16 research outputs found

    MOSE': A grid-enabled software platform to solve geoprocessing problems

    Get PDF
    Grid computing has emerged as an important new field in the distributed computing arena. It focus on intensive resource sharing, innovative applications, and in some cases, high-performance orientation. This paper describes how grids technologies can be used to develop an infrastructure for developing geoprocessing applications. We present the MOS`E system, a grid-enabled problem solving environment (PSE) able to support the activities that concern the modelling and simulation of spatio-temporal phenomena for analyzing and managing the identification and the mitigation of natural disasters like floods, wildfires, landslides, etc. MOSE' takes advantages of the standardized resource access and workflow support for loosely coupled software components provided by the web/grid services technologies

    ADDRESSING GEOGRAPHICAL CHALLENGES IN THE BIG DATA ERA UTILIZING CLOUD COMPUTING

    Get PDF
    Processing, mining and analyzing big data adds significant value towards solving previously unverified research questions or improving our ability to understand problems in geographical sciences. This dissertation contributes to developing a solution that supports researchers who may not otherwise have access to traditional high-performance computing resources so they benefit from the “big data” era, and implement big geographical research in ways that have not been previously possible. Using approaches from the fields of geographic information science, remote sensing and computer science, this dissertation addresses three major challenges in big geographical research: 1) how to exploit cloud computing to implement a universal scalable solution to classify multi-sourced remotely sensed imagery datasets with high efficiency; 2) how to overcome the missing data issue in land use land cover studies with a high-performance framework on the cloud through the use of available auxiliary datasets; and 3) the design considerations underlying a universal massive scale voxel geographical simulation model to implement complex geographical systems simulation using a three dimensional spatial perspective. This dissertation implements an in-memory distributed remotely sensed imagery classification framework on the cloud using both unsupervised and supervised classifiers, and classifies remotely sensed imagery datasets of the Suez Canal area, Egypt and Inner Mongolia, China under different cloud environments. This dissertation also implements and tests a cloud-based gap filling model with eleven auxiliary datasets in biophysical and social-economics in Inner Mongolia, China. This research also extends a voxel-based Cellular Automata model using graph theory and develops this model as a massive scale voxel geographical simulation framework to simulate dynamic processes, such as air pollution particles dispersal on cloud

    Sensor web geoprocessing on the grid

    Get PDF
    Recent standardisation initiatives in the fields of grid computing and geospatial sensor middleware provide an exciting opportunity for the composition of large scale geospatial monitoring and prediction systems from existing components. Sensor middleware standards are paving the way for the emerging sensor web which is envisioned to make millions of geospatial sensors and their data publicly accessible by providing discovery, task and query functionality over the internet. In a similar fashion, concurrent development is taking place in the field of grid computing whereby the virtualisation of computational and data storage resources using middleware abstraction provides a framework to share computing resources. Sensor web and grid computing share a common vision of world-wide connectivity and in their current form they are both realised using web services as the underlying technological framework. The integration of sensor web and grid computing middleware using open standards is expected to facilitate interoperability and scalability in near real-time geoprocessing systems. The aim of this thesis is to develop an appropriate conceptual and practical framework in which open standards in grid computing, sensor web and geospatial web services can be combined as a technological basis for the monitoring and prediction of geospatial phenomena in the earth systems domain, to facilitate real-time decision support. The primary topic of interest is how real-time sensor data can be processed on a grid computing architecture. This is addressed by creating a simple typology of real-time geoprocessing operations with respect to grid computing architectures. A geoprocessing system exemplar of each geoprocessing operation in the typology is implemented using contemporary tools and techniques which provides a basis from which to validate the standards frameworks and highlight issues of scalability and interoperability. It was found that it is possible to combine standardised web services from each of these aforementioned domains despite issues of interoperability resulting from differences in web service style and security between specifications. A novel integration method for the continuous processing of a sensor observation stream is suggested in which a perpetual processing job is submitted as a single continuous compute job. Although this method was found to be successful two key challenges remain; a mechanism for consistently scheduling real-time jobs within an acceptable time-frame must be devised and the tradeoff between efficient grid resource utilisation and processing latency must be balanced. The lack of actual implementations of distributed geoprocessing systems built using sensor web and grid computing has hindered the development of standards, tools and frameworks in this area. This work provides a contribution to the small number of existing implementations in this field by identifying potential workflow bottlenecks in such systems and gaps in the existing specifications. Furthermore it sets out a typology of real-time geoprocessing operations that are anticipated to facilitate the development of real-time geoprocessing software.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) : School of Civil Engineering & Geosciences, Newcastle UniversityGBUnited Kingdo

    Hollywood\u27s White House: The American Presidency in Film and History

    Get PDF
    Winner of the 2003 Ray and Pat Browne Book Award, given by the Popular Culture Association The contributors to Hollywood’s White House examine the historical accuracy of these presidential depictions, illuminate their influence, and uncover how they reflect the concerns of their times and the social and political visions of the filmmakers. The volume, which includes a comprehensive filmography and a bibliography, is ideal for historians and film enthusiasts. The essays are supported by numerous sources that provide some good leads . . . the chronological filmography will come in handy. Recommended. -- Library Journal This well-written book, with contributions by both film critics and historians, is an interesting study of the real presidency and the reel presidency. -- USA Today Magazine An excellent example of the American theater. . . . We are the audience. We will be a much more informed audience after reading the essays in this book. -- Ray Browne, Journal of American Culture A scholarly examination of the portrayal of the American presidency in film. -- Choice Winner of the 2004 Ray and Pat Browne Award given by the Popular Culture Association.https://uknowledge.uky.edu/upk_american_popular_culture/1005/thumbnail.jp

    The Murray Ledger and Times, November 20, 1999

    Get PDF

    Mathematical model of interactions immune system with Micobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) remains a public health problem in the world, because of the increasing prevalence and treatment outcomes are less satisfactory. About 3 million people die each year and an estimated one third of the world's population infected with Mycobacterium Tuberculosis (M.tb) is latent. This is apparently related to incomplete understanding of the immune system in infection M.tb. When this has been known that immune responses that play a role in controlling the development of M.tb is Macrophages, T Lymphocytes and Cytokines as mediators. However, how the interaction between the two populations and a variety of cytokines in suppressing the growth of Mycobacterium tuberculosis germ is still unclear. To be able to better understand the dynamics of infection with M tuberculosis host immune response is required of a model.One interesting study on the interaction of the immune system with M.tb mulalui mathematical model approach. Mathematical model is a good tool in understanding the dynamic behavior of a system. With the mediation of mathematical models are expected to know what variables are most responsible for suppressing the growth of Mycobacterium tuberculosis germ that can be a more appropriate approach to treatment and prevention target is to develop a vaccine. This research aims to create dynamic models of interaction between macrophages (Macrophages resting, macrophages activated and macrophages infected), T lymphocytes (CD4 + T cells and T cells CD8 +) and cytokine (IL-2, IL-4, IL-10,IL-12,IFN-dan TNF-) on TB infection in the lung. To see the changes in each variable used parameter values derived from experimental literature. With the understanding that the variable most responsible for defense against Mycobacterium tuberculosis germs, it can be used as the basis for the development of a vaccine or drug delivery targeted so hopefully will improve the management of patients with tuberculosis. Mathematical models used in building Ordinary Differential Equations (ODE) in the form of differential equation systems Non-linear first order, the equation contains the functions used in biological systems such as the Hill function, Monod function, Menten- Kinetic Function. To validate the system used 4th order Runge Kutta method with the help of software in making the program Matlab or Maple to view the behavior and the quantity of cells of each population
    corecore