4,840 research outputs found

    Simulation of microarray data with realistic characteristics

    Get PDF
    BACKGROUND: Microarray technologies have become common tools in biological research. As a result, a need for effective computational methods for data analysis has emerged. Numerous different algorithms have been proposed for analyzing the data. However, an objective evaluation of the proposed algorithms is not possible due to the lack of biological ground truth information. To overcome this fundamental problem, the use of simulated microarray data for algorithm validation has been proposed. RESULTS: We present a microarray simulation model which can be used to validate different kinds of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps that affect the quality of real microarray data. These steps include the simulation of biological ground truth data, applying biological and measurement technology specific error models, and finally simulating the microarray slide manufacturing and hybridization. After all these steps are taken into account, the simulated data has realistic biological and statistical characteristics. The applicability of the proposed model is demonstrated by several examples. CONCLUSION: The proposed microarray simulation model is modular and can be used in different kinds of applications. It includes several error models that have been proposed earlier and it can be used with different types of input data. The model can be used to simulate both spotted two-channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable tool for example in validation of data analysis algorithms

    GaGa: A parsimonious and flexible model for differential expression analysis

    Full text link
    Hierarchical models are a powerful tool for high-throughput data with a small to moderate number of replicates, as they allow sharing information across units of information, for example, genes. We propose two such models and show its increased sensitivity in microarray differential expression applications. We build on the gamma--gamma hierarchical model introduced by Kendziorski et al. [Statist. Med. 22 (2003) 3899--3914] and Newton et al. [Biostatistics 5 (2004) 155--176], by addressing important limitations that may have hampered its performance and its more widespread use. The models parsimoniously describe the expression of thousands of genes with a small number of hyper-parameters. This makes them easy to interpret and analytically tractable. The first model is a simple extension that improves the fit substantially with almost no increase in complexity. We propose a second extension that uses a mixture of gamma distributions to further improve the fit, at the expense of increased computational burden. We derive several approximations that significantly reduce the computational cost. We find that our models outperform the original formulation of the model, as well as some other popular methods for differential expression analysis. The improved performance is specially noticeable for the small sample sizes commonly encountered in high-throughput experiments. Our methods are implemented in the freely available Bioconductor gaga package.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS244 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    SPsimSeq : semi-parametric simulation of bulk and single-cell RNA-sequencing data

    Get PDF
    SPsimSeq is a semi-parametric simulation method to generate bulk and single-cell RNA-sequencing data. It is designed to simulate gene expression data with maximal retention of the characteristics of real data. It is reasonably flexible to accommodate a wide range of experimental scenarios, including different sample sizes, biological signals (differential expression) and confounding batch effects

    Bayesian testing of many hypotheses ×\times many genes: A study of sleep apnea

    Full text link
    Substantial statistical research has recently been devoted to the analysis of large-scale microarray experiments which provide a measure of the simultaneous expression of thousands of genes in a particular condition. A typical goal is the comparison of gene expression between two conditions (e.g., diseased vs. nondiseased) to detect genes which show differential expression. Classical hypothesis testing procedures have been applied to this problem and more recent work has employed sophisticated models that allow for the sharing of information across genes. However, many recent gene expression studies have an experimental design with several conditions that requires an even more involved hypothesis testing approach. In this paper, we use a hierarchical Bayesian model to address the situation where there are many hypotheses that must be simultaneously tested for each gene. In addition to having many hypotheses within each gene, our analysis also addresses the more typical multiple comparison issue of testing many genes simultaneously. We illustrate our approach with an application to a study of genes involved in obstructive sleep apnea in humans.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS241 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Differential meta-analysis of RNA-seq data from multiple studies

    Get PDF
    High-throughput sequencing is now regularly used for studies of the transcriptome (RNA-seq), particularly for comparisons among experimental conditions. For the time being, a limited number of biological replicates are typically considered in such experiments, leading to low detection power for differential expression. As their cost continues to decrease, it is likely that additional follow-up studies will be conducted to re-address the same biological question. We demonstrate how p-value combination techniques previously used for microarray meta-analyses can be used for the differential analysis of RNA-seq data from multiple related studies. These techniques are compared to a negative binomial generalized linear model (GLM) including a fixed study effect on simulated data and real data on human melanoma cell lines. The GLM with fixed study effect performed well for low inter-study variation and small numbers of studies, but was outperformed by the meta-analysis methods for moderate to large inter-study variability and larger numbers of studies. To conclude, the p-value combination techniques illustrated here are a valuable tool to perform differential meta-analyses of RNA-seq data by appropriately accounting for biological and technical variability within studies as well as additional study-specific effects. An R package metaRNASeq is available on the R Forge

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity

    On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments

    Get PDF
    Background: In gene expression studies, RNA sample pooling is sometimes considered because of budget constraints or lack of sufficient input material. Using microarray technology, RNA sample pooling strategies have been reported to optimize both the cost of data generation as well as the statistical power for differential gene expression (DGE) analysis. For RNA sequencing, with its different quantitative output in terms of counts and tunable dynamic range, the adequacy and empirical validation of RNA sample pooling strategies have not yet been evaluated. In this study, we comprehensively assessed the utility of pooling strategies in RNA-seq experiments using empirical and simulated RNA-seq datasets. Result: The data generating model in pooled experiments is defined mathematically to evaluate the mean and variability of gene expression estimates. The model is further used to examine the trade-off between the statistical power of testing for DGE and the data generating costs. Empirical assessment of pooling strategies is done through analysis of RNA-seq datasets under various pooling and non-pooling experimental settings. Simulation study is also used to rank experimental scenarios with respect to the rate of false and true discoveries in DGE analysis. The results demonstrate that pooling strategies in RNA-seq studies can be both cost-effective and powerful when the number of pools, pool size and sequencing depth are optimally defined. Conclusion: For high within-group gene expression variability, small RNA sample pools are effective to reduce the variability and compensate for the loss of the number of replicates. Unlike the typical cost-saving strategies, such as reducing sequencing depth or number of RNA samples (replicates), an adequate pooling strategy is effective in maintaining the power of testing DGE for genes with low to medium abundance levels, along with a substantial reduction of the total cost of the experiment. In general, pooling RNA samples or pooling RNA samples in conjunction with moderate reduction of the sequencing depth can be good options to optimize the cost and maintain the power

    Reverse engineering of genetic networks with Bayesian networks

    Get PDF
    This paper provides a brief introduction to learning Bayesian networks from gene-expression data. The method is contrasted with other approaches to the reverse engineering of biochemical networks, and the Bayesian learning paradigm is briefly described. The article demonstrates an application to a simple synthetic toy problem and evaluates the inference performance in terms of ROC (receiver operator characteristic) curves
    corecore