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Introduction

There have been several approaches to the reverse engineering of genetic regulatory net-
works from gene expression data. At the most refined level of detail is a mathematical
description of the biophysical processes in terms of a system of coupled differential equa-
tions [1], which, however, is restricted to very small systems. At the other extreme is the
coarse-grain approach of clustering [2, 3]. While clustering provides a computationally
cheap way to extract useful qualitative information about co-expression of genes from
large-scale expression data sets, it does not lead to a fine resolution of the interaction
processes between the genes. A promising compromise between these two extremes is
the approach of Bayesian networks, which were first applied to gene expression data by
Friedman et al. [4]. Bayesian networks are interpretable and flexible models for rep-
resenting conditional dependence relations between multiple interacting quantities, and
their probabilistic nature is capable of handling noise inherent in both the biological pro-
cesses and the microarray experiments. However, the inference problem is particularly
hard in that interactions between hundreds of genes have to be learned from very small
data sets, typically containing only a few dozen time points during a cell cycle. The
objective of the present study is to test the viability of the Bayesian network paradigm
in a simulation study where the objective is to learn an a priori known network structure
from sparse training sets.
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Bayesian networks

A Bayesian network is defined by a graphical structure, a family of (conditional) prob-
ability distributions, and their parameters, which together specify a joint distribution
over a set of random variables of interest. The graphical structure consists of a set of
nodes and a set of directed edges. The nodes represent random variables, while the edges
indicate conditional dependence relations. In applying this method to the inference of
genetic networks, we associate nodes with genes and their expression levels, while edges
indicate interactions between the genes. A Bayesian network offers a simple and unique
rule for expanding the joint probability in terms of simpler conditional probabilities.
The advantage of this decomposition is that a complex system of interacting quantities
can be visualized as being composed of simpler subsystems, which facilitates system
interpretation and comprehension. An example is given in Figure 1. The top subfigure
shows the subgraph of a Bayesian network with several directed edges leading from gene
SLT2 to a group of low-osmolarity response genes. This network is part of a larger
network inferred by Pe’er et al. [9] from gene expression data measured during the
yeast (S. cerevisiae) cell cycle. The bottom of Figure 1 shows a known biological path-
way: SLT2 encodes the enzyme MAP kinase, which post-translationally activates two
transcription factors, which in turn activate several low-osmolarity response genes. The
inferred Bayesian network thus captures the essential feature of this pathway, namely,
that a group of low-osmolarity response genes is regulated by a common regulator. This
provides a finer resolution than available from most clustering techniques, which merely
tend to group co-regulated genes together in a monolithic block. On the other hand,
the Bayesian network approach does not model the biophysical details of the regulatory
pathway, which would require a more detailed mathematical description in terms of a
system of differential equations.

Reverse engineering

We would like to extract genetic regulatory interactions from noisy gene expression data
in the absence of general theories. This is the objective of reverse engineering, which
aims to learn the network structure from the data automatically through a process
of inference and learning from examples. Denote by M the structure of a Bayesian
network, and by D the data. For large data sets, the objective of learning is to find
the network structure that is most supported by the data D, that is, the mode of the
posterior probability P (M|D). The computation of P (M|D) involves an integral over
the network parameters, which becomes analytically tractable when certain regularity
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conditions are satisfied [6]. Unfortunately, this closed-form solution to P (M|D) does not
imply a straightforward solution to the optimization problem: the number of network
structures increases super-exponentially with the number of nodes, and the optimization
problem is known to be NP-hard. Moreover, gene expression data are usually sparse,
with typically only a few dozen measurements during a cell cycle. This implies that the
posterior distribution over structures, P (M|D), is likely to be diffuse. Consequently,
P (M|D) will not be adequately represented by a single optimal structure, and it is
more appropriate to sample networks from the posterior distribution P (M|D) so as to
obtain a representative sample of high-scoring network structures, that is, structures
that offer a good explanation of the data. Again, a direct approach is impossible due
to the NP-hardness of the problem, and we therefore have to resort to a numerical
approximation, using Markov chain Monte Carlo (MCMC) [5, 8].

Reliability of inference

To evaluate the performance of the inference procedure on sparse data sets, we can
proceed as shown in the top of Figure 2. Synthetic data D are generated from a known
Bayesian network. Then, new networks are sampled from the posterior distribution
P (M|D) with MCMC. From a comparison between the sampled networks and the true
network, we can estimate the reliability of the inference procedure as follows. First,
compute the marginal posterior probabilities of all the edges from the MCMC sample.
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Then, apply a threshold between 0 and 1, and discard all edges with posterior probability
below that threshold. Next, determine the number of true and false positive edges from
the resulting network. Finally, repeat this procedure for different threshold values. The
results can be plotted as receiver operator characteristics (ROC) curves, as shown in
the bottom of Figure 2, where the proportion of true edges (TP) is plotted against the
proportion of false edges (FP). The diagonal dashed line indicates the expected ROC
curve for a random predictor. A ROC curve that follows the left vertical axis and then
runs parallel to the horizontal axis at a value of 1 indicates a perfect retrieval of all true
edges without incurring any spurious edges. In general, ROC curves are between these
two extremes, with a larger area under the ROC curve indicating a better performance.

Results

Binary data (corresponding to up- and down-regulation of genes) were generated from
a Bayesian network1 of 12 nodes, whose structure is shown in Figure 2, and whose
conditional probabilities associated with the edges were binomial distributions. The
generated training sets were sparse, containing only 3, 6, and 12 exemplars. The resulting
ROC curves are shown in the bottom of Figure 2. A training set of size 3 gives a ROC
curve similar to that of a random predictor, indicating that no real structures of the
true network have been learned. For a training set of size 6, the leading edges of the
true network can be learned, but they are obscured by a considerable amount of false

1To avoid ambiguity in the edge directions, a dynamic Bayesian network was used. See [7] for details.
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edges. A training set of size 12, however, allows a considerable amount of true edges to
be recovered without incurring any notable contamination by spurious edges.

Discussion

Synthetic simulations provide important clues about whether it is meaningful to try and
infer complex network structures from sparse training sets. However, the results obtained
are over-optimistic because the same model is used for data generation and inference.
When trying to infer genetic networks from real expression data, the inherent mismatch
between the underlying data-generating process and the model used for inference is likely
to render the inference problem harder and, therefore, to lead to less favourable results.

In an attempt to achieve a more realistic estimation, several authors have tested their
inference methods on real microarray data, testing if a priori known gene interactions
(reported in the biological literature) could be recovered with their learning algorithms.
This approach suffers from the absence of known gold standards: when predicting a gene
interaction that is not supported by the literature, it is impossible to decide, without
further expensive interventions in the form of multiple gene knock-out experiments,
whether the algorithm has discovered a new, previously unknown interaction, or whether
it has flagged a false edge.

A better approach would be to test the performance of the inference scheme on realistic
simulated data, for which the true network is known and the data-generating processes
are similar to those found in real biological systems. Space restrictions do not allow this
approach to be discussed in the present paper. The interested reader is referred to [7],
where first results can be found.
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