677 research outputs found

    Material transport in the left ventricle with aortic valve regurgitation

    Full text link
    This experimental in vitro work investigates material transport properties in a model left ventricle in the case of aortic regurgitation, a valvular disease characterized by a leaking aortic valve and consequently double-jet filling within the elastic left ventricular geometry. This study suggests that material transport phenomena are strongly determined by the motion of the counterrotating vortices driven by the regurgitant aortic and mitral jets. The overall particle residence time appears to be significantly longer with moderate aortic regurgitation, attributed to the dynamics resulting from the timing between the onset of the two jets. Increasing regurgitation severity is shown to be associated with higher frequencies in the time-frequency spectra of the velocity signals at various points in the flow, suggesting nonlaminar mixing past moderate regurgitation. Additionally, a large part of the regurgitant inflow is retained for at least one cardiac cycle. Such an increase in particle residence time accompanied by the occurrence and persistence of a number of attracting Lagrangian coherent structures presents favorable conditions and locations for activated platelets to agglomerate within the left ventricle, potentially posing an additional risk factor for patients with aortic regurgitation

    Left Ventricular Fluid Mechanics: the long way from theoretical models to clinical applications

    Get PDF
    \u2014The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed

    Modelling and application of mitral valve dynamics for reproducing the flow in the left ventricle of the human heart

    Get PDF
    The fluid dynamics in the left ventricle of the human heart is considered an important player for the prediction of long term cardiovascular outcome. To this end, numerical simulations represent an important tool for integrating the existing medical imaging technology and uncover physical flow phenomena. This study presents a computational method for the fluid dynamics inside the left ventricle designed to be efficiently integrated in clinical scenarios. It includes an original model of the mitral valve dynamics, which describes an asymptotic behavior for tissues with no elastic stiffness other than the constrain of the geometry obtained from medical imaging; in particular, the model provides an asymptotic description without requiring details of tissue properties that may not be measurable in vivo. The advantages of this model with respect to a valveless orifice and its limitations with respect to a complete tissue modeling are verified. Its performances are then analyzed in details to ensure a correct interpretation of results. It represents a potential option when information about tissue mechanical properties is insufficient for the implementations of a full fluid-structure interaction approach. Geometries of left ventricle (LV) and mitral valve (MV) are extracted from 4D-transesophageal echocardiography. MV geometries are extracted in open and closed configurations and the intraventricular fluid dynamics is reproduced by a dedicated approach to direct numerical simulation (DNS) that includes flow-tissue interaction for the MV leaflet (Collia et al. 2019). This approach is applied to normal and pathological ventricles to investigate the dynamics of the MV during the cardiac cycle: how it interacts with the ventricular flow and how it affects clinical measurements. The dynamics of mitral opening at the onset of diastole, as well as the closure at the transition between diastole and systole, is governed by the high pressure gradients associated with the bulk cardiac flow. On the opposite, during the flow diastasis in the middle of the diastolic filling, valvular motion is primarily influenced by the intraventricular circulation that gives an increased tendency to close in enlarged ventricles. This observation provides a physical interpretation to echocardiographic measurements commonly employed in the clinical diagnostic process. Results demonstrated the properties of false regurgitation, blood that did not cross the open MV orifice and returns into the atrium during the backward motion of the MV leaflets, whose entity should be accounted when evaluating small regurgitation (Collia et al. 2019). The regurgitating volume is found to be proportional to the effective orifice area, with the limited dependence of the LV geometry and type of prolapse. These affect the percentage of old blood returning to the atrium which may be associated with thrombogenic risk. This non-invasive method is useful for the assessment of blood flow, to improve early detection of cardiac dysfunctions and for provide a concrete helpful in clinical routines

    Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging : comparison of three clinical cases

    Get PDF
    Background: As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. Methods: In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. Results: The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2 mmHg is consistent with reported data. Conclusion: We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. (C) 2016 Elsevier Ltd. All rights reserved

    DEVELOPMENT AND IMPLEMENTATION OF NOVEL STRATEGIES TO EXPLOIT 3D ULTRASOUND IMAGING IN CARDIOVASCULAR COMPUTATIONAL BIOMECHANICS

    Get PDF
    Introduction In the past two decades, major advances have been made in cardiovascular diseases assessment and treatment owing to the advent of sophisticated and more accurate imaging techniques, allowing for better understanding the complexity of 3D anatomical cardiovascular structures1. Volumetric acquisition enables the visualization of cardiac districts from virtually any perspective, better appreciating patient-specific anatomical complexity, as well as an accurate quantitative functional evaluation of chamber volumes and mass avoiding geometric assumptions2. Additionally, this scenario also allowed the evolution from generic to patient-specific 3D cardiac models that, based on in vivo imaging, faithfully represent the anatomy and different cardiac features of a given alive subject, being pivotal either in diagnosis and in planning guidance3. Precise morphological and functional knowledge about either the heart valves\u2019 apparatus and the surrounding structures is crucial when dealing with diagnosis as well as preprocedural planning4. To date, computed tomography (CT) and real-time 3D echocardiography (rt3DE) are typically exploited in this scenario since they allow for encoding comprehensive structural and dynamic information even in the fourth dimension (i.e., time)5,6. However, owing to its cost-effectiveness and very low invasiveness, 3D echocardiography has become the method of choice in most situations for performing the evaluation of cardiac function, developing geometrical models which can provide quantitative anatomical assessment7. Complementing this scenario, computational models have been introduced as numerical engineering tools aiming at adding qualitative and quantitative information on the biomechanical behavior in terms of stress-strain response and other multifactorial parameters8. In particular, over the two last decades, their applications have been ranging from elucidating the heart biomechanics underlying different patho-physiological conditions9 to predicting the effects of either surgical or percutaneous procedures, even comparing several implantation techniques and devices10. At the early stage, most of the studies focused on FE modeling in cardiac environment were based on paradigmatic models11\u201315, being mainly exploited to explore and investigate biomechanical alterations following a specific pathological scenario or again to better understand whether a surgical treatment is better or worse than another one. Differently, nowadays the current generation of computational models heavily exploits the detailed anatomical information yielded by medical imaging to provide patient-specific analyses, paving the way toward the development of virtual surgical-planning tools16\u201319. In this direction, cardiac magnetic resonance (CMR) and CT/micro-CT are the mostly accomplished imaging modality, since they can provide well-defined images thanks to their spatial and temporal resolutions20\u201325. Nonetheless, they cannot be applied routinely in clinical practice, as it can be differently done with rt3DE, progressively became the modality of choice26 since it has no harmful effects on the patient and no radiopaque contrast agent is needed. Despite these advantages, 3D volumetric ultrasound imaging shows intrinsic limitations beyond its limited resolution: i) the deficiency of morphological detail owing to either not so easy achievable detection (e.g., tricuspid valve) or not proper acoustic window, ii) the challenge of tailoring computational models to the patient-specific scenario mimicking the morphology as well as the functionality of the investigated cardiac district (e.g., tethering effect exerted by chordal apparatus in mitral valve insufficiency associated to left ventricular dilation), and iii) the needing to systematically analyse devices performances when dealing with real-life cases where ultrasound imaging is the only performable technique but lacking of standardized acquisition protocol. Main findings In the just described scenario, the main aim of this work was focused on the implementation, development and testing of numerical strategies in order to overcome issues when dealing with 3D ultrasound imaging exploitation towards predictive patient-specific modelling approaches focused on both morphological and biomechanical analyses. Specifically, the first specific objective was the development of a novel approach integrating in vitro imaging and finite element (FE) modeling to evaluate tricuspid valve (TV) biomechanics, facing with the lack of information on anatomical features owing to the clinically evident demanding detection of this anatomical district through in vivo imaging. \u2022 An innovative and semi-automated framework was implemented to generate 3D model of TV, to quantitively describe its 3D morphology and to assess its biomechanical behaviour. At this aim, an image-based in vitro experimental approach was integrated with numerical models based on FE strategy. Experimental measurements directly performed on the benchmark (mock circulation loop) were compared with geometrical features computed on the 3D reconstructed model, pinpointing a global good consistency. Furthermore, obtained realistic reconstructions were used as the input of the FE models, even accounting for proper description of TV leaflets\u2019 anisotropic mechanical response. As done experimentally, simulations reproduced both \u201cincompetent\u201d (FTR) and \u201ccompetent-induced\u201d (PMA), proving the efficiency of such a treatment and suggesting translational potential to the clinic. The second specific aim was the implementation of a computational framework able to reproduce a functionally equivalent model of the mitral valve (MV) sub-valvular apparatus through chordae tendineae topology optimization, aiming at chordae rest length arrangement to be able to include their pre-stress state associated to specific ventricular conformation. \u2022 We sought to establish a framework to build geometrically tractable, functionally equivalent models of the MV chordae tendineae, addressing one of the main topics of the computational scientific literature towards the development of faithful patient-specific models from in vivo imaging. Exploiting the mass spring model (MSM) approach, an iterative tool was proposed aiming to the topology optimization of a paradigmatic chordal apparatus of MVs affected by functional regurgitation, in order to be able to equivalently account for tethering effect exerted by the chordae themselves. The results have shown that the algorithm actually lowered the error between the simulated valve and ground truth data, although the intensity of this improvement is strongly valve-dependent.Finally, the last specific aim was the creation of a numerical strategy able to allow for patient-specific geometrical reconstruction both pre- and post- LVAD implantation, in a specific high-risk clinical scenario being rt3DE the only available imaging technique to be used but without any acquisition protocol. \u2022 We proposed a numerical approach which allowed for a systematic and selective analysis of the mechanism associated to intraventricular thrombus formation and thrombogenic complications in a LVAD-treated dilated left ventricle (LV). Ad-hoc geometry reconstruction workflow was implemented to overcome limitations associated to imaging acquisition in this specific scenario, thus being able to generate computational model of the LV assisted with LVAD. In details, results suggested that blood stasis is influenced either by LVAD flow rate and, to a greater extent, by LV residual contractility, being the positioning of the inflow cannula insertion mandatory to be considered when dealing with LVAD thrombogenic potential assessment

    Comparative Study of Diastolic Filling under Varying Left Ventricular Wall Stiffness

    Get PDF
    Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. Myocardial stiffening occurs in HFpEF patients prior to chronic maladaptive changes in overall chamber morphology, resulting in increased left ventricle (LV) wall stiffness. The goal of this study was to investigate the changes in intraventricular filling fluid dynamics inside a physical model of the LV as a function of wall stiffness and the presence of A-wave. The entire experiment was divided into 2 cases, inclusion of the A-wave and absence of A-wave during which three LV physical models of varying wall stiffness were compared. Physical model was incorporated into an in vitro flow circuit driven by a programmable piston pump. Windkessel elements were used to adjust the inflow and systemic pressure of the baseline LV model with lowest stiffness to match normal physiological conditions. The remaining two physical models with stiffer walls were comparatively tested without changing the in vitro circuit compliance, resistance and pump amplitude. 2D phase-locked particle image velocimetry (PIV) measurements along the central plane of the LV showed reductions in kinetic energy of the flow field, filling vortex ring circulation and inflow propagation toward the LV apex with increasing stiffness. For idealized mitral inflow profile without atrial systole, hemodynamic characteristics including the peak filling velocity magnitude, cardiac output, stroke volume, and diastolic duration decreased with increasing wall stiffness. The same trends in hemodynamics were also observed with inclusion of atrial systole to the mitral inflow profile. Further, inclusion of atrial systole to the mitral inflow showed an increase in E/A (mitral inflow velocity peaks) ratio from 1.2 for the baseline (least stiff) LV model to 2.2 for the stiffest model, suggesting restrictive filling occurred in the latter. The results of the study show the adverse hemodynamic impact of pathological alterations in wall stiffness even when gross LV morphology is unchanged. The circulation strength of the intraventricular filling vortex can be potentially used as a fluid dynamic marker for improving diagnosis of HFpEF.Mechanical & Aerospace Engineerin

    Personalized Electromechanical Modeling of the Human Heart : Challenges and Opportunities for the Simulation of Pathophysiological Scenarios

    Get PDF
    Mathematische Modelle des menschlichen Herzens entwickeln sich zu einem Eckpfeiler der personalisierten Medizin. Sie sind ein nützliches Instrument und helfen klinischen Entscheidungsträgern die zugrundeliegenden Mechanismen von Herzkrankheiten zu erforschen und zu verstehen. Aufgrund der Komplexität des Herzens benötigen derartige Modelle allerdings eine detaillierte Beschreibung der physikalischen Prozesse, welche auf verschiedenen räumlichen und zeitlichen Skalen miteinander interagieren. Aus mathematischer Perspektive stellen vor allem die Entwicklung robuster numerischer Methoden für die Lösung des Modells in Raum und Zeit sowie die Identifizierung von Parametern aus patientenspezifischen Messungen eine Herausforderung dar. In dieser Arbeit wird ein detailliertes mathematisches Modell vorgestellt, welches ein vollgekoppeltes Multiskalenmodell des menschlichen Herzens beschreibt. Das Modell beinhaltet unter anderem die Ausbreitung des elektrischen Signals und die mechanische Verformung des Herzmuskels sowie eine Beschreibung des Herz-Kreislauf-Systems. Basierend auf dem neusten Stand der Technik wurden Modelle der Membrankinetik sowie der Entwicklung der aktiven Kraft zu einem einheitlichen Modell einer Herzmuskelzelle zusammengeführt. Dieses beschreibt die elektromechanische Kopplung in Herzmuskelzellen der Vorhöfe und der Herzkammern basierend auf der Physiologie im Menschen und wurde mit Hilfe von experimentellen Daten aus einzelnen Zellen neu parametrisiert. Um das elektromechanisch gekoppelte Modell des menschlichen Herzens lösen zu können, wurde ein gestaffeltes Lösungsverfahren entwickelt, welches auf bereits existierenden Softwarelösungen der Elektrophysiologie und Mechanik aufbaut. Das neue Modell wurde verwendet, um den Einfluss elektromechanischer Rückkopplungseffekte auf das Herz im Sinusrhythmus zu untersuchen. Die Simulationsergebnisse zeigten, dass elektromechanische Rückkopplungseffekte auf zellulärer Ebene einen wesentlichen Einfluss auf das mechanische Verhalten des Herzens haben. Dahingegen hatte die Verformung des Herzens nur einen geringen Einfluss auf den Diffusionskoeffizienten des elektrischen Signals. Um die verschiedenen Komponenten der Simulationssoftware zu verifizieren, wurden spezielle Probleme definiert, welche die wichtigsten Aspekte der Elektrophysiologie und der Mechanik abdecken. Zusätzlich wurden diese Probleme dazu verwendet, den Einfluss von räumlicher und zeitlicher Diskretisierung auf die numerische Lösung zu bewerten. Die Ergebnisse zeigten, dass Raum- und Zeitdiskretisierung vor allem für das elektrophysiologische Problem die limitierenden Faktoren sind, während die Mechanik hauptsächlich anfällig für volumenversteifende Effekte ist. Weiterhin wurde das Modell verwendet, um zu untersuchen, wie sich eine Verteilung der Faserspannung auf den gesamten Herzmuskel auf die Funktion der linken Herzkammer auswirkt. Hierzu wurde zusätzlich eine Spannung in die Normalenrichtungen der Fasern einer idealisierten linken Herzkammer angewandt. Es zeigte sich, dass insbesondere eine Spannung senkrecht zu den Faserschichten zu einer physiologischeren Kontraktion der Kammer führte. Allerdings konnten diese Ergebnisse auf einem ganzen Herzen nicht vollständig bestätigt werden. In einem zweiten Projekt wurde mit Hilfe eines Modells der linken Herzkammer untersucht, wie sich das Rotationsmuster der Kammer unter Modifikation der lokalen elektromechanischen Eigenschaften verändert. Hierzu wurden in vivo Daten elektromechanischer Parameter von 30 Patienten mit Herzversagen und Linksschenkelblock in das Modell integriert, simuliert und ausgewertet. Die Ergebnisse konnten die klinisch aufgestellte Hypothese nicht bestätigen und es zeigte sich keine Korrelation zwischen den elektromechanischen Parametern und dem Rotationsverhalten. Die Auswirkungen von standardisierten Ablationsstrategien zur Behandlung von Vorhofflimmern in Bezug auf die kardiovaskuläre Leistung wurde in einem Modell des ganzen Herzens untersucht. Aufgrund der Narben im linken Vorhof wurde die elektrische Aktivierung und die Steifigkeit des Herzmuskels verändert. Dies führte zu einem reduzierten Auswurfvolumen, welches in direktem Zusammenhang mit dem inaktiven Gewebe steht. Abhängig von der Steifigkeit der Narben hat sich zusätzlich der Druck im linken Vorhof erhöht. Die linke Herzkammer war nur wenig beeinflusst. Zu guter Letzt wurden schrittweise pathologische Mechanismen in das Herzmodell integriert, welche in Zusammenhang mit Herzversagen stehen und in Patienten mit dilatativer Kardiomyopathie zu beobachten sind. Die Simulationen zeigten, dass vor allem zelluläre Veränderungen bezüglich der elektrophysiologischen Eigenschaften für die schlechte mechanische Aktivtät des Herzens verantwortlich sind. Weiterhin zeigte sich, dass strukturelle Veränderungen der Anatomie und die erhöhte Steifigkeit des Herzmuskels und die damit einhergehenden Anpassungen des Herz-Kreislauf-Systems nötig sind, um in vivo Messungen zu reproduzieren. In dieser Arbeit wurde eine Simulationsumgebung vorgestellt, welche die Berechnung der elektromechanischen Aktivität des Herzens und des Herz-Kreislauf-Systems ermöglicht. Die Simulationsumgebung wurde mit Hilfe von einfachen Beispielen verifiziert und unter Einbeziehung von Daten aus der Magnetresonanztomographie validiert. Zu guter Letzt wurde die Simulationsumgebung genutzt, um klinische Fragen zu beantworten, welche andernfalls im Dunkeln blieben
    corecore