honest

adversaries. Such
adversaries collect as
much information as

possible without
deviating from the

protocol description.
An adversary who

corrupts parties
earlier (or not at all)
obtains strictly less

information and
hence simulation is

easier.

Definition 18.2, then there exists a protocol which securely computes that
functionality according to Definition 18.1.

In the UC framework, the global CRS model corresponds to the Fcrs
Setup-

hybrid model. The ideal functionality Fcrs
Setup can be queried by any party

and the adversary. Upon receiving such a query, Fcrs
Setup gives the CRS crs to

the querying party. If crs is not initialized, Fcrs
Setup samples crs according to

Setup(1λ).

18.1.2 Pseudorandom Encodings Imply Adaptive MPC

AMPC for deterministic functionalities is possible assuming adaptively secure
oblivious transfer due to [Kil88].

theorem 18.1 (informal, [Kil88; IPS08]). Any deterministic functionality can
be UC-realized in the OT-hybrid model in the presence of semi-honest adversaries
adaptively corrupting any number of parties.

Ishai et al. [IKOS10] prove that adaptively secure oblivious transfer in
conjunction with ISHrand

≈c yields AMPC for all randomized functionalities in
the plain model.

Assuming acPREHrand
≈c , the strategy from [IKOS10] can be applied to show

that every randomized functionality can be UC-realized in the (global CRS,
OT)-hybrid model in the presence of semi-honest adversaries adaptively
corrupting any number of parties.

theorem 18.2. Assume acPREHrand
≈c holds, then any functionality F can be

UC-realized in the (global CRS, FOT)-hybrid-model, in the presence of semi-honest
adaptive adversaries corrupting any number of parties.

Proof. The proof follows the strategy from [IKOS10]. We consider functionali-
ties F giving the same output to all parties. (This is without loss of generality
since evaluating the function F′ which distributes blinded individual outputs
to the parties, i. e., F′((x1,k1), (x2,k2)) := F1(x1, x2)⊕ k1 ∥F2(x1, x2)⊕ k2,
yields the general case, see [GL91].) That is, the functionality F takes as
input x1, x2 (the inputs of the parties P1 and P2, respectively) and internal
randomness ρ, and outputs z to both parties. We consider the case of two
parties (the proof easily extends to the case of many parties).

We view F as a PPT algorithm S. Due to acPREHrand
≈c , there exist SetupS,

S and S
−1 satisfying adaptive closeness and adaptive invertibility. Define

a deterministic functionality G (in the F
SetupS
g-crs -hybrid model) which takes

inputs (x1, ρ1) from party P1 and (x2, ρ2) from party P2, and evaluates
S(crs, (x1, x2); ρ1⊕ ρ2), where crs comes from F

SetupS
g-crs . Due to Theorem 18.1,

G can be UC-realized in the OT-hybrid model in the presence of semi-honest
adversaries adaptively corrupting any number of parties.

Now we turn to realize F in the (G,FSetupS
g-crs)-hybrid model. Party Pi chooses

randomness ρi, feeds (xi, ρi) into G and waits for the output. Without loss
of generality, we assume that Z first observes the entire protocol before
corrupting parties.67 The simulator Sim works as follows. Sim initially only
receives the output z of the ideal functionality F as input and calls F

SetupS
g-crs

to obtain crs. If both parties are corrupted (first P1, then P2), Sim outputs a
uniformly random string ρ1 to explain the internal randomness of party P1,
computes ρ ← S

−1
(crs, (x1, x2), z) and outputs ρ2 := ρ⊕ ρ1 to explain the

18.1 adaptively secure multi-party computation 225

internal randomness of party P2 (note that Sim learns the inputs x1 and x2
at the time of corrupting P1 and P2, respectively).

G0

crs← SetupS(1λ)

(x1, x2)← Z(crs)

ρ1, ρ2 ← {0, 1}n(λ)

z← G(x1, ρ1, x2, ρ2)

upon corruption of P1 do

give (x1, ρ1, z) to Z

upon corruption of P2 do

give (x2, ρ2) to Z

(a) Description of G0.

G1

crs← SetupS(1λ)

(x1, x2)← Z(crs)

ρ1, ρ2 ← {0, 1}n(λ)

z← S(crs, (x1, x2); ρ1⊕ ρ2)

upon corruption of P1 do

give (x1, ρ1, z) to Z

upon corruption of P2 do

ρ′2 := ρ2

give (x2, ρ′2) to Z

(b) Description of G1.

G2

crs← SetupS(1λ)

(x1, x2)← Z(crs)

ρ1, ρ2 ← {0, 1}n(λ)

z← S(crs, x1, x2; ρ1⊕ ρ2)

upon corruption of P1 do

give (x1, ρ1, z) to Z

upon corruption of P2 do

ρ′2 ← ρ1⊕S
−1

(crs, (x1, x2), z)

give (x2, ρ′2) to Z

(c) Description of G2.

G3

crs← SetupS(1λ)

(x1, x2)← Z(crs)

ρ1 ← {0, 1}n(λ)

z← S(x1, x2)

upon corruption of P1 do

give (x1, ρ1, z) to Z

upon corruption of P2 do

ρ′2 ← ρ1⊕S
−1

(crs, (x1, x2), z)

give (x2, ρ′2) to Z

(d) Description of G3.

Figure 18.1: Hybrids used in proof of Theorem 18.2.

We proceed over a series of hybrids, see Figure 18.1.

game G0. G0 is identical to real[Z,A,πG](λ).

game G1. G1 is identical to G0 except for the conceptional change that G
is replaced with its implementation and ρ2 is renamed to ρ′2 before being
given to Z. Hence, |Pr[out0 = 1] − Pr[out1 = 1]|.

game G2. G2 is identical to G1 except that in G1, Z receives the real random
tape ρ2 used by party P2, whereas in G2, Z receives ρ′2 which is computed as

the logical XOR of ρ1 and inverse sampled random coins S
−1

(crs, (x1, x2), z).

claim 18.1. For all PPT environments Z, there exists a PPT adversary B2,
such that |Pr[out2 = 1] − Pr[out1 = 1]| ⩽ Adva-crs-inv

(SetupS,S,S−1
),B2

(λ).

Proof. Construct an adversary B2 breaking adaptive closeness as follows.
B2 receives crs sampled from SetupS(1λ) and calls Z on input of crs. In

226 applications of pseudorandom encodings

return, B2 receives (x1, x2) and samples ρ1 ← {0, 1}n(λ). Then, B2 outputs
m := (x1, x2) and receives (r,y) from the invertibility experiment. B2 uses
z := y and ρ′2 := ρ1⊕ r and continues as in G1.

If (r,y) were produced such that r was sampled uniformly from {0, 1}n(λ)

and y ← S(crs, (x1, x2); r), then B2 perfectly simulates G1. If (r,y) were
produced such that y was sampled from S(crs, (x1, x2)) (using some uniform
randomness) and r was inversely sampled as r← S

−1
(crs, (m1,m2),y), then

B2 perfectly simulates G2.

game G3. G3 is identical to G2 except that in G2, z is sampled using the
alternative sampler S(crs, (x1, x2)), whereas in G3, z is sampled using the
original sampler S(x1, x2). G3 is identical to ideal[Z,A,πG](λ).

claim 18.2. For all PPT environments Z, there exists a PPT adversary B3,
such that |Pr[out3 = 1] − Pr[out2 = 1]| ⩽ Adva-crs-close

(SetupS,S,S−1
),B3

(λ).

Proof. Construct an adversary B3 breaking adaptive closeness as follows. B3

receives crs sampled from SetupS(1λ) and calls Z on input of crs. In return,
B3 receives (x1, x2), samples ρ1 ← {0, 1}n(λ) and outputs m := (x1, x2) to
the adaptive closeness experiment to receive y. B3 uses z := y and continues
as in G2. Note that G2 can be simulated without knowing the random coins
used for S.

If y was sampled using S(crs, (x1, x2)), then B3 perfectly simulates G2. If
y was sampled using S(x1, x2), then B3 perfectly simulates G3.

Thus, due to adaptive invertibility and adaptive closeness, for all environ-
ments Z,

⃓⃓
⃓Pr
[︂
real[Z,A,πG](λ) = 1

]︂
− Pr

[︂
ideal[Z, Sim, θF](λ) = 1

]︂⃓⃓
⃓

is negligible.

Note that due to [DKR15] it is possible to realize UC-AMPC for every
functionality only assuming the static version cPREHrand

≈c at the cost of addi-
tionally assuming the existence of an adaptively secure two-round oblivious
transfer protocol. This can be avoided due to Corollary 16.1.

18.1.3 Adaptive MPC Implies Pseudorandom Encodings

In the following, we consider the standalone model [Can00]. Note that in
the standalone model, the environment is strictly weaker than in the UC-
framework.

theorem 18.3. If for all (two party) PPT functionalities F, there exists a protocol
Π that securely implements F in the global CRS model in the presence of adaptive
semi-honest adversaries with post-execution corruption corrupting any number of
parties, then acPREHrand

≈c (without universal setup) is true.

Proof. The proof follows the ideas of [IKOS10]. Let S be an arbitrary PPT
algorithm. Let x1 denote the input of party P1 and let x2 denote the input of
party P2.

Consider the randomized functionality F which computes z := S(x1, x2; ρ)
and outputs z to P1 and ⊥ to P2, where ρ is the internal random tape of the

18.1 adaptively secure multi-party computation 227

functionality. We denote the message space of S by L. Let Π be a protocol
which securely realizes F in the global CRS model (where the common
reference string is drawn according some distribution SetupF possibly de-
pending on the functionality F) in the presence of adaptive semi-honest
adversaries (with post-execution corruption). Further, let p1 and p2 be state-
ful PPT algorithms modeling the protocol messages exchanged between
the parties P1 and P2. More formally, (m2i+1, zi)← p1(crs, x1,m2i; r1) and
m2j ← p2(crs, x2,m2j−1; r2) for i ⩾ 0, j ⩾ 1 and r1, r2 ← {0, 1}p(λ) (for
some sufficiently large polynomial p). (Without loss of generality, we let p1
additionally output zi which equals ⊥ during the protocol execution and
contains the output of party P1 after the execution.)

We define the invertible sampling scheme (SetupS := SetupF,S,S−1
) as in

Figure 18.2.

S(crs, (x1, x2); (r1, r2))

z := ⊥,m := ⊥

while z = ⊥ do

(m, z)← p1(crs, x1,m, r1)

m← p2(crs, x2,m, r2)

return z

(a) The alternative sampler.

S
−1

(crs, (x1, x2), z; rS)

{m′i}i∈[poly(λ)] ← Sim1(crs; rS)

(z, r′1)← Sim2(x1, z)

r′2 ← Sim3(x2)

return (r′1, r′2)

(b) The inverse sampler.

Figure 18.2: Definition of the alternative sampler S and the corresponding inverse
sampler S−1.

lemma 18.1. (SetupS := SetupF ,S,S−1
) defined in Figure 18.2 satisfies adaptive

closeness.

Proof. Since we only consider protocols Π with at most polynomially many
rounds, S is a PPT algorithm.

Intuitively, the output distributions of S and S are computationally close
because of “correctness” of the protocol Π.

Let B be the adversary who only observes the protocol Π and does not
interfere at all. By Definition 18.1, there exists a simulator Sim such that for
all environments Z,

⃓⃓
⃓ Pr

[︂
crs← SetupF(1

λ) : ZA,Π(crs) = 1
]︂

−Pr
[︂
crs← SetupF(1

λ) : ZSim,F(crs) = 1
]︂ ⃓⃓
⃓

is negligible. Note that since B corrupts no parties, Sim also corrupts no
parties.

Let A be an adversary breaking closeness. We construct an environment Z
which distinguishes between the real and the ideal world as follows. Initially,
Z receives crs as input, calls A on input of crs and obtains (x1, x2) ∈ L. Z
uses x1 as input for party P1 and x2 as input for P2. Then, Z executes the
protocol (without any interference) and finally receives the output (z,⊥). Z
calls A on input z and outputs A’s output.

In the ideal world, Z receives the outputs z and ⊥ for P1 and P2 from the
trusted third party T (since no party is corrupted) which are computed by F.

228 applications of pseudorandom encodings

Hence, if Z is in the ideal world, it simulates Exp(0)-a-crs-close
(SetupS,S,S−1

),A
(λ). In the

real world, Z interacts with the actual parties running protocol Π and, hence,
simulates Exp(1)-a-crs-close

(SetupS,S,S−1
),A

(λ). Therefore,

Adva-crs-close
(SetupS,S,S−1

),A
(λ) ⩽

⃓⃓
⃓ Pr

[︂
crs← SetupF(1

λ) : ZA,Π(crs) = 1
]︂

−Pr
[︂
crs← SetupF(1

λ) : ZSim,F(crs) = 1
]︂ ⃓⃓
⃓

for the environment Z and the adversary B which do not interfere with the
protocol execution.

Let B be an adversary that operates as follows. During the protocol, B
records the transcripts {mi}i∈[poly′(λ)] and outputs them. At the end of the
protocol, B corrupts P1 obtaining the input x1, output z and random tape r1.
B directly outputs (z, r1). Afterwards, B (post-execution) corrupts P2 and
obtains the input x2 and the random tape r2 and outputs r2.

Since we assume Π securely realizes F (in particular in the presence of B),
there exists a (stateful) simulator Sim := (Sim1, Sim2, Sim3) producing outputs
that are computationally indistinguishable from the outputs B produces.
Sim1 simulates the execution before a corruption occurs. On input of crs and
a random tape rS, Sim1 produces {m′i}i∈[poly′(λ)]. On corruption of P1 (in the
post-execution corruption stage), Sim2 obtains x1, z and outputs a string r′1
corresponding to the randomness that P1 used to produce its messages in
the protocol (using input x1) and outputs (z, r′1). On corruption of P2 (in
the post-execution corruption stage), Sim3 obtains x2 and outputs a string
r′2 corresponding to the randomness that P2 used to produce its messages
(using input x2).

lemma 18.2. (SetupS := SetupF ,S,S−1
) defined in Figure 18.2 satisfies adaptive

invertibility.

Proof. Since Sim1, Sim2 and Sim3 are PPT algorithms, S−1 is a PPT algorithm.
Recall that F(x1, x2; ρ) := S(x1, x2; ρ). Define a modified functionality

F′(x1, x2; ρ′) := S(x1, x2; ρ′). We consider an intermediate game, where Z

interacts with the simulator Sim and the modified ideal functionality F′.

claim 18.3. For all PPT environments Z,
⃓⃓
⃓ Pr

[︂
crs← SetupF(1

λ) : ZSim,F(crs) = 1
]︂

−Pr
[︂
crs← SetupF(1

λ) : ZSim,F′(crs) = 1
]︂ ⃓⃓
⃓

is negligible.

Proof of Claim 18.3. Let Z be a PPT environment. We construct an adversary B

breaking adaptive closeness. B simulates the entire interaction between Z, the
simulator Sim and the trusted party T , which evaluates the functionality F (or
F′). In particular, B takes control of the party T . On input of crs, B simulates
the interaction between Z and Sim (given crs) until the computation stage.
In the computation stage, the parties P1 and P2 send their inputs (which
may have been adaptively chosen based on crs) to B. B outputs (x1, x2) to
Exp(b)-a-crs-close

(SetupS,S,S−1
),A

(λ) and receives an output z := yb, where y0 ← S(x1, x2)

and y1 ← S(x1, x2). B sends z to P1 and P2 and continues to simulate the

18.2 honey encryption 229

interaction between Z and Sim. This is possible, because the randomness
which is actually used by T is necessary for simulation. Finally, Z halts and
outputs a bit b′. B outputs b′.

Let A be an adversary breaking adaptive invertibility. We construct an
environment Z which distinguishes between the real execution of Π with
adversary B and the ideal execution with Sim and the ideal functionality F′.
Initially, Z receives crs and calls A on input of crs to obtain (x1, x2). Z uses x1
as input for P1 and x2 as input for P2. After the execution of the protocol and
the post-execution corruptions, Z receives (r1, r2), z (either by the adversary
B or the simulator Sim). Finally, Z calls A on input of ((r1, r2), z) and outputs
A’s output.

In the real world, z is the output of the real protocol and r1, r2 is the actual
randomness used by the parties. Hence, by definition of S, (r1, r2) is the
randomness actually used by S to produce the output z. Therefore,

Pr
[︃

Exp(0)-a-crs-inv
(SetupS,S,S−1

),A
(λ) = 1

]︃
= Prcrs

[︂
ZB,Π(crs) = 1

]︂
.

In the ideal world, z is produced by the functionality F′ (hence, by S) and
(r1, r2) := (r′1, r′2) is produced by S

−1
((x1, x2), z). Hence,

Pr
[︃

Exp(1)-a-crs-inv
(SetupS,S,S−1

),A
(λ) = 1

]︃
= Prcrs

[︂
ZSim,F′(crs) = 1

]︂
.

Hence,

Adva-crs-inv
(SetupS,S,S−1

),A
(λ)

=
⃓⃓
⃓Prcrs

[︂
ZB,Π(crs) = 1

]︂
− Prcrs

[︂
ZSim,F′(crs) = 1

]︂⃓⃓
⃓

⩽
⃓⃓
⃓Prcrs

[︂
ZB,Π(crs) = 1

]︂
− Prcrs

[︂
ZSim,F(crs) = 1

]︂⃓⃓
⃓

+
⃓⃓
⃓Prcrs

[︂
ZSim,F(crs) = 1

]︂
− Prcrs

[︂
ZSim,F′(crs) = 1

]︂⃓⃓
⃓

which is negligible by assumption and Claim 18.3.

Therefore, for every PPT algorithm S, there exists an algorithm SetupS,
an alternative sampler S and an inverse sampler S

−1 such that adaptive
closeness and adaptive invertibility hold. This concludes the proof.

Combining Theorems 18.2 and 18.3 and since semi-honest adaptive MPC
in the non-programmable common random string model implies semi-hon-
est adaptive MPC in the plain model, we obtain the following corollary
improving Corollary 17.9.

corollary 18.1. If there exist extractable one-way function family ensembles
(without auxiliary information) and indistinguishability obfuscation for all circuits,
then weak cPREHrand

≈c with common random string (URC) is false.

18.2 honey encryption
Honey encryption schemes [JR14] are secret-key encryption schemes which
offer security even against unbounded adversaries, i. e., even against adver-
saries who are able to perform an exhaustive search over all secret-keys.

230 applications of pseudorandom encodings

This is a particularly useful notion when the key comes from a distribution
with low min-entropy, like passwords. On decryption with a wrong key, a
honey encryption scheme behaves indistinguishably from decryption with
the actually used key.

Let D1 be an efficiently samplable key distribution over the key space Kλ

and let D2 be an efficiently samplable message distribution over the message
space Mλ.

definition 18.3 (Honey encryption, [JR14]). A secret-key encryption (SKE)
scheme (Enc, Dec) is called honey encryption (HE) scheme for key distribution
D1 and plaintext distribution D2 if it satisfies the following property.

security against message recovery. The encryption scheme (Enc, Dec)
is secure against message recovery (with respect to D1,D2) if for all
unbounded adversaries A, the advantage

Advmr
(Enc,Dec),A,D1,D2

(λ) = Pr
[︂
Expmr

(Enc,Dec),A,D1,D2
(λ) = 1

]︂

is negligibly close to 2−µ1 , where µ1 is the min-entropy of D1 (i. e., µ1 =

H∞(D1)), and Expmr
(Enc,Dec),A,D1,D2

(λ) is defined as in Figure 18.3.

Expmr
(Enc,Dec),A,D1,D2

(λ)

k← D1(1
λ)

m∗ ← D2(1
λ)

c∗ ← Enc(k,m∗)

m← A(c∗)

return m = m∗

Figure 18.3: Message recovery game.

definition 18.4 (Distribution-transforming encoder, [JR14; JRT16]). A distri-
bution-transforming encoder (DTE) for a distribution sampled by a sampler S
over YS,λ is a tuple of efficient algorithms (ES, DS), where DS is deterministic,
such that the following properties are satisfied.

perfect correctness. For all y ∈ YS,λ, Pr
[︁
DS(ES(m)) = m

]︁
= 1, where

the probability is over the randomness of ES.

dte security. For all unbounded adversaries,

Advdte
(ES,DS),A(λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-dte

(ES,DS),A(λ) = 1
]︂

−Pr
[︂

Exp(1)-dte
(ES,DS),A(λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(0)-dte
(ES,DS),A(λ) and Exp(1)-dte

(ES,DS),A(λ) are defined
in Figure 18.4.

The above notions are defined with respect to unbounded adversaries.
This is a simplification meant to capture the fact that an adversary is able
to perform work proportional to 2−µ1 . For low-entropic key distributions,
a computational variant of the above definition suffices. We refer to this as
computational honey encryption.

18.3 keyless steganography 231

Exp(0)-dte
(ES,DS),A(λ)

y∗ ← S(1λ)

u∗ ← ES(m
∗)

return A(u∗,y∗)

(a) DTE game using an encoding of a sam-
ple.

Exp(1)-dte
(ES,DS),A(λ)

u∗ ← {0, 1}n(λ)

y∗ ← DS(u
∗)

return A(u∗,y∗)

(b) DTE game using a uniform random
string.

Figure 18.4: DTE games.

Relaxing the perfect correctness requirement from Definition 18.4 recovers
the definition of (weak) PREHrand

≡s (or weak PREHrand
≈c in the computational

case) by Lemma 17.10 and still suffices to imply honey encryption via the
DTE-then-Encrypt framework due to [JR14] given a secret-key encryption
scheme (with message space matching the range of ES). Applying the DTE-
then-Encrypt framework on acPREHrand

≡s and acPREHrand
≈c yields honey en-

cryption in a CRS model for high-entropic and low-entropic key distributions,
respectively. Note that the adaptive versions are only necessary when consid-
ering message distributions D2 with input.

theorem 18.4. If acPREHrand
≡s (or acPREHrand

≈c) is true and a suitable secret-
key encryption scheme (modeled as random cipher) exists, then (computational)
honey encryption exists for all efficiently samplable message distributions in the CRS
model.

The proof directly follows from [JR14]. Together with Theorems 17.13

and 17.14, we obtain the following corollary.

corollary 18.2. If polynomially secure IO exists and a (suitable) secret-key
encryption scheme (modeled as random cipher) exists, then computational honey
encryption exists for all efficiently samplable message distributions in the CRS model.

18.3 keyless steganography
Pseudorandom encodings yield a notion of keyless steganography. In the
case of acPREHrand

≈c all parties need access to some public parameters, but
none of the parties needs access to a secret key. We adopt the notation from
[BL18b]. Since decoding does not involve any secret information, any attack
corresponds to an equivalent of SS-CCA-security for public-key stegosystems
(PKStS), where the decoding may even be applied on the challenge. Hence,
the definition of SS-CCA-security must be adapted such that the message
to be hidden is not chosen by the adversary but sampled according to a
predefined message distribution. Let dl(λ) be the document length and ol(λ)
be the output length. Let Cλ,dl(λ) be a channel which defines a probability
distribution over Σdl(λ) depending on the history (Σdl(λ))∗.

definition 18.5 (Keyless stegosystem for distribution S). A keyless stegosys-
tem (KlStS) for message distribution S is a triple of PPT algorithms (KlStS.Setup,
KlStS.ES, KlStS.DS), where

• KlStS.Setup(1λ) produces public parameters pp (without corresponding
secret information),

232 applications of pseudorandom encodings

Exp(b)-klsts-sec
KlStS,A,C (λ)

pp← KlStS.Setup(1λ)

m← A(pp)

m∗ ← S(m)

hist∗ ← A(1λ, pp,m∗)

d∗
0 ← KlStS.EC

S(pp,m∗, hist∗)

d∗
1 ← C

ol(λ)
λ,dl(λ),hist∗

return A(d∗
b)

Figure 18.5: Definition of the security game for keyless stegosystems.

• KlStS.ES on input of pp, a message y sampled from S, a history hist ∈
(Σdl(λ))∗ and some state information s ∈ {0, 1}∗, produces a document
d ∈ Σdl (by being able to sample from Cλ,dl(λ)). KlStS.EC

S(pp,m, hist)
denotes sampling ol(λ) documents using KlStS.ES one-by-one.

• KlStS.DS on input of pp, and a sequence of documents d1, . . . ,dol(λ),
outputs a message m′.

We require KlStS to meet the following properties.

universality. KlStS works on any channel without prior knowledge of the
distribution of the channel.

reliability. The probability

Pr
[︁
KlStS.DS

(︁
pp, KlStS.ES(pp,m, hist), hist

)︁
̸= m

]︁

is negligible, where the probability is over the choice of pp, m and the
random coins of KlStS.ES.

security. KlStS is secure (on channel C), if for all PPT adversaries A,

Advklsts-sec
KlStS,A,C(λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-klsts-sec

KlStS,A,C (λ) = 1
]︂

−Pr
[︂

Exp(1)-klsts-sec
KlStSA,C (λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(0)-klsts-sec
KlStS,A,C (λ) and Exp(1)-klsts-sec

KlStS,A,C (λ) are defined
in Figure 18.5.

Applying a similar strategy as in [vH04; Hop05], we obtain the following
theorem.

theorem 18.5. Let S be an efficiently samplable message distribution and let H
be a family of pairwise independent hash functions. If acPREHrand

≈c is true for S, then
(KlStS.SetupS, KlStS.ES, KlStS.DS) defined in Figure 18.6 is a keyless stegosystem
for the message distribution S.

The result basically follows from the Leftover Hash Lemma [HILL99] and
the ability to embed the message distribution into the uniform distribution
due to acPREHrand

≈c . Note that since in Exp(b)-klsts-sec
KlStS,A,C (λ), the adversary does

not know the challenge message m∗, it is not necessary that each encoding
of a message corresponds to exactly one stegotext, see [Hop05]. The system
is universal since it does not assume any knowledge on the channel.

18.4 deniable encryption 233

KlStS.SetupS(1λ)

crs← SetupS(1λ)

H← H

return pp := (crs,H)

(a) Setup algorithm.

KlStS.ES((crs,H),m)

u← ES(crs,m)

u1 ∥ . . . ∥uℓ =: u

for i ∈ [ℓ] do

do

di ← C(λ,hist)

until prefixm(H(di)) = ui

return (d1, . . . ,dℓ)

(b) Encode algorithm.

KlStS.DS((crs,H), (d1, . . . ,dℓ))

for i ∈ [ℓ] do

ui ← prefixm(H(di))

u← u1 ∥ . . . ∥uℓ

return DS(crs,u)

(c) Decode algorithm.

Figure 18.6: Description of a keyless stegosystem from pseudorandom encodings
inspired by [vH04; Hop05].

18.4 deniable encryption
As noted in [CDNO97], sender deniable encryption is related to adaptively
secure MPC (for adaptively well-formed functionalities). In this section, we
analyze if cPREHrand

≈c together with the existence of a PKE scheme suffices to
obtain deniable encryption.

Recall, that the explainability compiler of [DKR15] which is based on the
deniable encryption scheme of [SW14] corresponds to cISHrand

≈c , where close-
ness actually holds information-theoretically. Let cISH′ denote this variant of
cISHrand

≈c , where closeness holds information-theoretically.

definition 18.6 (Publicly deniable encryption, [SW14]). A publicly deni-
able encryption (DE) scheme for message space M is a tuple DE = (KGen, Enc,
Dec, Explain) such that (KGen, Enc, Dec) is an IND-CPA secure PKE scheme
and the following property is satisfied.

indistinguishability of explanation. For all PPT adversaries A,

Advind-expl
DE,A (λ) :=

⃓⃓
⃓ Pr

[︂
Exp(0)-ind-expl

DE,A (λ) = 1
]︂

−Pr
[︂

Exp(1)-ind-expl
DE,A (λ) = 1

]︂ ⃓⃓
⃓

is negligible, where Exp(0)-ind-expl
DE,A (λ) and Exp(1)-ind-expl

DE,A (λ) are defined
in Figure 18.7 and the randomness space of Enc is {0, 1}n(λ).

We only consider publicly deniable encryption schemes with message
space {0, 1}, since a deniable encryption scheme with message space {0, 1}
implies a publicly deniable encryption scheme for message space {0, 1}n (for
a polynomial n in λ).

234 applications of pseudorandom encodings

Exp(0)-ind-expl
DE,A (λ)

(pk, sk)← KGen(1λ)

m∗ ← A(pk)

u∗ ← {0, 1}n(λ)

c∗ ← Enc(pk,m∗;u∗)

return A(c∗,u∗)

(a) Adaptive indistinguishability of expla-
nation game using true randomness.

Exp(1)-ind-expl
DE,A (λ)

(pk, sk)← KGen(1λ)

m∗ ← A(pk)

u∗ ← {0, 1}n(λ)

c∗ ← Enc(pk,m∗;u∗)

e∗ ← Explain(pk, c∗)

return A(c∗, e∗)

(b) Adaptive indistinguishability of expla-
nation game using explained random-
ness.

Exp(0)-ind-expl′

DE,A (λ)

m∗ ← A(1λ)

(pk, sk)← KGen(1λ)

u∗ ← {0, 1}n(λ)

c∗ ← Enc(pk,m∗;u∗)

return A(pk, c∗,u∗)

(c) Static indistinguishability of explanation
game using true randomness.

Exp(1)-ind-expl′

DE,A (λ)

m∗ ← A(1λ)

(pk, sk)← KGen(1λ)

u∗ ← {0, 1}n(λ)

c∗ ← Enc(pk,m∗;u∗)

e∗ ← Explain(pk, c∗)

return A(pk, c∗, e∗)

(d) Static indistinguishability of explana-
tion game using explained randomness.

Figure 18.7: Indistinguishability of explanation games in its adaptive (Figures 18.7a
and 18.7b) and static (Figures 18.7c and 18.7d) variant.

For message space {0, 1}, indistinguishability of explanation is equivalent
to static indistinguishability of explanation, i. e., indistinguishability between

Exp(0)-ind-expl′

DE,A (λ) and Exp(1)-ind-expl′

DE,A (λ) as defined in Figure 18.7.
cISH′ in conjunction with a PKE scheme yields (publicly) sender deniable

encryption.

theorem 18.6. Let (KGen, Enc, Dec) be an IND-CPA-secure public-key encryp-
tion scheme for message space {0, 1}. If cISH′ holds, then there exists a publicly
deniable encryption scheme for message space {0, 1}.

Proof. cISH′ implies that for the PPT algorithm Enc there exist a setup algo-
rithm SetupEnc, an alternative sampler Enc and an inverse sampler Enc−1

satisfying statistical closeness and computational invertibility. We define
a publicly deniable encryption scheme (KGen′, Enc′, Dec′, Explain′) in Fig-
ure 18.8.

correctness. Let m ∈ {0, 1} be a plaintext.

ϵ1 := Pr

[︄
((crs, pk), sk) = (pk′, sk′)←KGen′(1λ)

c← Enc(pk,m)
: Dec(sk, c) ̸= m

]︄

ϵ2 := Pr

[︄
((crs, pk), sk) = (pk′, sk′)←KGen′(1λ)

c← Enc(pk,m)
: Dec(sk, c) ̸= m

]︄

18.4 deniable encryption 235

KGen′(1λ)

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

pk′ := (crs, pk), sk′ := sk

return (pk′, sk′)

(a) The key generation algorithm.

Enc′(pk′,m)

parse (crs, pk) =: pk′

c← Enc(crs, (pk,m))

return c

(b) The encryption algorithm.

Dec′(sk, c)

m← Dec(sk, c)

return m

(c) The decryption algorithm.

Explain′(pk′,m)

parse (crs, pk) =: pk′

u← Enc−1
(crs, (pk,m), c)

return u

(d) The explain algorithm.

Figure 18.8: Publicly deniable encryption scheme from cISH′.

Consider an unbounded adversary A on closeness which on input of (crs, pk,
c), computes sk (using exhaustive search) and outputs 1 if Dec(sk, c) ̸= m

and 0 otherwise. The advantage of this adversary is

Advcrs-close
(SetupEnc,Enc,Enc−1

),A
(λ) = |ϵ1 − ϵ2|.

Hence,

ϵ2 ⩽ Advcrs-close
(SetupEnc,Enc,Enc−1

),A
(λ) + ϵ1

and therefore negligible due to statistical closeness and correctness of (KGen,
Enc, Dec).

ind-cpa security. For message space {0, 1}, IND-CPA security of (KGen′,
Enc′, Dec′) is equivalent to the indistinguishability between the games G0

and G3 of Figure 18.9.

game G0. G0 generates a key pair as in DE.KGen(1λ), encrypts 0 using
DE.Enc and gives the public key and the ciphertext to the adversary A.

game G1. G1 is identical to G0 except that c∗ is produced using the original
sampler Enc instead of the alternative sampler Enc.

claim 18.4. For all (unbounded) adversaries A there exists an (unbounded)
adversary B1 such that

⃓⃓
Pr
[︁
out1 = 1

]︁
− Pr

[︁
out0 = 1

]︁⃓⃓
⩽ Advcrs-close

(SetupEnc,Enc,Enc−1
),B1

(λ).

Proof. Let A be an unbounded adversary distinguishing G0 and G1. Con-
struct an adversary B1 breaking closeness. Initially, B1 samples (pk, sk) ←
KGen(1λ) and outputs m := (pk, 0) to the experiment. In return, B1 receives

236 applications of pseudorandom encodings

G0

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

c∗ ← Enc(pk, 0)

return A((crs, pk), c∗)

(a) Description of G0.

G1

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

c∗ ← Enc(pk, 0)

return A((crs, pk), c∗)

(b) Description of G1.

G2

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

c∗ ← Enc(pk, 1)

return A((crs, pk), c∗)

(c) Description of G2.

G3

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

c∗ ← Enc(pk, 1)

return A((crs, pk), c∗)

(d) Description of G3.

Figure 18.9: Hybrids used in the proof of IND-CPA security for Theorem 18.6.

(crs,y), where y is either sampled using Enc(m) or Enc(m). B1 calls A on
input of ((crs, pk),y). Hence,

Pr
[︁
out0 = 1

]︁
= Pr

[︃
Exp(1)-crs-close

(SetupEnc,Enc,Enc−1
),B1

(λ) = 1

]︃
,

Pr
[︁
out1 = 1

]︁
= Pr

[︃
Exp(0)-crs-close

(SetupEnc,Enc,Enc−1
),B1

(λ) = 1

]︃
.

game G2. G2 is identical to G1 except that Enc is used to encrypt 1 instead
of 0. This game hop is justified by the IND-CPA security of (KGen, Enc, Dec).

game G3. G3 is identical to G2 except that c∗ is produced using the alter-
native sampler Enc instead of the original sampler Enc. This game hop is
justified by statistical closeness like the game hop from G0 to G1.

indistinguishability of explanation. We prove indistinguishability
between the games described in Figure 18.10.

claim 18.5. For all PPT adversaries A, Advind-expl′
DE,A (λ) is negligible.

Proof. Let A be an adversary distinguishing between the two experiments

Exp(0)-ind-expl′

DE,A (λ) and Exp(1)-ind-expl′

DE,A (λ) as above. Construct an adversary B

breaking invertibility. Initially, B calls A, obtains m∗, samples (pk, sk) ←
KGen(1λ) and outputs m := (pk,m∗) to the experiment. In return, B receives
(crs, r,y) from the experiment, where y is sampled using Enc(pk,m∗) and r

is either the randomness used by Enc or is sampled via Enc−1
(pk,m∗,y). B

calls A on input of ((crs, pk),y, r). Hence,

Pr
[︂
Exp(b)-ind-expl′

DE,A (λ) = 1
]︂
= Pr

[︃
Exp(b)-crs-inv

(SetupEnc,Enc,Enc−1
),B

(λ) = 1

]︃

for b ∈ {0, 1}.

18.5 non-committing encryption 237

Exp(0)-ind-expl′

DE,A (λ)

m∗ ← A(1λ)

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

u∗ ← {0, 1}n(λ)

c∗ ← Enc(pk,m∗;u∗)

return A((crs, pk), c∗,u∗)

(a) Indistinguishability of explanation
game using true randomness.

Exp(1)-ind-expl′

DE,A (λ)

m∗ ← A(1λ)

crs← SetupEnc(1
λ)

(pk, sk)← KGen(1λ)

u∗ ← {0, 1}n(λ)

c∗ ← Enc(pk,m∗;u∗)

e∗ ← Enc−1
(pk, c∗)

return A((crs, pk), c∗, e∗)

(b) Indistinguishability of explanation
game using explained randomness.

Figure 18.10: Unwrapped static indistinguishability of explanation games used in
the proof of indistinguishability of explanation of Theorem 18.6.

Whether cISHrand
≈c (without statistical closeness) implies deniable encryp-

tion remains open.

18.5 non-committing encryption
Non-committing encryption is a powerful notion which is known to imply
adaptive MPC for well-formed functionalities [CFGN96; CLOS02].

On a high level, if acPREHrand
≈c is true, then any IND-CPA secure PKE

scheme is a simulatable PKE scheme [DN00] (in the CRS model). The strategy
of [CDMW09] translates to the CRS model (where inputs may be chosen
depending on the CRS) directly.

definition 18.7 (Non-committing bit encryption in the global CRS model).
A non-committing bit encryption (NCE) scheme in the global CRS model is
a tuple of PPT algorithms (Setup, KGen, Enc, Dec, Sim), such that (KGen, Enc,
Dec) is a PKE scheme and the following distributions are computationally
indistinguishable:

⎧
⎪⎪⎨
⎪⎪⎩

crs ← Setup(1λ)

(pk, sk)←KGen(1λ, crs; rKGen)

c ← Enc(crs, pk,b; rEnc)

:
(︁
crs, pk, c, rKGen, rEnc

)︁
⎫
⎪⎪⎬
⎪⎪⎭

,

{︄
crs← Setup(1λ)

(pk, c, r0KGen, r1KGen, r0Enc, r1Enc)← Sim(1λcrs)
:
(︁
crs, pk, c, rbKGen, rbEnc

)︁
}︄

.

Following the lines of [CDMW09], if acPREHrand
≈c is true and there exists an

IND-CPA secure PKE scheme, then there exists a non-committing encryption
scheme.

theorem 18.7. Let (KGen′, Enc′, Dec′) be an IND-CPA secure PKE scheme for
message space {0, 1}λ. If acPREHrand

≈c holds, then there exists a non-committing
encryption scheme.

238 applications of pseudorandom encodings

KGen(1λ, crs)

M0,M1 ← {0, 1}λ

T ← [4λ] s.t. |T | = λ

(pki, ski)←
{︄

KGen′(1λ) if i ∈ T

OGen(crs) otherwise

pk := (M0,M1, pk1, . . . , pk4λ)

sk := (T , (ski)i∈T)

return (pk, sk)

(a) The key generation algorithm.

Enc(crs, pk,b)

S← [4λ] s.t. |S| = λ

ci ←
{︄

Enc′(pki,Mb) if i ∈ S

OEnc(crs, pki) otherwise

return c := (ci)i∈[4λ]

(b) The encryption algorithm.

Dec(crs, sk, c)

J :=
{︁
Dec′(ski, ci)

⃓⃓
i ∈ T

}︁

if M0 ∈ J then

return 0

else

return 1

(c) The decryption algorithm.

Figure 18.11: Non-committing encryption scheme in the global CRS model based on
[CDMW09].

Proof sketch. Let OGen be the algorithm which on input of 1λ calls KGen′(1λ)
and outputs only (pk,⊥). Further let OEnc be the algorithm which on input of
(1λ, pk) samples m← {0, 1}λ and outputs c← Enc′(1λ, pk,m). If acPREHrand

≈c

is true, then there exist alternative and inverse samplers for OGen and OEnc,
denoted by (OGen, OGen−1

) and (OEnc, OEnc−1
), respectively. Note that

the alternative sampler and the inverse sampler need access to the CRS.
If the setup algorithm Setup is trivial (i. e., outputs the empty string), this
corresponds to the notion of simulatable encryption due to [DN00] and
yields non-committing encryption directly due to [CDMW09]. Figures 18.11

and 18.12 show the construction of non-committing encryption in the global
CRS model. Note that assuming adaptive acPREHrand

≈c is necessary since the
inputs to the sampler OEnc are sampled via OGen(crs) during the simulation
and, hence, depend on the CRS. The indistinguishability between the real
and the simulated distribution follows the same ideas as in [CDMW09].

18.6 super-polynomial encoding
Extremely lossy functions due to [Zha16] are functions which can be set up
in two computationally indistinguishable modes – an injective mode and a
extremely lossy mode, where the range of the function is merely polynomial,
see Definition 4.2 in Section 4.2. A slight relaxation of this notion is what we
call very lossy functions (VLFs). The difference to ELFs is that we require

18.6 super-polynomial encoding 239

Sim(crs)

M0,M1 ← {0, 1}λ

S0, T0 ← [4λ] s.t. |S0| = |T0| = λ

S1, T1 ← [4λ] \ (S0 ∪ T0) s.t. |S0 ∩ T0| = |S1 ∩ T1|

(pki, ski)←
{︄

KGen′(1λ; r(i)KGen′) if i ∈ T0 ∪ S0 ∪ T1 ∪ S1
OGen(crs; r(i)OGen) otherwise

ci ←

⎧
⎪⎪⎨
⎪⎪⎩

Enc′(pki,M0; r(i)Enc′) if i ∈ S0

Enc′(pki,M1; r(i)Enc′) if i ∈ S1

OEnc(crs, pki; r(i)OEnc) otherwise

define rbKGen := (Tb, (u(b,i)
KGen′)i∈[4λ]) and rbEnc := (Sb, (u(b,i)

Enc′)i∈[4λ])

u
(b,i)
KGen′ ←

⎧
⎪⎪⎨
⎪⎪⎩

r
(i)

KGen′ if i ∈ Tb

OGen−1
(crs, pki) if i ∈ (T0 ∪ T1 ∪ S0 ∪ S1) \ Tb

r
(i)
OGen otherwise

u
(b,i)
Enc′ ←

⎧
⎪⎪⎨
⎪⎪⎩

r
(i)

Enc′ if i ∈ Sb

OEnc−1
(crs, (pki,M1−b), ci) if i ∈ S1−b

r
(i)
OEnc otherwise

return
(︂

pk := (M0,M1, (pki)i∈[4λ]), c := (ci)i∈[4λ], r0KGen, r1KGen, r0Enc, r1Enc

)︂

Figure 18.12: The simulator Sim for the non-committing encryption scheme in the
global CRS model described in Figure 18.11. Sim is based on the
simulator given in [CDMW09].

indistinguishability between functions with exponential range and super-
polynomial range. The existence of these functions implies a relaxation of
cPREHrand

≈c . The definition of VLFs is inspired by the definition of bounded
adversary ELFs from [Zha16].

definition 18.8 (Very lossy functions). A very lossy function (VLF) is a
tuple of PPT algorithms VLF = (Gen, Eval) and a computable function N(M)

(such that logN is polynomial in logM) such that the following properties
are satisfied.

• Gen on input of M, r ∈ [M] and a flag b ∈ {inj, lossy}, outputs a function
description G : [M]→ [N].

• If b = inj, G is injective with overwhelming probability (in logM).

• For all r ∈ [M], if b = lossy, |G([M])| ⩽ r with overwhelming probability
(in logM).

• Eval(G, ·) evaluates the function G in polynomial time. A very lossy
function is required to satisfy the following property.

indistinguishability. There exists a super-polynomial function q such that
for all PPT adversaries A and any r ∈ [q(logM),M],

⃓⃓
Pr
[︁
A(VLF.Gen(M, r, inj)) = 1

]︁

−Pr
[︁
A(VLF.Gen(M, r, lossy)) = 1

]︁ ⃓⃓

is negligible.

240 applications of pseudorandom encodings

As a shorthand notation, we often write G(x) to denote VLF.Eval(G, x).

definition 18.9 (Strong regularity, [Zha16]). A very lossy function VLF
is strongly regular if for all r ∈ [M], with overwhelming probability over the
choice of G← VLF.Gen(M, r), the distribution {x← [M] : G(x)} is statistically
close to the uniform distribution over G([M]).

A VLF is called strongly efficiently enumerable, if there exists a (potentially
randomized) algorithm running in polynomial time in logM and r, which
given G ← VLF.Gen(M, r, lossy) and r outputs a set S ⊆ [N] such that with
overwhelming probability (over the choice of G and the randomness of
the algorithm), we have S = G([M]). If VLF is strongly regular, then it
also is strongly efficiently enumerable, [Zha16]. Zhandry [Zha16] shows
that strongly regular ELFs are implied by the exponential decisional Diffie-
Hellman (DDH) assumption.

We note that in contrast to ELFs, for VLFs an adversary who learns r does
not harm security.

Assuming the subexponential hardness of the decisional Diffie-Hellman
(DDH) problem, the bounded adversary extremely lossy function instanti-
ation from [Zha16] is a strongly regular very lossy function according to
Definitions 18.8 and 18.9.

theorem 18.8. If strongly regular very lossy functions exist, then acPREHrand
≈c

with super-polynomial encoding is true.

Proof. Let S be a PPT sampler with input space L. For m ∈ L, let ℓr(|m|)

denote the polynomial which upper bounds the number of random bits S(m)

takes, i. e., the random tape of S is uniform over {0, 1}ℓr = [2ℓr]. Further, let ξ
be a super-polynomial function. The setup, the encoding and the decoding
algorithms are defined in Figure 18.13. Let S(crs,m; r) := DS(crs,m, r) and
S
−1

(crs,m,y) := ES(crs,m,y) be the corresponding alternative and inverse
sampler as in the proof of Theorem 16.1. We prove the equivalent properties
closeness and invertibility.

Setup(1λ, 2ℓr)

G← VLF.Gen(2ℓr , ξ, lossy)

return crs := G

(a) The setup algorithm.

DS(crs,m, r)

y← S(m;G(r))

return y

(b) The decoding algorithm.

ES(crs,m,y)

R := ∅

for r′ ∈ image(G) do

if S(m;G(r′)) = y then

R := R∪ r′

r← R

return r

(c) The encoding algorithm.

Figure 18.13: Description of the pseudorandom encoding scheme with super-poly-
nomial time encoding algorithm.

invertibility. The encoding algorithm produces perfectly distributed
inverse sampled random tapes. Hence, adaptive invertibility follows.

18.6 super-polynomial encoding 241

closeness. We start from the game Exp(b)-a-crs-close
(Setup,S,S−1

),A
(λ) and switch the

VLF to injective mode G← VLF.Gen(2ℓr , ξ, inj). This is computationally indis-
tinguishable for the adversary. The inverse sampler will not work anymore,
but since the adversary is polynomially bounded, he cannot call the inverse
sampler anyway. Strong regularity implies that for G← VLF.Gen(2ℓr , ξ, inj)
the distribution {x← [2ℓr] : G(x)} is statistically close to uniform distribution
over G([2ℓr]). Hence, S(m;G(r)) and S(m; r) for uniform r from [2ℓr] are
statistically close. Then, the view of the adversary is identical regardless if
we started from Exp(0)-a-crs-close

(Setup,S,S−1
),A

(λ) or Exp(1)-a-crs-close
(Setup,S,S−1

),A
(λ).

Unfortunately, acPREHrand
≈c with super-polynomial encoding algorithm

(or, equivalently acISHrand
≈c with super-polynomial inverse sampler) does not

suffice to imply adaptive MPC even if the simulator is allowed to run in super-
polynomial time, [Pas03]. This is because plugging cPREHrand

≈c with super-
polynomial encoding algorithm into the proof of Theorem 18.2, the game
hop from G2 to G3 cannot be made, since the simulation of these games
requires super-polynomial time and, hence, a reduction to closeness against
PPT adversaries is not possible. We do, however, obtain a non-standard
notion of adaptive MPC with super-polynomial simulation, namely for any
functionality F we are able to adaptively realize a functionality F which
produces a computationally (against PPT adversaries) indistinguishable
output distribution to the original functionality. We view it as an interesting
problem to further study this notion of adaptive MPC.

O U T LO O K A N D F U R T H E R D I R E C T I O N S

243

19 O U T LO O K A N D
F U R T H E R D I R E C T I O N S

Finally, we provide an outlook on further interesting research directions.

use our dpio framework in more settings. In Part I and [ACH20],
we identify fully homomorphic encryption and spooky encryption to fit our
dpIO framework and thereby improve the corresponding security proofs
removing the need for subexponentially secure IO. Later, Döttling and Nishi-
maki [DN18] utilize our framework to improve the security reduction of
their novel notion of universal proxy re-encryption. It seems plausible that
our framework can be used to improve the security reduction of further
primitives which require probabilistic IO. For instance, the IND-CCA1-secure
fully homomorphic encryption scheme of [CRRV17] could be a good starting
point.

find more applications for the algebraic wrapper. Since its intro-
duction in [FKL18], the algebraic group model (AGM) enjoys an increasing
popularity [FPS20; BFL20; RS20; KLRX20; GT20]. In Part II and [AHK20],
we demonstrate how to implement AGM-based proofs from [FKL18] and
[FPS20] in the standard (group) model. Further, we identify properties used in
some proofs which exceed the capabilities of the algebraic wrapper. It would
be interesting to identify further instances, where the extraction properties
provided by the algebraic wrapper suffice. This would transport the corre-
sponding proofs into the standard (group) model while avoiding knowledge-
type assumptions.

novel constructions of io. In Part III which is based on [ACI+20],
we obtain partial evidence that indistinguishability obfuscation (or at least
an assumption which stands in conflict with extractable one-way functions
with unbounded auxiliary input) is necessary for pseudorandom encoding
schemes for all efficiently samplable distributions. Hence, we raised the
question whether IO is indeed necessary for pseudorandom encodings.

Inspired by [ACI+20], Wee and Wichs [WW20] answer this question in
the affirmative assuming the subexponential hardness of the learning-with-
errors (LWE) problem. This opens up new opportunities towards novel
constructions of indistinguishability obfuscation. On the one hand, one can
seek to improve the construction of [WW20]. On the other hand, the question
whether IO is necessary for pseudorandom encoding schemes remains open
relative to other hardness assumptions such as the LPN assumption or
assumptions in cryptographic groups. We believe this will give rise to some
new roads towards plausible IO candidates.

extend covert computation – how far can we go? Our notion
of pseudorandom encodings from Part III has connections to variants of
steganography and covert computation [ACI+20]. Covert computation, intro-
duced in [vHL05; CGOS07], allows to hide the very fact that a multi-party

245

246 outlook and further directions

protocol is being executed and only reveals this fact (together with the pro-
tocol output) if an admissibility function is satisfied and all present parties
actually participated. This admissibility function models that all participating
parties are satisfied with the outcome of the protocol.

If a covert multi-party protocol terminates successfully, all participating
parties learn not only their output but also the fact that all other parties
actively participated. A natural question is whether we can transcend this
notion of multi-party computation to hide participation even after a success-
ful run. Whether MPC with deniable participation is feasible is an intriguing
question currently under investigation. As a first step we identify “anony-
mous (message) transfer” (AT) as an interesting special case. An AT protocol
considers three players: one receiver, one sender and one non-participant
who only outputs random noise. The goal of AT is to deliver a message
from the sender to the receiver in a way that leaves the receiver unable to
determine which of the two other parties was the sender. Whether such an
anonymous transfer protocol can exist is a very interesting question.

This is ongoing work together with Geoffroy Couteau, Sven Maier and
Rafael Pass.

B I B L I O G R A P H Y

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. “The Ora-
cle Diffie-Hellman Assumptions and an Analysis of DHIES.”
In: Topics in Cryptology – CT-RSA 2001. Ed. by David Naccache.
Vol. 2020. Lecture Notes in Computer Science. San Francisco,
CA, USA: Springer, Heidelberg, Germany, Apr. 2001, pp. 143–
158. doi: 10.1007/3-540-45353-9_12 (cit. on p. 129).

[Agr19] Shweta Agrawal. “Indistinguishability Obfuscation Without
Multilinear Maps: New Methods for Bootstrapping and In-
stantiation.” In: Advances in Cryptology – EUROCRYPT 2019,
Part I. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11476.
Lecture Notes in Computer Science. Darmstadt, Germany:
Springer, Heidelberg, Germany, May 2019, pp. 191–225. doi:
10.1007/978-3-030-17653-2_7 (cit. on pp. 2, 41).

[AP20] Shweta Agrawal and Alice Pellet-Mary. “Indistinguishability
Obfuscation Without Maps: Attacks and Fixes for Noisy Linear
FE.” In: Advances in Cryptology – EUROCRYPT 2020, Part I. Ed.
by Anne Canteaut and Yuval Ishai. Vol. 12105. Lecture Notes
in Computer Science. Zagreb, Croatia: Springer, Heidelberg,
Germany, May 2020, pp. 110–140. doi: 10.1007/978-3-030-
45721-1_5 (cit. on pp. 2, 41).

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems
(Extended Abstract).” In: 28th Annual ACM Symposium on The-
ory of Computing. Philadephia, PA, USA: ACM Press, May 1996,
pp. 99–108. doi: 10.1145/237814.237838 (cit. on p. 2).

[AMP20] Navid Alamati, Hart Montgomery, and Sikhar Patranabis.
Stronger Multilinear Maps from Indistinguishability Obfuscation.
Cryptology ePrint Archive, Report 2020/610. https://eprint.
iacr.org/2020/610. 2020 (cit. on pp. 91, 92, 110).

[AFH+16] Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique
Larraia, and Kenneth G. Paterson. “Multilinear Maps from
Obfuscation.” In: TCC 2016-A: 13th Theory of Cryptography
Conference, Part I. Ed. by Eyal Kushilevitz and Tal Malkin.
Vol. 9562. Lecture Notes in Computer Science. Tel Aviv, Israel:
Springer, Heidelberg, Germany, Jan. 2016, pp. 446–473. doi:
10.1007/978-3-662-49096-9_19 (cit. on pp. 11, 90–92, 95, 110,
111, 115, 116, 120).

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and
Mark Zhandry. Differing-Inputs Obfuscation and Applications.
Cryptology ePrint Archive, Report 2013/689. http://eprint.
iacr.org/2013/689. 2013 (cit. on pp. 27, 41, 45).

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt,
and Amit Sahai. “Indistinguishability Obfuscation Without
Multilinear Maps: New Paradigms via Low Degree Weak
Pseudorandomness and Security Amplification.” In: Advances

247

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1145/237814.237838
https://eprint.iacr.org/2020/610
https://eprint.iacr.org/2020/610
https://doi.org/10.1007/978-3-662-49096-9_19
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689

248 bibliography

in Cryptology – CRYPTO 2019, Part III. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Vol. 11694. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2019, pp. 284–332. doi: 10.1007/978-
3-030-26954-8_10 (cit. on pp. 2, 41).

[AJ15] Prabhanjan Ananth and Abhishek Jain. “Indistinguishability
Obfuscation from Compact Functional Encryption.” In: Ad-
vances in Cryptology – CRYPTO 2015, Part I. Ed. by Rosario
Gennaro and Matthew J. B. Robshaw. Vol. 9215. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2015, pp. 308–326. doi: 10.1007/978-
3-662-47989-6_15 (cit. on p. 41).

[AS17] Prabhanjan Ananth and Amit Sahai. “Projective Arithmetic
Functional Encryption and Indistinguishability Obfuscation
from Degree-5 Multilinear Maps.” In: Advances in Cryptology
– EUROCRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and
Jesper Buus Nielsen. Vol. 10210. Lecture Notes in Computer
Science. Paris, France: Springer, Heidelberg, Germany, Apr.
2017, pp. 152–181. doi: 10.1007/978-3-319-56620-7_6 (cit. on
p. 41).

[ADGM17] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay
Mukherjee. “Cryptanalysis of Indistinguishability Obfus-
cations of Circuits over GGH13.” In: ICALP 2017: 44th Inter-
national Colloquium on Automata, Languages and Programming.
Ed. by Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl. Vol. 80. LIPIcs. Warsaw, Poland: Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, July 2017, 38:1–
38:16. doi: 10.4230/LIPIcs.ICALP.2017.38 (cit. on p. 2).

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark
Zhandry. “Post-zeroizing Obfuscation: New Mathematical
Tools, and the Case of Evasive Circuits.” In: Advances in Cryp-
tology – EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and
Jean-Sébastien Coron. Vol. 9666. Lecture Notes in Computer
Science. Vienna, Austria: Springer, Heidelberg, Germany, May
2016, pp. 764–791. doi: 10.1007/978- 3- 662- 49896- 5_27
(cit. on pp. 2, 5).

[Bar01] Boaz Barak. “How to Go Beyond the Black-Box Simulation
Barrier.” In: 42nd Annual Symposium on Foundations of Computer
Science. Las Vegas, NV, USA: IEEE Computer Society Press,
Oct. 2001, pp. 106–115. doi: 10.1109/SFCS.2001.959885 (cit.
on p. 32).

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven
Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang. “On the
(Im)possibility of Obfuscating Programs.” In: Advances in Cryp-
tology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2001, pp. 1–18. doi: 10.1007/3-
540-44647-8_1 (cit. on pp. 25, 41, 45).

https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.4230/LIPIcs.ICALP.2017.38
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

bibliography 249

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven
Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang. “On the
(im)possibility of obfuscating programs.” In: J. ACM 59.2
(2012), 6:1–6:48. doi: 10.1145/2160158.2160159. url: https:
//doi.org/10.1145/2160158.2160159 (cit. on pp. 2, 25, 27).

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai.
“Bounded Key-Dependent Message Security.” In: Advances in
Cryptology – EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110.
Lecture Notes in Computer Science. French Riviera: Springer,
Heidelberg, Germany, May 2010, pp. 423–444. doi: 10.1007/
978-3-642-13190-5_22 (cit. on p. 46).

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. “Computa-
tional Analogues of Entropy.” In: Approximation, Randomization,
and Combinatorial Optimization: Algorithms and Techniques, 6th
International Workshop on Approximation Algorithms for Combina-
torial Optimization Problems, APPROX 2003 and 7th International
Workshop on Randomization and Approximation Techniques in Com-
puter Science, RANDOM 2003, Princeton, NJ, USA, August 24-26,
2003, Proceedings. Ed. by Sanjeev Arora, Klaus Jansen, José D. P.
Rolim, and Amit Sahai. Vol. 2764. Lecture Notes in Computer
Science. Springer, 2003, pp. 200–215. doi: 10.1007/978-3-540-
45198-3_18. url: https://doi.org/10.1007/978-3-540-
45198-3_18 (cit. on p. 190).

[BIJ+20] James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit
Sahai, and Mark Zhandry. “Affine Determinant Programs: A
Framework for Obfuscation and Witness Encryption.” In: ITCS
2020: 11th Innovations in Theoretical Computer Science Conference.
Ed. by Thomas Vidick. Vol. 151. Seattle, WA, USA: LIPIcs, Jan.
2020, 82:1–82:39. doi: 10.4230/LIPIcs.ITCS.2020.82 (cit. on
pp. 3, 5, 41).

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. “A Classi-
fication of Computational Assumptions in the Algebraic Group
Model.” In: Advances in Cryptology – CRYPTO 2020, Part II. Ed.
by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2020, pp. 121–151. doi:
10.1007/978-3-030-56880-1_5 (cit. on p. 245).

[Bea97] Donald Beaver. “Plug and Play Encryption.” In: Advances in
Cryptology – CRYPTO’97. Ed. by Burton S. Kaliski Jr. Vol. 1294.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 1997, pp. 75–89. doi:
10.1007/BFb0052228 (cit. on pp. 8, 16).

[BH93] Donald Beaver and Stuart Haber. “Cryptographic Protocols
Provably Secure Against Dynamic Adversaries.” In: Advances
in Cryptology – EUROCRYPT’92. Ed. by Rainer A. Rueppel.
Vol. 658. Lecture Notes in Computer Science. Balatonfüred,
Hungary: Springer, Heidelberg, Germany, May 1993, pp. 307–
323. doi: 10.1007/3-540-47555-9_26 (cit. on pp. 16, 154).

https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/978-3-540-45198-3_18
https://doi.org/10.1007/978-3-540-45198-3_18
https://doi.org/10.1007/978-3-540-45198-3_18
https://doi.org/10.1007/978-3-540-45198-3_18
https://doi.org/10.4230/LIPIcs.ITCS.2020.82
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/BFb0052228
https://doi.org/10.1007/3-540-47555-9_26

250 bibliography

[BP04] Mihir Bellare and Adriana Palacio. “The Knowledge-of-
Exponent Assumptions and 3-Round Zero-Knowledge Pro-
tocols.” In: Advances in Cryptology – CRYPTO 2004. Ed. by
Matthew Franklin. Vol. 3152. Lecture Notes in Computer Sci-
ence. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2004, pp. 273–289. doi: 10.1007/978-3-540-28628-8_17
(cit. on pp. 32, 87).

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Prac-
tical: A Paradigm for Designing Efficient Protocols.” In: ACM
CCS 93: 1st Conference on Computer and Communications Security.
Ed. by Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby. Fairfax, Virginia, USA:
ACM Press, Nov. 1993, pp. 62–73. doi: 10.1145/168588.168596
(cit. on p. 10).

[BR95] Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric
Encryption.” In: Advances in Cryptology – EUROCRYPT’94. Ed.
by Alfredo De Santis. Vol. 950. Lecture Notes in Computer
Science. Perugia, Italy: Springer, Heidelberg, Germany, May
1995, pp. 92–111. doi: 10.1007/BFb0053428 (cit. on pp. 91,
129).

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. “New Nega-
tive Results on Differing-Inputs Obfuscation.” In: Advances in
Cryptology – EUROCRYPT 2016, Part II. Ed. by Marc Fischlin
and Jean-Sébastien Coron. Vol. 9666. Lecture Notes in Com-
puter Science. Vienna, Austria: Springer, Heidelberg, Germany,
May 2016, pp. 792–821. doi: 10.1007/978-3-662-49896-5_28
(cit. on p. 45).

[BM92] Steven M. Bellovin and Michael Merritt. “Encrypted Key Ex-
change: Password-Based Protocols Secure against Dictionary
Attacks.” In: 1992 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 1992, pp. 72–84. doi: 10.1109/
RISP.1992.213269 (cit. on pp. 13, 147, 150).

[BL18a] Fabrice Benhamouda and Huijia Lin. “k-Round Multiparty
Computation from k-Round Oblivious Transfer via Garbled
Interactive Circuits.” In: Advances in Cryptology – EURO-
CRYPT 2018, Part II. Ed. by Jesper Buus Nielsen and Vincent
Rijmen. Vol. 10821. Lecture Notes in Computer Science. Tel
Aviv, Israel: Springer, Heidelberg, Germany, Apr. 2018, pp. 500–
532. doi: 10.1007/978-3-319-78375-8_17 (cit. on pp. 3, 41).

[BL18b] Sebastian Berndt and Maciej Liskiewicz. “On the Gold Stan-
dard for Security of Universal Steganography.” In: Advances
in Cryptology – EUROCRYPT 2018, Part I. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10820. Lecture Notes in Com-
puter Science. Tel Aviv, Israel: Springer, Heidelberg, Germany,
Apr. 2018, pp. 29–60. doi: 10.1007/978-3-319-78381-9_2
(cit. on p. 231).

[Bit17] Nir Bitansky. “Verifiable Random Functions from Non-inter-
active Witness-Indistinguishable Proofs.” In: TCC 2017: 15th
Theory of Cryptography Conference, Part II. Ed. by Yael Kalai

https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-662-49896-5_28
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78381-9_2

bibliography 251

and Leonid Reyzin. Vol. 10678. Lecture Notes in Computer
Science. Baltimore, MD, USA: Springer, Heidelberg, Germany,
Nov. 2017, pp. 567–594. doi: 10.1007/978-3-319-70503-3_19
(cit. on pp. 3, 41).

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Gold-
wasser, Huijia Lin, Aviad Rubinstein, and Eran Tromer. “The
Hunting of the SNARK.” In: Journal of Cryptology 30.4 (Oct.
2017), pp. 989–1066. doi: 10.1007/s00145-016-9241-9 (cit. on
p. 32).

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer
Paneth. “On Virtual Grey Box Obfuscation for General Cir-
cuits.” In: Advances in Cryptology – CRYPTO 2014, Part II. Ed. by
Juan A. Garay and Rosario Gennaro. Vol. 8617. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2014, pp. 108–125. doi: 10.1007/978-
3-662-44381-1_7 (cit. on p. 41).

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. “On
the Existence of Extractable One-Way Functions.” In: SIAM J.
Comput. 45.5 (2016), pp. 1910–1952. doi: 10.1137/140975048.
url: https://doi.org/10.1137/140975048 (cit. on pp. 10,
31–33, 88, 89, 94, 109, 152, 153, 158, 200, 201, 211).

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sid-
harth Telang. “Succinct Randomized Encodings and their
Applications.” In: 47th Annual ACM Symposium on Theory of
Computing. Ed. by Rocco A. Servedio and Ronitt Rubinfeld.
Portland, OR, USA: ACM Press, June 2015, pp. 439–448. doi:
10.1145/2746539.2746574 (cit. on pp. 3, 80).

[BP13] Nir Bitansky and Omer Paneth. “On the impossibility of ap-
proximate obfuscation and applications to resettable cryptogra-
phy.” In: 45th Annual ACM Symposium on Theory of Computing.
Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum.
Palo Alto, CA, USA: ACM Press, June 2013, pp. 241–250. doi:
10.1145/2488608.2488639 (cit. on p. 41).

[BP15a] Nir Bitansky and Omer Paneth. “ZAPs and Non-Interactive
Witness Indistinguishability from Indistinguishability Obfus-
cation.” In: TCC 2015: 12th Theory of Cryptography Conference,
Part II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen.
Vol. 9015. Lecture Notes in Computer Science. Warsaw, Poland:
Springer, Heidelberg, Germany, Mar. 2015, pp. 401–427. doi:
10.1007/978-3-662-46497-7_16 (cit. on pp. 3, 36, 61, 95).

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. “On the Cryp-
tographic Hardness of Finding a Nash Equilibrium.” In: 56th
Annual Symposium on Foundations of Computer Science. Ed. by
Venkatesan Guruswami. Berkeley, CA, USA: IEEE Computer
Society Press, Oct. 2015, pp. 1480–1498. doi: 10.1109/FOCS.
2015.94 (cit. on p. 3).

https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1137/140975048
https://doi.org/10.1137/140975048
https://doi.org/10.1145/2746539.2746574
https://doi.org/10.1145/2488608.2488639
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1109/FOCS.2015.94

252 bibliography

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. “Perfect Struc-
ture on the Edge of Chaos - Trapdoor Permutations from
Indistinguishability Obfuscation.” In: TCC 2016-A: 13th Theory
of Cryptography Conference, Part I. Ed. by Eyal Kushilevitz and
Tal Malkin. Vol. 9562. Lecture Notes in Computer Science. Tel
Aviv, Israel: Springer, Heidelberg, Germany, Jan. 2016, pp. 474–
502. doi: 10.1007/978-3-662-49096-9_20 (cit. on p. 3).

[BV15] Nir Bitansky and Vinod Vaikuntanathan. “Indistinguishability
Obfuscation from Functional Encryption.” In: 56th Annual Sym-
posium on Foundations of Computer Science. Ed. by Venkatesan
Guruswami. Berkeley, CA, USA: IEEE Computer Society Press,
Oct. 2015, pp. 171–190. doi: 10.1109/FOCS.2015.20 (cit. on
p. 41).

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. “En-
cryption-Scheme Security in the Presence of Key-Dependent
Messages.” In: SAC 2002: 9th Annual International Workshop
on Selected Areas in Cryptography. Ed. by Kaisa Nyberg and
Howard M. Heys. Vol. 2595. Lecture Notes in Computer Sci-
ence. St. John’s, Newfoundland, Canada: Springer, Heidelberg,
Germany, Aug. 2003, pp. 62–75. doi: 10.1007/3-540-36492-
7_6 (cit. on p. 45).

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard
J. Lipton. “Cryptographic Primitives Based on Hard Learning
Problems.” In: Advances in Cryptology – CRYPTO’93. Ed. by
Douglas R. Stinson. Vol. 773. Lecture Notes in Computer Sci-
ence. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 1994, pp. 278–291. doi: 10.1007/3- 540- 48329- 2_24
(cit. on p. 2).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Inter-
active Zero-Knowledge and Its Applications (Extended Ab-
stract).” In: 20th Annual ACM Symposium on Theory of Comput-
ing. Chicago, IL, USA: ACM Press, May 1988, pp. 103–112. doi:
10.1145/62212.62222 (cit. on p. 35).

[BM82] Manuel Blum and Silvio Micali. “How to Generate Crypto-
graphically Strong Sequences of Pseudo Random Bits.” In: 23rd
Annual Symposium on Foundations of Computer Science. Chicago,
Illinois: IEEE Computer Society Press, Nov. 1982, pp. 112–117.
doi: 10.1109/SFCS.1982.72 (cit. on p. 21).

[BB04a] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure
Identity Based Encryption Without Random Oracles.” In: Ad-
vances in Cryptology – EUROCRYPT 2004. Ed. by Christian
Cachin and Jan Camenisch. Vol. 3027. Lecture Notes in Com-
puter Science. Interlaken, Switzerland: Springer, Heidelberg,
Germany, May 2004, pp. 223–238. doi: 10.1007/978-3-540-
24676-3_14 (cit. on p. 43).

[BB04b] Dan Boneh and Xavier Boyen. “Secure Identity Based Encryp-
tion Without Random Oracles.” In: Advances in Cryptology
– CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA:

https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1145/62212.62222
https://doi.org/10.1109/SFCS.1982.72
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14

bibliography 253

Springer, Heidelberg, Germany, Aug. 2004, pp. 443–459. doi:
10.1007/978-3-540-28628-8_27 (cit. on p. 44).

[BF01] Dan Boneh and Matthew K. Franklin. “Identity-Based En-
cryption from the Weil Pairing.” In: Advances in Cryptology –
CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidel-
berg, Germany, Aug. 2001, pp. 213–229. doi: 10.1007/3-540-
44647-8_13 (cit. on p. 8).

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Os-
trovsky. “Circular-Secure Encryption from Decision Diffie-
Hellman.” In: Advances in Cryptology – CRYPTO 2008. Ed. by
David Wagner. Vol. 5157. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2008, pp. 108–125. doi: 10.1007/978-3-540-85174-5_7 (cit. on
p. 45).

[BL96] Dan Boneh and Richard J. Lipton. “Algorithms for Black-Box
Fields and their Application to Cryptography (Extended Ab-
stract).” In: Advances in Cryptology – CRYPTO’96. Ed. by Neal
Koblitz. Vol. 1109. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1996,
pp. 283–297. doi: 10.1007/3-540-68697-5_22 (cit. on p. 87).

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures
from the Weil Pairing.” In: Journal of Cryptology 17.4 (Sept.
2004), pp. 297–319. doi: 10.1007/s00145-004-0314-9 (cit. on
pp. 12, 89).

[BV98] Dan Boneh and Ramarathnam Venkatesan. “Breaking RSA
May Not Be Equivalent to Factoring.” In: Advances in Cryptol-
ogy – EUROCRYPT’98. Ed. by Kaisa Nyberg. Vol. 1403. Lecture
Notes in Computer Science. Espoo, Finland: Springer, Heidel-
berg, Germany, May 1998, pp. 59–71. doi: 10.1007/BFb0054117
(cit. on p. 87).

[BW13] Dan Boneh and Brent Waters. “Constrained Pseudorandom
Functions and Their Applications.” In: Advances in Cryptology –
ASIACRYPT 2013, Part II. Ed. by Kazue Sako and Palash Sarkar.
Vol. 8270. Lecture Notes in Computer Science. Bengalore, India:
Springer, Heidelberg, Germany, Dec. 2013, pp. 280–300. doi:
10.1007/978-3-642-42045-0_15 (cit. on pp. 23, 24).

[BZ14] Dan Boneh and Mark Zhandry. “Multiparty Key Exchange,
Efficient Traitor Tracing, and More from Indistinguishability
Obfuscation.” In: Advances in Cryptology – CRYPTO 2014, Part I.
Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2014, pp. 480–499. doi: 10.1007/
978-3-662-44371-2_27 (cit. on p. 3).

[BMN01] Colin Boyd, Paul Montague, and Khanh Quoc Nguyen. “El-
liptic Curve Based Password Authenticated Key Exchange
Protocols.” In: ACISP 01: 6th Australasian Conference on Informa-
tion Security and Privacy. Ed. by Vijay Varadharajan and Yi Mu.
Vol. 2119. Lecture Notes in Computer Science. Sydney, NSW,

https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-44371-2_27

254 bibliography

Australia: Springer, Heidelberg, Germany, July 2001, pp. 487–
501. doi: 10.1007/3-540-47719-5_38 (cit. on pp. 13, 150).

[Boy08] Xavier Boyen. “The Uber-Assumption Family.” In: Pairing-
Based Cryptography - Pairing 2008, Second International Confer-
ence, Egham, UK, September 1-3, 2008. Proceedings. 2008, pp. 39–
56. doi: 10.1007/978-3-540-85538-5_3. url: https://doi.
org/10.1007/978-3-540-85538-5_3 (cit. on p. 92).

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. “On Extractabil-
ity Obfuscation.” In: TCC 2014: 11th Theory of Cryptography
Conference. Ed. by Yehuda Lindell. Vol. 8349. Lecture Notes in
Computer Science. San Diego, CA, USA: Springer, Heidelberg,
Germany, Feb. 2014, pp. 52–73. doi: 10.1007/978- 3- 642-
54242-8_3 (cit. on pp. 27, 41).

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, Peter Rindal, and Peter Scholl. “Efficient Two-Round OT
Extension and Silent Non-Interactive Secure Computation.”
In: ACM CCS 2019: 26th Conference on Computer and Communi-
cations Security. Ed. by Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz. ACM Press, Nov. 2019,
pp. 291–308. doi: 10.1145/3319535.3354255 (cit. on p. 3).

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. “Efficient Pseudorandom Correlation
Generators: Silent OT Extension and More.” In: Advances
in Cryptology – CRYPTO 2019, Part III. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Vol. 11694. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2019, pp. 489–518. doi: 10.1007/978-
3-030-26954-8_16 (cit. on p. 3).

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Group-Based Se-
cure Computation: Optimizing Rounds, Communication, and
Computation.” In: Advances in Cryptology – EUROCRYPT 2017,
Part II. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10211. Lecture Notes in Computer Science. Paris, France:
Springer, Heidelberg, Germany, Apr. 2017, pp. 163–193. doi:
10.1007/978-3-319-56614-6_6 (cit. on p. 3).

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. “Functional
Signatures and Pseudorandom Functions.” In: PKC 2014: 17th
International Conference on Theory and Practice of Public Key Cryp-
tography. Ed. by Hugo Krawczyk. Vol. 8383. Lecture Notes in
Computer Science. Buenos Aires, Argentina: Springer, Heidel-
berg, Germany, Mar. 2014, pp. 501–519. doi: 10.1007/978-3-
642-54631-0_29 (cit. on pp. 23, 24).

[BP15b] Elette Boyle and Rafael Pass. “Limits of Extractability Assump-
tions with Distributional Auxiliary Input.” In: Advances in
Cryptology – ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9453. Lecture Notes in Computer Sci-
ence. Auckland, New Zealand: Springer, Heidelberg, Germany,
Nov. 2015, pp. 236–261. doi: 10.1007/978-3-662-48800-3_10
(cit. on p. 27).

https://doi.org/10.1007/3-540-47719-5_38
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-48800-3_10

bibliography 255

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio
Malavolta. “Candidate iO from Homomorphic Encryption
Schemes.” In: Advances in Cryptology – EUROCRYPT 2020,
Part I. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12105. Lec-
ture Notes in Computer Science. Zagreb, Croatia: Springer, Hei-
delberg, Germany, May 2020, pp. 79–109. doi: 10.1007/978-3-
030-45721-1_4 (cit. on pp. 2, 5, 41, 158).

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio
Malavolta. Factoring and Pairings are not Necessary for iO:
Circular-Secure LWE Suffices. Cryptology ePrint Archive, Re-
port 2020/1024. https://eprint.iacr.org/2020/1024. 2020

(cit. on pp. 2, 5, 41).

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomor-
phic Encryption from Ring-LWE and Security for Key Depen-
dent Messages.” In: Advances in Cryptology – CRYPTO 2011. Ed.
by Phillip Rogaway. Vol. 6841. Lecture Notes in Computer Sci-
ence. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2011, pp. 505–524. doi: 10.1007/978-3-642-22792-9_29
(cit. on p. 34).

[BV14a] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully
Homomorphic Encryption from (Standard) LWE.” In: SIAM
J. Comput. 43.2 (2014), pp. 831–871. doi: 10.1137/120868669.
url: https://doi.org/10.1137/120868669 (cit. on p. 34).

[BV14b] Zvika Brakerski and Vinod Vaikuntanathan. “Lattice-based
FHE as secure as PKE.” In: ITCS 2014: 5th Conference on In-
novations in Theoretical Computer Science. Ed. by Moni Naor.
Princeton, NJ, USA: Association for Computing Machinery,
Jan. 2014, pp. 1–12. doi: 10.1145/2554797.2554799 (cit. on
p. 34).

[Can97] Ran Canetti. “Towards Realizing Random Oracles: Hash Func-
tions That Hide All Partial Information.” In: Advances in Cryp-
tology – CRYPTO’97. Ed. by Burton S. Kaliski Jr. Vol. 1294.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 1997, pp. 455–469. doi:
10.1007/BFb0052255 (cit. on p. 41).

[Can00] Ran Canetti. “Security and Composition of Multiparty Cryp-
tographic Protocols.” In: Journal of Cryptology 13.1 (Jan. 2000),
pp. 143–202. doi: 10.1007/s001459910006 (cit. on pp. 221, 222,
226).

[Can01] Ran Canetti. “Universally Composable Security: A New
Paradigm for Cryptographic Protocols.” In: 42nd Annual Sym-
posium on Foundations of Computer Science. Las Vegas, NV, USA:
IEEE Computer Society Press, Oct. 2001, pp. 136–145. doi:
10.1109/SFCS.2001.959888 (cit. on p. 223).

[CC17] Ran Canetti and Yilei Chen. “Constraint-Hiding Constrained
PRFs for NC1 from LWE.” In: Advances in Cryptology – EURO-
CRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and Jesper
Buus Nielsen. Vol. 10210. Lecture Notes in Computer Sci-
ence. Paris, France: Springer, Heidelberg, Germany, Apr. 2017,

https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://eprint.iacr.org/2020/1024
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/s001459910006
https://doi.org/10.1109/SFCS.2001.959888

256 bibliography

pp. 446–476. doi: 10.1007/978-3-319-56620-7_16 (cit. on
p. 3).

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi,
Guy N. Rothblum, Ron D. Rothblum, and Daniel Wichs. “Fiat-
Shamir: from practice to theory.” In: 51st Annual ACM Sympo-
sium on Theory of Computing. Ed. by Moses Charikar and Edith
Cohen. Phoenix, AZ, USA: ACM Press, June 2019, pp. 1082–
1090. doi: 10.1145/3313276.3316380 (cit. on p. 3).

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Roth-
blum. “Fiat-Shamir and Correlation Intractability from Strong
KDM-Secure Encryption.” In: Advances in Cryptology – EURO-
CRYPT 2018, Part I. Ed. by Jesper Buus Nielsen and Vincent
Rijmen. Vol. 10820. Lecture Notes in Computer Science. Tel
Aviv, Israel: Springer, Heidelberg, Germany, Apr. 2018, pp. 91–
122. doi: 10.1007/978-3-319-78381-9_4 (cit. on pp. 3, 41).

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. “Extractable Per-
fectly One-Way Functions.” In: ICALP 2008: 35th International
Colloquium on Automata, Languages and Programming, Part II.
Ed. by Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Mag-
nús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz.
Vol. 5126. Lecture Notes in Computer Science. Reykjavik, Ice-
land: Springer, Heidelberg, Germany, July 2008, pp. 449–460.
doi: 10.1007/978-3-540-70583-3_37 (cit. on p. 31).

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. “Towards a Theory of
Extractable Functions.” In: TCC 2009: 6th Theory of Cryptography
Conference. Ed. by Omer Reingold. Vol. 5444. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, Mar. 2009,
pp. 595–613. doi: 10.1007/978-3-642-00457-5_35 (cit. on
pp. 31, 32).

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal-
fish. “Universally Composable Security with Global Setup.”
In: TCC 2007: 4th Theory of Cryptography Conference. Ed. by
Salil P. Vadhan. Vol. 4392. Lecture Notes in Computer Science.
Amsterdam, The Netherlands: Springer, Heidelberg, Germany,
Feb. 2007, pp. 61–85. doi: 10.1007/978-3-540-70936-7_4
(cit. on p. 223).

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky.
“Deniable Encryption.” In: Advances in Cryptology – CRYPTO’97.
Ed. by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Com-
puter Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 1997, pp. 90–104. doi: 10.1007/BFb0052229
(cit. on pp. 155, 233).

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor.
“Adaptively Secure Multi-Party Computation.” In: 28th Annual
ACM Symposium on Theory of Computing. Philadephia, PA, USA:
ACM Press, May 1996, pp. 639–648. doi: 10.1145/237814.
238015 (cit. on pp. 16, 17, 151, 154, 155, 159, 237).

https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-540-70583-3_37
https://doi.org/10.1007/978-3-642-00457-5_35
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015

bibliography 257

[CL18] Ran Canetti and Amit Lichtenberg. “Certifying Trapdoor Per-
mutations, Revisited.” In: TCC 2018: 16th Theory of Cryptogra-
phy Conference, Part I. Ed. by Amos Beimel and Stefan Dziem-
bowski. Vol. 11239. Lecture Notes in Computer Science. Panaji,
India: Springer, Heidelberg, Germany, Nov. 2018, pp. 476–506.
doi: 10.1007/978-3-030-03807-6_18 (cit. on p. 3).

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikun-
tanathan. “Obfuscation of Probabilistic Circuits and Appli-
cations.” In: TCC 2015: 12th Theory of Cryptography Confer-
ence, Part II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen.
Vol. 9015. Lecture Notes in Computer Science. Warsaw, Poland:
Springer, Heidelberg, Germany, Mar. 2015, pp. 468–497. doi:
10.1007/978-3-662-46497-7_19 (cit. on pp. iii, 3, 5, 8, 27–30,
34, 41–46, 56, 60, 67, 68, 73, 74, 80, 81, 89, 97, 99–105, 107).

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
“Universally composable two-party and multi-party secure
computation.” In: 34th Annual ACM Symposium on Theory of
Computing. Montréal, Québec, Canada: ACM Press, May 2002,
pp. 494–503. doi: 10.1145/509907.509980 (cit. on pp. 16, 154,
222, 237).

[CPR17] Ran Canetti, Oxana Poburinnaya, and Mariana Raykova.
“Optimal-Rate Non-Committing Encryption.” In: Advances in
Cryptology – ASIACRYPT 2017, Part III. Ed. by Tsuyoshi Takagi
and Thomas Peyrin. Vol. 10626. Lecture Notes in Computer
Science. Hong Kong, China: Springer, Heidelberg, Germany,
Dec. 2017, pp. 212–241. doi: 10.1007/978-3-319-70700-6_8
(cit. on pp. 150, 161, 171).

[CPV17] Ran Canetti, Oxana Poburinnaya, and Muthuramakrishnan
Venkitasubramaniam. “Better Two-Round Adaptive Multi-
party Computation.” In: PKC 2017: 20th International Conference
on Theory and Practice of Public Key Cryptography, Part II. Ed. by
Serge Fehr. Vol. 10175. Lecture Notes in Computer Science.
Amsterdam, The Netherlands: Springer, Heidelberg, Germany,
Mar. 2017, pp. 396–427. doi: 10.1007/978-3-662-54388-7_14
(cit. on pp. 16, 150, 161, 171).

[CRRV17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and
Vinod Vaikuntanathan. “Chosen-Ciphertext Secure Fully Ho-
momorphic Encryption.” In: PKC 2017: 20th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II.
Ed. by Serge Fehr. Vol. 10175. Lecture Notes in Computer
Science. Amsterdam, The Netherlands: Springer, Heidelberg,
Germany, Mar. 2017, pp. 213–240. doi: 10.1007/978-3-662-
54388-7_8 (cit. on pp. 46, 245).

[Cha69] Gregory J. Chaitin. “On the Simplicity and Speed of Programs
for Computing Infinite Sets of Natural Numbers.” In: J. ACM
16.3 (1969), pp. 407–422. doi: 10.1145/321526.321530. url:
https://doi.org/10.1145/321526.321530 (cit. on pp. 13,
147).

https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-319-70700-6_8
https://doi.org/10.1007/978-3-662-54388-7_14
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1145/321526.321530
https://doi.org/10.1145/321526.321530

258 bibliography

[CGOS07] Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit
Sahai. “Covert Multi-Party Computation.” In: 48th Annual
Symposium on Foundations of Computer Science. Providence, RI,
USA: IEEE Computer Society Press, Oct. 2007, pp. 238–248.
doi: 10.1109/FOCS.2007.21 (cit. on pp. 13, 147, 155, 245).

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and
Sarah Meiklejohn. “Malleable Proof Systems and Applica-
tions.” In: Advances in Cryptology – EUROCRYPT 2012. Ed. by
David Pointcheval and Thomas Johansson. Vol. 7237. Lecture
Notes in Computer Science. Cambridge, UK: Springer, Heidel-
berg, Germany, Apr. 2012, pp. 281–300. doi: 10.1007/978-3-
642-29011-4_18 (cit. on p. 117).

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. “Cryptanalyses of
Candidate Branching Program Obfuscators.” In: Advances in
Cryptology – EUROCRYPT 2017, Part III. Ed. by Jean-Sébastien
Coron and Jesper Buus Nielsen. Vol. 10212. Lecture Notes in
Computer Science. Paris, France: Springer, Heidelberg, Ger-
many, Apr. 2017, pp. 278–307. doi: 10.1007/978-3-319-56617-
7_10 (cit. on p. 2).

[CHVW19] Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck
Wee. “Matrix PRFs: Constructions, Attacks, and Applications
to Obfuscation.” In: TCC 2019: 17th Theory of Cryptography
Conference, Part I. Ed. by Dennis Hofheinz and Alon Rosen.
Vol. 11891. Lecture Notes in Computer Science. Nuremberg,
Germany: Springer, Heidelberg, Germany, Dec. 2019, pp. 55–
80. doi: 10.1007/978-3-030-36030-6_3 (cit. on pp. 2, 5, 41).

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. “GGH15

Beyond Permutation Branching Programs: Proofs, Attacks, and
Candidates.” In: Advances in Cryptology – CRYPTO 2018, Part II.
Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10992.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2018, pp. 577–607. doi:
10.1007/978-3-319-96881-0_20 (cit. on pp. 2, 5, 41).

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu,
and Damien Stehlé. “Cryptanalysis of the Multilinear Map over
the Integers.” In: Advances in Cryptology – EUROCRYPT 2015,
Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
Lecture Notes in Computer Science. Sofia, Bulgaria: Springer,
Heidelberg, Germany, Apr. 2015, pp. 3–12. doi: 10.1007/978-
3-662-46800-5_1 (cit. on p. 2).

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta,
Peihan Miao, and Antigoni Polychroniadou. “Laconic Obliv-
ious Transfer and Its Applications.” In: Advances in Cryptol-
ogy – CRYPTO 2017, Part II. Ed. by Jonathan Katz and Hovav
Shacham. Vol. 10402. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2017,
pp. 33–65. doi: 10.1007/978-3-319-63715-0_2 (cit. on p. 3).

https://doi.org/10.1109/FOCS.2007.21
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-030-36030-6_3
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-319-63715-0_2

bibliography 259

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and
Hoeteck Wee. “Improved Non-committing Encryption with
Applications to Adaptively Secure Protocols.” In: Advances
in Cryptology – ASIACRYPT 2009. Ed. by Mitsuru Matsui.
Vol. 5912. Lecture Notes in Computer Science. Tokyo, Japan:
Springer, Heidelberg, Germany, Dec. 2009, pp. 287–302. doi:
10.1007/978-3-642-10366-7_17 (cit. on pp. 153, 237–239).

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. “Constant-Round
Concurrent Zero-Knowledge from Indistinguishability Obfus-
cation.” In: Advances in Cryptology – CRYPTO 2015, Part I. Ed.
by Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9215.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2015, pp. 287–307. doi:
10.1007/978-3-662-47989-6_14 (cit. on p. 3).

[CsW19] Ran Cohen, abhi shelat, and Daniel Wichs. “Adaptively Se-
cure MPC with Sublinear Communication Complexity.” In:
Advances in Cryptology – CRYPTO 2019, Part II. Ed. by Alexan-
dra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2019, pp. 30–60. doi: 10.1007/978-
3-030-26951-7_2 (cit. on pp. 4, 149, 153, 154, 187).

[CTL98a] Christian S. Collberg, Clark D. Thomborson, and Douglas Low.
“Breaking Abstractions and Unstructuring Data Structures.”
In: Proceedings of the 1998 International Conference on Computer
Languages, ICCL 1998, Chicago, IL, USA, May 14-16, 1998. IEEE
Computer Society, 1998, pp. 28–38. doi: 10.1109/ICCL.1998.
674154. url: https://doi.org/10.1109/ICCL.1998.674154
(cit. on p. 2).

[CTL98b] Christian S. Collberg, Clark D. Thomborson, and Douglas Low.
“Manufacturing Cheap, Resilient, and Stealthy Opaque Con-
structs.” In: POPL ’98, Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
San Diego, CA, USA, January 19-21, 1998. Ed. by David B.
MacQueen and Luca Cardelli. ACM, 1998, pp. 184–196. doi:
10.1145/268946.268962. url: https://doi.org/10.1145/
268946.268962 (cit. on p. 2).

[Cor00] Jean-Sébastien Coron. “On the Exact Security of Full Domain
Hash.” In: Advances in Cryptology – CRYPTO 2000. Ed. by Mihir
Bellare. Vol. 1880. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2000,
pp. 229–235. doi: 10.1007/3-540-44598-6_14 (cit. on p. 89).

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and
Mehdi Tibouchi. “Cryptanalysis of GGH15 Multilinear Maps.”
In: Advances in Cryptology – CRYPTO 2016, Part II. Ed. by
Matthew Robshaw and Jonathan Katz. Vol. 9815. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2016, pp. 607–628. doi: 10.1007/978-
3-662-53008-5_21 (cit. on p. 2).

https://doi.org/10.1007/978-3-642-10366-7_17
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1109/ICCL.1998.674154
https://doi.org/10.1109/ICCL.1998.674154
https://doi.org/10.1109/ICCL.1998.674154
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/268946.268962
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21

260 bibliography

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and
Mehdi Tibouchi. “Zeroizing Attacks on Indistinguishability
Obfuscation over CLT13.” In: PKC 2017: 20th International Con-
ference on Theory and Practice of Public Key Cryptography, Part I.
Ed. by Serge Fehr. Vol. 10174. Lecture Notes in Computer
Science. Amsterdam, The Netherlands: Springer, Heidelberg,
Germany, Mar. 2017, pp. 41–58. doi: 10.1007/978-3-662-
54365-8_3 (cit. on p. 2).

[CH19] Geoffroy Couteau and Dennis Hofheinz. “Designated-Verifier
Pseudorandom Generators, and Their Applications.” In: Ad-
vances in Cryptology – EUROCRYPT 2019, Part II. Ed. by Yuval
Ishai and Vincent Rijmen. Vol. 11477. Lecture Notes in Com-
puter Science. Darmstadt, Germany: Springer, Heidelberg, Ger-
many, May 2019, pp. 562–592. doi: 10.1007/978-3-030-17656-
3_20 (cit. on p. 36).

[CS02] Ronald Cramer and Victor Shoup. “Universal Hash Proofs and
a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption.” In: Advances in Cryptology – EUROCRYPT 2002.
Ed. by Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer
Science. Amsterdam, The Netherlands: Springer, Heidelberg,
Germany, Apr. 2002, pp. 45–64. doi: 10.1007/3-540-46035-
7_4 (cit. on p. 94).

[CS03] Ronald Cramer and Victor Shoup. “Design and Analysis of
Practical Public-Key Encryption Schemes Secure against Adap-
tive Chosen Ciphertext Attack.” In: SIAM J. Comput. 33.1 (2003),
pp. 167–226. doi: 10.1137/S0097539702403773. url: https:
//doi.org/10.1137/S0097539702403773 (cit. on p. 129).

[Dac16] Dana Dachman-Soled. “Towards Non-Black-Box Separations of
Public Key Encryption and One Way Function.” In: TCC 2016-
B: 14th Theory of Cryptography Conference, Part II. Ed. by Martin
Hirt and Adam D. Smith. Vol. 9986. Lecture Notes in Computer
Science. Beijing, China: Springer, Heidelberg, Germany, Oct.
2016, pp. 169–191. doi: 10.1007/978-3-662-53644-5_7 (cit. on
p. 33).

[DKR15] Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao.
“Adaptively Secure, Universally Composable, Multiparty Com-
putation in Constant Rounds.” In: TCC 2015: 12th Theory of
Cryptography Conference, Part II. Ed. by Yevgeniy Dodis and
Jesper Buus Nielsen. Vol. 9015. Lecture Notes in Computer
Science. Warsaw, Poland: Springer, Heidelberg, Germany, Mar.
2015, pp. 586–613. doi: 10.1007/978- 3- 662- 46497- 7_23
(cit. on pp. 16, 152–154, 187, 189, 200, 211–215, 221, 226, 233).

[Dam92] Ivan Damgård. “Towards Practical Public Key Systems Secure
Against Chosen Ciphertext Attacks.” In: Advances in Cryptol-
ogy – CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1992, pp. 445–456. doi: 10.1007/3-
540-46766-1_36 (cit. on pp. 9, 30, 87, 88, 92).

https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1007/978-3-662-53644-5_7
https://doi.org/10.1007/978-3-662-46497-7_23
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36

bibliography 261

[DJ01] Ivan Damgård and Mats Jurik. “A Generalisation, a Simplifica-
tion and Some Applications of Paillier’s Probabilistic Public-
Key System.” In: PKC 2001: 4th International Workshop on The-
ory and Practice in Public Key Cryptography. Ed. by Kwangjo
Kim. Vol. 1992. Lecture Notes in Computer Science. Cheju
Island, South Korea: Springer, Heidelberg, Germany, Feb. 2001,
pp. 119–136. doi: 10.1007/3-540-44586-2_9 (cit. on p. 97).

[DN00] Ivan Damgård and Jesper Buus Nielsen. “Improved Non-
committing Encryption Schemes Based on a General Complex-
ity Assumption.” In: Advances in Cryptology – CRYPTO 2000.
Ed. by Mihir Bellare. Vol. 1880. Lecture Notes in Computer Sci-
ence. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2000, pp. 432–450. doi: 10.1007/3- 540- 44598- 6_27
(cit. on pp. 17, 151, 159, 177, 237, 238).

[DPR16] Ivan Damgård, Antigoni Polychroniadou, and Vanishree Rao.
“Adaptively Secure Multi-Party Computation from LWE (via
Equivocal FHE).” In: PKC 2016: 19th International Conference on
Theory and Practice of Public Key Cryptography, Part II. Ed. by
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang. Vol. 9615. Lecture Notes in Computer Science.
Taipei, Taiwan: Springer, Heidelberg, Germany, Mar. 2016,
pp. 208–233. doi: 10.1007/978-3-662-49387-8_9 (cit. on
p. 16).

[Den02] Alexander W. Dent. “Adapting the Weaknesses of the Random
Oracle Model to the Generic Group Model.” In: Advances
in Cryptology – ASIACRYPT 2002. Ed. by Yuliang Zheng.
Vol. 2501. Lecture Notes in Computer Science. Queenstown,
New Zealand: Springer, Heidelberg, Germany, Dec. 2002,
pp. 100–109. doi: 10.1007/3-540-36178-2_6 (cit. on pp. 9, 87).

[Den06] Alexander W. Dent. “The Cramer-Shoup Encryption Scheme Is
Plaintext Aware in the Standard Model.” In: Advances in Cryp-
tology – EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004.
Lecture Notes in Computer Science. St. Petersburg, Russia:
Springer, Heidelberg, Germany, May 2006, pp. 289–307. doi:
10.1007/11761679_18 (cit. on p. 87).

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in
cryptography.” In: IEEE Trans. Inf. Theory 22.6 (1976), pp. 644–
654. doi: 10.1109/TIT.1976.1055638. url: https://doi.org/
10.1109/TIT.1976.1055638 (cit. on pp. 2, 8, 23).

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel
Wichs. “Spooky Encryption and Its Applications.” In: Advances
in Cryptology – CRYPTO 2016, Part III. Ed. by Matthew Rob-
shaw and Jonathan Katz. Vol. 9816. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, Aug. 2016, pp. 93–122. doi: 10.1007/978-3-662-53015-
3_4 (cit. on pp. 30, 41, 42, 46, 47).

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam
D. Smith. “Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data.” In: SIAM J. Comput.

https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-662-49387-8_9
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/11761679_18
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4

262 bibliography

38.1 (2008), pp. 97–139. doi: 10.1137/060651380. url: https:
//doi.org/10.1137/060651380 (cit. on pp. 20, 189).

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan.
“Randomness Condensers for Efficiently Samplable, Seed-
Dependent Sources.” In: TCC 2012: 9th Theory of Cryptography
Conference. Ed. by Ronald Cramer. Vol. 7194. Lecture Notes
in Computer Science. Taormina, Sicily, Italy: Springer, Heidel-
berg, Germany, Mar. 2012, pp. 618–635. doi: 10.1007/978-3-
642-28914-9_35 (cit. on pp. 13, 147).

[DG17] Nico Döttling and Sanjam Garg. “Identity-Based Encryption
from the Diffie-Hellman Assumption.” In: Advances in Cryptol-
ogy – CRYPTO 2017, Part I. Ed. by Jonathan Katz and Hovav
Shacham. Vol. 10401. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2017,
pp. 537–569. doi: 10.1007/978-3-319-63688-7_18 (cit. on
p. 3).

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta,
Tamer Mour, and Rafail Ostrovsky. “Trapdoor Hash Func-
tions and Their Applications.” In: Advances in Cryptology
– CRYPTO 2019, Part III. Ed. by Alexandra Boldyreva and
Daniele Micciancio. Vol. 11694. Lecture Notes in Computer Sci-
ence. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 2019, pp. 3–32. doi: 10.1007/978-3-030-26954-8_1
(cit. on p. 3).

[DN18] Nico Döttling and Ryo Nishimaki. Universal Proxy Re-Encryp-
tion. Cryptology ePrint Archive, Report 2018/840. https://
eprint.iacr.org/2018/840. 2018 (cit. on pp. 8, 46, 245).

[ElG85] Taher ElGamal. “A public key cryptosystem and a signature
scheme based on discrete logarithms.” In: IEEE Trans. Informa-
tion Theory 31.4 (1985), pp. 469–472. doi: 10.1109/TIT.1985.
1057074. url: https://doi.org/10.1109/TIT.1985.1057074
(cit. on pp. 8, 33, 97, 129).

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. “A
Randomized Protocol for Signing Contracts.” In: Commun.
ACM 28.6 (1985), pp. 637–647. doi: 10.1145/3812.3818. url:
http://doi.acm.org/10.1145/3812.3818 (cit. on p. 159).

[FHHL18] Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique
Larraia. “Graded Encoding Schemes from Obfuscation.” In:
PKC 2018: 21st International Conference on Theory and Practice
of Public Key Cryptography, Part II. Ed. by Michel Abdalla and
Ricardo Dahab. Vol. 10770. Lecture Notes in Computer Science.
Rio de Janeiro, Brazil: Springer, Heidelberg, Germany, Mar.
2018, pp. 371–400. doi: 10.1007/978- 3- 319- 76581- 5_13
(cit. on pp. 41, 91, 92, 110, 111, 115, 116).

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. “Multiple Non-
Interactive Zero Knowledge Proofs Based on a Single Random
String (Extended Abstract).” In: 31st Annual Symposium on
Foundations of Computer Science. St. Louis, MO, USA: IEEE

https://doi.org/10.1137/060651380
https://doi.org/10.1137/060651380
https://doi.org/10.1137/060651380
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-26954-8_1
https://eprint.iacr.org/2018/840
https://eprint.iacr.org/2018/840
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1145/3812.3818
http://doi.acm.org/10.1145/3812.3818
https://doi.org/10.1007/978-3-319-76581-5_13

bibliography 263

Computer Society Press, Oct. 1990, pp. 308–317. doi: 10.1109/
FSCS.1990.89549 (cit. on p. 36).

[FS90] Uriel Feige and Adi Shamir. “Witness Indistinguishable and
Witness Hiding Protocols.” In: 22nd Annual ACM Symposium
on Theory of Computing. Baltimore, MD, USA: ACM Press, May
1990, pp. 416–426. doi: 10.1145/100216.100272 (cit. on p. 95).

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical
Solutions to Identification and Signature Problems.” In: Ad-
vances in Cryptology – CRYPTO’86. Ed. by Andrew M. Odlyzko.
Vol. 263. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 1987, pp. 186–
194. doi: 10.1007/3-540-47721-7_12 (cit. on p. 10).

[FGJ18] Nils Fleischhacker, Vipul Goyal, and Abhishek Jain. “On the Ex-
istence of Three Round Zero-Knowledge Proofs.” In: Advances
in Cryptology – EUROCRYPT 2018, Part III. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10822. Lecture Notes in Com-
puter Science. Tel Aviv, Israel: Springer, Heidelberg, Germany,
Apr. 2018, pp. 3–33. doi: 10.1007/978-3-319-78372-7_1
(cit. on p. 32).

[FJS19] Nils Fleischhacker, Tibor Jager, and Dominique Schröder. “On
Tight Security Proofs for Schnorr Signatures.” In: Journal of
Cryptology 32.2 (Apr. 2019), pp. 566–599. doi: 10.1007/s00145-
019-09311-5 (cit. on p. 89).

[Flo64] William B. Floyd. “Review of ’Information Theory and Coding’
(Abramson, N.; 1963).” In: IEEE Trans. Inf. Theory 10.4 (1964),
p. 392. doi: 10.1109/TIT.1964.1053709. url: https://doi.
org/10.1109/TIT.1964.1053709 (cit. on p. 12).

[FJNT15] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus
Nielsen, and Roberto Trifiletti. TinyLEGO: An Interactive Gar-
bling Scheme for Maliciously Secure Two-Party Computation. Cryp-
tology ePrint Archive, Report 2015/309. http://eprint.iacr.
org/2015/309. 2015 (cit. on p. 3).

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson,
and Christoph Striecks. “Programmable Hash Functions in the
Multilinear Setting.” In: Advances in Cryptology – CRYPTO 2013,
Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2013, pp. 513–530. doi: 10.1007/
978-3-642-40041-4_28 (cit. on pp. 10, 90).

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “The Algebraic
Group Model and its Applications.” In: Advances in Cryptology
– CRYPTO 2018, Part II. Ed. by Hovav Shacham and Alexandra
Boldyreva. Vol. 10992. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2018, pp. 33–62. doi: 10.1007/978-3-319-96881-0_2 (cit. on
pp. iii, 9, 10, 12, 87–89, 91, 93, 94, 111, 245).

https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1145/100216.100272
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1109/TIT.1964.1053709
https://doi.org/10.1109/TIT.1964.1053709
https://doi.org/10.1109/TIT.1964.1053709
http://eprint.iacr.org/2015/309
http://eprint.iacr.org/2015/309
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-319-96881-0_2

264 bibliography

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin.
“Blind Schnorr Signatures and Signed ElGamal Encryption
in the Algebraic Group Model.” In: Advances in Cryptology –
EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and Yuval
Ishai. Vol. 12106. Lecture Notes in Computer Science. Zagreb,
Croatia: Springer, Heidelberg, Germany, May 2020, pp. 63–95.
doi: 10.1007/978-3-030-45724-2_3 (cit. on pp. 12, 88, 89, 91,
92, 129–133, 139–141, 245).

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. “Candidate Mul-
tilinear Maps from Ideal Lattices.” In: Advances in Cryptology –
EUROCRYPT 2013. Ed. by Thomas Johansson and Phong Q.
Nguyen. Vol. 7881. Lecture Notes in Computer Science. Athens,
Greece: Springer, Heidelberg, Germany, May 2013, pp. 1–17.
doi: 10.1007/978-3-642-38348-9_1 (cit. on pp. 90, 109, 110).

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova.
“Two-Round Secure MPC from Indistinguishability Obfusca-
tion.” In: TCC 2014: 11th Theory of Cryptography Conference.
Ed. by Yehuda Lindell. Vol. 8349. Lecture Notes in Computer
Science. San Diego, CA, USA: Springer, Heidelberg, Germany,
Feb. 2014, pp. 74–94. doi: 10.1007/978-3-642-54242-8_4
(cit. on pp. 3, 41).

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova,
Amit Sahai, and Brent Waters. “Candidate Indistinguishabil-
ity Obfuscation and Functional Encryption for all Circuits.”
In: 54th Annual Symposium on Foundations of Computer Science.
Berkeley, CA, USA: IEEE Computer Society Press, Oct. 2013,
pp. 40–49. doi: 10.1109/FOCS.2013.13 (cit. on pp. 2, 3, 25, 26,
41).

[GGHW17] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs.
“On the Implausibility of Differing-Inputs Obfuscation and
Extractable Witness Encryption with Auxiliary Input.” In: Algo-
rithmica 79.4 (2017), pp. 1353–1373. doi: 10.1007/s00453-017-
0276-6. url: https://doi.org/10.1007/s00453-017-0276-6
(cit. on pp. 27, 28, 45, 60).

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Ak-
shayaram Srinivasan, and Mark Zhandry. “Secure Obfuscation
in a Weak Multilinear Map Model.” In: TCC 2016-B: 14th The-
ory of Cryptography Conference, Part II. Ed. by Martin Hirt and
Adam D. Smith. Vol. 9986. Lecture Notes in Computer Sci-
ence. Beijing, China: Springer, Heidelberg, Germany, Oct. 2016,
pp. 241–268. doi: 10.1007/978-3-662-53644-5_10 (cit. on
pp. 2, 5).

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan.
“Revisiting the Cryptographic Hardness of Finding a Nash
Equilibrium.” In: Advances in Cryptology – CRYPTO 2016, Part II.
Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9815. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2016, pp. 579–604. doi:
10.1007/978-3-662-53008-5_20 (cit. on pp. 3, 5, 42).

https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/s00453-017-0276-6
https://doi.org/10.1007/s00453-017-0276-6
https://doi.org/10.1007/s00453-017-0276-6
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53008-5_20

bibliography 265

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and
Mark Zhandry. “Breaking the Sub-Exponential Barrier in Ob-
fustopia.” In: Advances in Cryptology – EUROCRYPT 2017,
Part III. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10212. Lecture Notes in Computer Science. Paris, France:
Springer, Heidelberg, Germany, Apr. 2017, pp. 156–181. doi:
10.1007/978-3-319-56617-7_6 (cit. on pp. 5, 42, 44).

[GS12] Sanjam Garg and Amit Sahai. “Adaptively Secure Multi-Party
Computation with Dishonest Majority.” In: Advances in Cryp-
tology – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran
Canetti. Vol. 7417. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2012,
pp. 105–123. doi: 10.1007/978-3-642-32009-5_8 (cit. on
pp. 16, 154).

[GS16] Sanjam Garg and Akshayaram Srinivasan. “Single-Key to
Multi-Key Functional Encryption with Polynomial Loss.” In:
TCC 2016-B: 14th Theory of Cryptography Conference, Part II. Ed.
by Martin Hirt and Adam D. Smith. Vol. 9986. Lecture Notes
in Computer Science. Beijing, China: Springer, Heidelberg,
Germany, Oct. 2016, pp. 419–442. doi: 10.1007/978-3-662-
53644-5_16 (cit. on p. 42).

[GS18] Sanjam Garg and Akshayaram Srinivasan. “Two-Round Mul-
tiparty Secure Computation from Minimal Assumptions.” In:
Advances in Cryptology – EUROCRYPT 2018, Part II. Ed. by
Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821. Lecture
Notes in Computer Science. Tel Aviv, Israel: Springer, Heidel-
berg, Germany, Apr. 2018, pp. 468–499. doi: 10.1007/978-3-
319-78375-8_16 (cit. on pp. 3, 41).

[GJLS20] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indis-
tinguishability Obfuscation from Simple-to-State Hard Problems:
New Assumptions, New Techniques, and Simplification. Cryptol-
ogy ePrint Archive, Report 2020/764. https://eprint.iacr.
org/2020/764. 2020 (cit. on pp. 2, 5, 41).

[GP20] Romain Gay and Rafael Pass. Indistinguishability Obfuscation
from Circular Security. Cryptology ePrint Archive, Report
2020/1010. https://eprint.iacr.org/2020/1010. 2020 (cit.
on pp. 2, 5, 41).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal
lattices.” In: 41st Annual ACM Symposium on Theory of Comput-
ing. Ed. by Michael Mitzenmacher. Bethesda, MD, USA: ACM
Press, May 2009, pp. 169–178. doi: 10.1145/1536414.1536440
(cit. on pp. 34, 73).

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. “Graph-
Induced Multilinear Maps from Lattices.” In: TCC 2015: 12th
Theory of Cryptography Conference, Part II. Ed. by Yevgeniy Dodis
and Jesper Buus Nielsen. Vol. 9015. Lecture Notes in Computer
Science. Warsaw, Poland: Springer, Heidelberg, Germany, Mar.
2015, pp. 498–527. doi: 10.1007/978- 3- 662- 46497- 7_20
(cit. on pp. 2, 3, 5).

https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-642-32009-5_8
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://eprint.iacr.org/2020/764
https://eprint.iacr.org/2020/764
https://eprint.iacr.org/2020/1010
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-662-46497-7_20

266 bibliography

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfusca-
tion Using Tensor Products. Cryptology ePrint Archive, Report
2018/756. https://eprint.iacr.org/2018/756. 2018 (cit. on
pp. 3, 5, 41).

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold,
and Mahesh Viswanathan. “The Relationship between Public
Key Encryption and Oblivious Transfer.” In: 41st Annual Sym-
posium on Foundations of Computer Science. Redondo Beach, CA,
USA: IEEE Computer Society Press, Nov. 2000, pp. 325–335.
doi: 10.1109/SFCS.2000.892121 (cit. on pp. 17, 151, 159).

[GT20] Ashrujit Ghoshal and Stefano Tessaro. Tight State-Restoration
Soundness in the Algebraic Group Model. Cryptology ePrint
Archive, Report 2020/1351. https://eprint.iacr.org/2020/
1351. 2020 (cit. on p. 245).

[GM59] E. N. Gilbert and E. F. Moore. “Variable-length binary encod-
ings.” In: The Bell System Technical Journal 38.4 (1959), pp. 933–
967. doi: 10.1002/j.1538- 7305.1959.tb01583.x (cit. on
p. 12).

[GS85] Andrew V. Goldberg and Michael Sipser. “Compression and
Ranking.” In: 17th Annual ACM Symposium on Theory of Comput-
ing. Providence, RI, USA: ACM Press, May 1985, pp. 440–448.
doi: 10.1145/22145.22194 (cit. on pp. 12, 13, 147, 150, 156).

[GGM84a] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to
Construct Random Functions (Extended Abstract).” In: 25th
Annual Symposium on Foundations of Computer Science. Singer Is-
land, Florida: IEEE Computer Society Press, Oct. 1984, pp. 464–
479. doi: 10.1109/SFCS.1984.715949 (cit. on p. 61).

[GGM84b] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “On
the Cryptographic Applications of Random Functions.” In:
Advances in Cryptology – CRYPTO’84. Ed. by G. R. Blakley and
David Chaum. Vol. 196. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
1984, pp. 276–288 (cit. on p. 10).

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to
construct random functions.” In: J. ACM 33.4 (1986), pp. 792–
807. doi: 10.1145/6490.6503. url: https://doi.org/10.
1145/6490.6503 (cit. on pp. 10, 23, 24).

[GK96] Oded Goldreich and Hugo Krawczyk. “On the Composition
of Zero-Knowledge Proof Systems.” In: SIAM J. Comput. 25.1
(1996), pp. 169–192. doi: 10.1137/S0097539791220688. url:
https://doi.org/10.1137/S0097539791220688 (cit. on p. 32).

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs
that Yield Nothing But their Validity and a Methodology of
Cryptographic Protocol Design (Extended Abstract).” In: 27th
Annual Symposium on Foundations of Computer Science. Toronto,
Ontario, Canada: IEEE Computer Society Press, Oct. 1986,
pp. 174–187. doi: 10.1109/SFCS.1986.47 (cit. on p. 36).

https://eprint.iacr.org/2018/756
https://doi.org/10.1109/SFCS.2000.892121
https://eprint.iacr.org/2020/1351
https://eprint.iacr.org/2020/1351
https://doi.org/10.1002/j.1538-7305.1959.tb01583.x
https://doi.org/10.1145/22145.22194
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1109/SFCS.1986.47

bibliography 267

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to
Play any Mental Game or A Completeness Theorem for Proto-
cols with Honest Majority.” In: 19th Annual ACM Symposium
on Theory of Computing. Ed. by Alfred Aho. New York City, NY,
USA: ACM Press, May 1987, pp. 218–229. doi: 10.1145/28395.
28420 (cit. on pp. 16, 221).

[GO94] Oded Goldreich and Yair Oren. “Definitions and Properties of
Zero-Knowledge Proof Systems.” In: Journal of Cryptology 7.1
(Dec. 1994), pp. 1–32. doi: 10.1007/BF00195207 (cit. on p. 35).

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain,
Jonathan Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and
Hong-Sheng Zhou. “Multi-input Functional Encryption.” In:
Advances in Cryptology – EUROCRYPT 2014. Ed. by Phong Q.
Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in
Computer Science. Copenhagen, Denmark: Springer, Heidel-
berg, Germany, May 2014, pp. 578–602. doi: 10.1007/978-3-
642-55220-5_32 (cit. on p. 3).

[GK05] Shafi Goldwasser and Yael Tauman Kalai. “On the Impossi-
bility of Obfuscation with Auxiliary Input.” In: 46th Annual
Symposium on Foundations of Computer Science. Pittsburgh, PA,
USA: IEEE Computer Society Press, Oct. 2005, pp. 553–562.
doi: 10.1109/SFCS.2005.60 (cit. on p. 41).

[GL91] Shafi Goldwasser and Leonid A. Levin. “Fair Computation
of General Functions in Presence of Immoral Majority.” In:
Advances in Cryptology – CRYPTO’90. Ed. by Alfred J. Menezes
and Scott A. Vanstone. Vol. 537. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, Aug. 1991, pp. 77–93. doi: 10.1007/3-540-38424-3_6
(cit. on p. 224).

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption
and How to Play Mental Poker Keeping Secret All Partial
Information.” In: 14th Annual ACM Symposium on Theory of
Computing. San Francisco, CA, USA: ACM Press, May 1982,
pp. 365–377. doi: 10.1145/800070.802212 (cit. on p. 21).

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption.”
In: J. Comput. Syst. Sci. 28.2 (1984), pp. 270–299. doi: 10.1016/
0022- 0000(84)90070- 9. url: https://doi.org/10.1016/
0022-0000(84)90070-9 (cit. on pp. 33, 97).

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The
Knowledge Complexity of Interactive Proof-Systems (Ex-
tended Abstract).” In: 17th Annual ACM Symposium on Theory
of Computing. Providence, RI, USA: ACM Press, May 1985,
pp. 291–304. doi: 10.1145/22145.22178 (cit. on p. 35).

[GR07] Shafi Goldwasser and Guy N. Rothblum. “On Best-Possible Ob-
fuscation.” In: TCC 2007: 4th Theory of Cryptography Conference.
Ed. by Salil P. Vadhan. Vol. 4392. Lecture Notes in Computer
Science. Amsterdam, The Netherlands: Springer, Heidelberg,
Germany, Feb. 2007, pp. 194–213. doi: 10.1007/978-3-540-
70936-7_11 (cit. on pp. 2, 25, 41).

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1109/SFCS.2005.60
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1145/800070.802212
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/978-3-540-70936-7_11

268 bibliography

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and
Brent Waters. “A Generic Approach to Constructing and Prov-
ing Verifiable Random Functions.” In: TCC 2017: 15th Theory of
Cryptography Conference, Part II. Ed. by Yael Kalai and Leonid
Reyzin. Vol. 10678. Lecture Notes in Computer Science. Balti-
more, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 537–566. doi: 10.1007/978-3-319-70503-3_18 (cit. on
pp. 3, 41).

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. “Separat-
ing Semantic and Circular Security for Symmetric-Key Bit
Encryption from the Learning with Errors Assumption.” In:
Advances in Cryptology – EUROCRYPT 2017, Part II. Ed. by Jean-
Sébastien Coron and Jesper Buus Nielsen. Vol. 10211. Lecture
Notes in Computer Science. Paris, France: Springer, Heidel-
berg, Germany, Apr. 2017, pp. 528–557. doi: 10.1007/978-3-
319-56614-6_18 (cit. on p. 3).

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect Non-
interactive Zero Knowledge for NP.” In: Advances in Cryptology
– EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. Lecture
Notes in Computer Science. St. Petersburg, Russia: Springer,
Heidelberg, Germany, May 2006, pp. 339–358. doi: 10.1007/
11761679_21 (cit. on pp. 35, 36).

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “New Tech-
niques for Noninteractive Zero-Knowledge.” In: J. ACM 59.3
(2012), 11:1–11:35. doi: 10.1145/2220357.2220358. url: https:
//doi.org/10.1145/2220357.2220358 (cit. on p. 8).

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof
Systems for Bilinear Groups.” In: Advances in Cryptology – EU-
ROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. Lecture Notes
in Computer Science. Istanbul, Turkey: Springer, Heidelberg,
Germany, Apr. 2008, pp. 415–432. doi: 10.1007/978-3-540-
78967-3_24 (cit. on pp. 95, 96).

[Had00] Satoshi Hada. “Zero-Knowledge and Code Obfuscation.” In:
Advances in Cryptology – ASIACRYPT 2000. Ed. by Tatsuaki
Okamoto. Vol. 1976. Lecture Notes in Computer Science. Kyoto,
Japan: Springer, Heidelberg, Germany, Dec. 2000, pp. 443–457.
doi: 10.1007/3-540-44448-3_34 (cit. on pp. 2, 25, 27, 41).

[HT98] Satoshi Hada and Toshiaki Tanaka. “On the Existence of 3-
Round Zero-Knowledge Protocols.” In: Advances in Cryptol-
ogy – CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 1998, pp. 408–423. doi:
10.1007/BFb0055744 (cit. on pp. 32, 87).

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and
Michael Luby. “A Pseudorandom Generator from any One-
way Function.” In: SIAM J. Comput. 28.4 (1999), pp. 1364–1396.
doi: 10.1137/S0097539793244708. url: https://doi.org/10.
1137/S0097539793244708 (cit. on pp. 61, 103, 156, 157, 162, 189,
190, 232).

https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-56614-6_18
https://doi.org/10.1007/978-3-319-56614-6_18
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-44448-3_34
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708

bibliography 269

[HP14] Carmit Hazay and Arpita Patra. “One-Sided Adaptively Se-
cure Two-Party Computation.” In: TCC 2014: 11th Theory of
Cryptography Conference. Ed. by Yehuda Lindell. Vol. 8349.
Lecture Notes in Computer Science. San Diego, CA, USA:
Springer, Heidelberg, Germany, Feb. 2014, pp. 368–393. doi:
10.1007/978-3-642-54242-8_16 (cit. on p. 16).

[HLOV11] Brett Hemenway, Benoît Libert, Rafail Ostrovsky, and Damien
Vergnaud. “Lossy Encryption: Constructions from General As-
sumptions and Efficient Selective Opening Chosen Ciphertext
Security.” In: Advances in Cryptology – ASIACRYPT 2011. Ed. by
Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes
in Computer Science. Seoul, South Korea: Springer, Heidel-
berg, Germany, Dec. 2011, pp. 70–88. doi: 10.1007/978-3-
642-25385-0_4 (cit. on p. 97).

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sa-
hai, Brent Waters, and Mark Zhandry. “How to Generate and
Use Universal Samplers.” In: Advances in Cryptology – ASI-
ACRYPT 2016, Part II. Ed. by Jung Hee Cheon and Tsuyoshi
Takagi. Vol. 10032. Lecture Notes in Computer Science. Hanoi,
Vietnam: Springer, Heidelberg, Germany, Dec. 2016, pp. 715–
744. doi: 10.1007/978-3-662-53890-6_24 (cit. on pp. 150, 161,
171).

[HK08] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Func-
tions and Their Applications.” In: Advances in Cryptology –
CRYPTO 2008. Ed. by David Wagner. Vol. 5157. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2008, pp. 21–38. doi: 10.1007/978-3-
540-85174-5_2 (cit. on p. 44).

[HK12] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Func-
tions and Their Applications.” In: Journal of Cryptology 25.3
(July 2012), pp. 484–527. doi: 10.1007/s00145-011-9102-5
(cit. on pp. 10, 90).

[HMS07] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. “Obfus-
cation for Cryptographic Purposes.” In: TCC 2007: 4th Theory
of Cryptography Conference. Ed. by Salil P. Vadhan. Vol. 4392.
Lecture Notes in Computer Science. Amsterdam, The Nether-
lands: Springer, Heidelberg, Germany, Feb. 2007, pp. 214–232.
doi: 10.1007/978-3-540-70936-7_12 (cit. on p. 41).

[HRW16] Dennis Hofheinz, Vanishree Rao, and Daniel Wichs. “Standard
Security Does Not Imply Indistinguishability Under Selec-
tive Opening.” In: TCC 2016-B: 14th Theory of Cryptography
Conference, Part II. Ed. by Martin Hirt and Adam D. Smith.
Vol. 9986. Lecture Notes in Computer Science. Beijing, China:
Springer, Heidelberg, Germany, Oct. 2016, pp. 121–145. doi:
10.1007/978-3-662-53644-5_5 (cit. on p. 41).

[HU19] Dennis Hofheinz and Bogdan Ursu. “Dual-Mode NIZKs from
Obfuscation.” In: Advances in Cryptology – ASIACRYPT 2019,
Part I. Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11921.
Lecture Notes in Computer Science. Kobe, Japan: Springer,

https://doi.org/10.1007/978-3-642-54242-8_16
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/s00145-011-9102-5
https://doi.org/10.1007/978-3-540-70936-7_12
https://doi.org/10.1007/978-3-662-53644-5_5

270 bibliography

Heidelberg, Germany, Dec. 2019, pp. 311–341. doi: 10.1007/
978-3-030-34578-5_12 (cit. on pp. 89, 96).

[HRsV07] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod
Vaikuntanathan. “Securely Obfuscating Re-encryption.” In:
TCC 2007: 4th Theory of Cryptography Conference. Ed. by Salil P.
Vadhan. Vol. 4392. Lecture Notes in Computer Science. Ams-
terdam, The Netherlands: Springer, Heidelberg, Germany, Feb.
2007, pp. 233–252. doi: 10.1007/978- 3- 540- 70936- 7_13
(cit. on p. 41).

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. “Full Do-
main Hash from (Leveled) Multilinear Maps and Identity-
Based Aggregate Signatures.” In: Advances in Cryptology –
CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8042. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2013, pp. 494–
512. doi: 10.1007/978-3-642-40041-4_27 (cit. on pp. 10, 90).

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. “Replacing
a Random Oracle: Full Domain Hash from Indistinguishability
Obfuscation.” In: Advances in Cryptology – EUROCRYPT 2014.
Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441.
Lecture Notes in Computer Science. Copenhagen, Denmark:
Springer, Heidelberg, Germany, May 2014, pp. 201–220. doi:
10.1007/978-3-642-55220-5_12 (cit. on pp. 10, 44, 90).

[HW09] Susan Hohenberger and Brent Waters. “Short and Stateless Sig-
natures from the RSA Assumption.” In: Advances in Cryptology
– CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, Aug. 2009, pp. 654–670. doi: 10.1007/978-
3-642-03356-8_38 (cit. on p. 44).

[HL18] Justin Holmgren and Alex Lombardi. “Cryptographic Hashing
from Strong One-Way Functions (Or: One-Way Product Func-
tions and Their Applications).” In: 59th Annual Symposium on
Foundations of Computer Science. Ed. by Mikkel Thorup. Paris,
France: IEEE Computer Society Press, Oct. 2018, pp. 850–858.
doi: 10.1109/FOCS.2018.00085 (cit. on p. 3).

[Hop05] Nicholas Hopper. “On Steganographic Chosen Covertext Secu-
rity.” In: ICALP 2005: 32nd International Colloquium on Automata,
Languages and Programming. Ed. by Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung.
Vol. 3580. Lecture Notes in Computer Science. Lisbon, Portu-
gal: Springer, Heidelberg, Germany, July 2005, pp. 311–323.
doi: 10.1007/11523468_26 (cit. on pp. 232, 233).

[HPRV19] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikun-
tanathan. “How to Subvert Backdoored Encryption: Security
Against Adversaries that Decrypt All Ciphertexts.” In: ITCS
2019: 10th Innovations in Theoretical Computer Science Conference.
Ed. by Avrim Blum. Vol. 124. San Diego, CA, USA: LIPIcs, Jan.
2019, 42:1–42:20. doi: 10.4230/LIPIcs.ITCS.2019.42 (cit. on
pp. 13, 147).

https://doi.org/10.1007/978-3-030-34578-5_12
https://doi.org/10.1007/978-3-030-34578-5_12
https://doi.org/10.1007/978-3-540-70936-7_13
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-642-55220-5_12
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1007/11523468_26
https://doi.org/10.4230/LIPIcs.ITCS.2019.42

bibliography 271

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. “Condi-
tional Computational Entropy, or Toward Separating Pseu-
doentropy from Compressibility.” In: Advances in Cryptology –
EUROCRYPT 2007. Ed. by Moni Naor. Vol. 4515. Lecture Notes
in Computer Science. Barcelona, Spain: Springer, Heidelberg,
Germany, May 2007, pp. 169–186. doi: 10.1007/978-3-540-
72540-4_10 (cit. on pp. 12, 20, 147, 153, 157, 163, 189, 190, 199,
200).

[HW15] Pavel Hubacek and Daniel Wichs. “On the Communication
Complexity of Secure Function Evaluation with Long Out-
put.” In: ITCS 2015: 6th Conference on Innovations in Theoretical
Computer Science. Ed. by Tim Roughgarden. Rehovot, Israel:
Association for Computing Machinery, Jan. 2015, pp. 163–172.
doi: 10.1145/2688073.2688105 (cit. on p. 3).

[Huf52] David A Huffman. “A method for the construction of mini-
mum-redundancy codes.” In: Proceedings of the IRE 40.9 (1952),
pp. 1098–1101 (cit. on p. 12).

[Imp95] Russell Impagliazzo. “A Personal View of Average-Case Com-
plexity.” In: Proceedings of the Tenth Annual Structure in Com-
plexity Theory Conference, Minneapolis, Minnesota, USA, June
19-22, 1995. IEEE Computer Society, 1995, pp. 134–147. doi:
10.1109/SCT.1995.514853. url: https://doi.org/10.1109/
SCT.1995.514853 (cit. on p. 156).

[IL90] Russell Impagliazzo and Leonid A. Levin. “No Better Ways to
Generate Hard NP Instances than Picking Uniformly at Ran-
dom.” In: 31st Annual Symposium on Foundations of Computer
Science. St. Louis, MO, USA: IEEE Computer Society Press,
Oct. 1990, pp. 812–821. doi: 10.1109/FSCS.1990.89604 (cit. on
p. 21).

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
“Pseudo-random Generation from one-way functions (Ex-
tended Abstracts).” In: 21st Annual ACM Symposium on Theory
of Computing. Seattle, WA, USA: ACM Press, May 1989, pp. 12–
24. doi: 10.1145/73007.73009 (cit. on p. 20).

[IR89] Russell Impagliazzo and Steven Rudich. “Limits on the Prov-
able Consequences of One-Way Permutations.” In: 21st Annual
ACM Symposium on Theory of Computing. Seattle, WA, USA:
ACM Press, May 1989, pp. 44–61. doi: 10.1145/73007.73012
(cit. on p. 33).

[IKOS10] Yuval Ishai, Abishek Kumarasubramanian, Claudio Orlandi,
and Amit Sahai. “On Invertible Sampling and Adaptive Se-
curity.” In: Advances in Cryptology – ASIACRYPT 2010. Ed. by
Masayuki Abe. Vol. 6477. Lecture Notes in Computer Science.
Singapore: Springer, Heidelberg, Germany, Dec. 2010, pp. 466–
482. doi: 10.1007/978-3-642-17373-8_27 (cit. on pp. 16, 17,
151–154, 158, 159, 177, 201, 204, 205, 212, 221, 224, 226).

https://doi.org/10.1007/978-3-540-72540-4_10
https://doi.org/10.1007/978-3-540-72540-4_10
https://doi.org/10.1145/2688073.2688105
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-642-17373-8_27

272 bibliography

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. “Public-Coin Dif-
fering-Inputs Obfuscation and Its Applications.” In: TCC 2015:
12th Theory of Cryptography Conference, Part II. Ed. by Yevgeniy
Dodis and Jesper Buus Nielsen. Vol. 9015. Lecture Notes in
Computer Science. Warsaw, Poland: Springer, Heidelberg, Ger-
many, Mar. 2015, pp. 668–697. doi: 10.1007/978-3-662-46497-
7_26 (cit. on p. 41).

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Founding
Cryptography on Oblivious Transfer - Efficiently.” In: Advances
in Cryptology – CRYPTO 2008. Ed. by David Wagner. Vol. 5157.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2008, pp. 572–591. doi:
10.1007/978-3-540-85174-5_32 (cit. on pp. 16, 224).

[JRT16] Joseph Jaeger, Thomas Ristenpart, and Qiang Tang. “Honey
Encryption Beyond Message Recovery Security.” In: Advances
in Cryptology – EUROCRYPT 2016, Part I. Ed. by Marc Fischlin
and Jean-Sébastien Coron. Vol. 9665. Lecture Notes in Com-
puter Science. Vienna, Austria: Springer, Heidelberg, Germany,
May 2016, pp. 758–788. doi: 10.1007/978-3-662-49890-3_29
(cit. on p. 230).

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. “How
to Leverage Hardness of Constant-Degree Expanding Polyno-
mials overa R to build iO.” In: Advances in Cryptology – EU-
ROCRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent Rijmen.
Vol. 11476. Lecture Notes in Computer Science. Darmstadt,
Germany: Springer, Heidelberg, Germany, May 2019, pp. 251–
281. doi: 10.1007/978-3-030-17653-2_9 (cit. on pp. 2, 41).

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability
Obfuscation from Well-Founded Assumptions. Cryptology ePrint
Archive, Report 2020/1003. https://eprint.iacr.org/2020/
1003. 2020 (cit. on pp. 2, 5, 27, 41).

[Jak98] Markus Jakobsson. “A Practical Mix.” In: Advances in Cryptol-
ogy – EUROCRYPT’98. Ed. by Kaisa Nyberg. Vol. 1403. Lec-
ture Notes in Computer Science. Espoo, Finland: Springer,
Heidelberg, Germany, May 1998, pp. 448–461. doi: 10.1007/
BFb0054145 (cit. on pp. 89, 129).

[JR14] Ari Juels and Thomas Ristenpart. “Honey Encryption: Security
Beyond the Brute-Force Bound.” In: Advances in Cryptology –
EUROCRYPT 2014. Ed. by Phong Q. Nguyen and Elisabeth
Oswald. Vol. 8441. Lecture Notes in Computer Science. Copen-
hagen, Denmark: Springer, Heidelberg, Germany, May 2014,
pp. 293–310. doi: 10.1007/978-3-642-55220-5_17 (cit. on
pp. 13, 147, 153, 156, 158, 221, 229–231).

[KLMR18] Yuan Kang, Chengyu Lin, Tal Malkin, and Mariana Raykova.
“Obfuscation from Polynomial Hardness: Beyond Decompos-
able Obfuscation.” In: SCN 18: 11th International Conference on
Security in Communication Networks. Ed. by Dario Catalano and
Roberto De Prisco. Vol. 11035. Lecture Notes in Computer Sci-
ence. Amalfi, Italy: Springer, Heidelberg, Germany, Sept. 2018,

https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-49890-3_29
https://doi.org/10.1007/978-3-030-17653-2_9
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://doi.org/10.1007/BFb0054145
https://doi.org/10.1007/BFb0054145
https://doi.org/10.1007/978-3-642-55220-5_17

bibliography 273

pp. 407–424. doi: 10.1007/978-3-319-98113-0_22 (cit. on
p. 5).

[KLRX20] Julia Kastner, Julian Loss, Michael Rosenberg, and Jiayu Xu.
On Pairing-Free Blind Signature Schemes in the Algebraic Group
Model. Cryptology ePrint Archive, Report 2020/1071. https:
//eprint.iacr.org/2020/1071. 2020 (cit. on p. 245).

[KP19] Julia Kastner and Jiaxin Pan. Towards Instantiating the Algebraic
Group Model. Cryptology ePrint Archive, Report 2019/1018.
https://eprint.iacr.org/2019/1018. 2019 (cit. on pp. 9, 88,
92, 94, 109, 110).

[Kat08] Jonathan Katz. “Which Languages Have 4-Round Zero-
Knowledge Proofs?” In: TCC 2008: 5th Theory of Cryptography
Conference. Ed. by Ran Canetti. Vol. 4948. Lecture Notes in
Computer Science. San Francisco, CA, USA: Springer, Heidel-
berg, Germany, Mar. 2008, pp. 73–88. doi: 10.1007/978-3-
540-78524-8_5 (cit. on p. 32).

[KO04] Jonathan Katz and Rafail Ostrovsky. “Round-Optimal Se-
cure Two-Party Computation.” In: Advances in Cryptology
– CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2004, pp. 335–354. doi:
10.1007/978-3-540-28628-8_21 (cit. on p. 16).

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos,
and Thomas Zacharias. “Delegatable pseudorandom functions
and applications.” In: ACM CCS 2013: 20th Conference on Com-
puter and Communications Security. Ed. by Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung. Berlin, Germany: ACM Press,
Nov. 2013, pp. 669–684. doi: 10.1145/2508859.2516668 (cit. on
pp. 23, 24).

[Kil88] Joe Kilian. “Founding Cryptography on Oblivious Trans-
fer.” In: 20th Annual ACM Symposium on Theory of Computing.
Chicago, IL, USA: ACM Press, May 1988, pp. 20–31. doi:
10.1145/62212.62215 (cit. on p. 224).

[Kol68] Andrei Nikolaevich Kolmogorov. “Three approaches to the
quantitative definition of information.” In: International journal
of computer mathematics 2.1-4 (1968), pp. 157–168 (cit. on pp. 13,
147).

[KNY14] Ilan Komargodski, Moni Naor, and Eylon Yogev. “Secret-
Sharing for NP.” In: Advances in Cryptology – ASIACRYPT 2014,
Part II. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8874. Lec-
ture Notes in Computer Science. Kaoshiung, Taiwan, R.O.C.:
Springer, Heidelberg, Germany, Dec. 2014, pp. 254–273. doi:
10.1007/978-3-662-45608-8_14 (cit. on p. 3).

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters.
“Indistinguishability Obfuscation for Turing Machines with
Unbounded Memory.” In: 47th Annual ACM Symposium on
Theory of Computing. Ed. by Rocco A. Servedio and Ronitt
Rubinfeld. Portland, OR, USA: ACM Press, June 2015, pp. 419–
428. doi: 10.1145/2746539.2746614 (cit. on p. 3).

https://doi.org/10.1007/978-3-319-98113-0_22
https://eprint.iacr.org/2020/1071
https://eprint.iacr.org/2020/1071
https://eprint.iacr.org/2019/1018
https://doi.org/10.1007/978-3-540-78524-8_5
https://doi.org/10.1007/978-3-540-78524-8_5
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-662-45608-8_14
https://doi.org/10.1145/2746539.2746614

274 bibliography

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. “Fair-Zero Knowl-
edge.” In: TCC 2005: 2nd Theory of Cryptography Conference. Ed.
by Joe Kilian. Vol. 3378. Lecture Notes in Computer Science.
Cambridge, MA, USA: Springer, Heidelberg, Germany, Feb.
2005, pp. 245–263. doi: 10.1007/978- 3- 540- 30576- 7_14
(cit. on pp. 153, 163, 199).

[Lev86] Leonid A. Levin. “Average Case Complete Problems.” In:
SIAM J. Comput. 15.1 (1986), pp. 285–286. doi: 10 . 1137 /

0215020. url: https://doi.org/10.1137/0215020 (cit. on
pp. 1, 21).

[LM16] Baiyu Li and Daniele Micciancio. “Compactness vs Collusion
Resistance in Functional Encryption.” In: TCC 2016-B: 14th
Theory of Cryptography Conference, Part II. Ed. by Martin Hirt
and Adam D. Smith. Vol. 9986. Lecture Notes in Computer
Science. Beijing, China: Springer, Heidelberg, Germany, Oct.
2016, pp. 443–468. doi: 10.1007/978- 3- 662- 53644- 5_17
(cit. on p. 42).

[LV90] Ming Li and Paul M. B. Vitányi. “Handbook of Theoretical
Computer Science (Vol. A).” In: ed. by Jan van Leeuwen. Cam-
bridge, MA, USA: MIT Press, 1990. Chap. Kolmogorov Com-
plexity and Its Applications, pp. 187–254. isbn: 0-444-88071-2.
url: http://dl.acm.org/citation.cfm?id=114872.114876
(cit. on pp. 13, 147).

[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov
Complexity and Its Applications, 4th Edition. Texts in Computer
Science. Springer, 2019. isbn: 978-3-030-11297-4. doi: 10.1007/
978-3-030-11298-1 (cit. on pp. 13, 147).

[Lin16] Huijia Lin. “Indistinguishability Obfuscation from Constant-
Degree Graded Encoding Schemes.” In: Advances in Cryptology
– EUROCRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-
Sébastien Coron. Vol. 9665. Lecture Notes in Computer Science.
Vienna, Austria: Springer, Heidelberg, Germany, May 2016,
pp. 28–57. doi: 10.1007/978-3-662-49890-3_2 (cit. on p. 2).

[Lin17] Huijia Lin. “Indistinguishability Obfuscation from SXDH on
5-Linear Maps and Locality-5 PRGs.” In: Advances in Cryptol-
ogy – CRYPTO 2017, Part I. Ed. by Jonathan Katz and Hovav
Shacham. Vol. 10401. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2017,
pp. 599–629. doi: 10.1007/978-3-319-63688-7_20 (cit. on
pp. 2, 41).

[LT17] Huijia Lin and Stefano Tessaro. “Indistinguishability Obfus-
cation from Trilinear Maps and Block-Wise Local PRGs.” In:
Advances in Cryptology – CRYPTO 2017, Part I. Ed. by Jonathan
Katz and Hovav Shacham. Vol. 10401. Lecture Notes in Com-
puter Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2017, pp. 630–660. doi: 10.1007/978-3-319-
63688-7_21 (cit. on pp. 2, 41).

https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1137/0215020
https://doi.org/10.1137/0215020
https://doi.org/10.1137/0215020
https://doi.org/10.1007/978-3-662-53644-5_17
http://dl.acm.org/citation.cfm?id=114872.114876
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21

bibliography 275

[LV16] Huijia Lin and Vinod Vaikuntanathan. “Indistinguishability
Obfuscation from DDH-Like Assumptions on Constant-Degree
Graded Encodings.” In: 57th Annual Symposium on Foundations
of Computer Science. Ed. by Irit Dinur. New Brunswick, NJ,
USA: IEEE Computer Society Press, Oct. 2016, pp. 11–20. doi:
10.1109/FOCS.2016.11 (cit. on p. 2).

[Lin09] Andrew Y. Lindell. “Adaptively Secure Two-Party Computa-
tion with Erasures.” In: Topics in Cryptology – CT-RSA 2009.
Ed. by Marc Fischlin. Vol. 5473. Lecture Notes in Computer Sci-
ence. San Francisco, CA, USA: Springer, Heidelberg, Germany,
Apr. 2009, pp. 117–132. doi: 10.1007/978-3-642-00862-7_8
(cit. on p. 222).

[LZ17] Qipeng Liu and Mark Zhandry. “Decomposable Obfuscation:
A Framework for Building Applications of Obfuscation from
Polynomial Hardness.” In: TCC 2017: 15th Theory of Cryptog-
raphy Conference, Part I. Ed. by Yael Kalai and Leonid Reyzin.
Vol. 10677. Lecture Notes in Computer Science. Baltimore, MD,
USA: Springer, Heidelberg, Germany, Nov. 2017, pp. 138–169.
doi: 10.1007/978-3-319-70500-2_6 (cit. on pp. 5, 42, 44).

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. “Positive Re-
sults and Techniques for Obfuscation.” In: Advances in Cryp-
tology – EUROCRYPT 2004. Ed. by Christian Cachin and Jan
Camenisch. Vol. 3027. Lecture Notes in Computer Science. In-
terlaken, Switzerland: Springer, Heidelberg, Germany, May
2004, pp. 20–39. doi: 10.1007/978-3-540-24676-3_2 (cit. on
p. 41).

[Mau05] Ueli M. Maurer. “Abstract Models of Computation in Cryptog-
raphy (Invited Paper).” In: 10th IMA International Conference
on Cryptography and Coding. Ed. by Nigel P. Smart. Vol. 3796.
Lecture Notes in Computer Science. Cirencester, UK: Springer,
Heidelberg, Germany, Dec. 2005, pp. 1–12 (cit. on pp. 8, 87,
93).

[MW98] Ueli M. Maurer and Stefan Wolf. “Lower Bounds on Generic
Algorithms in Groups.” In: Advances in Cryptology – EURO-
CRYPT’98. Ed. by Kaisa Nyberg. Vol. 1403. Lecture Notes in
Computer Science. Espoo, Finland: Springer, Heidelberg, Ger-
many, May 1998, pp. 72–84. doi: 10.1007/BFb0054118 (cit. on
p. 87).

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice
problems - a cryptograhic perspective. Vol. 671. The Kluwer inter-
national series in engineering and computer science. Springer,
2002. isbn: 978-0-7923-7688-0 (cit. on p. 106).

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. “Annihilation
Attacks for Multilinear Maps: Cryptanalysis of Indistinguisha-
bility Obfuscation over GGH13.” In: Advances in Cryptology –
CRYPTO 2016, Part II. Ed. by Matthew Robshaw and Jonathan
Katz. Vol. 9815. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2016,

https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1007/978-3-642-00862-7_8
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/BFb0054118

276 bibliography

pp. 629–658. doi: 10.1007/978-3-662-53008-5_22 (cit. on
p. 2).

[Nao03] Moni Naor. “On Cryptographic Assumptions and Challenges
(Invited Talk).” In: Advances in Cryptology – CRYPTO 2003. Ed.
by Dan Boneh. Vol. 2729. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2003, pp. 96–109. doi: 10.1007/978-3-540-45146-4_6 (cit. on
pp. 10, 22, 27, 32, 88, 94).

[Nec94] V. I. Nechaev. “Complexity of a Determinate Algorithm for
the Discrete Logarithm.” In: Mathematical Notes 55.2 (1994),
pp. 165–172 (cit. on p. 87).

[NZ96] Noam Nisan and David Zuckerman. “Randomness is Linear
in Space.” In: J. Comput. Syst. Sci. 52.1 (1996), pp. 43–52. doi:
10.1006/jcss.1996.0004. url: https://doi.org/10.1006/
jcss.1996.0004 (cit. on p. 20).

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and
Daniel Wichs. “New Realizations of Somewhere Statistically
Binding Hashing and Positional Accumulators.” In: Advances
in Cryptology – ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9452. Lecture Notes in Computer Sci-
ence. Auckland, New Zealand: Springer, Heidelberg, Germany,
Nov. 2015, pp. 121–145. doi: 10.1007/978-3-662-48797-6_6
(cit. on p. 3).

[OW93] Rafail Ostrovsky and Avi Wigderson. “One-Way Functions are
Essential for Non-Trivial Zero-Knowledge.” In: Second Israel
Symposium on Theory of Computing Systems, ISTCS 1993, Natanya,
Israel, June 7-9, 1993, Proceedings. IEEE Computer Society, 1993,
pp. 3–17. doi: 10.1109/ISTCS.1993.253489. url: https://
doi.org/10.1109/ISTCS.1993.253489 (cit. on p. 35).

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Compos-
ite Degree Residuosity Classes.” In: Advances in Cryptology
– EUROCRYPT’99. Ed. by Jacques Stern. Vol. 1592. Lecture
Notes in Computer Science. Prague, Czech Republic: Springer,
Heidelberg, Germany, May 1999, pp. 223–238. doi: 10.1007/3-
540-48910-X_16 (cit. on p. 97).

[PV05] Pascal Paillier and Damien Vergnaud. “Discrete-Log-Based
Signatures May Not Be Equivalent to Discrete Log.” In: Ad-
vances in Cryptology – ASIACRYPT 2005. Ed. by Bimal K. Roy.
Vol. 3788. Lecture Notes in Computer Science. Chennai, In-
dia: Springer, Heidelberg, Germany, Dec. 2005, pp. 1–20. doi:
10.1007/11593447_1 (cit. on p. 87).

[Pas77] Richard C. Pasco. “Source coding algorithms for fast data
compression (Ph.D. Thesis abstr.)” In: IEEE Trans. Inf. Theory
23.4 (1977), p. 548. doi: 10.1109/TIT.1977.1055739. url:
https://doi.org/10.1109/TIT.1977.1055739 (cit. on p. 12).

https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1007/978-3-662-48797-6_6
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11593447_1
https://doi.org/10.1109/TIT.1977.1055739
https://doi.org/10.1109/TIT.1977.1055739

bibliography 277

[Pas03] Rafael Pass. “Simulation in Quasi-Polynomial Time, and Its
Application to Protocol Composition.” In: Advances in Cryptol-
ogy – EUROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture
Notes in Computer Science. Warsaw, Poland: Springer, Heidel-
berg, Germany, May 2003, pp. 160–176. doi: 10.1007/3-540-
39200-9_10 (cit. on p. 241).

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. “Indistinguisha-
bility Obfuscation from Semantically-Secure Multilinear En-
codings.” In: Advances in Cryptology – CRYPTO 2014, Part I.
Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2014, pp. 500–517. doi:
10.1007/978-3-662-44371-2_28 (cit. on pp. 41, 43).

[Ps16] Rafael Pass and abhi shelat. “Impossibility of VBB Obfuscation
with Ideal Constant-Degree Graded Encodings.” In: TCC 2016-
A: 13th Theory of Cryptography Conference, Part I. Ed. by Eyal
Kushilevitz and Tal Malkin. Vol. 9562. Lecture Notes in Com-
puter Science. Tel Aviv, Israel: Springer, Heidelberg, Germany,
Jan. 2016, pp. 3–17. doi: 10.1007/978- 3- 662- 49096- 9_1
(cit. on p. 42).

[PS19] Chris Peikert and Sina Shiehian. “Noninteractive Zero Knowl-
edge for NP from (Plain) Learning with Errors.” In: Advances in
Cryptology – CRYPTO 2019, Part I. Ed. by Alexandra Boldyreva
and Daniele Micciancio. Vol. 11692. Lecture Notes in Com-
puter Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2019, pp. 89–114. doi: 10.1007/978-3-030-
26948-7_4 (cit. on pp. 3, 36, 96).

[PR07] Manoj Prabhakaran and Mike Rosulek. “Rerandomizable
RCCA Encryption.” In: Advances in Cryptology – CRYPTO 2007.
Ed. by Alfred Menezes. Vol. 4622. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, Aug. 2007, pp. 517–534. doi: 10.1007/978- 3- 540-
74143-5_29 (cit. on p. 97).

[RS92] Charles Rackoff and Daniel R. Simon. “Non-Interactive Zero-
Knowledge Proof of Knowledge and Chosen Ciphertext At-
tack.” In: Advances in Cryptology – CRYPTO’91. Ed. by Joan
Feigenbaum. Vol. 576. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
1992, pp. 433–444. doi: 10.1007/3-540-46766-1_35 (cit. on
p. 129).

[RR99] Ran Raz and Omer Reingold. “On Recycling the Randomness
of States in Space Bounded Computation.” In: 31st Annual
ACM Symposium on Theory of Computing. Atlanta, GA, USA:
ACM Press, May 1999, pp. 159–168. doi: 10.1145/301250.
301294 (cit. on pp. 13, 147).

[Rey11] Leonid Reyzin. “Some Notions of Entropy for Cryptography -
(Invited Talk).” In: ICITS 11: 5th International Conference on Infor-
mation Theoretic Security. Ed. by Serge Fehr. Vol. 6673. Lecture
Notes in Computer Science. Amsterdam, The Netherlands:

https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-49096-9_1
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1145/301250.301294
https://doi.org/10.1145/301250.301294

278 bibliography

Springer, Heidelberg, Germany, May 2011, pp. 138–142. doi:
10.1007/978-3-642-20728-0_13 (cit. on p. 189).

[Ris76] Jorma Rissanen. “Generalized Kraft Inequality and Arithmetic
Coding.” In: IBM J. Res. Dev. 20.3 (1976), pp. 198–203. doi:
10.1147/rd.203.0198. url: https://doi.org/10.1147/rd.
203.0198 (cit. on p. 12).

[RJ79] Jorma Rissanen and Glen G. Langdon Jr. “Arithmetic Coding.”
In: IBM J. Res. Dev. 23.2 (1979), pp. 149–162. doi: 10.1147/
rd.232.0149. url: https://doi.org/10.1147/rd.232.0149
(cit. on p. 12).

[RAD78] Ronald L. Rivest, Leonard M. Adleman, and Michael L. Der-
touzos. “On data banks and privacy homomorphisms.” In:
Foundations of secure computation 4.11 (1978), pp. 169–180 (cit.
on p. 34).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A
Method for Obtaining Digital Signatures and Public-Key Cryp-
tosystems.” In: Commun. ACM 21.2 (1978), pp. 120–126. doi:
10.1145/359340.359342. url: http://doi.acm.org/10.1145/
359340.359342 (cit. on p. 2).

[RS20] Lior Rotem and Gil Segev. “Algebraic Distinguishers: From
Discrete Logarithms to Decisional Uber Assumptions.” In:
(2020) (cit. on p. 245).

[SW14] Amit Sahai and Brent Waters. “How to use indistinguisha-
bility obfuscation: deniable encryption, and more.” In: 46th
Annual ACM Symposium on Theory of Computing. Ed. by David B.
Shmoys. New York, NY, USA: ACM Press, May 2014, pp. 475–
484. doi: 10.1145/2591796.2591825 (cit. on pp. 3, 24, 41, 43,
103, 104, 152, 153, 155, 189, 200, 212–215, 233).

[San87] Miklos Santha. “On Using Deterministic Functions to Reduce
Randomness in Probabilistic Algorithms.” In: Inf. Comput. 74.3
(1987), pp. 241–249. doi: 10.1016/0890- 5401(87)90023- X.
url: https://doi.org/10.1016/0890-5401(87)90023-X (cit.
on p. 20).

[Sch72] J. Pieter M. Schalkwijk. “An algorithm for source coding.”
In: IEEE Trans. Inf. Theory 18.3 (1972), pp. 395–399. doi: 10.
1109/TIT.1972.1054832. url: https://doi.org/10.1109/
TIT.1972.1054832 (cit. on p. 12).

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart
Cards.” In: Journal of Cryptology 4.3 (Jan. 1991), pp. 161–174.
doi: 10.1007/BF00196725 (cit. on p. 89).

[SJ00] Claus-Peter Schnorr and Markus Jakobsson. “Security of
Signed ElGamal Encryption.” In: Advances in Cryptology –
ASIACRYPT 2000. Ed. by Tatsuaki Okamoto. Vol. 1976. Lecture
Notes in Computer Science. Kyoto, Japan: Springer, Heidel-
berg, Germany, Dec. 2000, pp. 73–89. doi: 10.1007/3-540-
44448-3_7 (cit. on p. 129).

https://doi.org/10.1007/978-3-642-20728-0_13
https://doi.org/10.1147/rd.203.0198
https://doi.org/10.1147/rd.203.0198
https://doi.org/10.1147/rd.203.0198
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1016/0890-5401(87)90023-X
https://doi.org/10.1016/0890-5401(87)90023-X
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-44448-3_7
https://doi.org/10.1007/3-540-44448-3_7

bibliography 279

[Sha48] Claude E. Shannon. “A mathematical theory of communi-
cation.” In: Bell Syst. Tech. J. 27.3 (1948), pp. 379–423. doi:
10.1002/j.1538-7305.1948.tb01338.x. url: https://doi.
org/10.1002/j.1538-7305.1948.tb01338.x (cit. on pp. 12,
162, 190).

[TUZ01] Amnon Ta-Shma, Christopher Umans, and David Zuckerman.
“Loss-less condensers, unbalanced expanders, and extractors.”
In: 33rd Annual ACM Symposium on Theory of Computing. Crete,
Greece: ACM Press, July 2001, pp. 143–152. doi: 10.1145/
380752.380790 (cit. on pp. 13, 147).

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Re-
lated Problems.” In: Advances in Cryptology – EUROCRYPT’97.
Ed. by Walter Fumy. Vol. 1233. Lecture Notes in Computer
Science. Konstanz, Germany: Springer, Heidelberg, Germany,
May 1997, pp. 256–266. doi: 10.1007/3- 540- 69053- 0_18
(cit. on pp. 8, 10, 87, 93).

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity
in security proofs. Cryptology ePrint Archive, Report 2004/332.
http://eprint.iacr.org/2004/332. 2004 (cit. on pp. 172, 185,
186).

[Sip88] Michael Sipser. “Expanders, Randomness, or Time versus
Space.” In: J. Comput. Syst. Sci. 36.3 (1988), pp. 379–383. doi:
10.1016/0022-0000(88)90035-9. url: https://doi.org/10.
1016/0022-0000(88)90035-9 (cit. on p. 20).

[Sol64] Ray J. Solomonoff. “A Formal Theory of Inductive Inference.
Part I.” In: Inf. Control. 7.1 (1964), pp. 1–22. doi: 10.1016/
S0019-9958(64)90223-2. url: https://doi.org/10.1016/
S0019-9958(64)90223-2 (cit. on pp. 13, 147).

[TV00] Luca Trevisan and Salil P. Vadhan. “Extracting Randomness
from Samplable Distributions.” In: 41st Annual Symposium on
Foundations of Computer Science. Redondo Beach, CA, USA:
IEEE Computer Society Press, Nov. 2000, pp. 32–42. doi: 10.
1109/SFCS.2000.892063 (cit. on pp. 13, 147).

[TVZ05] Luca Trevisan, Salil P. Vadhan, and David Zuckerman. “Com-
pression of Samplable Sources.” In: Computational Complexity
14.3 (2005), pp. 186–227. doi: 10.1007/s00037-005-0198-6.
url: https://doi.org/10.1007/s00037-005-0198-6 (cit. on
pp. 12, 13, 147, 156, 162, 168, 190, 191).

[TY98] Yiannis Tsiounis and Moti Yung. “On the Security of ElGamal
Based Encryption.” In: PKC’98: 1st International Workshop on
Theory and Practice in Public Key Cryptography. Ed. by Hideki
Imai and Yuliang Zheng. Vol. 1431. Lecture Notes in Com-
puter Science. Pacifico Yokohama, Japan: Springer, Heidelberg,
Germany, Feb. 1998, pp. 117–134. doi: 10.1007/BFb0054019
(cit. on pp. 89, 129).

[Tur50] AM Turing. “Mind.” In: Mind 59.236 (1950), pp. 433–460 (cit.
on p. vii).

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/380752.380790
https://doi.org/10.1145/380752.380790
https://doi.org/10.1007/3-540-69053-0_18
http://eprint.iacr.org/2004/332
https://doi.org/10.1016/0022-0000(88)90035-9
https://doi.org/10.1016/0022-0000(88)90035-9
https://doi.org/10.1016/0022-0000(88)90035-9
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1109/SFCS.2000.892063
https://doi.org/10.1109/SFCS.2000.892063
https://doi.org/10.1007/s00037-005-0198-6
https://doi.org/10.1007/s00037-005-0198-6
https://doi.org/10.1007/BFb0054019

280 bibliography

[Val76] Leslie G. Valiant. “Relative Complexity of Checking and Evalu-
ating.” In: Inf. Process. Lett. 5.1 (1976), pp. 20–23. doi: 10.1016/
0020- 0190(76)90097- 1. url: https://doi.org/10.1016/
0020-0190(76)90097-1 (cit. on p. 94).

[vH04] Luis von Ahn and Nicholas J. Hopper. “Public-Key Steganog-
raphy.” In: Advances in Cryptology – EUROCRYPT 2004. Ed. by
Christian Cachin and Jan Camenisch. Vol. 3027. Lecture Notes
in Computer Science. Interlaken, Switzerland: Springer, Hei-
delberg, Germany, May 2004, pp. 323–341. doi: 10.1007/978-
3-540-24676-3_20 (cit. on pp. 232, 233).

[vHL05] Luis von Ahn, Nicholas J. Hopper, and John Langford. “Covert
two-party computation.” In: 37th Annual ACM Symposium on
Theory of Computing. Ed. by Harold N. Gabow and Ronald
Fagin. Baltimore, MA, USA: ACM Press, May 2005, pp. 513–
522. doi: 10.1145/1060590.1060668 (cit. on pp. 13, 147, 155,
245).

[Wat05] Brent R. Waters. “Efficient Identity-Based Encryption With-
out Random Oracles.” In: Advances in Cryptology – EURO-
CRYPT 2005. Ed. by Ronald Cramer. Vol. 3494. Lecture Notes
in Computer Science. Aarhus, Denmark: Springer, Heidelberg,
Germany, May 2005, pp. 114–127. doi: 10.1007/11426639_7
(cit. on p. 44).

[Wee04] Hoeteck Wee. “On Pseudoentropy versus Compressibility.” In:
19th Annual IEEE Conference on Computational Complexity (CCC
2004), 21-24 June 2004, Amherst, MA, USA. IEEE Computer
Society, 2004, pp. 29–41. doi: 10.1109/CCC.2004.1313782. url:
https://doi.org/10.1109/CCC.2004.1313782 (cit. on pp. 12,
147, 157, 162, 190).

[Wee05] Hoeteck Wee. “On obfuscating point functions.” In: 37th An-
nual ACM Symposium on Theory of Computing. Ed. by Harold N.
Gabow and Ronald Fagin. Baltimore, MA, USA: ACM Press,
May 2005, pp. 523–532. doi: 10.1145/1060590.1060669 (cit. on
p. 41).

[WW20] Hoeteck Wee and Daniel Wichs. Candidate Obfuscation via
Oblivious LWE Sampling. Cryptology ePrint Archive, Report
2020/1042. https://eprint.iacr.org/2020/1042. 2020 (cit.
on pp. 2, 17, 41, 158, 159, 245).

[WZ17] Daniel Wichs and Giorgos Zirdelis. “Obfuscating Compute-
and-Compare Programs under LWE.” In: 58th Annual Sympo-
sium on Foundations of Computer Science. Ed. by Chris Umans.
Berkeley, CA, USA: IEEE Computer Society Press, Oct. 2017,
pp. 600–611. doi: 10.1109/FOCS.2017.61 (cit. on p. 3).

[WS07] J. Wu and D.R. Stinson. An Efficient Identification Protocol and the
Knowledge-of-Exponent Assumption. Cryptology ePrint Archive,
Report 2007/479. http://eprint.iacr.org/2007/479. 2007

(cit. on pp. 9, 88, 109).

https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1145/1060590.1060668
https://doi.org/10.1007/11426639_7
https://doi.org/10.1109/CCC.2004.1313782
https://doi.org/10.1109/CCC.2004.1313782
https://doi.org/10.1145/1060590.1060669
https://eprint.iacr.org/2020/1042
https://doi.org/10.1109/FOCS.2017.61
http://eprint.iacr.org/2007/479

bibliography 281

[Yao82] Andrew Chi-Chih Yao. “Theory and Applications of Trapdoor
Functions (Extended Abstract).” In: 23rd Annual Symposium on
Foundations of Computer Science. Chicago, Illinois: IEEE Com-
puter Society Press, Nov. 1982, pp. 80–91. doi: 10.1109/SFCS.
1982.45 (cit. on pp. 21, 33, 157, 162, 190).

[Zha16] Mark Zhandry. “The Magic of ELFs.” In: Advances in Cryptology
– CRYPTO 2016, Part I. Ed. by Matthew Robshaw and Jonathan
Katz. Vol. 9814. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2016,
pp. 479–508. doi: 10.1007/978-3-662-53018-4_18 (cit. on
pp. 7, 42, 44, 45, 47–49, 153, 238–240).

[Zim15] Joe Zimmerman. “How to Obfuscate Programs Directly.” In:
Advances in Cryptology – EUROCRYPT 2015, Part II. Ed. by
Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture Notes
in Computer Science. Sofia, Bulgaria: Springer, Heidelberg,
Germany, Apr. 2015, pp. 439–467. doi: 10.1007/978-3-662-
46803-6_15 (cit. on p. 41).

[ZL77] Jacob Ziv and Abraham Lempel. “A universal algorithm for
sequential data compression.” In: IEEE Trans. Inf. Theory 23.3
(1977), pp. 337–343. doi: 10.1109/TIT.1977.1055714. url:
https://doi.org/10.1109/TIT.1977.1055714 (cit. on p. 12).

[ZL78] Jacob Ziv and Abraham Lempel. “Compression of individual
sequences via variable-rate coding.” In: IEEE Trans. Inf. Theory
24.5 (1978), pp. 530–536. doi: 10.1109/TIT.1978.1055934. url:
https://doi.org/10.1109/TIT.1978.1055934 (cit. on p. 12).

https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934

colophon
This document was typeset with LATEX 2ε using the typographical look-and-
feel classicthesis developed by André Miede and Ivo Pletikosić using
Hermann Zapf’s Palatino and Euler type faces (Type 1 PostScript fonts URW
Palladio L and FPL were used). The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”.

Final version as of June 15, 2021.

http://www.latex-project.org/

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Protecting Computations of Probabilistic Programs
	1.2 Protecting Computations in Cryptographic Groups
	1.3 Protecting Computations – Using Compression?
	1.4 Structure of this Thesis

	2 Preliminaries
	2.1 Notations
	2.2 Hardness Assumptions
	2.2.1 Efficient Falsifiability

	2.3 One-Way Functions
	2.4 Puncturable Pseudorandom Functions
	2.5 Obfuscation
	2.5.1 Probabilistic Indistinguishability Obfuscation

	2.6 Assuming Adversarial Knowledge
	2.7 Public-Key Encryption and its Variants
	2.7.1 Fully Homomorphic Encryption

	2.8 Non-Interactive Zero-Knowledge Proof Systems

	 Doubly-Probabilistic Indistinguishability Obfuscation
	3 Introduction
	3.1 Technical Overview

	4 Preliminaries
	4.1 Perfect Puncturable PRFs
	4.2 Extremely Lossy Functions
	4.2.1 Instantiating Extremely Lossy Functions

	5 Doubly-Probabilistic IO
	6 Construction
	6.1 Overview
	6.2 Constructing Doubly-Probabilistic IO

	7 Leveled Homomorphic Encryption

	 Instantiating the Algebraic Group Model from Obfuscation
	8 Introduction
	8.1 Technical Overview
	8.2 Related Work

	9 Preliminaries
	9.1 Notations and Cryptographic Groups
	9.2 The Algebraic Group Model
	9.3 Subset Membership Problem
	9.4 Dual-mode NIWI Proof System
	9.5 Re-Randomizable Public-Key Encryption

	10 Statistically Correct PIO
	10.1 Statistically Correct pIO
	10.2 Puncturable Pseudorandom Functions
	10.3 Construction

	11 How to Simulate Extraction
	11.1 Group Schemes and Wrappers
	11.2 An Algebraic Wrapper

	12 Construction
	12.1 Main Theorem and Security Analysis

	13 Signed ElGamal

	 On Pseudorandom Encodings
	14 Introduction
	14.1 Flavors of Pseudorandom Encodings
	14.1.1 Randomized, Computational Pseudorandom Encodings

	14.2 Implications of our Results
	14.2.1 New Results for Adaptively Secure Computation
	14.2.2 Steganography and Covert Multi-Party Computation
	14.2.3 Other Results

	14.3 Negative Results
	14.3.1 Deterministic, Statistical Pseudorandom Encodings
	14.3.2 Deterministic, Computational Pseudorandom Encodings
	14.3.3 Randomized, Statistical Pseudorandom Encodings

	14.4 Open questions and subsequent work
	14.5 Overview of Techniques

	15 The Pseudorandom Encoding Hypothesis
	15.1 The Pseudorandom Encoding Hypothesis with Setup
	15.2 Static-to-Adaptive Transformation

	16 Pseudorandom Encodings and Invertible Sampling
	16.1 The Invertible Sampling Hypothesis
	16.2 The Invertible Sampling Hypothesis with Setup
	16.3 Equivalence between PREH and ISH
	16.3.1 Every Inverse Samplable Distribution can be Pseudorandomly Encoded
	16.3.2 Every Pseudorandomly Encodable Distribution can be Inverse Sampled

	17 A Taxonomy of Pseudorandom Encodings
	17.1 Deterministic Encoding Algorithm
	17.1.1 Information-theoretic Guarantees and Compression
	17.1.2 Computational Guarantees and Pseudoentropy

	17.2 Randomized Encoding Algorithm
	17.2.1 (Generalized) Extractable One-way Functions
	17.2.2 Information-theoretic Guarantees and Privately Verifiable GEOWFs
	17.2.3 Computational Guarantees and EOWFs with Common Auxiliary Information

	17.3 Static Pseudorandom Encodings from IO
	17.4 Bootstrapping Pseudorandom Encodings with URC

	18 Applications of Pseudorandom Encodings
	18.1 Adaptively Secure Multi-Party Computation
	18.1.1 Adaptive MPC
	18.1.2 Pseudorandom Encodings Imply Adaptive MPC
	18.1.3 Adaptive MPC Implies Pseudorandom Encodings

	18.2 Honey Encryption
	18.3 Keyless Steganography
	18.4 Deniable Encryption
	18.5 Non-Committing Encryption
	18.6 Super-Polynomial Encoding

	Outlook and Further Directions
	19 Outlook and Further Directions
	 Bibliography
	Colophon

