159 research outputs found

    Simulation and Design of an UWB Imaging System for Breast Cancer Detection

    Get PDF
    Breast cancer is the most frequently diagnosed cancer among women. In recent years, the mortality rate due to this disease is greatly decreased thanks to both enormous progress in cancer research, and screening campaigns which have allowed the increase in the number of early diagnoses of the disease. In fact, if the tumor is identied in its early stage, e.g. when it has a diameter of less than one centimeter, the possibility of a cure can reach 93%. However, statistics show that more young aged women are suered breast cancer. The goal of screening exams for early breast cancer detection is to nd cancers before they start to cause symptoms. Regular mass screening of all women at risk is a good option to achieve that. Instead of meeting very high diagnostic standards, it is expected to yield an early warning, not a denitive diagnosis. In the last decades, X-ray mammography is the most ecient screening technique. However, it uses ionizing radiation and, therefore, should not be used for frequent check-ups. Besides, it requires signicant breast compression, which is often painful. In this scenario many alternative technologies were developed to overcome the limitations of mammography. Among these possibilities, Magnetic Resonance Imaging (MRI) is too expensive and time-consuming, Ultrasound is considered to be too operatordependent and low specicity, which are not suitable for mass screening. Microwave imaging techniques, especially Ultra WideBand (UWB) radar imaging, is the most interesting one. The reason of this interest relies on the fact that microwaves are non-ionizing thus permitting frequent examinations. Moreover, it is potentially lowcost and more ecient for young women. Since it has been demonstrated in the literatures that the dielectric constants between cancerous and healthy tissues are quite dierent, the technique consists in illuminating these biological tissues with microwave radiations by one or more antennas and analyzing the re ected signals. An UWB imaging system consists of transmitters, receivers and antennas for the RF part, the transmission channel and of a digital backend imaging unit for processing the received signals. When an UWB pulse strikes the breast, the pulse is re ected due to the dielectric discontinuity in tissues, the bigger the dierence, the bigger the backscatter. The re ected signals are acquired and processed to create the energy maps. This thesis aims to develop an UWB system at high resolution for the detection of carcinoma breast already in its initial phase. To favor the adoption of this method in screening campaigns, it is necessary to replace the expensive and bulky RF instrumentation used so far with ad-hoc designed circuits and systems. In order to realize that, at the very beginning, the overall system environment must be built and veried, which mainly consists of the transmission channel{the breast model and the imaging unit. The used transmission channel data come from MRI of the prone patient. In order to correctly use this numerical model, a simulator was built, which was implemented in Matlab, according to the Finite-Dierence-Time- Domain (FDTD) method. FDTD algorithm solves the electric and magnetic eld both in time and in space, thus, simulates the propagation of electromagnetic waves in the breast model. To better understand the eect of the system non-idealities, two 2D breast models are investigated, one is homogeneous, the other is heterogeneous. Moreover, the modeling takes into account all critical aspects, including stability and medium dispersion. Given the types of tissues under examination, the frequency dependence of tissue dielectric properties is incorporated into wideband FDTD simulations using Debye dispersion parameters. A performed further study is in the implementation of the boundary conditions. The Convolution Perfectly Matched Layer (CPML) is used to implement the absorbing boundaries. The objective of the imaging unit is to obtain an energy map representing the amount of energy re ected from each point of the breast, by recombining the sampled backscattered signals. For this purpose, the study has been carried out on various beamforming in the literature. The basic idea is called as "delay and sum", which is to align the received signals in such a way as to focus a given point in space and then add up all the contributions, so as to obtain a constructive interference at that point if this is a diseased tissue. In this work, Microwave Imaging via Space Time (MIST) Beamforming algorithm is applied, which is based on the above principle and add more elaborations of the signals in order to make the algorithm less sensitive to propagation phenomena in the medium and to the non-idealities of the system. It is divided into two distinct steps: the rst step, called SKin Artifact Removal (SKAR), takes care of removing the contributions from the signal caused by the direct path between the transmitter and receiver, the re ection of skin, as they are orders of magnitude higher compared to the re ections caused by cancers; the second step, which is BEAmForming (BEAF), performs the algorithm of reconstruction by forming a weighted combination of time delayed version of the calibrated re ected signals. As discussed above, more attention must be paid on the implementation of the ad-hoc integration circuits. In this scenario, due to the strict requirements on the RF receiver component, two dierent approaches of the implementation of the RF front-end, Direct Conversion (DC) receiver and Coherent Equivalent Time Sampling (CETS) receiver are compared. They are modeled behaviorally and the eects of various impairments, such as thermal, jitter, and phase noise, as well as phase inaccuracies, non-linearity, ADC quantization noise and distortion, on energy maps and on quantitative metrics such as SCR and SMR are evaluated. Dierential Gaussian pulse is chosen as the exciting source. Results show that DC receiver performs higher sensitivity to phase inaccuracies, which makes it less robust than the CETS receiver. Another advantage of the CETS receiver is that it can work in time domain with UWB pulses, other than in frequency domain with stepped frequency continuous waves like the DC one, which reduces the acquisition time without impacting the performance. Based on the results of the behavioral simulations, low noise amplier (LNA) and Track and Hold Amplier (THA) can be regarded as the most critical parts for the proposed CETS receiver, as well as the UWB antenna. This work therefore focuses on their hardware implementations. The LNA, which shows critical performance limitation at bandwidth and noise gure of receiver, has been developed based on common-gate conguration. And the THA based on Switched Source Follower (SSF) scheme has been presented and improved to obtain high input bandwidth, high sampling rate, high linearity and low power consumption. LNA and THA are implemented in CMOS 130nm technology and the circuit performance evaluation has been taken place separately and together. The small size UWB wide-slot antenna is designed and simulated in HFSS. Finally, in order to evaluate the eect of the implemented transistor level components on system performance, a multi-resolution top-down system methodology is applied. Therfore, the entire ow is analyzed for dierent levels of the RF frontend. Initially the system components are described behaviorally as ideal elements. The main activity consists in the analysis and development of the entire frontend system, observing and complementing each other blocks in a single ow simulation, clear and well-dened in its various interfaces. To achieve that the receiver is modeled and analyzed using VHDL-AMS language block by block, moreover, the impact of quantization, noise, jitter, and non-linearity is also evaluated. At last, the behavioral description of antenna, LNA and THA is replaced with a circuit-level one without changing the rest of the system, which permits a system-level assessment of low-level issues

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous élaborons une interface cerveau-machine (ICM) entièrement sans fil afin de fournir un système de liaison directe entre le cerveau et les périphériques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thèse, nous explorons la modélisation de canal, les antennes implantées et portables en tant que propagateurs appropriés pour cette application, la conception du nouveau système d’un émetteur-récepteur UWB implantable, la conception niveau système du circuit et sa mise en oeuvre par un procédé CMOS TSMC 0.18 um. En plus, en collaboration avec Université McGill, nous avons conçu un réseau de seize antennes pour une détection du cancer du sein à l’aide d’hyperfréquences. Notre première contribution calcule la caractérisation de canal de liaison sans fil UWB d’implant à l’air, l’absorption spécifique moyennée (ASAR), et les lignes directrices de la FCC sur la densité spectrale de puissance UWB transmis. La connaissance du comportement du canal est nécessaire pour déterminer la puissance maximale permise à 1) respecter les lignes directrices ANSI pour éviter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisées. Nous avons recours à un modèle réaliste du canal biologique afin de concevoir les antennes pour l’émetteur implanté et le récepteur externe. Le placement des antennes est examiné avec deux scénarios contrastés ayant des contraintés de puissance. La performance du système au sein des tissus biologiques est examinée par l’intermédiaire des simulations et des expériences. Notre deuxième contribution est dédiée à la conception des antennes simples et à double polarisation pour les systèmes d’enregistrement neural sans fil à bande ultra-large en utilisant un modèle multicouches inhomogène de la tête humaine. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à l’implantation ; nous étudions des matériaux à la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposées sont conçues pour fonctionner dans une plage de fréquence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant à la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les résultats de simulation et montrent que les antennes flexibles ont peu de dégradation des performances en raison des effets de flexion (en termes de correspondance d’impédance). Finalement, une comparaison est réalisée entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, à la polarisation simple, 2) une rigide, à double polarisation, 3) une flexible, à simple polarisation et 4) une flexible, à double polarisation. Dans tous les cas une antenne rigide est utilisée à l’extérieur du corps, avec une polarisation appropriée. Plusieurs avantages ont été confirmés pour les antennes à la polarisation double : 1) une taille plus petite, 2) la sensibilité plus faible aux désalignements angulaires, et 3) une plus grande fidélité. Notre troisième contribution fournit la conception niveau système de l’architecture de communication sans fil pour les systèmes implantés qui stimulent simultanément les neurones et enregistrent les réponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-récepteur qui partage une antenne ultra large bande, un émetteur-récepteur simplifié, travaillant en duplex intégral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous présentons une démonstration expérimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la réalisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique à 0,5, 1 et 2 Gb/s des débits de données pour la télémétrie de liaison montante (UWB) et 100 Mb/s pour la télémétrie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatrième contribution présente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est présentée dans notre troisième contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densité (les canaux de stimulant et d’enregistrement) avec des débits de données asymétriques. L’émetteur (TX) et le récepteur (RX) partagent une seule antenne pour réduire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basé sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz récepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non réglementé (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur à faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numérique binaire à déplacement de phase (BPSK). Le FDT proposé offre une double bande avec un taux de données de liaison montante de 500 Mbps TX et un taux de données de liaison descendante de 100 Mb/s RX, et il est entièrement en conformité avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW à 100 Mb/s pour RX, et de 5,4 mW à 500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquième contribution est une collaboration avec l’Université McGill dans laquelle nous concevons des antennes simples et à double polarisation pour les systèmes de détection du cancer du sein à l’aide d’hyperfréquences sans fil en utilisant un modèle multi-couche et inhomogène du sein humain. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à des applications portables. Les antennes flexibles miniaturisées monopôles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), à être en contact avec des tissus biologiques du sein. Les antennes proposées sont conçues pour fonctionner dans une gamme de fréquences de 2 à 4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impédance dans les différentes positions sur le sein. De Plus, deux antennes à bande ultralarge flexibles 4 × 4 (simple et à double polarisation), dans un format similaire à celui d’un soutien-gorge, ont été développés pour un système de détection du cancer du sein basé sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Code-Multiplexing-Based One-Way Detect-and-Forward Relaying Schemes for Multiuser UWB MIMO Systems

    Get PDF
    In this paper, we consider decode-and-forward (DF) one-way relaying schemes for multiuser impulse-radio ultrawideband (UWB) communications. We assume low-complexity terminals with limited processing capabilities and a central transceiver unit (i.e., the relay) with a higher computational capacity. All nodes have a single antenna differently from the relay in which multiple antennas may be installed. In order to keep the complexity as low as possible, we concentrate on noncoherent transceiver architectures based on multiuser code-multiplexing transmitted-reference schemes. We propose various relaying systems with different computational complexity and different levels of required channel knowledge. The proposed schemes largely outperform systems without relay in terms of both bit error rate (BER) performance and coverage

    IR-UWB and OFDM-UWB Transceiver Nodes for Communication and Positioning Purposes

    Get PDF
    Résumé Ultra-wideband (UWB) a suscité l'intérêt de chercheurs et de l'industrie en raison de ses nombreux avantages tels que la faible probabilité d'interception et de la possibilité de combiner la communication des données de positionnement dans un seul système. Il existe plusieurs UWB couche physique (PHY) présentées initialement à la norme IEEE qui convergent en deux propositions principales: des porte-UWB ou Orthogonal Frequency-Division Multiplexing (OFDM-UWB), et à court d'impulsion porteuse à-UWB ou Impulse Radio-(IR-UWB). Une des plus grandes tâches difficiles pour les chercheurs est de nos jours la conception d'émetteurs-récepteurs UWB optimisés qui satisfont à des conditions rigoureuses, dont la simplicité caractéristiques large bande, à faible coût et de conception. Des études antérieures ont montré que les récepteurs à conversion directe basée sur Wave-radio interféromètre (WRI) circuits représentent un bon candidat pour les applications UWB. Circuits IRG ont plusieurs avantages tels que l'exploitation à large bande, à faible coût et la simplicité. Des travaux antérieurs sur l'IRG circuit, cependant, a enquêté sur le circuit de l'IRG sur la base du concept de porteuse unique signaux (par exemple, les signaux sinusoïdaux). L'objectif de ce projet est de fournir les résultats de conception, de simulation, de mise en oeuvre et le test d'un émetteur-récepteur WRI basé sur ce que peut être utilisé comme un noeud ou un pico-réseau dans un détecteur sans fil / réseau de données. Nous allons passer par les étapes de conception et de mise en oeuvre de propositions UWB deux: IR-UWB et OFDM-UWB. Pour la proposition porteuse à nous concentrer sur la conception et la mise en oeuvre de l'émetteur-récepteur en intégrant les opérations de transmission / réception dans un prototype unique, alors que pour la proposition des porte-nous concevoir et mettre en oeuvre l'émetteur-récepteur avec le circuit de l'IRG dans le récepteur seulement utilisé en tant que convertisseur abaisseur directe. Résultats expérimentaux, de simulation et d'analyse ont été obtenus et sont présentés dans cette thèse.----------Abstract Ultra-wideband (UWB) technology has attracted interest from both researchers and the industry due to its numerous advantages such as low probability of interception and the possibility of combining data communication with positioning in a single system. There are several different UWB physical layer (PHY) proposals originally submitted to IEEE which converged into two main proposals: carrier‐based UWB or Orthogonal-Frequency Division Multiplexing (OFDM‐UWB), and short‐pulse carrierless‐UWB or Impulse-Radio (IR-UWB). One of the biggest challenging tasks for researchers nowadays is the design of optimized UWB transceivers that would satisfy rigorous conditions, among which wideband characteristics, low-cost and design simplicity. Previous studies have shown that direct-conversion receivers based on Wave-Radio Interferometer (WRI) circuits represent a suitable candidate for UWB applications. WRI circuits have several advantages such as wideband operation, low cost, and simplicity. Previous works on WRI circuit, however, investigated the WRI circuit based on the concept of single-carrier signals (i.e., sinusoidal signals). The objective of this project is to provide the design, simulation, implementation and testing results of a WRI-based transceiver that can be utilized as a node or a piconet in a wireless sensor/data network. We will go through the design and implementation steps for both UWB proposals: IR-UWB and OFDM-UWB. For the carrierless proposal we will focus on designing and implementing the transceiver by integrating the transmitter/receiver operations in a single prototype, while for the carrier‐based proposal we will design and implement the transceiver with the WRI circuit in the receiver only utilized as a direct downconverter

    Live Wire - A Low-Complexity Body Channel Communication System for Landmark Identification

    Get PDF
    This paper presents a robust simplex Body Channel Communication (BCC) system aimed at providing an interactive infrastructure solution for visually impaired people. Compared to existing BCC solutions, it provides high versatility, weara- bility and installability in an environment in a low complexity hardware-software solution. It operates with a ground referred transmitter (TX) and it is based on an asynchronous thresh- old receiver (RX) architecture. Synchronization, demodulation and packetizing and threshold control are completely software defined and implemented using MicroPython. The RX includes Bluetooth® (BT) radio connectivity and a cell-phone application provides push text-to-speech notifications to a smartphone. The hardware achieves a Packet Error Rate (PER) of ∼0.1 at 550 kHz pulse center frequency, Synchronized-On Off Keying (S- OOK) modulation and 1 kbps data rate, for an average current consumption of 44mA

    Ultra-Wideband Transceiver Design And Optimization

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xiii, 128 pages.The technology landscape has quickly changed over the last few years. Developments in personal area networks, IC technology, DSP processing and bio-medical devices have enabled the integration of short range communication into low cost personal health care solutions. Newer technologies and solutions are being developed to cater to the personal operating space(POS) and body area networks(BAN). Health care is driving towards using multiple sensor and therapeutic nodes inside the POS. Technology has enabled remote patient care where the patient has low cost on-body wearables that allow the patient/physician to access vital signs without the patient physically visiting the clinic. Big semiconductor giants want to move into the wearable health monitor space. Along with the developments in fitness based health wearables, there has been a lot of interest towards developing BAN devices catering to the 'mission-critical' wearables and implants. Hearing aids, EKG monitors, neurostimulators are some examples. This work explores the use of the 802.15 ulta wideband (UWB) standard for designing a radio to operate in the a wireless sensor network in the BAN. The specific application targeted is a hearing aid. However, the design in this work is capable of working in a low power low range application with the ability to have multiple data rates ranging from a few kHz to 10's of MHz. The first radio designed by Marconi using spark-gap transmitters was an impulse radio (IR). The IR UWB technology boasts of low power, low cost, high data rates, multiple channels, simultaneous networking, the ability to carry information through obstacles that more limited bandwidths cannot, and also potentially lower complexity hardware design. The inherent timing accuracy associated with the technology gives UWB transmissions immunity to multipath fading and are hence make them more suitable for a cluttered indoor environment. The key difference with the traditional narrowband transceiver is that instead of using continuous wave (CW) transmission, impulses in time are used. The timing accuracy associated with these impulses require synchronization in time, rather than synchronization in frequency for carrier-based CW systems. A complete fully integrated system is presented in thesis. This work presents a low-power noncoherent IR UWB transceiver operating at 5GHz in 0.13um CMOS. A fully-digital transmitter generates a shaped output pulse of 1GHz 3-dB bandwidth. DLLs provide a PVT-tolerant time-step resolution of 1ns over the entire symbol period and regulate the pulse generator center frequency. The transmitter outputs -31dBm (0.88pJ/pulse at 1Mpulse/s) with a dynamic (energy) efficiency of 16pJ/pulse. The transmit out pulse is FCC part 15 compliant over process voltage and temperature (PVT) variations. The transmitter is semi-compliant with IEEE 802.15.6 and IEEE 802.15.4 standards and will become completely compliant with minor modifications. The receiver presented in this work is a non-coherent energy detect IR UWB receiver. The receiver has an on-chip transformer preceding the LNA, which is followed by a super-regenerative amplifier (SRA), envelope detector, sample-and-holds, and a bank of comparators. The design is SRA based energy-detection receiver. Measured results show a receiver efficiency of 0.32nJ/bit at 20.8Mb/s and operation with inputs as low as -70dBm. The SRA based energy-detection receiver utilizes early/late detection for a two-step baseband synchronization algorithm. An integrated solution to the issue of synchronization is also proposed. The system proposed is capable of synchronization and tracking control. The system in this work utilizes early/late detection for a two-step baseband synchronization algorithm. The algorithm is implemented in Matlab and the time to synchronization is observed to be between 250us to a few couple of ms. Measurements have also been made using the receiver and manually implementing the algorithm. This work addresses all aspects time synchronization in an IR transceiver. The initial mismatch is addressed by two methods. Beyond the initial synchronization, the system presented in this system is also capable of tracking. This would mean that once the transceiver has been synchronized, the timing generation would continue to track the phase and the frequency changes depending upon crystal drift over time or movement between the receiver and the transmitter. A test was also performed on the complete transceiver system with two radios talking to each other over a highly attenuated wired channel
    corecore