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ABSTRACT

In computational sciences, including computational statistics, machine learning, and

bioinformatics, most abstracts of articles presenting new supervised learning meth-

ods end with a sentence like “our method performed better than existing methods

on real data sets”, e.g. in terms of error rate. However, these claims are often

not based on proper statistical tests and, if such tests are performed (as usual in

the machine learning literature), the tested hypothesis is not clearly defined and

poor attention is devoted to the type I and type II error. In the present paper

we aim to fill this gap by providing a proper statistical framework for hypothesis

tests comparing the performance of supervised learning methods based on several

real data sets with unknown underlying distribution. After giving a statistical in-

terpretation of ad-hoc tests commonly performed by machine learning scientists,

we devote special attention to power issues and suggest a simple method to de-

termine the number of data sets to be included in a comparison study to reach

an adequate power. These methods are illustrated through three comparison stud-

ies from the literature and an exemplary benchmarking study using gene expres-

sion microarray data. All our results can be reproduced using R-codes and data

sets available from the companion website http://www.ibe.med.uni-muenchen.

de/organisation/mitarbeiter/020_professuren/boulesteix/compstud2013.
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1. INTRODUCTION

Almost all machine learning or computational statistics articles on supervised learn-

ing methods include a more or less extensive comparison study based on real data

sets of moderate size assessing the respective performance (typically in terms of

prediction error) of a few algorithms, either new or already described in previous

literature. These comparisons are often termed as “benchmark experiments” (e.g.

Hothorn et al., 2005) in the statistical and machine learning communities.

However, the statistical foundations of these comparisons are usually given sur-

prisingly poor attention in concrete comparison studies, although they are addressed

in a large body of methodological literature. For simplicity we will from now on talk

about the comparison of two supervised classification methods, but all the ideas

discussed here are also relevant to the comparison of more than two methods or

to other supervised learning problems. These two methods are used to derive a

“classification rule” from an available training sample.

In a seminal paper Dietterich (1998) proposes a general taxonomy of the prob-

lems related to performance evaluation and comparison in supervised learning. The

comparison of two methods for a particular distribution in the absence of large

sample is termed “Question 8” while Questions 1 to 7 consider error estimation (as

opposed to comparison of methods), situations with large samples, and/or the as-

sessment of specific classification rules (as opposed to the problem – considered here

– of the assessment of the methods used to derive classification rules). The paper

considers a few simple testing procedures based on resampling-based estimates of

the prediction error and compares them empirically via simulations in terms of type

I error and power. The conclusion is that none of these procedures is completely

satisfactory. The essential problem is that they do not use adequate estimates of the

unconditional variance of the error estimates. Estimating the unconditional variance

based on the empirical variance over resampling iterations implies a violation of in-

dependence assumptions and thus a reduction of the effective degrees of freedom
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(Bouckaert, 2003).

Nadeau and Bengio (2003) provide an overview of estimators of the unconditional

variance of resampling-based error estimates used in the machine learning commu-

nity and suggest two additional estimators that can be applied to error estimators

obtained through repeated splitting into training and test data. They present bench-

mark experiments as a natural application of their new estimators and stress that

naive estimators of the variance (e.g. the empirical variance of the estimated error

over resampling iterations) often lead to false positives in the sense that researchers

see a difference in performance between the considered methods although there is

no such difference. Hothorn et al. (2005) give a statistical interpretation of these

issues and recommend to estimate the variance of resampling-based error estimates

through bootstrapping.

Dietterich (1998) also mentions a further question termed as “Question 9” in his

taxonomy and referring to several domains, where the term “domain” here denotes

a data set with its own underlying distribution:

“Question 9: Given two learning algorithms A and B and data sets from

several domains, which algorithm will produce more accurate classifiers

when trained on examples from new domains? This is perhaps the most

fundamental and difficult question in machine learning.”

Indeed, almost all comparison studies based on real data consider not one but sev-

eral data sets, thus implicitly involving several different underlying distributions.

While it is usual to perform hypothesis tests to compare the performance of differ-

ent methods in the context of benchmarkring studies (Demšar, 2006), the literature

on the statistical interpretation of such tests based on multiple data sets is surpris-

ingly sparse. One of the few articles on this topic suggests to use a mixed model

approach with the data sets as subjects with random intercept and the methods as

fixed effects (Eugster et al., 2012).
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In this paper, our aim is to give a statistical formulation of tests performed

in the context of comparison studies and to correspondingly interpret results of

published comparison studies, with focus on classification based on high-dimensional

gene expression data as an highlighting illustration. The paper is structured as

follows. In Section 2 we outline the epistemological background of comparisons of

prediction errors from a statistical perspective contrasting with the machine learning

perspective taken by most papers handling this topic. Section 3 is especially devoted

to tests in the context of comparison studies based on several real data sets and gives

an original formulation of these tests in a strict statistical framework. In particular,

Section 3 suggests a power calculation approach in this context. Section 4 presents an

application of these methods to three comparison studies of classification methods

for microarray data from the literature, while Section 5 describes an exemplary

benchmark study based on 50 data sets. The appendix contains some technicalities

which are needed for the mathematically rigorous formulation of the testing problem

given in Section 3.

2. EPISTEMOLOGICAL BACKGROUND

Settings

From a statistical point of view, binary supervised classification can be described in

the following way. On the one hand, we have a response variable taking values in Y

= {0, 1}. On the other hand, we have predictors taking values in X ⊂ Rp that will

be used for constructing a classification rule. Predictors X and response Y follow

an unknown joint distribution on X × Y denoted by P . The observed i.i.d. sample

of size n is denoted by s0 = {(x1, y1)...(xn, yn)}. The classification task consists in

building a decision function f̂ that maps elements of the predictor space X into the
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response space Y :

f̂ s0 : X 7→ Y ,

x 7→ f̂ s0(x),

where the superscript s0 indicates that the decision function is built using the sample

s0. For simplicity we assume that the classification method is deterministic, i.e. that

f̂ s0 is uniquely defined given the sample s0. There are many possible methods to fit

a function f̂ s0 based on a sample s0, which we denote as M1, . . . ,MK . The decision

function obtained by fitting method Mk to the sample s0 is denoted as f̂ s0Mk
.

The true error of this classification rule f̂ s0Mk
can be written as

ε(f̂ s0Mk
, P ) = EP

[
L
(
f̂ s0Mk

(X), Y
)]

(1)

where EP stands for the mean over the joint distribution P of X and Y , and L(., .)

is an adequate loss function, e.g. the indicator loss yielding the classification error

rate considered in this paper.

The true error ε(f̂ s0Mk
, P ) of method Mk constructed using sample s0 is com-

monly referred to as conditional error since it corresponds to the decision function

constructed on the specific sample s0. The notation ε(f̂ s0Mk
, P ) stresses that this error

depends on the distribution P as well as on the method Mk and sample s0 used to

fit the classification rule.

In this perspective, the error ε(f̂SMk
, P ) (corresponding to Eq. (1) with s0 replaced

by S) should be seen as a random variable, where S stands for a random i.i.d.

sample that follows the distribution P n. The mean of this random variable over P n

is commonly referred to as the unconditional true error rate of method Mk. In this

paper it is denoted as

ε(n,Mk, P ) = EPn [ε(f̂SMk
, P )].

It depends only on the method Mk, on the size n of the sample and on the joint
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distribution P of X and Y . Note that the joint distribution P is involved twice in

this formula.

Method 2 is “better” than method 1: what does this mean?

Now suppose that we are interested in the relative performance of two methods M1

and M2. What does it mean when we ask whether method M2 is “better” than

method M1 or vice-versa? An applicant (for instance a biologist) who collected a

specific data set s0 in his lab is primarily interested in whether the classification

rule f̂ s0M2
fitted with method M2 has a smaller error on future independent data

than the classification rule f̂ s0M1
fitted with method M1 or vice-versa, i.e. whether

ε(f̂ s0M2
, P ) < ε(f̂ s0M1

, P ). We define the null- and alternative hypotheses of the appli-

cant correspondingly as

H
(cond)
0 : ε(f̂ s0M2

, P ) − ε(f̂ s0M1
, P ) ≥ 0

vs. H
(cond)
1 : ε(f̂ s0M2

, P ) − ε(f̂ s0M1
, P ) < 0.

These hypotheses can be seen as conditional (hence the exponent “(cond)”) in the

sense that they are conditional on a fixed sample s0.

In contrast, statisticians or machine learners doing methodological research are

not primarily interested in the performance of the classification rule fitted on a

specific sample s0 but rather on the mean performance over different samples. In

mathematical words, they are interested in the comparison of the unconditional

errors ε(n,M1, P ) and ε(n,M2, P ), yielding the corresponding hypotheses:

H
(uncond)
0 : ε(n,M2, P ) − ε(n,M1, P ) ≥ 0

vs. H
(uncond)
1 : ε(n,M2, P ) − ε(n,M1, P ) < 0,

with the exponent “(uncond)” standing for “unconditional”. When methodological

researchers write that method M2 is better than the standard method M1, they
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implicitly mean that the unconditional error is smaller for M2 than for M1 and that

H
(uncond)
0 can be rejected.

In practical data analysis, when the distribution P is unknown, it is not easy

to test H
(uncond)
0 . A natural estimator of the difference ε(n,M2, P ) − ε(n,M1, P )

is the difference between resampling-based error estimates obtained with the two

considered methods, e.g. cross-validation error estimates. The problem is that the

true unconditional variance of this difference under H
(uncond)
0 is unknown and difficult

to estimate. Many naive or more complex estimates of this variance have been

considered in the literature (Dietterich, 1998; Nadeau and Bengio, 2003; Hanczar

and Dougherty, 2010), but they rely on uncertain assumptions that are most often

not met in practical cases. The essential problem is that they are all based on the

available sample s0, while their target is actually the variance over different samples

drawn from P n. Hence, they are all conditional in some way. To date, there exists

no widely accepted test for testing H
(uncond)
0 based on a real data set with unknown

underlying distribution.

Epistemological background: theory and simulations

For a given distribution P and a specific n, however, it is easy to empirically ap-

proximate the unconditional error ε(n,M1, P ) of a given classification method M1

via simulations. A straightforward procedure is as follows:

1. Randomly draw a huge number ntest of independent realizations of P , yielding

a so-called “test sample” s(T ) = {(x(T )
1 , y

(T )
1 ), . . . , (x

(T )
ntest , y

(T )
ntest)}. For instance,

ntest = 10000 may be appropriate.

2. For b = 1, . . . , B, with B large (typically B ≥ 1000):

2.a. Draw n i.i.d. realizations from the distribution P , yielding the training

sample s(b) = ((x
(b)
1 , y

(b)
1 ), . . . , (x

(b)
n , y

(b)
n )).

2.b. Fit method M1 to s(b), yielding the classification rule f̂ s
(b)

M1
.
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2.c. Estimate the true error of f̂ s
(b)

M1
based on the test sample drawn in step 1

as the proportion of misclassified realizations in the test sample

ε̂(f̂ s
(b)

M1
, P ) =

1

ntest

ntest∑

i=1

L(f̂ s
(b)

M1
(x

(T )
i ), y

(T )
i ).

3. Estimate the true unconditional error ε(n,M1, P ) as

ε̂(n,M1, P ) =
1

B

B∑

b=1

ε̂(f̂ s
(b)

M1
, P ).

Note that this approach implies two embedded approximation procedures: approx-

imation of the true error of f̂ s
(b)

M1
using a huge test sample s(T ), and approximation

of the unconditional error over P n by averaging over a large number B of random

training samples s(b).

Note that in specific cases, the unconditional error might even be derived ana-

lytically. No matter whether one derives this error analytically or via simulations,

two parameters have to be chosen: the sample size n and the joint distribution P .

Except for trivial examples (e.g. an algorithm that randomly generates a rule f

without looking at the data), it is not to be expected that the new method M2 per-

forms better than the standard method M1 for all sample sizes and all imaginable

joint distributions – the so-called “no free lunch”-theorem (Wolpert, 2001).

Epistemological background: real data study

The essential limitation of simulations and analytical results is that the chosen distri-

bution P often does not reflect the complexity of “real life distributions”. Therefore,

performance estimation on real data is usually considered as extremely important.

In essence, the goal of such studies is to evaluate the considered classification meth-

ods M1 and M2 on“real life distributions”P , i.e. to compare ε(n,Mk, P ) for k = 1, 2.

There are however two important problems related to real data studies.
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The first problem (“variability of error estimation”) is related to the fact that for

a specific data set the underlying distribution P is essentially unknown in practice.

It is thus impossible to derive the prediction error analytically. If a huge sample is

given, we can obtain a good approximation by drawing numerous non-overlapping

samples of the considered size n out of the huge sample, and estimating the error on

the rest of the sample. However, in most practical situations no huge samples are

given and resampling methods are then used to address this estimation issue. Such

methods, however, are known to poorly estimate the unconditional error because

they suffer a very high variance and/or a high bias resulting in a large mean squared

error (Braga-Neto and Dougherty, 2005; Zollanvari et al., 2009; Dougherty et al.,

2011; Zollanvari et al., 2011; Dalton and Dougherty, 2012a,b).

The second problem (“variability across data sets”) is that each real life data set

follows its own distribution. In the example of microarray gene expression data, the

leukemia data set of size n = 38 by Golub et al. (1999) follows a certain distribution

P1 while the breast cancer data set of size n = 76 by Van’t Veer et al. (2002) follows

another distribution P2. Even if we had a good estimate of the unconditional error

ε(n = 38,M1, P1) for method M1, it would tell us nothing about ε(n = 38,M1, P2)

and ε(n = 76,M1, P2), except if we assume that P2 is somehow “similar” to P1, an

assumption that may make sense in some exceptional cases, but not in general. When

researchers perform a real data study based on several data sets, they implicitly aim

to capture the variability across data sets, i.e. across distributions.

A problem related to the variability across data sets is the definition of the aimed

area of application. It can be defined in a very general way without restrictions,

or the authors may choose to focus on a very particular area of application with

restrictions regarding the structure of the data and/or the substantive context of the

data sets. No matter how the area of application is defined and how example data

sets are selected, the two sources of variability (variability of error estimation and

variability across data sets) imply a high variance. The variance of error estimation
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can be addressed by using an estimation method known to have smaller variance:

for instance, we know that repeated subsampling with a training/test splitting ratio

of, say, 2:1 has smaller (unconditional) variance than leave-one-out cross-validation

(LOOCV). However, the variance remains high even for the less variable methods.

As to the variability across data sets, it can only be addressed by increasing the

number of candidate data sets.

Therefore – after motivating the issues with an illustrative exemplary scenario –

we formally address the problem of testing the difference between the unconditional

errors of two methods M1 and M2 in a real data study with several data sets and

suggest a statistical framework, including power considerations.

Examples

Suppose that authors want to compare two simple statistical procedures for super-

vised classification based on high-dimensional microarray data to be used after a

variable selection step: linear discriminant analysis (method A, considered as the

reference), and diagonal linear discriminant analysis (method B, considered as a new

method suggested by the authors).

Method B is expected to work well if the covariance matrix is indeed diagonal

(which depends on P ). Method A may have problems if the sample size n is not

large compared to the number of predictors (which also depends on P via the di-

mension of X), because the estimated covariance matrix is then ill-conditioned and

it inversion is problematic. But it may work well if the true model implied by the

distribution P involves correlations between the variables and if n is large enough.

Quite generally, for learning algorithms based on the estimation of parameters of a

stochastic model, the closer the assumed model to the true distribution P , the better

the prediction accuracy in infinite sample settings. Things are more complicated for

learning algorithms that are not based on an underlying stochastic model and in

finite sample settings, but we can again say that the error essentially depends on n
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and P .

When evaluating methods based on simulated data, the choice of the distribution

P and the sample size n is thus crucial. A particular distribution and a particular

sample size n can be realistic in a considered area of application, but not realistic for

another one. In practice, it is recommended that researchers consider distributions

and sample sizes that are typical for the area of application they are aiming at.

For example, a sample size of n = 100 and a distribution P involving p = 10000

multivariate Gaussian covariates with block diagonal structure, of which p∗ = 20 are

related to the response class Y through a logistic model may more or less reflect the

reality of microarray gene-expression data, but not of large epidemiological studies

involving only a handful of covariates, or of imaging data with complex spatial

structure.

In practice, methodological researchers often develop methods addressing a par-

ticular type of distribution P (sometimes combined with a particular sample size

range). They correspondingly design a simulation study based on such a distribution

and/or sample size. For instance, the authors comparing methods A and B would

probably consider simulation settings with diagonal covariance structure. While it

is obviously more than recommended to evaluate the new classification method in

the data setting it was designed for, it is also recommended to i) clearly state that

the superiority of the new method is specific to the investigated distributions (here:

diagonal covariance matrix), ii) investigate other distributions as well to examine

the robustness of the method to changes in the distribution (e.g. distributions with

block-diagonal covariance matrix).

In real life, the data do not stem from simple joint distributions like those com-

monly used in simulations. That is why real life comparison studies are considered

as very important in computational science. If we refer again to the example of

methods A and B, the success of classification method B in the real data study with

microarray data then depends on three essential factors: i) whether the considered
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data sets have a diagonal covariance structure, ii) how the new method performs if

the structure is indeed diagonal, iii) whether the method is robust against deviations

from the diagonal covariance structure. Obviously, method B will comparatively per-

form better in the real data study if condition i) holds. And it will have more impact

in the future if diagonal covariance structures often occur not only in the selected

data sets but in the whole considered area of application.

More generally, we can say that the data sets selected for the real data study

should reflect the aimed area of application. For example, if one consciously selects

microarray gene expression data with diagonal covariance structure, the real data

analysis section should not be written as if the area of application were “microarray

gene expression data” in general. Conversely, one could say that data sets should

be selected randomly within the stated field of application. Most importantly, data

sets should not be selected a posteriori based on the obtained results, because this

procedure generates a substantial bias (Yousefi et al., 2010).

3. TESTING FRAMEWORK FOR REAL DATA STUDIES

Settings

Webb (2000) states that “it is debatable whether error rates in different domains

[where the term domain here refers to the underlying joint distribution] are commen-

surable, and hence whether averaging error rates across domains is very meaningful.

Nonetheless, a low average error rate is indicative of a tendency toward low error

rates for individual domains.” In this section, we try to address this issue in terms

of statistical testing. More precisely, we consider the problem of “testing the error

difference” between two methods M1 and M2 based on several real-life data sets.

The first task we have to address is thus to properly define the testing problem at

hand.

Let us consider a given area of application. We independently and randomly
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draw J data sets belonging to this area. It is questionable whether the selection of

data sets would really be random over the area in practice. For example, researchers

may preferably look for data sets in their favorite database. This database is not

necessarily representative for the whole area, for instance because it includes, say,

many small data sets (the distribution of n is then not the same as in the whole

area) or more data sets for a particular disease (possibly implying specific forms for

P ). For simplicity, however, we assume in this paper that the data sets are randomly

drawn from the considered area.

These data sets are denoted as D1, . . . , DJ . We intentionally do not use the

notation S from the previous section to stress that the situation is now different:

the data sets D1, . . . , DJ are not drawn from the same distribution (as was the case

for s(1), . . . , s(b) in the previous section). Each data set Dj is as a realization of

P
nj

j , where nj is its size and Pj is the distribution of the underlying population.

As we assume that data sets are randomly drawn from the considered area, the

distribution Pj is the outcome of a random variable Φj : Ω→ V where V is the set

of all possible distributions (in the area of application). Furthermore, the size nj

of the data set Dj is the outcome of a random variable Nj : Ω → N. The random

variables (Φ1, N1), . . . , (ΦJ , NJ) are i.i.d. but, of course, we only observe Nj = nj

and cannot observe Φj = Pj for every j ∈ {1, . . . , J}.

Test hypothesis

When randomly drawing a data set D, one thus implicitly randomly draws simulta-

neously a distribution P and n realizations of this distribution. Both imply a certain

variability. Importantly, P can now be seen as the outcome of a random variable

Φ and n as the outcome of a random variable N . Note that Φ and N are not nec-

essarily independent. The test hypotheses of interest that are implicitly considered

when comparing the performance of methods based on different real data sets can
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be stated as

H
(real)
0 : E(ε(N,M2,Φ)) − E(ε(N,M1,Φ)) ≥ 0

vs. H
(real)
1 : E(ε(N,M2,Φ)) − E(ε(N,M1,Φ)) < 0,

where E denotes the expectation over the random variables Φ and N here. Accord-

ingly, ε(n,Mk, P ) is now the outcome of the random variable ε(N,Mk,Φ), k ∈ {1, 2}.

In comparison studies based on real data, researchers typically estimate the er-

ror for each data set using a resampling procedure such as, e.g., repeated splitting

into training and test set. Let e(n,Mk, D) denote the error of method Mk esti-

mated for data set D with the chosen resampling procedure. The estimated error

e(n,Mk, D) can be seen as an estimator of the unknown parameter ε(n,Mk, P ). In

resampling procedures, however, the training data set used at each resampling itera-

tion is smaller than n, hence leading to an error e(n,Mk, D) larger than ε(n,Mk, P )

on average. Nevertheless, if we assume that this bias is equal for both considered

methods M1 and M2, i.e. that

EPn(e(n,M1, D))− ε(n,M1, P ) = EPn(e(n,M2, D))− ε(n,M2, P ),

we have

ε(n,M2, P )− ε(n,M1, P ) = EPn(e(n,M2, D)− e(n,M1, D)) (2)

where EPn denotes the expectation over the data setD drawn i.i.d. from P . The data

set D can be seen as the outcome of a random variable D of which the conditional

distribution given Φ = P and N = n is equal to P n. Then, using the relation

E
(
E(e(N,M2,D)− e(N,M1,D)|Φ, N)

)
= E(e(N,M2,D)− e(N,M1,D)), (3)
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we can formulate the null-hypothesis H
(real)
0 as

H
(real)
0 : E(e(N,M2,D) − E(e(N,M1,D) ≥ 0

vs. H
(real)
1 : E(e(N,M2,D) − E(e(N,M1,D) < 0.

This formulation is advantageous because we have access to independent and iden-

tically distributed realizations e(nj,M2, Dj) − e(nj,M1, Dj) (with j = 1, . . . , J) of

e(N,M2,D)−e(N,M1,D), thus yielding estimates of its mean and its variance. Note

that the exact measure theoretic formulation of (3) needs some more care because:

(i) Φ is a random variable which takes its values in a set V of probability measures P

so that we need a suitable σ-algebra on V , (ii) the size n = N of the data set D = D

is random so that a naive formalization would yield that D ∈ (X × Y)N where the

dimension N is random, and (iii) the existence of a suitable random variable D (of

which the conditional distribution given Φ = P and N = n is equal to P n) is not

obvious. The mathematically correct derivation of the above testing problem which

takes care of these technicalities is deferred to the appendix.

Let ∆e(nj, Dj) = e(nj,M2, Dj) − e(nj,M1, Dj) (with j = 1, . . . , J) be indepen-

dent and identically distributed realizations of e(N,M2,D)−e(N,M1,D) and define

∆e = 1
J

∑J
j=1 ∆e(nj, Dj). Under normality assumption or for very large J it is now

possible to perform a paired sample t-test to test H
(real)
0 . The test statistic

T =
∆e√

1
J

1
J−1

∑J
j=1(∆e(nj, Dj)−∆e)2

follows a Student distribution with J−1 degrees of freedom under H
(real)
0 . This type

of test is performed in many machine learning studies, where it is usual to apply new

and existing methods to a large number of data sets (Demšar, 2006), for instance

from databases especially designed for this purpose. Non-parametric tests such as

the Wilcoxon signed-rank test are also commonly applied in this context (Demšar,

2006) including adjustment procedures for multiple comparisons or the use of global
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test statistics for the comparison of more than two methods (Garcia and Herrera,

2008; Garcia et al., 2010). When authors state in their abstracts that “the new

method performs better than existing methods on real data sets”, they implicitly

say that H
(real)
0 can be rejected, although most of them do not perform the test and

give almost no attention to the theoretical background of these tests.

Decomposition of the variance

The variance term Var(∆e(N,D)) consists of two parts: firstly, the variance of

∆e(N,D) conditional on the distribution Φ = P and the sample size N = n; sec-

ondly, the variance of ε(N,M2,Φ)− ε(N,M1,Φ):

Var(∆e(N,D)) = Var
(
ε(N,M2,Φ)− ε(N,M1,Φ)

)
+ E

(
Var(∆e(N,D)|Φ, N)

)
.(4)

Essentially, this follows from the law of total variance, Equation (2), and the fact

that the conditional distribution of D given Φ = P and N = n is equal to P n; the

exact derivation needs some more care again and is deferred to the appendix.

The literature on error estimation and comparison usually focuses on the second

part of the variance in (4): several estimators have been proposed (Nadeau and Ben-

gio, 2003). The first part of the variance is considered as disturbing factor by many

authors. Data sets that behave differently from the other are generally considered

as cumbersome outliers and sometimes even excluded from the comparison study,

possibly leading to a substantial bias (Yousefi et al., 2010).

This part of the variance is also tightly related to the optimistic bias commonly

observed in studies assessing new methods in comparison studies (Jelizarow et al.,

2010). Researchers tend to overfit their new method to specific example data sets

while developing them. The variance across data sets being high, this new method

that has been optimized to these particular data sets is likely to perform much worse

on other data sets.
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Power considerations

Considering the one-sided one-sample t-test outlined above, the number J of data

sets necessary to detect a given effect size ∆
σ

at a certain power 1−β can be derived

from the formula

J ≈ [t1−α,J−1 + t1−β,J−1]2

(∆
σ

)2
,

where tα,df denotes the α-quantile of the Student distribution with df degrees of

freedom, α denotes the type I error (typically α = 0.05), β denotes the type II

error, ∆ denotes the difference that we want to be able to detect, and σ denotes the

standard deviation (Bock, 1998).

Conversely, for a given J , a given ∆ and a given σ, one can also compute the

power 1− β of the test as

1− β = Φtdf=J−1

(√
J · ∆2

σ2
− t1−α,df=J−1

)
,

where Φtdf=J−1
denotes the cumulative distribution function of the Student distri-

bution with J − 1 degrees of freedom. It is common practice to use such formulas

to derive the adequate sample size in various types of experiments including, e.g.

animal trials or clinical trials. Such a statistical planning, however, is never con-

sidered when performing benchmark experiments, even if the researchers want to

eventually perform statistical tests. In this paper, we suggest to also give attention

to such power considerations when planning or performing a comparison study in-

volving several data sets. These issues are illustrated in the next section through an

application to comparison studies of microarray-based classification methods.

4. ILLUSTRATION: POWER OF PUBLISHED STUDIES

In this section we examine comparison studies from the literature on microarray-

based supervised classification with respect to the issue discussed above. In par-
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ticular, we compute the empirical variance of the difference between methods and

estimate the power of the comparisons.

Considered studies

We selected comparison studies (i) whose aim was not to establish the superiority

of a “new method”, hence warranting a certain level of neutrality (Boulesteix et al.,

2008; Boulesteix and Eugster, 2012), (ii) focusing on diagnosis or prognosis based on

high-dimensional gene expression microarray data, (iii) representing the estimated

error rates in form of a table (thus providing access to the exact figures) rather than

in form of graphics, (iv) examining at least five data sets N ≥ 5 and at least five

classification methods. Three of the considered comparison studies fulfilled these

four criteria: the study by Lee et al. (2005) comparing six methods on six cancer

sdata sets, the study by Lai et al. (2006) comparing 13 methods on seven cancer

data sets, and the study by Statnikov et al. (2005) comparing eight methods on 11

cancer data sets.

Standard deviation

We first derived the standard deviation of each pairwise difference between methods

for each study. There were 6 · 5/2 = 15 pairwise differences for the Lee study, 13 ·

12/2 = 78 pairwise differences for the Lai study, and 8 ·7/2 = 28 pairwise differences

for the Statnikov study. The boxplots representing the standard deviations of these

pairwise differences are displayed in Figure 1.

It can be seen from these boxplots that the range of the standard deviations is

surprisingly the same for the three studies, except for a few more extreme values for

the Statnikov study. Furthermore, the standard deviations are very different within

the studies: some pairs of methods have a very low standard deviation (indicating

that the data sets are similar with respect to the difference in performance), while

other show large standard deviations.
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Figure 1: Estimated standard deviation of ∆e(nj, Dj) in the three studies by Lee
et al. (2005), Lai et al. (2006) and Statnikov et al. (2005).

Power considerations

Assuming values of the standard deviation σ in the range of those observed in the

three investigated studies, Figure 2 (left panel) represents the number J of data sets

required to detect a difference of error rate of ∆ with power 80%. The right panel of

Figure 2 displays the reached power against the number of data sets J for ∆ = 0.05

and different values of the standard deviation σ in the range of those observed in

the three investigated studies. This figure suggests that most published comparison

studies (either neutral comparison studies or comparison studies included in an

original article) are substantially underpowered. In this perspective, we propose and

recommend that researchers conducting comparison studies explicitly address such

power issues for the design and/or interpretation of their benchmark experiments.

5. AN EXEMPLARY BENCHMARK STUDY

In order to explicitly illustrate these problems in real benchmark experi-

ments we perform an exemplary benchmark study based on J = 50 mi-

croarray data sets with binary response as prepared by de Souza et al.
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Figure 2: Left: Number J of data sets requested to detect ∆ for different values of
σ (black: σ = 0.03, red: σ = 0.05, green: σ = 0.075, blue: σ = 0.1) and power=80%
and Right: Power to detect a difference of ∆ = 0.05 for different values of σ (black:
σ = 0.03, red: σ = 0.05, green: σ = 0.075, blue: σ = 0.1).

(2010). These data sets and corresponding R Code are available from

our companion website http://www.ibe.med.uni-muenchen.de/organisation/

mitarbeiter/020_professuren/boulesteix/compstud2013. For each data set,

repeated subsampling with 4/5 of the observations in the training sets and 300

resampling iterations is used for error estimation.

The considered classification methods are: i) diagonal linear discriminant anal-

ysis (DLDA) without variable selection (DLDA-all), ii) DLDA with 500 selected

variables (DLDA-500), iii) DLDA with 20 selected variables (DLDA-20), and iv)

DLDA with 10 selected variables (DLDA-10). Variable selection is performed by se-

lecting the variables yielding the smallest p-values when testing the equality of the

means in the two groups Y = 0/1 with a classical t-test. All analyses are performed

using the Bioconductor package CMA (Slawski et al., 2008).

Figure 3 displays the boxplots of the estimated errors over the 50 data sets using

the four considered classification methods (top) and the boxplots of the six pairwise

differences (bottom) also showing their respective standard deviation. It can be

clearly seen from this figure that the standard deviations of the differences vary a

lot depending on the considered pair of methods and that their range is the similar
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Figure 3: Top: Boxplots of the estimated errors over the 50 data sets using the four
considered classification methods. Bottom: Boxplots of the six pairwise differences
also showing their respective standard deviation. The gray lines connect points
corresponding to the same data set.

to the values observed in the comparison studies from the literature discussed in the

previous section. The results of the power considerations presented in Figure 2 are

thus also relevant to our exemplary benchmark study.

Matched-pair t-test Wilcoxon test
Comparison Difference t p-value W p-value
DLDA-all vs. DLDA-500 0.038 4.22 5e-05 1065 2e-05
DLDA-all vs. DLDA-20 0.045 3.252 0.00104 926 0.00272
DLDA-all vs. DLDA-10 0.036 2.466 0.0086 866 0.01387
DLDA-500 vs. DLDA-20 0.007 0.875 0.19298 725 0.2005
DLDA-10 vs. DLDA-500 0.002 0.198 0.4221 622 0.46433
DLDA-10 vs. DLDA-20 0.009 3.823 0.00019 999 0.00025

Table 1: Results of the one-sided matched-pair t-test and one-sided Wilcoxon-
ranked-sum test for all six pairwise comparisons of differences in the error rates
over the 50 data sets when testing hypothesis H

(real)
0 vs. H

(real)
1 . For each compari-

son, the first method plays the role of M1 and the second method plays the role of
M2.

The results of the one-sided matched-pair t-test and one-sided Wilcoxon-signed-
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rank-test for the six considered pairs of methods are displayed in Table 1. Four

of the six pairwise differences between error rates are statistically significant when

tested at an α-level of 0.05 using the parametric matched-pair t-test and the non-

parametric Wilcoxon-signed-rank-test. The largest difference of ∆ = 0.045 can be

found between DLDA-all and DLDA-20, where the standard deviation is as large as

0.1. The results from Table outline the importance of the standard deviation of the

difference: the comparisons DLDA-all vs. DLDA-500 and DLDA-all vs. DLDA-10

yield almost equal means differences (0.038 and 0.036, respectively) but the first

comparison leads to a much lower p-value due to the smaller standard deviation

of 0.06 (see Figure 3). Similarly, the mean difference for the comparison DLDA-10

vs. DLDA-20 is moderate (0.009) but yields small p-values due to the very small

standard deviation of 0.02.

On the whole, these results again stress the importance of a sufficient number

of data sets in comparison studies, especially in the context of high-dimensional

data investigated in our example. Differences between methods are often moderate

and their standard deviations may be comparatively large, thus making comparison

studies based on the usual number of, say, 5 to 10 data sets substantially underpow-

ered.

6. CONCLUDING REMARKS

In this paper we proposed a statistical formulation and interpretation of hypothesis

tests performed in the context of comparison studies comparing the performance of

supervised classification methods based on several data sets with unknown under-

lying distribution. Although we focused on classification problems, the developed

ideas may be easily extended to other problems through the use of a different loss

function.

At the light of this framework, we examined published comparison studies as-
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sessing classification methods for high-dimensional microarray data. Considering the

large variance of the difference in performance across the data sets, we found that a

very large number of data sets would be necessary to reach an adequate power, i.e.

to have a large probability to detect relevant differences in error rates as statistically

significant in the testing framework. We conclude that most published comparison

studies (either neutral or part of an original article) are substantially underpowered.

As an outlook, we point to the parallels that can be made between comparison

studies in the context of supervised learning and experiments from application fields

of statistics (e.g. biomedicine). Roughly speaking, a comparison study comparing

supervised learning methods shows some similarities with a clinical trial. For exam-

ple, it might be helpful to first perform a pilot study with a limited number of data

sets to provide a first raw estimate of the variance in order to evaluate the necessary

number of data sets. Subgroup analyses may also make sense, e.g. focusing on data

sets of particular sizes, with particular numbers of predictors, etc. The same rules

should be observed as when performing subgroup analyses in biomedical sciences:

relevant subgroups should be defined prior to the analysis and all the results should

be reported – in order to avoid fishing for significance. Alternatively, it may make

sense to model ∆e as a dependent variable with data set characteristics as inde-

pendent variables (for instance size, number of predictors, ratio between size and

number of predictors, signal strength, balance between the class, etc). This would be

an alternative to the previously suggested Bradley-Terry model approach (Eugster

et al., 2010). Going one step further, meta-analyses of comparison studies would

also be conceivable.

To conclude, we believe that statisticians working on methodological research

projects such as the development of new supervised learning methods (including

ourselves) should probably take more care of rules that they themselves (rightly)

impose on their statistical consulting clients: take care of sample size and power

issues, pay attention to the underlying hypothesis when performing a test, and not
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over-interpret results that are not statistically significant.
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Appendix

The appendix contains some technicalities which are needed for a mathematically

rigorous formulation of the testing problem in Section 3. In particular, it is shown

that there are suitable random variablesN and D such that e(n,M2, D)−e(n,M1, D)

can be seen as the observed realization of the random variable e(N,M2,D) −

e(N,M1,D) where also the distribution P (which generates the data set D) is ran-

domly chosen. This is crucial in order to apply the central limit theorem and,

otherwise, using the t-rest to test H
(real)
0 in Section 3 would not be justified.

Preliminaries

Let
(
(X×Y)∞,B∞

)
be the countably-infinite-product space of the measurable space

(X ×Y ,B). Let V be the set of all possible distributions (in the area of application)

endowed with the Borel-σ-algebra BV with respect to the total variation norm.

We arbitrarily fix any x0 ∈ X and y0 ∈ Y and define the function

γ : (X × Y)∞ × N → (X × Y)∞ , (D,n) 7→ γ(D,n) =: D(n)

by

D(n) =
(
(x1, y1), (x2, y2), . . . , (xn, yn), (x0, y0), (x0, y0), . . .

)
∈ (X × Y)∞

for D =
(
(x1, y1), (x2, y2), . . .

)
∈ (X × Y)∞ and n ∈ N. Note that γ is measurable

with respect to B∞ ⊗ 2N and B∞. Similarly, define

P (n) = P n ⊗ δ∞(x0,y0)

on
(
(X × Y)∞,B∞

)
for every P ∈ V .
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Lemma The mapping

τ :
(
V × N

)
× B∞ → [0, 1] ,

(
(P, n), B

)
7→ τP,n(B) = P (n)(B)

is a Markov kernel from
(
V × N,BV ⊗ 2N) to

(
(X × Y)∞,B∞

)
.

Proof: Since τP,n = P (n) is a probability measure on
(
(X × Y)∞,B∞

)
, it re-

mains to prove that (P, n) 7→ P (n)(B) is measurable for every B ∈ B∞. Since N is

countable, it is enough to show that P 7→ P (n)(B) is measurable for every n ∈ N and

B ∈ B∞. To this end, it is shown in the following that the mapping P 7→ P (n)(B) is

even continuous (with respect to the total variation norm): Let (Pk)k∈N0 ⊂ V such

that

lim
k→∞

∥∥Pk − P0

∥∥
TV

= 0 . (5)

According to (Hoeffding and Wolfowitz, 1958, Assertions (4.4) and (4.5)), the prod-

uct measures P n
k and P n

0 on (X × Y)n fulfill

∥∥P n
k − P n

0

∥∥
TV
≤ n ·

∥∥Pk − P0

∥∥
TV

. (6)

For D =
(
(x1, y1), (x2, y2), . . .

)
∈ (X × Y)∞, put Dn =

(
(x1, y1), . . . , (xn, yn)

)
and

D∞ =
(
(xn+1, yn+1), (xn+2, yn+2), . . .

)
; that is, D = (Dn, D∞). In addition, define
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gD∞(Dn) := IB(Dn, D∞) = IB(D) for every D = (Dn, D∞). Then,

∣∣∣P (n)
k (B)− P (n)

0 (B)
∣∣∣ =

=

∣∣∣∣∣

∫∫
IB(Dn, D∞)P n

k

(
dDn

)
δ∞(x0,y0)(dD∞)−

−
∫∫

IB(Dn, D∞)P n
0

(
dDn

)
δ∞(x0,y0)(dD∞)

∣∣∣∣∣

≤
∫ ∣∣∣∣

∫
gD∞ dP

n
k −

∫
gD∞ dP

n
0

∣∣∣∣ δ∞(x0,y0)(dD∞) ≤

≤
∫ ∥∥P n

k − P n
0

∥∥
TV

δ∞(x0,y0)(dD∞)
(6)

≤ n ·
∥∥Pk − P0

∥∥
TV
.

Therefore, limk→∞ P
(n)
k (B) = P

(n)
0 (B) follows from (6). 2

Now, we can prove existence of suitable random variables D, Φ, and N such that

the conditional distribution of γ(D, N) = D(N) given Φ = P and N = n is equal to

P (n).

Theorem Let QΦ,N be any distribution on
(
V ×N,BV ⊗ 2N). Then, there are a

probability space (Ω,A,P) and random variables

D =
(
(X1, Y1), (X2, Y2), . . .

)
: (Ω,A) −→

(
(X × Y)∞,B∞

)
,

Φ : (Ω,A) −→
(
V ,BV

)
, and N : (Ω,A) −→

(
N, 2N)

such that the joint distribution of Φ and N is equal to QΦ,N and the conditional

distribution of D(N) = γ(D, N) given Φ = P and N = n is equal to P (n), i.e.,

L
(
γ(D, N)

∣∣∣ (Φ, N) = (P, n)
)

= P (n) . (7)

Proof: According to the above lemma, τ is a Markov kernel so that we can define
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a probability measure Q on
(
(X × Y)∞ × V × N , B∞ ⊗BV ⊗ 2N) via

Q(C) =

∫∫
IC(D,P, n)P (n)(dD)QΦ,N

(
d(P, n)

)
∀C ∈ B∞⊗BV ⊗ 2N.

Then, there are a probability space (Ω,A,P) and random variables

D =
(
(X1, Y1), (X2, Y2), . . .

)
: (Ω,A) −→

(
(X × Y)∞,B∞

)
,

Φ : (Ω,A) −→
(
V ,BV

)
, and N : (Ω,A) −→

(
N, 2N)

such that the joint distribution of D, Φ, and N is equal to Q; in particular, this

means that QΦ,N is the joint distribution of Φ and N . In order to show (7), fix any

B ∈ B∞ and C ∈ BM ⊗ 2N. Then, it follows from the definition of Q that

P
(
γ(D, N) ∈ B, (Φ, N) ∈ C

)
=

∫
IB
(
γ(D, N)

)
IC(Φ, N) dP =

=

∫

C

∫
IB
(
γ(D,n)

)
P (n)

(
dD
)
QΦ,N

(
d(P, n)

)
=

(∗)
=

∫

C

∫
IB(D)P (n)

(
dD
)
QΦ,N

(
d(P, n)

)
=

∫

C

P (n)(B)QΦ,N

(
d(P, n)

)

where (∗) follows from the definition of γ and P (n). 2

Exact formulation of the testing problem

Again, let e(n,Mk, Dn) denote the estimated error of method Mk by use of the data

set Dn ∈ (X × Y)n. For D = (Dn, D∞) ∈ (X × Y)∞, we also write

e
(
n,Mk, Dn

)
= e

(
n,Mk, D

)
= e

(
n,Mk, γ(D,n)

)
(8)

but note that e
(
n,Mk, D

)
and e

(
n,Mk, γ(D,n)

)
only depend on Dn, that is, the

first n data points (xi, yi) of D. As in the previous subsection, let D be a random

variable such that the conditional distribution of D(N) = γ(D, N) given Φ = P and
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N = n is equal to P (n). Then, e
(
n,Mk, D

)
= e

(
n,Mk, Dn

)
can be seen as the

observed realization of the random variable e
(
N,Mk,D

)
.

Recall the assumption

EPn

[
e
(
n,M1, Dn

)]
− ε(n,M1, P ) = EPn

[
e
(
n,M2, Dn

)]
− ε(n,M2, P ),

from Section 3 where EPn denotes the expectation over the data set Dn drawn i.i.d.

from P . Then, it follows that

ε(n,M2, P )− ε(n,M1, P ) = EPn

[
e
(
n,M2, Dn

)
− e
(
n,M1, Dn

)]
=

=

∫
e
(
n,M2, Dn

)
− e
(
n,M1, Dn

)
P n(dDn) =

(8)
=

∫
e
(
n,M2, D

)
− e
(
n,M1, D

)
P (n)

(
dD
)

=

(7)
= E

[
e
(
n,M2, γ(D, N)

)
− e
(
n,M1, γ(D, N)

) ∣∣∣ (Φ, N) = (P, n)
]

=

(8)
= E

[
e
(
N,M2,D

)
− e
(
N,M1,D

) ∣∣∣ (Φ, N) = (P, n)
]
. (9)

Hence,

E
[
ε(N,M2,Φ)− ε(N,M1,Φ)

]
= E

[
e
(
N,M2,D

)
− e
(
N,M1,D

) ]
.

In order to support the claim that M2 is better than M1, we may therefore consider

the testing problem

H
(real)
0 : Ee

(
N,M2,D

)
− Ee

(
N,M1,D

)
≥ 0

vs. H
(real)
1 : Ee

(
N,M2,D

)
− Ee

(
N,M1,D

)
< 0 .

This testing problem is feasible because we observe i.i.d. realizations of

e
(
N,M2,D

)
− e
(
N,M1,D

)
.

Now, we are also able to rigorously show the variance decomposition (4): As in
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Section 3, define ∆e(N,D) = e(N,M2,D)− e(N,M1,D). Then, (4) follows from

Var(∆e(N,D))
(∗)
= Var

(
E
(
∆e(N,D)

∣∣Φ, N
))

+ E
(

Var
(
∆e(N,D)

∣∣Φ, N
))

=

(9)
= Var

(
ε(N,M2,Φ)− ε(N,M1,Φ)

)
+ E

(
Var(∆e(N,D)|Φ, N)

)

where (∗) is the well-known law of total variance, see e.g. (Billingsley, 1986, Problem

34.10 b).
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