

Sensor Web Geoprocessing

on the Grid

Aengus Robert McCullough BSc. (Hons.)

Thesis Submitted for the Degree of

Doctor of Philosophy

School of Civil Engineering & Geosciences

2011

Abstract

i

Abstract

Recent standardisation initiatives in the fields of grid computing and geospatial

sensor middleware provide an exciting opportunity for the composition of large

scale geospatial monitoring and prediction systems from existing components.

Sensor middleware standards are paving the way for the emerging sensor web

which is envisioned to make millions of geospatial sensors and their data

publicly accessible by providing discovery, task and query functionality over the

internet. In a similar fashion, concurrent development is taking place in the field

of grid computing whereby the virtualisation of computational and data storage

resources using middleware abstraction provides a framework to share

computing resources. Sensor web and grid computing share a common vision

of world-wide connectivity and in their current form they are both realised using

web services as the underlying technological framework. The integration of

sensor web and grid computing middleware using open standards is expected

to facilitate interoperability and scalability in near real-time geoprocessing

systems.

The aim of this thesis is to develop an appropriate conceptual and practical

framework in which open standards in grid computing, sensor web and

geospatial web services can be combined as a technological basis for the

monitoring and prediction of geospatial phenomena in the earth systems

domain, to facilitate real-time decision support. The primary topic of interest is

how real-time sensor data can be processed on a grid computing architecture.

This is addressed by creating a simple typology of real-time geoprocessing

operations with respect to grid computing architectures. A geoprocessing

system exemplar of each geoprocessing operation in the typology is

implemented using contemporary tools and techniques which provides a basis

from which to validate the standards frameworks and highlight issues of

scalability and interoperability.

It was found that it is possible to combine standardised web services from each

of these aforementioned domains despite issues of interoperability resulting

from differences in web service style and security between specifications. A

Abstract

ii

novel integration method for the continuous processing of a sensor observation

stream is suggested in which a perpetual processing job is submitted as a

single continuous compute job. Although this method was found to be

successful two key challenges remain; a mechanism for consistently scheduling

real-time jobs within an acceptable time-frame must be devised and the trade-

off between efficient grid resource utilisation and processing latency must be

balanced.

The lack of actual implementations of distributed geoprocessing systems built

using sensor web and grid computing has hindered the development of

standards, tools and frameworks in this area. This work provides a contribution

to the small number of existing implementations in this field by identifying

potential workflow bottlenecks in such systems and gaps in the existing

specifications. Furthermore it sets out a typology of real-time geoprocessing

operations that are anticipated to facilitate the development of real-time

geoprocessing software.

Acknowledgements

iii

Acknowledgements

I would like to express my gratitude to everyone that has helped and supported

me while undertaking this research. First and foremost, thanks to my

supervisors Philip James and Stuart Barr, for their years of invaluable support

and guidance without which this would not have been possible. Thanks also to

my Geomatics colleagues and countless others in the School that have

provided useful support and advice at one time or another.

I have received a great deal of technical assistance via email that has been

critical to the success of this research and that deserves acknowledgement

here. Alain Roy at University of Wisconsin-Madison has provided invaluable

assistance with Globus Toolkit woes. At the National Grid Service Matteo Turilli

has helped with GridSAM on numerous occasions, and Simon Collins has

provided significant help with the Oracle service. Alex Mckeown at CSIRO

provided much appreciated help debugging an SES filter, thank you. I have

also received significant email support from 52 North developers Christoph

Stasch, Johannes Echterhoff and Thomas Everding. Furthermore, Trevor

Arkless at Newcastle City Council has been very helpful in providing access to

road traffic travel time data.

My family have been extremely tolerant and understanding throughout the

course of this research, particularly my parents Hugh and Kate who have

helped me keep body and soul together during the final stages of this research

period. Paulette thanks for doing an excellent job of distracting me from my

studies when necessary, for buying me motivational cupcakes and for being

there one way or another.

This research was funded by EPSRC and the School of Civil Engineering &

Geosciences at Newcastle University.

Publications from this Research

iv

Publications from this Research

The following publications have been produced from the research presented in

this thesis:

McCullough, A., James, P., Barr, S. L. (2011) ‘A Typology of Real-Time Parallel

Geoprocessing for the Sensor Web Era’ Proceedings of the Workshop on

Integrating Sensor Web and Web-based Geoprocessing, AGILE 2011. Utrecht,

CEUR pp.712-1.

McCullough, A., James, P., Barr, S. L. (2011) ‘A Service Oriented

Geoprocessing System for Real-Time Road Traffic Monitoring’ Transactions in

GIS (in press)

 Table of Contents

v

Table of Contents

Abstract .. i

Acknowledgements .. iii

Publications from this Research ... iv

Table of Contents .. v

List of Figures .. x

List of Tables .. xiii

List of Code Listings ... xiv

List of Equations .. xv

Chapter 1 Introduction 1

1.1 Context ... 1

1.2 Background .. 3

1.2.1 Service Oriented Architecture (SOA) for GIS 3

1.2.2 Application Specific Frameworks ... 3

1.2.3 Scalability and Performance in Sensor Web Geoprocessing 4

1.3 Problem Statement ... 5

1.4 Scope of the Thesis .. 5

1.5 Organisation of the Thesis .. 6

Chapter 2 Geoprocessing on the Grid: A Review of St andards, Tools and

Techniques 8

2.1 Introduction ... 8

2.2 Characteristics of Geospatial Monitoring & Prediction Applications 9

2.2.1 Real-Time Geohazard Monitoring and Mitigation 9

2.2.2 Real-Time Entity Monitoring .. 13

2.2.3 Design Traits in Geospatial Monitoring & Prediction Systems 15

2.2.4 The Motivation for Integrating Grid Computing with Geospatial

Monitoring and Prediction Systems ... 17

2.3 Distributed Computing Architectures and Standards for Real-Time

Geospatial Applications ... 20

2.3.1 Web Service Styles and Standards ... 20

2.3.2 The Open Grid Services Architecture (OGSA) 26

2.3.3 OpenGIS Web Services (OWS)... 28

2.3.4 OpenGIS Web Services (OWS) Test bed Activity 29

 Table of Contents

vi

2.3.5 Review of OpenGIS Web Services (OWS) / Grid Integration 30

2.3.6 Review of Sensor Web Enablement (SWE) / Grid Integration 37

2.3.7 Cloud Computing ... 46

2.3.8 Summary of Key Issues for OGF and OGC Standards Alignment

 48

2.4 Parallel Geoprocessing ... 51

2.4.1 Why Process in Parallel? ... 51

2.4.2 Parallel Processing and Data Architectures 52

2.4.3 Parallel Geoprocessing Strategies .. 58

2.4.4 Parallel Programming Constructs .. 71

2.5 Summary .. 77

2.6 Aim, Objectives and Research Questions .. 78

Chapter 3 Categorisation of Real-Time Distributed G eoprocessing

Paradigms.. .. 81

3.1 Introduction ... 81

3.2 Review of Existing Geoprocessing Classifications 82

3.3 Geoprocessing and Time .. 87

3.3.1 Snap vs Span ... 87

3.3.2 Real-time Data Sources .. 89

3.3.3 Invocation of Real-time Geoprocessing 90

3.3.4 Reliability and Variability of Real-time Data 91

3.4 A Real-time Geoprocessing Typology .. 92

3.4.1 Data Stream Geoprocessing (DSG) .. 97

3.4.2 Fine-grained Snapshot Geoprocessing (FGSG) 98

3.4.3 Coarse-grained Snapshot Geoprocessing (CGSG) 98

3.5 Categorisation of Common Geoprocessing Operations...................... 98

3.5.1 Data Stream Geoprocessing (DSG) Operations 102

3.5.2 Fine-grained Snapshot Geoprocessing (FGSG) Operations 103

3.5.3 Coarse-grained Snapshot Geoprocessing (CGSG) Operations 103

3.6 Typology Evaluation & Critique ... 104

3.7 Conclusion .. 106

Chapter 4 Data Stream Geoprocessing 108

4.1 Introduction ... 108

4.2 System Design ... 108

 Table of Contents

vii

4.2.1 User Scenario .. 108

4.2.2 Design Considerations .. 110

4.2.3 Software & Tool Selection ... 110

4.2.4 Architectural Overview ... 112

4.2.5 Review of Map-matching Algorithms ... 117

4.3 Implementation ... 119

4.3.1 Sensor Observation Service (SOS) ... 119

4.3.2 Sensor Emulator .. 119

4.3.3 Web Feature Service (WFS).. 122

4.3.4 Map Matcher ... 123

4.3.5 Web Processing Service (WPS) Proxy 126

4.3.6 GridSAM Client .. 130

4.4 Results .. 131

4.4.1 Functionality Testing .. 131

4.4.2 Scalability Testing .. 135

4.5 Discussion .. 141

4.6 Conclusion .. 144

Chapter 5 Fine-Grained Snapshot Geoprocessing 145

5.1 Introduction ... 145

5.2 Review of Real-Time Traffic Routing using Floating Car Data 146

5.3 System Design ... 148

5.3.1 User Scenario .. 148

5.3.2 Software and Tool Selection .. 148

5.3.3 Architectural Overview ... 151

 .. 152

5.4 Implementation ... 153

5.4.1 Data Preparation and Loading ... 153

5.4.2 Data Input Subsystem ... 156

5.4.3 Geoprocessing subsystem .. 160

5.4.4 Client User Interface .. 164

5.5 Testing & Results ... 166

5.5.1 Amazon Machine Image (AMI) Configuration 166

5.5.2 Estimation of the Probable Route between Non-Adjacent Network

Links 168

 Table of Contents

viii

5.5.3 Functional Testing for a Single Vehicle 171

5.5.4 Functional Testing for Multiple Vehicles 176

5.5.6 Scalability Testing .. 179

5.6 Discussion .. 182

5.7 Conclusion .. 184

Chapter 6 Coarse-Grained Snapshot Geoprocessing 186

6.1 Introduction ... 186

6.2 Background and Context .. 186

6.2.1 Elastic MapReduce .. 186

6.2.3 The Spatial Reclassification Kernel (SPARK) Algorithm 188

6.3 Design & Implementation .. 191

6.3.1 Data Partitioning .. 193

6.3.2 Hadoop Configuration .. 196

6.3.3 The Map and Reduce Functions ... 196

6.3.4 Output Conversion ... 197

6.4 Testing & Evaluation ... 197

6.4.1 Test Scenario .. 197

6.4.2 Results .. 199

6.5 Discussion .. 206

6.6 Conclusion ... 210

Chapter 7 Discussion 211

7.1 Introduction ... 211

7.2 Harmonisation Issues ... 211

7.2.1 OGC-OGF Harmonisation ... 212

7.2.2 Improvements to SWE Data Services 213

7.2.3 Improvements to the WPS ... 214

7.2.4 OGC Services using IaaS and PaaS ... 215

7.3 Performance Issues in Distributed Monitoring and Prediction 216

7.3.1 Job Scheduling .. 216

7.3.2 Data I/O ... 218

7.3.3 Data Transfer... 221

7.4 Methodologies for Real-time Distributed Geoprocessing 223

7.4.1 Data Stream Geoprocessing (DSG) .. 223

7.4.2 Fine-grained Snapshot Geoprocessing (FGSG) 228

 Table of Contents

ix

7.4.3 Coarse-grained Snapshot Geoprocessing (CGSG) 230

7.5 Conclusion ... 231

Chapter 8 Conclusion 233

8.1 Thesis Summary ... 233

8.2 Interface and Architectural Recommendations 235

8.2.1 Improvements to OGC standards .. 235

8.2.2 Architectural Recommendations .. 235

8.3 Future Work .. 237

8.3 Future Outlook .. 239

Appendix A…………………………………………………………………………242

Appendix B…………………………………………………………………………248

Appendix C…………………………………………………………………………250

Appendix D…………………………………………………………………………252

Appendix E…………………………………………………………………………258

Appendix F…………………………………………………………………………261

Appendix G…………………………………………………………………………264

Appendix H…………………………………………………………………………265

Appendix I………………………………………………………………………….268

Appendix J…………………………………………………………………………275

Appendix K…………………………………………………………………………278

Appendix L…………………………………………………………………………281

Chapter 9 References 284

 List of Figures

x

List of Figures

Figure 2.1: Service Oriented Architecture ... 21

Figure 2.2: The O&M Observation Model (Stasch et al., 2008)] 39

Figure 2.3: Flynn's Taxonomy and MNSP, MNMP, SNMP Architectures.......... 54

Figure 2.4: Parallel Database Architectures [adapted from Dewitt and Gray

(1992)] .. 56

Figure 2.5: The Task Farm Application Graph Topology 60

Figure 2.6: The Divide and Conquer Application Graph Topology 62

Figure 2.7: The Map Reduce Programming Model ... 64

Figure 2.8: Classification of Spatial Domains [(Armstrong and Densham, 1992)]

 .. 67

Figure 2.9: Boundary Exchange for a Convolution Filter 68

Figure 2.10: Data Pipelining Structure .. 69

Figure 3.1: Types of Sensor System [Langran et al, 1992] 85

Figure 3.2: Static, Snapshot and Stream Data Representations 93

Figure 3.3: The Granularity Spectrum ... 95

Figure 3.4: Database and MPI / database styles of fine-grained geoprocessing

 .. 96

Figure 3.5: Geoprocessing Paradigms .. 97

Figure 3.6: A UML2 Sequence Diagram of Data Stream Geoprocessing 97

Figure 3.7: Venn Diagram showing the relationship between classes in the

geoprocessing typology .. 100

Figure 4.1: Interaction Sequence between map-matching system components

 .. 115

Figure 4.2: Map-matching message sequence diagram 116

Figure 4.3: Map Matching System Component Diagram 119

Figure 4.4: Screenshot of the graphical interface to create a virtual sensor ... 121

Figure 4.5: Screenshot of the graphical user interface of the Sensor Emulator

 .. 122

Figure 4.6: Diagrammatic representation of the map-matching algorithm

showing the vehicle’s current (X2,Y2) and previous (X1,Y1) positions, the

standard deviation of horizontal position (muB), and the standard deviation of

 List of Figures

xi

orientation (muDeltaPhi) in relation to the position and orientation of road sub-

segments .. 125

Figure 4.7: UML Diagram showing Algorithm and Grid extensions to 52 North

WPS .. 128

Figure 4.8: Map Matching Results for Journey 1... 133

Figure 4.9: Map Matching Results for Journey 2... 134

Figure 4.10: Many to one relationship between vehicle/map matcher and

SOS/WFS ... 136

Figure 4.11: Graph showing Response Time of SOS and WFS requests 137

Figure 4.12: Time-lag results for SOS Server 1 .. 140

Figure 4.13: Time-lag results for SOS Server 2 .. 140

Figure 5.1: A UML2 communication diagram outlining message flow and basic

association between system components ... 151

Figure 5.2 UML Sequence Diagram of Road Traffic Monitoring System 152

Figure 5.3 Component Diagram of Road Traffic Monitoring System 153

Figure 5.4: Database schema showing the spatial road network tables and the

input data tables used to generate the road network 156

Figure 5.5: UML class diagram showing the parent child relationship between

ROAD_CHANGE_EVENT and PROCESSED_EVENTS tables 162

Figure 5.6: Screenshot of the user interface component 166

Figure 5.7: Diagram showing the four possible path configurations between

road A and road B. Path 1 shows the correct configuration as it represents the

distance travelled between road change event at T0 and road change event at

T1 .. 171

Figure 5.8: Sample vehicle route showing GPS observations and map-matched

road links .. 172

Figure 5.9: Map showing the road links assigned a new cost value by the

system .. 174

Figure 5.10: Map showing the road links assigned a travel-time cost and the raw

GPS observations ... 177

Figure 5.11: Map showing the estimated set of road links that should have been

assigned a travel-time cost and the raw GPS observations 177

Figure 5.12: Response Time of Shortest Path Routing and Nearest Neighbour

Web Services .. 181

 List of Figures

xii

Figure 6.1 Component Diagram of Elastic Map Reduce 188

Figure 6.2: Adjacency Events in a 3x3 Kernel Window [adapted from Barnsley

and Barr (1996)] .. 190

Figure 6.3: Pre and post processing stages in the MapReduce SPARK

workflow .. 193

Figure 6.4: Supervised Classification of a SPOT-1 HRV image of South East

London .. 198

Figure 6.5: SPARK Re-classified Image of South East London 200

Figure 6.6: Processing Time of the SPARK algorithm for a 4195 x 2995 pixel

image and 9 land-use templates using different Elastic Map Reduce

configurations.. 205

Figure 6.7: Graph Showing Cost Performance of Different EC2 Instance Types

 .. 206

Figure 7.1 Upstream box sliding: Process B is moved from Processor 2 to

Processor 1 [adapted from Cherniack et al., (2003)] 225

Figure 7.2 Box Split: Process A is duplicated on Processor 2 and Processor 3,

the filter operator equally allocates incoming observations amongst the three

processors [adapted from Cherniack et al., (2003)] .. 226

 List of Tables

xiii

List of Tables

Table 3.1: Characteristics of Geoprocessing Paradigms 94

Table 3.2: Common Geoprocessing Operations ... 100

Table 4.1: Percentage of Correct Matches for Journey 1 and Journey 2 132

Table 4.2: Time interval between GPS measurement and insertion of

observation into Sensor Observation Service ... 133

Table 4.3: WFS and SOS Response Time ... 136

Table 4.4: Profiling results for map matcher ... 138

Table 4.5: Map matcher time expenditure (milliseconds) 138

Table 5.1: Raw Observations and their corresponding Road Change Events

 173

Table 5.2: Road link Cost Calculation from Road Change Events 175

Table 5.3: Summary statistics for the absolute difference between interpolated

and real-time travel-time costs .. 178

Table 5.4: Mean absolute difference between interpolated and real-time travel-

time costs by number of real-time observations .. 178

Table 5.5: Time Delay between Road Change Event and Notification 179

Table 6.6: Response Time of Shortest Path Routing and Nearest Neighbour

Web Services .. 181

Table 6.1: Confusion Matrix for Land-cover Classification 199

Table 6.2: Confusion Matrix for Land-Use Reclassification 200

Table 6.3: Amazon EC2 Instance Type Specifications 202

Table 6.4: Processing Time of the SPARK algorithm on increasing numbers of

processors for a 4195 x 2995 pixel image and 9 land-use templates 203

Table 8.1: Geoprocessing Operations, Architectures and Parallel Strategies . 237

List of Code Listings

xiv

List of Code Listings

Listing 2.1: SOAP WPS Execute Request .. 26

Listing 2.2: RESTful WPS Execute Request ... 26

Listing 2.3: The Divide and Conquer Strategy (Foster, 1995) 63

Listing 2.4: The Map and Reduce Functions ... 64

Listing 4.1: Schema of the Observation Table .. 121

Listing 4.2: Correction to spatial_ref_sys table in PostGIS 123

Listing 4.3: Map Matching Algorithm using position and orientation................ 125

Listing 4.4: StopExecuting Request .. 129

Listing 4.5: StopExecuting Response ... 129

Listing 5.1: Example WSN Notification produced by SES pusher and sent 157

Listing 5.2: Trigger procedure to update real-time COST column 162

Listing 5.3: SQL prepared statement to identify nearest neighbour to OSGB36

coordinates <easting><northing> .. 164

List of Equations

xv

List of Equations

Equation 1 ... 52

N

T
T

TT
S

P
S

PS
N

+

+=

Equation 2…………………………………………………………………………….61

mergeproccutall TTTT ++=)max(

Equation 3…………………………………………………………………………...155

∑
∑

∑

=

=

=

−

−
==

m

t
m

j
j

m

i
ii

ii

rr

rrrz

rZWrF
1

1

2

1

2

||/1

||/)(
)()(

Equation 4………………………………………………………………………… ... 191

=

333231

232221

131211

fff

fff

fff

M

Equation 5…………………………………………………………………………...191

{ }∑∑
= =

−−=∆
C

i

C

j
ijij fTfA

N
k

1

2

1
2

)()(
)(2

1
1

Equation 6…………………………………………………………………………...195

)1)(1(2 +−+−= nynxknSv

Equation 7…………………………………………………………………………...195

)1(+−= nxnykSv

Glossary

xvi

Glossary

ACID: Atomicity, Consistency, Isolation, Durability

AMI: Amazon Machine Image

API: Application Programming Interface

BASE: Basically Available, Soft-state, Eventually Consistent

BPEL: Business Process Execution Language

CA: Cellular Automata

CEP: Complex Event Processing

CFD: Computational Fluid Dynamics

CGSG: Coarse Grained Snapshot Geoprocessing

CSW: Web Catalogue Service

DEM: Digital Elevation Model

DSG: Data Stream Geoprocessing

DSMS: Data Stream Management System

DSP: Data Stream Processing

EOS: Earth Observing System (NASA)

FCD: Floating Car Data

FE: Finite Element

FGSG: Fine Grained Snapshot Geoprocessing

FTP: File Transfer Protocol

GIS: Geographic Information System

GPS: Global Positioning System

HDFS: Hadoop File System

HPC: High Performance Computing

HPF: High Performance Fortran

IaaS: Infrastructure as a Service

IDW: Inverse Distance Weighted

InSAR: Interferometric Synthetic Aperture RADAR

ISO: International Standards Organisation

IT: Information Technology

ITN: Integrated Transport Network (Ordnance Survey)

LOD: Load on Demand

MIMD: Multiple Instruction Multiple Data

MISD: Multiple Instruction Single Data

Glossary

xvii

MNMP: Multiple Node Multiple Processors

MNSP: Multiple Node Single Processor

MPI: Message Passing Interface

MPP: Massive Parallel Processing

MPTS: Moving Point Time Series

NCC: Newcastle City Council

NOSQL: Not Only SQL

NOW: Network of Workstations

O&M: Observations and Measurements

OASIS: Organisation for the Advancement of Structured Information Standards

OCCI: Open Cloud Computing Interface

OGC: Open Geospatial Consortium

OGF: Open Grid Forum

OGSA: Open Grid Services Architecture

OGSA-BES: OGSA Basic Execution Service

OGSA-DAI: Open Grid Services Architecture Data Access and Integration

ORCHESTRA: Open Architecture and Spatial Data Infrastructure for Risk

Management

OSWA: Open Sensor Web Architecture

OWS: OpenGIS Web Services

PaaS: Platform as a Service

RAC: Real Application Clusters

REIS: Real-time Earthquake Information System

REST: Representational State Transfer

RM-ODP: Reference Model for Open Distributed Processing

SAAJ: Soap with Attachments API for Java

SaaS: Software as a Service

SensorML: Sensor Model Language

SFTS: Spatial Field of Time Series

SIMD: Single Instruction Multiple Data

SISD: Single Instruction Single Data

SLA: Service Level Agreement

SNMP: Single Node Multiple Processors

SOA: Service Oriented Architecture

Glossary

xviii

SOAP: Simple Object Access Protocol

SOS: Sensor Observation Service

SPARK: Spatial Reclassification Kernel

SQL:Structured Query Language

SWE: Sensor Web Enablement

TFSS: Time Field of Spatial Series

TIN: Triangulated Irregular Network

TML: Transducer Model Language

TOID: Topographic Identifier (Ordnance Survey)

UDDI: Universal Description Discovery and Integration

UML: Unified Modelling Language

URI: Universal Resource Identifier

VO: Virtual Organisation

WCS: Web Coverage Service

WFS: Web Feature Service

WMS: Web Mapping Service

WMTS: Web Map Tile Service

WPS: Web Processing Service

WSDL: Web Services Description Language

WS-I BP 1.1: WS-I’s Basic Profile 1.1

WS-I: Web Services Interoperability

WSN: Web Services Notification

WSRF: Web Services Resource Framework

Introduction

1

Chapter 1 Introduction

1.1 Context

Recent technological advancements in the acquisition and distribution of spatial

data are set to have a profound impact on Geographic Information Systems

(GIS). Traditional methods of spatial data acquisition are rapidly being

augmented with a new generation of digital sensors that are capable of

capturing spatial phenomena in real-time and without human intervention.

Furthermore, the widespread proliferation of the internet has created an

opportunity to make this information available to a wider range of users than

ever before. The term ‘sensor web’ has been coined to describe the vision of

numerous inter-connected digital sensors across the globe that can be

discovered and accessed through the internet (Reichardt, 2005). Although this

vision is not yet a reality it has the potential to make a significant impact on the

field of GIS, particularly for applications such as environmental monitoring,

disaster management, climate change prediction, logistics and the management

of utilities. The sensor web vision is probably best exemplified by the European

funded Global Earth Observation System of Systems (GEOSS) project which is

described as a “comprehensive, near real-time information system that will

coordinate present and future observation systems, monitor the entire Earth,

track changes in all of its physical, chemical, and biological systems, and serve

as an essential decision support tool for a vast range of issues and user groups”

(Acache, 2007).

The sensor web vision has coincided with a more general evolution of the GIS

landscape; monolithic software packages are gradually being replaced by

collections of distributed services (Section 1.2.1). Rather than storing and

processing spatial data on a local desktop workstation, data is stored in web

accessible repositories and processed remotely. This client-server approach

has three advantages (Abel et al., 1999); firstly, less investment in hardware

and software is required by end-users as data and processing resources can be

accessed remotely. Secondly, the ability to maintain a central data repository

and access it as a service facilitates the integration of disparate data sources

and allows them to be easily updated. Thirdly, voluminous geospatial data is

Introduction

2

not easily portable and the ability to analyze it remotely is therefore desirable.

Significant work has been undertaken to standardise interfaces to geospatial

services across the industry to promote data sharing and interoperability

between disparate organisations (Lee and Percivall, 2008). This evolution has

provided an opportunity to integrate the sensor web vision and GIS, because in

a distributed architecture sensors and their data can be discovered, described

and accessed through well defined service interfaces in much the same way as

other data sources.

More recently another trend referred to as grid computing has emerged in the

Information Technology (IT) sector that has been hailed as the third information

technology wave (Sun et al., 2005). Grid computing is defined by Foster (2002)

as a computing infrastructure that enables the sharing of heterogeneous

computing resources across organisational boundaries, without centralised

control, using standard, open and general purpose protocols and interfaces. It

provides a framework in which access to heterogeneous computing resources

such as processor cycles and data storage devices can be federated, thus

facilitating geographically dispersed collaboration, permitting inexpensive

access to high end computational capabilities and enabling increased use of

idle computing capacity (Foster and Kesselman, 1999). From a GIS

perspective grid computing presents an exciting opportunity; it provides an

extension to the client-server approach whereby spatial analysis can be

outsourced on a massive scale to a large cluster of computers rather than to a

single server. Furthermore, the ability to task processors on demand is likely to

prove useful for sensor web applications that exhibit temporal variation in the

amount of computational power they require.

Another distributed computing infrastructure known as cloud computing has in

the last few years become popular which shares many similarities with the grid

computing concept. Cloud computing has already had a significant impact on

the mainstream IT market (Armbrust et al., 2009, Buyya et al., 2008) and is

increasingly being used as a platform for geospatial applications (Baranski et

al., 2009, Blunck et al., 2010, Blower, 2010, Chen et al., 2008).

Introduction

3

1.2 Background

1.2.1 Service Oriented Architecture (SOA) for GIS

GIS and grid computing conform to a distributed software design referred to as

a Service Oriented Architecture (SOA). SOA software is composed of a set of

disparate components referred to as services, each of which encapsulates

some functionality and a description specifying its purpose and how to interact

with it. Web services are a technological implementation of SOA principles that

have become the de-facto communication platform for distributed systems.

Web services are defined by Curbera et al (2002) as a platform neutral, vendor

independent framework based on open XML standards that specifies

communication protocols, service descriptions and service discovery

mechanisms to allow application to application interaction.

Using web services, a number of application specific frameworks have been

defined to facilitate the sharing and availability of resources such as hardware,

software, instruments and data. OpenGIS Web Services (OWS) and Sensor

Web Enablement (SWE) are frameworks defined by the Open Geospatial

Consortium (OGC) which is the leading standards body for geospatial services.

OWS represent a domain specific effort towards making heterogeneous

geospatial datasets and processing functions widely accessible through

standard service interfaces. Likewise, SWE specifications provide an interface

to task heterogeneous sensor collections and retrieve their observations. In

contrast, the Open Grid Services Architecture (OGSA) framework, as originally

proposed by Foster et al. (2002) and managed by the Open Grid Forum (OGF),

represents a broader effort towards sharing resources such as computational

power, data storage and sensors, using a different set of service interfaces

(Chen et al., 2006).

1.2.2 Application Specific Frameworks

The OWS framework fulfils the perceived need for a distinctive set of web

services that enable users to meaningfully interact with spatial data. For

example, the ability to perform spatial queries on data repositories enables

geographic features to be selected based on their spatial relationships such as

Introduction

4

‘distance to’, ‘contains’, ‘within’ and ‘intersects’. This ability to retrieve precisely

the features that are required is necessary in a SOA as it minimises network

communication cost; the alternative being to download an entire dataset and

query it locally (Scharl and Tochtermann, 2007). OWS incorporates the Web

Feature Service (WFS), Web Coverage Service (WCS), Web Mapping Service

(WMS), Web Processing Service (WPS) and Web Catalogue Service (CSW).

WFS and WCS define interfaces to deliver vector and raster data respectively,

and the WMS enables both raster and vector data to be combined into a visual

map document. WPS enables geo-processing operations to be published as a

service and CSW defines a registry service that enables other OWS services to

be discovered (Hobona et al., 2007).

The SWE framework has been designed to facilitate the emerging sensor web

and is comprised of a complete and structured set of XML based languages for

describing sensor models, sensors and their observations. It also includes a set

of service interfaces to perform sensor discovery, observation delivery and

dynamic tasking of sensor systems (Botts et al., 2006).

1.2.3 Scalability and Performance in Sensor Web Geoprocessing

The sensor web promises the ability to integrate remote, in-situ, fixed and

mobile sensors of every kind and communicate with them in a uniform manner

via a set of services; this is envisioned to greatly facilitate data fusion and to

enable software applications containing mashups of live environmental data to

be easily created (Botts et al., 2006). However, as noted by Chen et al (2005),

monitoring events and entities and making predictions about their future state

carries a large computational burden. Furthermore, uncertainty in the behaviour

of real world phenomena makes it difficult to predict the timing and the

magnitude of computational power required (Hingne et al., 2003).

Consequently, for applications that only require occasional access to high-end

computational capabilities there is a need for a system that can react to

fluctuations in demand and recruit computational resources as necessary

(Foster and Kesselman, 1998). Grid computing has been proposed as a

potential solution to the sensor web data deluge.

Introduction

5

1.3 Problem Statement

The development of scalable grid and cloud based sensor web geoprocessing

applications is currently a difficult process. Due to the significant variation

exhibited by geoprocessing tasks in their algorithmic and data properties there

is no single solution to scale an application through gridification as different

tasks are suited to different techniques (Werder and Krüger, 2009). The recent

proliferation of standards in GIS and grid computing provide an important step

towards interoperability. However, industry wide disarray in web service

specifications makes it difficult to leverage grid computing to improve

performance and scalability in sensor web monitoring and prediction

applications. Furthermore, given the diversity that sensor web scenarios and

their associated geoprocessing algorithms exhibit, there is no “one size fits all

solution” to improve the scalability or performance of sensor web processing

applications. A lack of a cohesive framework to relate real-time geoprocessing

operations with parallel processing techniques has hindered the development of

generic software tools and solutions thus far. Consequently there is a

perceived need to consolidate existing parallel geoprocessing techniques, and

to align web service based standards, so that sensor web geoprocessing

applications can easily leverage the scalability and performance advantages of

distributed computing.

1.4 Scope of the Thesis

While there are numerous issues surrounding the integration of grid computing

and sensor web into GIS workflows this thesis focuses only on interoperability,

scalability and performance in relation to monitoring and prediction systems.

This thesis attempts to identify common design patterns in distributed sensor

web geoprocessing systems and attempts to solve the interoperability,

scalability and performance issues that frequently occur in such designs.

Specifically, the suitability of existing and proposed interface and encoding

standards are explored in order to identify areas in which they could be

augmented or improved. Additionally an attempt is made to identify commonly

occurring workflow bottlenecks in these designs and to suggest alternative

approaches. It is anticipated that the outcomes from this research will facilitate

Introduction

6

the development of distributed monitoring and prediction systems using sensor

web and grid computing technology by providing a framework from which

standard development tools can be created.

1.5 Organisation of the Thesis

The remaining Chapters in this thesis are organised as follows:

Chapter Two reviews standards, tools and techniques for geoprocessing on the

grid. Firstly, the suitability of grid computing for geospatial monitoring and

prediction systems is established. Secondly, the current state of the art in

sensor web, grid computing and geospatial web services are set out and

parallel geoprocessing tools and techniques are reviewed. Finally, existing

efforts to integrate grid computing into geospatial workflows are examined and a

research agenda for real-time geoprocessing on the grid is set out.

Chapter Three details existing efforts to classify geoprocessing operations and

explores the effect of introducing real-time data into distributed geoprocessing

workflows. The main content of this Chapter is the presentation of a

prototypical typology of real-time geoprocessing operations and an attempt to

classify common geoprocessing operations in the context of this typology. In

addition, an evaluation and critique of the typology is conducted.

Chapter Four provides details of the design, implementation and testing of a

scalable real-time geoprocessing system that conforms to the Data Stream

Geoprocessing (DSG) category of real-time geoprocessing operation outlined in

Chapter 3. The system in question uses grid computing to perform a map-

matching operation for a fleet of vehicles in near real-time.

Chapter Five details the design, implementation and testing of another

geoprocessing system. In relation to the typology presented in Chapter 3 this

system incorporates elements of Fine-grained Snapshot Geoprocessing

(FGSG) and DSG. This prototypical system performs road traffic monitoring by

using Floating Car Data (FCD) to estimate travel times along different road

Introduction

7

stretches; the information is subsequently used to plan the quickest route

between two locations in a city.

Chapter Six explores the utility of cloud computing by presenting the design,

implementation and testing of a system that conforms to the Coarse-grained

Snapshot Geoprocessing (CGSG) class of geoprocessing operation. Amazon’s

Elastic MapReduce service is used to increase the performance of an image

processing algorithm known as the Spatial Reclassification Kernel (SPARK).

Chapter Seven discusses the main findings of this research and highlights the

overall research contribution of this work.

Chapter Eight concludes the thesis and details the possibilities for future work

in this field.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

8

Chapter 2 Geoprocessing on the Grid: A Review of St andards,

Tools and Techniques

2.1 Introduction

Sensor web, grid computing and geospatial web services have been identified

as key technology areas that are well placed to deal with the problems of

scalability and interoperability in real-time geoprocessing systems. In this

Chapter the suitability of these technologies to solve the computational and

architectural challenges inherent in monitoring real-world phenomena and

predicting their future state are reviewed from a geospatial perspective. The

major objectives of this literature review are set out as follows:

1. Identify the design characteristics of geospatial monitoring and

 prediction applications and review the case for a distributed approach

 to the design of geospatial monitoring and prediction applications.

2. Describe the current state of the art in each of the following key

 technology areas: sensor web, grid computing and geospatial web

 services.

3. Review contemporary tools and techniques for geoprocessing in

 parallel.

4. Examine existing efforts to integrate grid computing into geospatial

 workflows.

5. Set out a research agenda for real-time geoprocessing on the grid.

The remainder of this Chapter is divided into three logically distinct sections.

Section 2.2 reviews geospatial monitoring and prediction applications and

examines their suitability for integration with grid computing, thus fulfilling

objective 1 above. Section 2.3 considers the array of web service based

middleware in GIS and grid computing that enables geoprocessing to take place

in a distributed environment, fulfilling objective 2 above. Section 2.4 presents a

review of the parallel geoprocessing strategies and data architectures that are

outlined in the literature, thus fulfilling objectives 3 and 4 above. The key

findings of this review are presented in the summary in Section 2.5 which fulfils

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

9

objective 5 above. The aims, objectives and research questions of this thesis,

are then set out in Section 2.6.

2.2 Characteristics of Geospatial Monitoring & Pred iction Applications

Our ability to remotely measure and record real world phenomena pertaining to

ourselves and our environment has rapidly increased over recent years due to

technological advancements in communication systems (Liang et al., 2005)

wireless sensor networks (Culler et al., 2004, Martinez et al., 2004), satellite

imaging (Plaza et al., 2009) and satellite positioning systems (Liang et al.,

2003). This access to timely information about our environment has enabled us

to make better, more informed decisions and to react to changing

circumstances as they happen (Aloisio, 2003). Notably, fields such as

geohazard monitoring and structure monitoring have allowed us to improve the

safety of our environment. Furthermore, our ability to monitor moving entities

such as people, vehicles and animals has enabled us to improve logistics and

security. The purpose of this Section is to outline the utility and scope of

geospatial monitoring and prediction, and to highlight the compute and data

characteristics of such systems in order to rationalise the case for a sensor web

/ grid computing approach to system design.

2.2.1 Real-Time Geohazard Monitoring and Mitigation

Mitigating the effects of disasters relating to geo-hazards is becoming an

increasingly important priority. There is a rising trend in the number of extreme

weather events and in the cost of such events in terms of lives and economic

damage; trends that are attributed to a changing climate and to increasing

concentrations of the world’s population in vulnerable areas (Freeman et al.,

2003). To highlight the importance placed on geohazard monitoring and

mitigation, and the perceived role of SOA and geospatial web services it is

worth referring to the European funded Open Architecture and Spatial Data

Infrastructure for Risk Management (ORCHESTRA) project. ORCHESTRA has

attempted to improve interoperability between risk management organisations

by defining a common abstract specification framework, the Reference Model

for the ORCHESTRA Architecture, which sets out the building blocks for risk

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

10

management systems based on OGC, ISO, W3C and OASIS standards

(Klopfer and Kanellopoulos, 2008).

According to the International Centre for Geohazards, strategies for mitigating

the effects of geohazards fall into six categories (Solheim et al., 2005); careful

land-use planning, adherence to good construction practice, physical protection

barriers, community preparedness, early warning systems and evacuation

routes. The first three strategies enumerated here are required to be in place

long before the occurrence of a disaster but the latter three could conceivably

benefit from real-time monitoring and observation of real world phenomena.

Technological solutions can often assist communities in preparing for geo-

hazard events by coupling sensor networks with computationally intensive

models. For example, although earthquake early warning systems currently

provide a maximum of seventy seconds warning (Böse et al., 2007), damage

limitation can still be achieved using Real-time Earthquake Information Systems

(REIS) that give rapid notification of earthquake parameters such as time,

location and magnitude (Kanamori, 1997). Such notification enables

emergency services to allocate their resources more effectively in the aftermath

of an earthquake event. Nakamuru et al (2009) describe a REIS in Japan that

utilises an 800 node seismometer network that has been deployed throughout

the country. Observations are taken from each sensor node every second and

transferred to a central processor that maintains three minutes of observation

data for the entire network and is updated every second. The processor scans

the observation data held in shared memory for evidence of an earthquake by

comparing the signal to noise ratio of 1 second and 30 second averages of

ground acceleration and maximum amplitude. If an earthquake is detected the

system ceases scanning and starts attempting to determine the earthquakes

hypocentre (Horiuchi et al., 2005). This real-time system runs on a single dual

core Linux machine (Xeon 2.8 Ghz) with 8GB RAM.

Tralli et al (2004) argue that the widespread deployment of seismometer

networks is not economically viable, and that space based sensing should be

used to augment data collected from the ground. Interferometric Synthetic

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

11

Aperture Radar (InSAR) provides a spatially continuous dataset showing

ground movement. InSAR data can assist in the understanding of earthquake

processes, which is likely to improve forecasting, and is also useful for post-

earthquake damage assessment (Rejaie and Shinozuka, 2004). However, due

to the limited temporal resolution of satellite data, it is unlikely to replace ground

based solutions for seismic monitoring.

Wildfire prediction systems have concentrated on predicting fire pre-cursors

such as lightning risk and fuel loads (Grasso and Singh, 2008). For example de

Groot et al (2006) have developed a global wildfire early warning system that is

based on weather forecast information and local historic data on fire and

weather events. To account for uncertainty in prediction of atmospheric

conditions, the same model is run several times using different parameters to

provide distributions of possible outcomes. Such an approach is ideally suited

to a distributed computing architecture in which each model run can be

executed on a different processor. When a fire does break out, it is now

possible to model its spread and the effect it has on structures due to recent

advances in Computational Fluid Dynamics (CFD) and Finite Element (FE)

analysis (Han et al., 2010). The FireGrid project (Han et al., 2010) has

demonstrated how grid computing, high-performance computing, command and

control systems and wireless sensor networks can be used together to model

the progress of a fire. Heavily instrumented buildings typically equipped with

10,000 sensors providing observations of smoke, carbon dioxide and

temperature every 0.1 seconds feed into CFD fire models and FE structural

models to simulate the fire and its damage to the building. Such models are

enormously complex; to simulate a 15 minute fire for a small hotel room is

estimated to take 6 hours on a single processor with 1GB of RAM (Han et al.,

2010). We can thus infer that a minimum of 24 nodes would be required to

perform this computation in real-time. Parallel computing is clearly necessary to

achieve results in a useful time period.

Cities or regions that are vulnerable to natural disasters or terrorist attacks are

faced with the problem of emergency evacuation route planning. Attempts to

solve this problem have traditionally used one of three possible approaches;

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

12

micro-simulators, meso-simulators and macro-simulators (Southworth, 1991).

Micro-simulators attempt to take into account the movement and behavioural

interactions of individual entities such as people and vehicles (Pidd et al., 1996).

This approach is often based on cellular automata modelling which generally

requires considerable computational resource as the state of each entity must

be individually modelled. The resulting evacuation plan is likely to be realistic

however, as real-life factors can be accounted for easily such as traffic

congestion and vehicle breakdowns. Meso-simulators take a similar approach,

but consider groups of entities rather than individuals in order to reduce

computational complexity (Barcelló and Grau, 1993); however advances in

computing power have rendered this approach redundant for planning

applications (Pidd et al., 1996). In contrast, macro-simulators do not track the

properties of single vehicles or people, but use equations originating from fluid

flows in networks to estimate the state of congestion in the road network, thus

they produce less realistic evacuation scenarios but require less computational

resource (Pidd et al., 1996).

Lammel et al (2010) designed a microscopic simulator for a scenario in which

the Sihlsee Dam bursts and floods the city of Zurich in Switzerland. The system

is based on CA simulation modelling where 100 iterations of the simulation are

run in which each agent learns to optimize its route from experience gained in

previous iterations. Road capacity is considered through the use of a queuing

simulation, a time-constrained Dijkstra algorithm (Dijkstra, 1959) is used to plan

every evacuee’s route to a single destination. For 165,000 agents in the model

it takes 3 hours 24 minutes to run using a single Linux processor with 2GB

RAM. The utility of such a system is clear for predictable situations such as a

dam-burst for which the plan can be pre-computed. However, given a scenario

such as a hurricane evacuation, in which the source location and spatial extents

of the hazard are unknown until the period immediately preceding the event, the

model will not run quickly enough to produce useful results and thus

precomputing a number of likely scenarios may prove beneficial (Southworth,

1991). Kim et al (2008) argues that the macro-simulator approach is favourable

because it scales well to large network sizes and that the significant runtime

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

13

suffered by micro-simulators restricts their ability to compare alternative

configurations in a timely fashion.

2.2.2 Real-Time Entity Monitoring

Our ability to monitor a range of phenomena in environments that were

previously inaccessible is now possible due to advances in micro-electro-

mechanical systems. Wireless sensor nodes are now small and inexpensive

and so are relatively easy to install both densely and unobtrusively in remote

places (Martinez et al., 2004). Furthermore, the widespread prevalence of

Global Positioning System (GPS) receivers on wireless sensors, in vehicles and

in mobile phones enables us to monitor the location of moving entities such as

people, vehicles and animals. The monitoring of animals is generally performed

for the purpose of scientific research such as studying animal movement

patterns (Moen et al, 1996) but the monitoring of people and vehicles enables

us to improve our transportation infrastructure and surveillance systems.

Efforts to reduce congestion by influencing the route choices of drivers have so

far focussed on the use of GPS equipped vehicles that are able to wirelessly

share traffic flow information. This approach enables congestion to be reduced

collaboratively and in an ad-hoc manner. For example, Dashitenezhad et al.

(2004) designed a system in which traffic information is relayed between

neighbouring vehicles as they pass each other on a road network. A unit is

fitted to each participating vehicle which automatically joins an ad-hoc wireless

network to broadcast and receive traffic information when they come in range of

other similarly fitted vehicles. In this design, on-board routing systems use the

additional traffic flow information to adjust their route, which is computed locally

on-board each vehicle. A more centralised approach to data processing is used

by the satellite navigation system manufacturer Tom-Tom in their system “Tom

Tom One XL HD Traffic”. Location information provided by Vodafone UK is

sourced from mobile phone owners and is aggregated at a central location and

combined with information from in-situ road sensors to estimate traffic flow (Chu

et al., 2008). The traffic information is then published to subscribing in-vehicle

Tom-Tom navigation systems. Google and Yahoo have also implemented

similar systems. Aggregating traffic flow information at a central location

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

14

ensures a large sample size and eliminates the need for on-board processing,

although it does create a potential bottleneck if all users simultaneously request

data from a provider’s single endpoint. Nekovee (2005) suggests the data

collected on-board vehicles could be fed into traffic forecasting models and

traffic light control systems. However, it is noted that a computational grid

would be required to aggregate, store and process the vast data volume

generated by such a system.

Whereas traffic monitoring is concerned with monitoring the state of an entire

road network or sub-network, vehicle tracking is simply concerned with tracking

the state and location of a vehicle or a set of vehicles. The proposed ANGEL

project provides an interesting vehicle guidance scenario in which the protection

of a hazardous cargo is the primary concern. ANGEL forms a part of the Mitra

Project (Planas et al., 2008); its primary objective is the safe, secure,

environmentally-friendly and cost-effective routing, navigation, tracking and

tracing of vehicles. In this context, safe refers to journey planning that

minimises the risk of road traffic accidents, and secure refers to the

minimisation of vulnerability to terrorist hijacking. A multi faceted system is

proposed in which the driver, the cargo and the environment are heavily

instrumented and a number of risk factors are continually assessed. It is

anticipated that the routing system will utilise vehicle mounted sensors to

determine factors such as driver alertness, cargo condition and fuel range, in

combination with external data sources such as live traffic information and real-

time security alerts. This live data is to be combined with static base mapping

data and fed into a continuous risk modelling process. The system would not

only be able to determine efficient and safe routes but would also be capable of

identifying safe places to stop. Such a system is envisioned to carry a heavy

compute burden given the large number of risk factors to be considered.

Furthermore, the size of this compute burden is liable to vary depending on the

current size of the vehicle fleet that is being monitored.

Ghiani et al (2003) present a number of vehicle routing problems that can be

considered variations of the classical travelling salesman problem. Each

problem relates to a real-world routing application such as emergency services,

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

15

taxi services, couriers and fleet management and is concerned with reducing

cost and improving service level. Particular consideration is given to problems

that are dynamic in nature; these are scenarios in which the input data such as

travel times and demands depend explicitly on time and so prevent routes from

being precomputed.

Monitoring people and their whereabouts is routinely carried out by government

agencies for purposes of security. GPS tagging devices are commonly used in

the criminal justice system to enforce bail terms such as curfews, and exclusion

from particular areas (Black and Smith, 2003). Covert location monitoring can

also be achieved by police forces using mobile phone pinging (Shields, 2006).

Furthermore, intelligent closed circuit television systems are also being

prototyped that can identify persons of interest through face-recognition and

searching a database of static images (Peacock et al 2004). It has been found

that face recognition software that uses principal component analysis can

outperform human face recognition (Burton et al., 2001). Despite promising

results in the literature there is a long way to go before this technology matures,

as demonstrated by the fact that the most widely used benchmark database

FERET (Phillips et al., 1998) only contains 14,000 images.

2.2.3 Design Traits in Geospatial Monitoring & Prediction Systems

The host of real-time monitoring and prediction applications discussed thus far

vary enormously in purpose and in terms of the ease with which they can be

implemented. Furthermore, these applications differ in their suitability for a grid

computing / sensor web approach to system design; important differences in

system characteristics are discussed below.

Real-time systems can be divided into two major categories based on the

importance of producing a result within a given time limit. Hard systems must

meet a specific deadline to avert a catastrophe whereas information provided by

soft systems is still useful after the deadline has passed (Kopetz, 1999). An

example of a soft application is long term climate change studies as the results

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

16

do not necessitate urgency. On the other hand, hard applications such as early

warning systems, evacuation and post disaster management systems for

geohazards including earthquakes (Kanamori et al., 1997) landslides (Carrara

et al., 2000), wildfire (Goldammer, 2006) and floods (Hughes et al., 2006)

require results within a fixed time-frame. Hard systems are characterised by

demanding response times and their ability to cope with peak-load conditions;

short-term temporal accuracy of data takes precedence over long-term data

integrity. In contrast, soft systems are generally designed to cope with average

load conditions and are capable of extending their response time if they cannot

cope with peak-load (Kopetz, 1999).

A trigger is defined as an event that causes some communication and

processing action to begin (Tisato and de Paoli, 1995). A time-triggered event

is caused simply by a change in time; for example in Japan’s REIS discussed

by Nakamuru (2009) seismological observations are retrieved and processed

every second for earthquake detection. In contrast, an event-triggered event is

caused by the change in state of some property other than time; in Japan’s

REIS the hypocentre location system is triggered in the event of earthquake

detection. Typically, monitoring systems are time-triggered and prediction

systems are event-triggered; such architectures are also referred to as pull and

push-based systems respectively. Monitoring systems therefore present a

steady but relentless data stream whereas prediction systems present an

irregular data pattern that requires processing on demand.

The length of time a processing operation takes to complete is almost always

related to the size of input data (Worboys and Duckham, 2004). This

relationship between compute time and data input size is referred to as time

complexity and is defined in terms of big-oh notation which gives an

approximate indicator of how a given algorithm will perform. In this notation the

processing time is defined in terms of data input size n. For example O(1)

indicates that an operation will complete in constant time, i.e. is independent of

data input size. Geospatial algorithms rarely execute in constant time, although

some operations on geospatial data such as the insertion of records into a

spatial database can be completed in constant time. O(n) indicates that there is

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

17

a linear relationship between processing time and data input size. For example

the calculation of a polygon’s area has a linear time complexity as the

processing time increases linearly with the number of vertices. O(nk) is referred

to as polynomial time and indicates a polynomial relationship; for example

Dijkstra’s shortest path routing algorithm (Dijkstra, 1959) has a polynomial time

complexity. Finally, O(Kn) is referred to as exponential time and indicates the

problem is intractable, i.e. no optimal solution exists. The travelling salesman

problem (Schrijver, 2005) exemplifies an O(Kn) geospatial problem with an

exponential time complexity. Although the actual time taken by a given problem

will depend on a variety of factors such as processing hardware and software,

the time complexity gives a useful indication of how an algorithm is expected to

perform in relation to its input data volume.

Resource scalability refers to the ability of a system to gain higher performance

by increasing the size or number of processors (Hwang, 1996). In monitoring

and prediction systems dynamic resource scalability may be required to cope

with greater volumes of input data resulting from an increased spatial precision

of analysis, number of sensors or size of study area. Increasing the size of a

study area may bring an extra cost unrelated to the number of sensors as a

larger volume of map data may need to be processed. Resource scalability

may also be necessary if an increase in the accuracy or precision of output

results is required. Tom Tom’s XL One HD traffic monitoring system (Chu et al.,

2008) is an example of a system that may require the use of an increased

number of processors to carry out observation aggregations as more sensors

come online.

2.2.4 The Motivation for Integrating Grid Computing with Geospatial

Monitoring and Prediction Systems

Successful grid implementations through projects such as EGEE (Gagliardi et

al., 2005), TeraGrid (Catlett, 2002) and CrossGrid (Marco and Marco, 2003)

have shown that grid systems are particularly well suited to applications that

involve significant computational modelling, the collaboration of multiple

organisations or the integration of multiple data sources. In application areas

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

18

such as fluvial flood monitoring and prediction, grid computing has already been

incorporated into a number of systems including the GridStix project (Hughes et

al., 2006), the Data Fusion Grid Infrastructure (Kussul et al., 2008) and the

ANFAS/CrossGrid/K-WF/EGEE Flood Knowledge System (Hluchy et al., 2005).

Besides performance improvements, grid computing also enables sensor based

geoprocessing systems to increase or decrease their scale of analysis, either in

terms of the number of sensor data streams being processed, the geographical

extent of analysis or the precision of analysis. In this regard the computational

grid has often been compared to the electrical power grid in its ability to make

computational power available “on demand” (Foster and Kesselman, 1999).

This property of elasticity is important for applications such as early warning

systems as well as several traffic management and vehicle monitoring

applications. However, the hard real-time requirement of such systems cannot

currently be met by grid computing due to time lags in job scheduling systems

(Padberg and Kiehle, 2009). Geoprocessing operations such as route-finding

algorithms often resort to heuristic methods (Ghiani et al., 2003) to solve

computationally complex problems resulting from large spatial extents, fine

scaled analysis or high multiplicity of observations. However, as the size of the

analysis is increased, computational limits will eventually be reached for

algorithms that have a time complexity exceeding linearity unless a scalable

processing architecture is adopted (Openshaw, 2000). Grid computing offers a

solution as it enables processing power to grow dynamically to meet an

increased demand.

In the period immediately succeeding a natural disaster, both static and real-

time geospatial data is in high demand from rescue organisations and from

those responsible for repairing damaged infrastructure. Grid computing

provides a common platform through which such organisations can collaborate

and share resources (Follino et al., 2010). In addition, the pool of services that

results from the de-coupling of data resources, business logic and visualisation

tools enables higher level geospatial applications to rapidly be created to suit

changing circumstances (Kiehle, 2006).

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

19

Applications that have a large computational requirement such as microscopic

evacuation planning may benefit from accessing high performance computing

resources through the grid. Examples of parallel microscopic traffic simulators

are provided by Cameron and Duncan (1996), Barcello et al (1998), and Nagel

and Rickert (2001). Arguably it would be more convenient and efficient if the

parallel computers used in these cases were located on the grid and accessed

via a service interface. This would enable organisations wishing to run the

traffic simulator to do so without hosting expensive high performance computing

facilities. Furthermore this would enable better utilisation of computing power

as it could be accessed on demand.

The key advantages of integrating grid computing with geospatial monitoring

and prediction systems can be summarised as follows:

1. Access to computing on demand for applications exhibiting temporal

 variability in computational load.

2. Ability to scale-out analysis over a larger geographic area or at a finer

 spatial scale without hardware restrictions.

3. Ability to share data and compute resources across organisations.

4. Access to high performance computational capabilities.

5. Minimal initial hardware investment cost.

Consequently there is a considerable motivation to port the computational

aspect of geospatial monitoring and prediction systems to the grid. From a

technical perspective three major challenges are envisioned in integrating

geoprocessing services and grid computing (Brauner et al., 2009). The first of

these is the architectural challenge of orchestrating services across the

geospatial and the grid computing domains (Section 2.3). The second issue is

the computational challenge of improving geoprocessing performance;

geospatial datasets are characteristically large and geoprocessing operations

are typically computationally intensive thus the use of parallel geoprocessing

techniques is advocated (Section 2.4). The third research challenge is that of

semantic descriptions for geospatial services to facilitate discovery and

reconfigurable chaining; however this falls outside the scope of this thesis.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

20

2.3 Distributed Computing Architectures and Standar ds for Real-Time

Geospatial Applications

2.3.1 Web Service Styles and Standards

Web services, an implementation of SOA design principles have become the

de-facto platform for distributed computing. SOA is described as “a paradigm

for organising and utilising distributed capabilities that may be under the control

of different ownership domains” (MacKenzie et al., 2006). Parallels can be

drawn between a SOA service and an object in object oriented programming in

that the internal workings are hidden but a standard interface through which to

interact with the object or service is made available (Worboys and Duckham,

2004). Because the service description is kept distinct from the

implementation, SOA components using different technologies can interoperate

through this common interface (Kaye, 2003). When a service is created its

description is published to a searchable registry so clients can find their

required service and bind to it directly (Figure 2.1). This enables clients, either

end users or other applications, to interact with the service without any prior

knowledge of it.

SOA has rapidly gained popularity as a software architecture and older

distributed object systems have become virtually obsolete, largely as a result of

their reliance on proprietary formats and their inherent communicational

inefficiencies (Cook and Barfield, 2007). A critical reason for the success of the

SOA is that it does not rely on sending entire objects around a network, instead

only minimal requests and responses are communicated. Additionally, this

architecture scales well and tolerates systems that cross ownership boundaries

(MacKenzie et al., 2006). Furthermore, the SOA enables existing services to be

used as building blocks for new services that add some value or provide some

original content (Foster, 2005).

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

21

Figure 2.1: Service Oriented Architecture

Issues of interoperability between web services are the concern of Web

Services Interoperability (WS-I) (http://www.ws-i.org); an open industry

organisation chartered to establish best practices for web services

interoperability for selected groups of web service standards across platforms,

operating systems and programming languages. WS-I define profiles and

implementation guidelines for web services standards. The WS-I’s Basic

Profile 1.1 (WS-I BP 1.1) sets out Web Service Description Language (WSDL)

version 1.1, Universal Description Discovery and Integration (UDDI) version 2.0

and Simple Object Access Protocol (SOAP) version 1.1 as the core web

services specifications which have been designed to standardise the processes

of publishing, finding and binding to web services (Ballinger et al., 2006).

In conformance with WS-I BP 1.1, service providers publish their services to a

UDDI registry using WSDL. Clients are then able to locate these services by

searching the UDDI registry, thus enabling the requester and provider to bind

directly to each other using SOAP (Gottschalk et al., 2002), a simple XML

based protocol that lets applications exchange information over HTTP (W3C,

1999). This series of interactions is depicted in Figure 2.1. SOAP is a format

for sending messages between applications via the internet and it is commonly

used because it is text based so can easily pass through firewalls (Scribner and

Stiver, 2000), because it is platform, language and vendor independent and

Provider Requester

Service

Registry

Publish

 WSDL

Bind

SOAP

Find

 UDDI

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

22

because it is has been adopted as a W3C standard (Chatterjee and Webber,

2004).

In grid computing, web service technology is used to federate distributed

resources using grid services which are defined as a web service that conforms

to a particular set of conventions (Grimshaw, 2003). One of the major problems

with using web services in grid computing has been that web services are

stateless and many grid applications require the ability to store state, i.e. data

values that persist across, and evolve as a result of web service interactions

(Foster et al., 2004). This difficulty has been overcome by the development of

the Web Services Resource Framework (WSRF), a collection of web services

specifications developed by the Organisation for the Advancement of Structured

Information Standards (OASIS) that allow web services to store state. In the

same way that SOAP based web services presume conformance with WS-I BP

1.1, grid services rely on the OGSA-WSRF Basic Profile v1.0 (OGSA-WSRF BP

1.0), a WS-I profile that extends the WS-I BP 1.1 whilst integrating WSRF

specifications. WSRF web services are bundled with their associated

resources; collectively this package is known as a WS-Resource which is

addressed using an endpoint reference. Standard interfaces are defined to

name and bind to resources, to create and destroy resources and to query

resource properties. WSRF provides a means of describing and controlling the

lifetime of a WS-Resource, of describing and handling faults systematically, of

aggregating information about resources and services and of providing a

notification mechanism to the change in state of resources (Czajkowski et al.,

2004).

Closely tied to the WSRF specifications is another family of OASIS

standardised specifications, Web Services Notification (WSN). WSN

incorporates three standards, WS-BaseNotification (Graham et al., 2006), WS-

BrokeredNotification (Chappell and Liu, 2006) and WS-Topics (Vambenepe et

al., 2006) which collectively define a framework through which web services can

disseminate events (Niblett and Graham, 2005). Under the WSN architecture,

notification producers publish their notifications to a topic which is a notional

endpoint used to categorise notifications. Notification consumers can then

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

23

receive notifications by subscribing to a topic. Through WSN specifications,

web services can be invoked in reaction to events, thus extending the paradigm

of a service-oriented architecture to that of an event driven architecture (Etzion,

2005). An example application of WSN is to notify a client each time a WSRF

resource is modified.

WSRF specifications have largely become obsolete, due to a lack of uptake. A

divide in the web services community became apparent when a competing set

of specifications known as WS-Transfer (Alexander et al., 2006) was

introduced. WS-Transfer was championed by Microsoft and submitted to W3C

for standardisation, thus causing uncertainty as to which specification set would

prevail. Essentially, WS-Transfer provides the same functionality as WSRF

though through a create, read, update, delete interface. Furthermore, WS-

Eventing (Box et al., 2006) provides a closely related notification framework to

WS-Transfer, as WSN does to WSRF. A comparison of WSRF and WS-

Transfer is conducted by Humphrey et al. (2005) who note only minor

differences in the specifications but conclude that WS-Transfer is slightly easier

to implement. The industry is now converging on a compromise between

WSRF and WS-Transfer known as Web Services Resource Transfer (Davis et

al., 2009) that combines some features from each specification set. Due to the

slow pace of progress in the standards community, the UK e-Science

programme has ratified a core set of standards to enable current projects to

move forward (Atkinson et al., 2004). These are collectively termed WS-I+ and

encompass WS-I, Business Process Execution Language (BPEL), WS-

ReliableMessaging and WS-Addressing. BPEL is a web service orchestration

language, WS-ReliableMessaging is a specification that is used to ensure the

delivery of SOAP messages and WS-Addressing is a web service standard that

incorporates message source and destination information into the SOAP

envelope. Due to the present state of flux in notification and state

representation standards, these standards were altogether omitted from WS-I+

although controversy does remain over the best way to model state in web and

grid services (Foster et al., 2009).

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

24

Foster et al (2009) argue that there are currently four different ways to model

state in web and grid services. Explicit methods to model stateful resources as

XML documents are provided by WSRF and WS-Transfer, each of which

provides a number of common operations to access, update and delete such

resources. Proponents of these explicit methods argue that it is logical to

provide a standard interface for resource creation and management as it

simplifies development, enables code reuse and encourages standard tooling to

be developed. Another school of thought suggests that such conventions are

overly complex and that state should be modelled implicitly through web service

operations that are application specific; proponents of this approach value

simplicity over structure. Finally, HTTP provides another method of coping with

state based on principles that have become known as Representational State

Transfer (REST). REST is an architectural style proposed by Fielding (2000)

which describes a set of principles that outline how resources are defined and

addressed, and provides an alternative to the WS-I based web service design.

In REST terms, a resource is a communication endpoint that is addressed using

a Universal Resource Identifier (URI) and manipulated through one of the four

HTTP header operations: get, put, post and delete. Like the internet, REST

web services support only these four methods but an infinite number of

resources which are defined using a URI. In contrast, SOAP web services

support a theoretically infinite number of methods, each of which corresponds to

a port type. However, SOAP web services don’t provide direct access to

resources; access is only provided through web service operations.

REST web services do not just provide a method of modelling state, they

represent a fundamentally different style of web services which has lead to a

long standing debate in the web services community over the relative merits

and shortcomings of both RESTful and SOAP based web services. Those in

favour of RESTful web services argue that the small number of methods ensure

simplicity of design and ease of deployment; requests are self contained and do

not require complicated sessions to be maintained with clients (Muehlen et al.,

2005). Furthermore, SOAP based services have traditionally been weak at

addressing, meaning that it is not always apparent where a message is going,

how to return a response or where to report an error. This weakness has been

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

25

mitigated by the introduction of the WS-Addressing standard (Box et al., 2004)

which incorporates such details in the SOAP header, thus providing a standard

way to route messages over multiple transports, or to direct a response to a

third party. However, the heavy use of one URI as an endpoint through which a

number of different services are accessed has been cited as a criticism of

SOAP based web services (Muehlen et al., 2005). Additionally, the heavy use

of application specific methods that require encoding and decoding by higher

level programming languages adds significantly to the communication overhead

and overall complexity of SOAP based services. Conversely, proponents of the

SOAP approach argue that it is preferable because it is not tied to the internet’s

HTTP transport protocol and it has better support for security features. It is also

more suitable for publishing large complicated applications (Prescod, 2002).

The majority of OWS specifications predate SOAP and WSDL and a custom

interface was therefore developed by the OGC based on the RESTful model.

To improve interoperability with other web services the OGC is currently

refactoring OWS to support SOAP and WSDL.

Listing 2.1 and Listing 2.2 give respective examples of SOAP and RESTful

WPS Execute requests that specify the execution of a buffer operation; this is a

simple geoprocessing operation that creates a new feature of a specified width

around an existing feature. It can be seen that the SOAP wrapper details the

method to execute “ExecuteProcess_GMLBuffer” and provides the input

parameters, the URI of the polygon to buffer and a distance value representing

the width of the buffer. The SOAP request assumes a connection to the WPS

endpoint reference has already been established. If this endpoint reference

offered any other methods, they too could be accessed through the same

connection by specifying a different method name in the SOAP body. In

contrast the RESTful request is made using a HTTP get request that specifies

the address of the service, and the input parameters are provided as key-value

pairs. The DataInput parameter is a URL reference to the feature to be

buffered, and BufferDistance specifies the width of the buffer to be created.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

26

Listing 2.1: SOAP WPS Execute Request

Listing 2.2: RESTful WPS Execute Request

2.3.2 The Open Grid Services Architecture (OGSA)

The OGSA framework specifies an extensible set of services that support the

coordination and sharing of distributed computing resources. The core services

specified by OGSA encompass execution management, data, resource

management, security, self management and information. The role of OGSA is

to facilitate interoperability within and between grid hardware, middleware and

software services. OGSA is still a work in progress and many standards are not

yet in place. Where possible existing web services standards are used or

adapted which makes it easier for organisations that already support key web

services standards to adopt OGSA. The OGSA framework is modular which

enables basic capabilities to be mixed and matched to provide a higher level

capability. This building block approach and the fine-grained nature of OGSA

services ensures that only relevant parts of each specification need to be

implemented.

Unlike the OWS and SWE frameworks a rigorous approach to security has

been adopted in OGSA. A full description of the OGSA security model is

provided by Nagaratnam et al (2002); in summary it addresses three major

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelop e/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>
<ExecuteProcess_GMLBuffer
xmlns="http://wpsint.tigris.org/soap/SpatialAnalysi s">
<GmlUrlResource>http://onotta499/gml/polygon_gml.xm l</GmlUrlResourc
e>
<Distance>10</Distance>
</ExecuteProcess_GMLBuffer>
</soap:Body>

http://foo.bar/foo?request=Execute&service=WPS&vers ion=1.0.0&langua
ge=enCA&Identifier=Buffer&DataInputs=Object=@xlink: href=http://foo.
bar/foo;BufferDistance=10& ResponseDocument=Buffere dPolygon

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

27

challenges; integration of disparate security systems, interoperability between

distributed system components and the establishment of a trust relationship

across organisational domains. Virtual Organisations (VO) address the trust

relationship issue; VO members are granted access to their organisation’s

resources and each member is authenticated and authorised using their

personal X.509 certificate (Cooper et al., 2005) which is issued by a

Certification Authority (CA). Typically each VO has its own CA and each CA is

itself issued with certificates from a higher level CA. For example, a university

department may have a CA which is issued with certificates by a university wide

CA, which is in turn issued with certificates by a national CA. As every VO

shares the same top level CA, the International Grid Trust Federation

(www.gridpma.org), implicit trust can be assumed between each VO. Users

that violate their trust agreement can have their certificate revoked and

therefore lose access to the grid infrastructure. Security aspects of OGSA are

outlined in the OGSA Basic Security Profile 2.0 (Snelling et al., 2008) (OGSA-

BSP 2.0) which is currently a recommended OGSA standard that extends the

OGSA WSRF BP 1.0 and incorporates both the Secure Addressing Profile 1.0

(Merrill, 2008a) and the Secure Communication Profile 1.0 (Merrill, 2008b).

Collectively these specifications set out a standardised means of overcoming

the challenges specified above.

The OGSA data services architecture provides a means of moving data,

running queries and updates, managing data replication and federating data

resources in a grid environment (Foster et al., 2005). The OGSA WS-DAI

specification enables access to and integration, transformation and delivery of

heterogeneous data resources through a web services interface. There are

currently two realisations of this specification; OGSA-DAIX and OGSA-DAIR

which allow access to and provide descriptions of XML and relational databases

respectively (Antonioletti et al., 2006). Using a WS-DAI service it is possible to

perform data centric workflows, for example it is possible to access data from

multiple sources such as relational and XML databases, transform the data and

deliver it to another data repository. Furthermore, OGSA-DQP is an extension

of the OGSA-DAI implementation that enables queries to be executed across

resources federated by OGSA-DAI. Transporting data within a grid architecture

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

28

is typically achieved using GridFTP (Allcock et al., 2003) which can be

considered an extension to the File Transfer Protocol (FTP) that has been

designed specifically for grid data transport. GridFTP extends FTP with key

features such as parallel and third party data transfers and critically it includes

support for grid security measures. This protocol is best suited to transferring

large files and is capable of scaling to network speeds, 27GB/s has been

achieved on a 30GB/s bandwidth (Allcock et al., 2005).

Basic Execution Service (OGSA-BES) (Foster et al., 2008) is an OGSA

standard for the submission of simple computational jobs; it specifies operations

for the creation, monitoring and control of jobs or activities (Marzolla et al.,

2007). The individual activities or ‘jobs’ performed by OGSA-BES must be

defined in a Job Submission Description Language (JSDL) document

(Anjomshoaa et al., 2005) which is an XML schema that has been adopted as

an OGSA standard. JSDL is used to describe a job or activity in terms of a

unique identifier, an application description, the resources it requires and the

data files it needs.

Whereas the SWE and OWS specifications remain relatively stable, the OGSA

specifications remain in a state of flux. Several of the specifications outlined in

The Open Grid Services Architecture: Version 1.5 (Foster et al., 2006) have

been abandoned by the OGF and new ones have been proposed. It therefore

seems likely that it will be several years until there is a complete set of OGSA

implementation specifications. However various implementations of OGSA

standards exist in the form of grid middleware such as the Globus Toolkit, and

the standards that have been developed thus far are being adopted by the grid

community.

2.3.3 OpenGIS Web Services (OWS)

OpenGIS Web Services (OWS) are a family of web service specifications

defined by the OGC that enable maps, geospatial data and geoprocessing

functionality to be discovered, accessed and visualised through the internet. As

OWS provides a vendor neutral communication format it has rapidly been

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

29

adopted by software and data providers. OWS is comprised of a set of

independent specifications, each of which provides a particular function,

although they each share a common design pattern including data structures,

requests and responses. This common base is outlined in the OGC Web

Services Common specification (Whiteside and Greenwood, 2010), currently in

version 2.0.

OWS includes specifications such as the Web Mapping Service (WMS) that

delivers visual map images in response to simple HTTP GET or POST

requests. The Web Feature Service (WFS) (Panagiotis and Vretanos,

2010)delivers vector data in GML format and the Web Coverage Service (WCS)

(Baumann, 2010) delivers raster data in a variety of common formats such as

GeoTIFF. OWS also includes a catalogue service the Catalogue Service for

Web (CSW) that enables geospatial data and services to be discovered.

Furthermore, the Web Processing Service (WPS) (Schut, 2007)provides an

interface through which geoprocessing functions can be carried out remotely.

All OWS publish a getCapabilities operation that returns a Capabilities

document, an XML encoded description of what the service does and how to

interact with it. The capabilties document is comparable to WSDL, and in the

case of OWS with SOAP bindings, the Capabilities document is encoded as

WSDL.

2.3.4 OpenGIS Web Services (OWS) Test bed Activity

Since 1999 the OGC have been running interoperability programs to design and

develop geospatial web services. In the first initiative known as the Web

Mapping Test bed some of the core OWS standards were developed including

the WMS, WFS, GML, Filter Encoding Specification and the Styled Layer

Descriptor. The next initiative, OWS-2 began in 2004 and introduced WSDL,

SOAP and UDDI in the context of OWS and explored interoperability with these

common web service specifications. Subsequent test bed activity have further

developed and refined OWS. Notable activity of relevance to this thesis

includes the introduction, definition and refinement of SWE, the development of

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

30

an approach to manage OWS workflow chaining using BPEL, and integration of

sensor device standards such as IEEE 1451 with higher level data services. In

OWS-6 an event architecture for OWS and SWE was explored and grid

processing in the context of WPS profiles was identified as a task area

requiring work.

The current test bed OWS-7 is divided into 3 threads, sensor fusion

enablement, feature and decision fusion, and aviation. Sensor fusion

enablement follows on from the geoprocessing workflow and sensor web

enablement threads of OWS-6 and is researching change detection from motion

video using WPS, dynamic sensor tracking and notification, and best practice

for integrating the Common Chemical, Biological, Radiological and Nuclear

Sensor Interface with SWE.

2.3.5 Review of OpenGIS Web Services (OWS) / Grid Integration

Combining OWS that are geared towards the unique nature of geospatial data

with core grid services that are capable of dealing with common distributed

computing challenges such as security, information management and discovery

is expected to provide a number of benefits to the geospatial community.

These benefits include the enhancement of geospatial web services with

security measures (Higgins, 2008) and a reduction in initial hardware acquisition

investment due to increased sharing of computational and data resources

(Padberg and Kiehle, 2009). Furthermore it is expected that integration of grid

services with OWS will facilitate the chaining of geospatial workflows (Fairbairn

et al., 2008) and expedite the execution of large geo-processing operations by

harnessing available processing capability from the grid (Koutroumpas and

Higgins, 2008). Accordingly, there has been significant research activity in this

field.

Particular attention has been drawn to the commonalities between

geoprocessing services and grid computing and to the apparent benefits and

challenges of integration. The principal similarity between OWS and OGSA in

this regard is their common endeavour to define interface standards through

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

31

which to enable open distributed processing. In OWS this is realised through

the WPS and in OGSA through OGSA-BES and related specifications. Of

significance to both frameworks is the ISO Reference Model for Open

Distributed Processing (RM-ODP) that collectively defines a coordinating

framework and methodology for distributed systems (Vallecillo, 2001). The RM-

ODP specifications are subdivided into five viewpoints that each represents a

different abstraction of distributed processing systems; enterprise, information,

technology, computation and engineering. A key benefit of the viewpoint

approach is to address a separation of concerns in the design of distributed

systems. The OGC has adopted the RM-ODP viewpoints in its own OGC

Reference Model (Percivall et al., 2008) although the main focus of their service

interface specifications are on the technology, computational and engineering

viewpoints (Whiteside, 2005).

Fundamental differences in approach between grid services and the WPS in

service description, service interface, security and statefulness present a

considerable challenge in integration (Padberg and Kiehle, 2009, Padberg and

Greve, 2009). Currently OWS suffer from a lack of security measures, as noted

by Woolf and Shaon (2009a). This has prompted service providers to

implement their own security controls at the client level resulting in

interoperability problems in complex service chains. Conversely, grid services

employ a comprehensive security framework based on public key cryptography.

Although the OGC has proposed a security framework for OWS known as

GeoDRM (Vowles, 2007) it has not yet reached maturity; as such there is no

standard method of securing OWS at present. Another deficiency of OWS is

that they are typically stateless and thus have limited ability to perform

asynchronous workflows whereas grid services are capable of maintaining

resource state through frameworks such as WSRF (Section 2.3.1). Various

methods have been suggested to overcome the difficulties described here in

order to integrate OWS and grid services.

According to Krüger and Kolbe (2008) OWS can be adapted to fit the grid

environment, a process termed ‘gridification’ by either high-level or low-level

means. Low-level gridification can be achieved by configuring a typical OWS to

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

32

use the grid as a backend processing or data storage resource whilst

maintaining its service description and interface. Conversely high-level

gridification involves converting the OWS to a stateful grid service so that it can

fully interact with other grid services; however an OWS proxy is required to

ensure the service remains OWS compliant. Baranski (2008) demonstrates the

low-level approach in the development of a grid-enabled WPS. The service

extends the 52-North WPS and enables embarrassingly parallel tasks to be

subdivided and processed in parallel on a back-end Unicore infrastructure after

which the processed features are reassembled before the results are returned.

Further research into low-level gridification has been conducted by Woolf and

Shaon (2009a) who highlight the overlap between the OGC WPS specification

and the OGSA JSDL specification. Both specifications enable computational

jobs and their process inputs and outputs to be described, however WPS lacks

the ability to specify the computational resource requirements whereas JSDL

lacks a web service interface. The specifications do overlap in some areas

such as process description and process input and output. Woolf and Shaon

(2009a) suggest embedding JSDL resource description parameters inside WPS

Execute requests to specify computational resource requirements; three

syntactical options are presented. The first option is to use a JSDL snippet

containing the relevant computational resource requirements, the second option

is to use a URL reference to a full JSDL document and the third option is to use

key value pairs in an XPath style syntax referred to as micro-format style. It is

suggested that interoperability could be improved through the definition of a

WPS-grid profile containing for example the core subset of JSDL job description

and resource description elements that form part of the HPC Basic Profile

(Dillaway et al., 2007), which has already been successful in facilitating

interoperability.

Hobona et al (2007) provides an example of high-level gridification in their work

on incorporating OWS into grid based geo-processing workflows. To solve the

compatibility issues between OGSA and OWS an intermediary proxy web

service was used to serialise and de-serialise SOAP messages to and from

XML to allow OGC services to read them; essentially providing a SOAP

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

33

interface to the OGC services. This approach proved to be problematic in that

encoding the vector and raster payloads in SOAP messages placed a heavy

demand on the Globus container. However, the problem was successfully

addressed by storing the map features in a web server and simply returning the

URL reference to the features inside the SOAP message rather than the

features themselves. Lanig and Zipf (2009b) also describe a high-level

approach to gridification for 3D terrain generalization of LIDAR data using

Globus WSRF services although no results are detailed.

Friis-Christensen et al (2007) recognised inefficiencies in low-level gridification

geoprocessing chains that involve the repeated sending of input data to a

service instance to perform several related operations. The problem is that for

each geoprocess the data is transferred from OWS to the grid for processing

and the results returned to the client, and the process repeated for the next

geoprocess in the chain, causing a great deal of data transfer. This style of

chain is referred to as transparent and it occurs in processing chains based on

the current WPS specification. As an alternative they suggest adapting the

WPS specification to allow an ordered sequence of processes to be performed

in which the output of one process can be used as an input to the next, a style

they term translucent processing.

Krüger and Kolbe (2008) extend the concept of translucent processing to grid

architectures; in addition to high and low level gridification they introduce a third

style which they term transcendent gridification. This style is designed to

reduce the overheads in complex geoprocessing chains resulting from

unnecessary split and merge operations. Firstly a dataset is partitioned and

each partition is allocated to a different processor. Secondly the first operation

in the geoprocessing chain is performed. However, instead of reassembling the

results after the first geoprocessing operation has finished, each set of

processed features are passed directly to the next operation in the workflow.

Finally the results are reassembled once the workflow has been completed.

The advantages of this approach are not only that unnecessary split and merge

operations are avoided, but also that information transfer can take place in

multiple smaller and concurrent streams between services for the entire

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

34

workflow. This style is thus suitable for multi-stage geoprocessing workflows on

large datasets.

The ability to control processes asynchronously has been identified as an

important requirement for efficient geoprocessing. Asynchronous services must

equip each service call with a unique identifier so that results can be retrieved at

a later time (Friis-Christensen et al., 2007). Furthermore, asynchronous

geoprocessing services need to provide the capability to check on the status of

pending processes, and to pause or cancel processing jobs at any stage in their

execution. Currently the WPS specification contains some basic functionality to

store process results through the use of a unique job identifier. As yet the

ability to control asynchronous processes is unsupported although pending

change requests (Woolf and Shaon, 2009b, Woolf and Shaon, 2009c) make the

case for additional enhancements to the WPS interface including a mechanism

to check on the status of a pending process and the ability to pause or cancel

processing jobs at any stage in their execution.

Besides these investigations into grid enabling geoprocessing services, other

grid OWS integration work has considered OWS data and discovery services.

Early work in this area was conducted by Di et al (2003) who attempted to

broaden access to NASA’s Earth Observing System (EOS) data repositories by

integrating a pre web-services version of the Globus Toolkit with OWS data and

discovery services. In their system OWS compliant WFS, WMS and WCS were

exposed in addition to a catalogue service; no OWS discovery standard was

available at this time. Requests to the catalogue prompted the search of a

Globus information service that returned a physical file name which could then

be used as a parameter in subsequent data retrieval requests from the OWS

data services. More recently a grid-enabled CSW has been developed in

addition to WCS and WMS portals that expose the typical OGC service

interface at the front end whilst requests are forwarded to a mediator service at

the backend that retrieves the required data from grid storage using a set of

Globus based data services (Di et al., 2008). The work proved to be

successful; large volumes of NASA EOS data were made available to an

extensive user community. However, it was found that the security and

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

35

reliability afforded by the grid services suffered a performance penalty in terms

of response time when compared to their traditional web service based

counterparts.

Rather than exposing OWS to applications at the system’s front-end, Shu et al

(2006) take a different approach whereby grid-enabled OWS at the backend are

federated using OGSA-DAI (Section 2.3.2) in conjunction with a mediator

service to expose the data to applications. Another service OGSA-DQP

schedules, manages and executes distributed queries on the OGSA-DAI

resources, enabling the application layer to easily access all of the underlying

data sources using a standard query interface. This architecture has been

implemented for a case study based on a wildlife sighting database in Australia

called WildNet.

In 2008 the G-OWS working group formed with the aim of integrating the gLite

grid middleware, developed as part of EGEE (http://www.eu-egee.org), with

OWS. Funded through the European projects GENESI-DR, CYCLOPS and

DORII the group has so far developed a gLite enabled WCS and WPS, and

implemented a shibboleth authentication method for gLite OWS. The group

also plans to develop a gLite API for interfacing with OWS and a reference

model containing procedures and guidelines for grid enabling OWS (Mazzetti,

2010).

Ghimire et al (2005) highlight a key problem facing distributed service

architectures, the transfer of large datasets over limited network bandwidth. In

addition to the integration of OWS and grid services, it is suggested that mobile

grid services be developed which they describe as ‘intelligent code wandering

between grid nodes to accomplish certain tasks’. The idea of mobile grid

services is to move the computation to the data rather than vice versa, as this is

envisioned to reduce bandwidth use and thus improve performance. In the

context of the OGC architecture, Friis-Christensen et al (2007) therefore

suggest that data reducing processing operations be performed at the data

source, a style they refer to as tightly-coupled geoprocessing. It is noted that

the WFS specification already provides some basic processing capabilities such

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

36

as coordinate transformation and the ability to clip features by specifying

bounding box extents. Following this approach an extension to the WFS is

suggested, the WFS-P that enables other data reducing operations to be

carried out at source; examples include feature generalization and the

calculation of summary statistics.

Müller et al (2010) extend the concept of processing data at source using the

technique they refer to as ‘moving code’. In contrast to data driven workflows

whereby data is requested from an OWS data service and sent to a processing

service, the moving code approach sends an algorithm to the data source to

perform the processing. The main idea of the moving code concept is that the

transference of large datasets can be avoided.

Four different moving code scenarios are presented:

1. The sent algorithm is tightly coupled to the data; data is shipped to the

processing service with the code or is already known to the service.

2. The sent algorithm is loosely coupled to the data; data is retrieved

through standard service interfaces at runtime.

3. The algorithm is deployed on the service prior to execution; data is

shipped to the processing service at runtime.

4. The algorithm is deployed on the service prior to execution; the algorithm

is repeatedly executable through a service interface that enables input

data to be passed at runtime.

In the first case data is either already known to the service or is shipped with the

code to the service at runtime, and the code is executed instantaneously but

does not persist after execution. Sending a SQL query to a spatial database is

an example of this scenario. Case 2 is exemplified by the prototypical

transactional WPS that enables algorithms to be dynamically deployed and un-

deployed via a service interface (Schaeffer, 2008). In case 2 data is passed to

the service directly. Similarly case 3 describes a transactional WPS in which

data is retrieved from OWS data services. In the fourth case, sent algorithm is

deployed on the service prior to execution and can then be repeatedly

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

37

executed. The WFS-P described by Friis-Christensen (2007) provides an

example of this style.

The existing OGC architecture is focussed on the data driven approach rather

than the moving code approach discussed here. However a prototypical

implementation of the loosely coupled / permanent deployment scenario was

created as part of the SoKNOS project (soKNOS, 2010) in which two decision

support tools were developed as deployable algorithms; an assessment tool

that determines the effect of an escaped gas on population centres, and a

delineation algorithm that determines inundated areas from a flooding

simulation.

The conclusions drawn from this work were that the moving code scenario is

ideal for frequently changing algorithms or in situations where the same

algorithm has to be deployed to several service instances simultaneously.

Furthermore, moving code rather than data offers a significant performance

improvement as it reduces the amount of data that must be shipped across the

network. Conversely, the data driven approach is suitable for the one off

execution of workflows and when the required simple operators are available at

the data service level.

2.3.6 Review of Sensor Web Enablement (SWE) / Grid Integration

Despite its relative infancy there has already been considerable interest in

integrating SWE with the grid infrastructure. This is unsurprising as sensor web

and grid are both concerned with resource sharing across organisational

boundaries, albeit from different perspectives.

SWE is comprised of a set of encoding languages and web service interface

specifications that collectively define a framework for managing geospatial

sensor data. The principal encoding languages in SWE are Sensor Model

Language (SensorML), TransducerML (TML) and Observations &

Measurements (O&M). As detailed by Botts et al (2007) SensorML is an XML

language to encode sensor metadata that is capable of describing any sensor

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

38

system and any data processing steps associated with the system. As it is an

open and vendor neutral language SensorML eliminates the need for sensor

systems to support multiple proprietary sensor description formats and

facilitates the rapid integration of new sensors. TML (Na, 2007) provides an

alternative sensor description language to SensorML. However, its primary

concern is describing and transporting data close to the source, whereas

SensorML addresses the higher level data processes including how to

represent and display data. Both languages are self contained so that

implementation of either one or the other is possible independent of the wider

SWE framework.

Observations & Measurements (O&M) is an XML based encoding language for

observations from sensor systems (Cox et al., 2006). In contrast to SensorML

that simply describes the sensor system, O&M provides a description of the

actual sensor observations which includes the time and place of observation,

the sensor system used to make the observation and the process chain used to

derive the resulting measurement. It also describes the feature and the

phenomena that is being observed (Cox et al., 2006). Bermudez et al (2009)

note that the Sensor Observation Service (SOS) provides a more robust

interface than the WFS for providing time series data as a result of the O&M

observation model that permits queries by observation, procedure and observed

property as well as temporal and spatial queries. The basic O&M observation

model is depicted as a Unified Modelling Language (UML) object diagram in

Figure 2.2. It can be seen that each observation forms a part of a result, and

includes a single procedure, observed property and feature of interest. The

procedure refers to a description of the process used to generate a result; this is

usually a sensor. The observed property describes the phenomenon being

sensed and the feature of interest is the real world object that is representative

of the objects target (Cox, 2007).

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

39

Figure 2.2: The O&M Observation Model (Stasch et al., 2008)]

The key SWE services are the Sensor Observation Service (SOS) and the

Sensor Planning Service (SPS). SOS is a service by which a client can obtain

observations from one or more sensors/platforms. It essentially provides an

Application Programming Interface (API) for managing deployed sensors and

for retrieving their observations and aims to provide a standard means of

access to all types of sensors and sensor systems, including remote, in-situ,

fixed and mobile sensors.

SPS provides a service to manage sensors and sensor platforms. Given an

instrument platform such as an orbiting satellite, many different user groups are

likely to want to task it towards different areas of interest, and to configure it in

different ways depending on the information they are trying to extract. The SPS

enables the planning, scheduling, tasking, collection, archiving and distribution

of data from sensor systems (Simonis et al., 2007).

In addition to the SOS and the SPS a further SWE service was proposed, the

Sensor Alert Service (SAS). This is an event notification system that is capable

of notifying clients of sensed phenomena according to a specific set of

conditions (Simonis, 2006). However, the SAS has not been formally approved

as a SWE standard and it now seems likely that another candidate

specification, the Sensor Event Service (SES) will supersede it (Everding and

Echterhoff, 2009). The SES (Echterhoff and Everding, 2008) essentially acts as

a notification broker to which sensors can publish their observations and from

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

40

which clients can subscribe to receive observations, thus enabling push-based

access to sensor data. Registered sensors push all of their observations to the

SES, which then filters them according to client subscriptions. This ability to

detect and react to events is considered crucial to the SWE architecture as it

enables processing chains to be automatically invoked.

One of the most complete implementations of SWE is the Open Sensor Web

Architecture (OSWA) which is under development by Melbourne University. It

aims to integrate sensor networks and distributed computing to provide the

ability to push heavy processing of sensor data to computational grids and to

dynamically compose higher level services that incorporate real-time sensor

data (Chu and Buyya, 2007). The proposed OSWA is composed of four layers;

the sensor fabric layer which consists of the actual sensors, the sensor service

layer consisting of services such as those detailed in SWE, a development layer

that provides APIs to facilitate the creation of sensor based applications, and

the application layer which consists of end-user sensor based applications.

Kobialka et al (2007) suggest the use of stateful web services as an

improvement to OSWA in an attempt to enable multiple users to query the SOS

and schedule SPS requests concurrently. Using this approach a new instance

of each service can be created by the web service container for every request.

Stateful web services have been introduced in the latest implementation of

OSWA using Java WS-Core, the Globus implementation of WSRF. OSWA

implements SOS and SPS but also extends SWE to include other services such

as a sensor directory service which acts as a sensor registry. SOAP/WSDL

bindings for each SWE service are provided to enable integration with other grid

and web services. Additionally, other grid services are defined; a sensor data

grid service which maintains replicas of sensor data, and a sensor grid

processing service which collects and processes sensor data using the grid

infrastructure. However, the grid services have yet to be implemented despite

the grid enabled architecture design which includes the adoption of WSRF and

SOAP/WSDL bindings to SWE services.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

41

Since 2004 NASA has operated an Earth observing sensor web known as EO-1

that is capable of operating without human intervention. The EO1 project has

focussed on monitoring volcanoes, floods, cryosphere, forest fires and clouds.

Chien et al (2007) describe a scenario in which the the sensor web is used as

an automated event detection tool. Low resolution satellite sensors (MODIS

Terra / Aqua) imagery is continuously downloaded and analyzed via OGC web

service interfaces and compared with previously captured time-series data of

the same locations. If a significant change event is detected then higher

resolution satellites are tasked via a SPS request to acquire further data in the

given area. Example use cases that have been trialled for this system include

the monitoring of sea-ice concentrations, the Mt. St. Helens volcano and the Mt.

Erebus volcano.

In the case of the Mt. Erebus volcano automated analysis is also built into the

sensor web routine. When the volcano erupts it is captured by in-situ seismic

sensors. The sensors trigger a request to re-task a MODIS sensor to gain a

better understanding of the eruption. All the data from the eruption is

automatically downloaded at the NASA Jet Propulsion Laboratory where it is fed

into a lava flow model. If the model finds anything unusual in the results then it

requests further imagery of higher resolution from satellite based sensors to

confirm the findings. This project demonstrates the power of sensor web for

large scale environmental monitoring applications in which events that could

otherwise go un-detected are being properly investigated using automated

techniques.

GridCC (McGough and Colling, 2006) is an EGEE project which attempts to

enable sensors as grid resources using the gLite middleware. In addition to

existing computational and storage elements of gLite, GridCC introduces the

instrument element (Frizziero et al., 2006) which consists of a set of services to

configure and control sensors remotely. The project deals with issues of

information and monitoring, security, execution and planning of workflows

related to sensors. GridCC has been designed with scientific instrumentation in

mind and is concerned with providing collaborative access and control of such

instruments to a virtual organisation. For example, it is to be used to control

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

42

instrumentation in the CERN’s Large Hadron Collider project. However, there is

no attempt in GridCC to use OWS or SWE and although the architecture

provides a secure environment for the sharing of sensor resources it doesn’t

consider the domain specific needs of geospatial users.

In comparison, Aloisio et al (2006) consider the information management aspect

of sensor web and grid integration; they present an information service to

monitor and discover sensor resources in a grid environment which uses an

information model abstracted from SensorML. The iGrid monitoring and

discovery service (Aloisio et al., 2005) is loosely based on the Globus

Monitoring and Discovery Service but has adopted a relational data model and

this provides benefits such as the ability to query resources using SQL. Like

the instrument element in the GridCC project, this service plays a pivotal role in

integrating sensors into the grid environment as it enables sensor resources to

be managed and discovered in the same way as other grid resources.

A gridification of the SOS using the Globus Toolkit is carried out by Kussel et al

(2009) using a low level approach. Gridification of the SOS in this manner is

expected to facilitate sensor discovery in a grid environment through the use of

the Globus index service. Additionally the reliable transfer of large datasets can

be achieved using Globus RFT, and security policy implementation can be more

flexibly defined using the Grid Security Infrastructure. However, the authors

were not able to create WSRF Resource Properties from SOS and O&M

schema due to WSDL incompatibilities. Instead, service capabilities and sensor

descriptions were stored as DOM elements which were serialized using custom

bindings, thus enabling the service to return XML documents on request.

However, XML elements could not be properly accessed in an object oriented

manner.

The SensorGrid project (Tham and Buyya, 2005) addresses the specific

shortcomings of coupling live geospatial data resources with high performance

computing resources. Bottlenecks were discovered in the messaging

mechanisms between sensors and applications. Firstly, generating and parsing

XML was found to have a large time overhead. Secondly, HTTP was found to

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

43

be too inefficient for systems requiring high performance and fast responses

due to the request / response overhead and network constraints. As an

alternative to sending XML based SOAP messages over HTTP, Narada

Brokering is suggested; a content distribution infrastructure for voluminous data

streams (Pallickara and Fox, 2003). Narada Brokering presents a novel

messaging solution based on a peer to peer architecture. It enables scalable,

efficient, secure and reliable messaging that is capable of passing through

proxies and firewalls and that supports multiple transport protocols.

Compression and decompression is provided for messages with large payloads

and it is also possible to fragment very large files and re-merge them at the

client side. In the SensorGrid project Narada Brokering is used in conjunction

with a SOS to enable high performance data transfer between sensors and

client applications. Better performance is achieved by eliminating the single

direct connection between the sensor and the client which is a common

bottleneck when dealing with voluminous messages. Instead, Narada

Brokering routes messages via a network of message brokers and is thus

capable of delivering messages at a greater rate.

 As part of the NASA AIST ServoGrid project, Fox et al (2008) reached similar

conclusions on the suitability of HTTP and XML as a basis for transportation

and message encoding. The ServoGrid project attempted to use grid

computing to integrate complex scientific applications with large data sets

through a number of systems designed for earthquake simulation and

prediction. Two of these systems, GeoFEST and Virtual California could be

considered traditional parallel computing applications with an external but static

data source, whereas other systems such as Pattern Informatics (Tiampo et al.,

2002) relied on a regularly updated data catalogue. The function of the Pattern

Informatics system is to calculate probable regions of future seismic activity

based on past and current seismic data; it uses a regularly updated WFS as a

data source. Again, HTTP and XML were found to be too inefficient for non-

trivial data transport. In addition to Narada Brokering, another potential solution

is cited that could improve data streaming speed albeit at the expense of

streaming initiation time. The proposed technique suggests two new web

service specifications; WS-StreamNegotiation and WS-FlexibleRepresentation.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

44

It is suggested that on initiation of a data stream, WS-StreamNegotiation

messages are passed between the data source and sink to agree on the most

efficient encoding and transport protocol that each actor can tolerate. Once

established, the streaming is commenced on a different port using the fastest

available protocols. Neither of these proposed standards have been developed

but the same concept is used in Hand-held Flexible Representation (Oh and

Fox, 2005), a software architecture for mobile devices that enables the source

and sink to negotiate their preferred data representation.

Andrews (2007) observes that XML is generally unsuitable for encoding data;

this is particularly the case for live data streams such as those produced by

sensors. The main concern is that if every observation is wrapped in a set of

tags the data rapidly becomes very voluminous. An additional problem for live

data streams is that XML documents must be closed before they can be parsed

or transported and this cannot occur until the data stream has ended. To some

extent these issues are mitigated in SWE as it is possible to encode a block of

observations in an O&M XML documents as a single element. Additionally,

instead of providing observations inside an XML document it is possible to

provide a reference to a data stream; these are referred to as ‘out of band’

observations (Cox et al., 2006). However, the web services community

acknowledge that the transmission of XML over the wire suffers performance

overheads resulting from a large data volume, as well as data conversion and

parsing and this is proving problematic for mobile applications and high

performance parallel computing (Oh et al., 2005).

The efficient encoding of XML data is an active research topic that has been

discussed in detail by Chiu et al (2002) and van Engelen (2003) and is also the

topic of a W3C working group (Goldman and Lenkov, 2005). Binary XML

encodings are considered to be both faster to serialize and parse than their text-

based counterpart and also less voluminous so they can be transported more

efficiently. Binary SOAP attachments are usually encoded using MTOM

(Gudgin et al., 2005a) and XOP (Gudgin et al., 2005b) although newer and

more efficient formats are emerging such as Fast Infoset (Sandoz et al., 2003)

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

45

which is currently undergoing ISO standardisation. Further protocol

specifications for binary data exchange are under discussion by the OGF.

The problems caused by heavy XML payloads are exacerbated by high traffic

volumes at the data service which are likely to delay data delivery further.

Havlick et al (2009) present caching and replication of SOS as a solution. It is

argued that environmental monitoring data is ideally suited to this approach

because archived environmental data doesn’t change with time and because

propagation is always from the data source to the replica, not vice versa. The

proposed SOS-X service (Havlik et al., 2008) automatically aggregates

observations from one or more SOS thus increasing data availability.

Furthermore, using this approach enables data providers to publish a controlled

subset of data without having to implement complex security restrictions. To

facilitate data replication Havlick et al (2009) recommend the following changes

to the SOS and O&M specifications. Firstly, each observation should have an

explicit and unique identifier so it is possible to differentiate between new and

altered observations. Secondly, observations should contain a timestamp of the

last data change and thirdly a mechanism should be provided to request

deleted data. Finally, the SOS should provide a mechanism to publish the time-

span for which each observation will be available, so the SOS-X can prioritise

its data replication strategy.

As an alternative to channelling all of the data from sensor networks to the grid

to be remotely processed, in-network processing is advocated by Gaynor et al

(2004) using their Hourglass system. Hourglass aggregates data across

geographically diverse sensors in order to obtain a global picture of the

network’s state. This approach is similar to that used by Cornell University in

their COUGAR project (Bonnet and Seshadri, 2000) and is based upon the idea

that in wireless sensor networks communication of data is several times more

costly in energy consumption than computation. Distributed querying enables

computation to be performed at the sensor nodes to return only an aggregation

of observations. Although this approach overcomes the difficulties of high

payload messages it does degrade the temporal resolution of observations

through aggregation.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

46

The potential of grid / SWE integration for purposes of disaster monitoring has

attracted attention from a number of research projects. Fang et al (2009)

propose a disaster relief system that facilitates a fair distribution of stockpiled

resources amongst affected regions by channelling them to the worst affected

areas. The perceived benefit of using grid computing for this purpose is that of

collaboration between regional authorities as well as the sharing of data and

computational resources. Chen et al (2010) present a wildfire detection system

in which SWE data sources are chained to WPS processing services, using

BPEL workflow orchestration language to detect hot pixels in EO-1 remotely

sensed images. Interoperability, flexibility and re-usability are cited as the key

motivations for using an open distributed architecture.

2.3.7 Cloud Computing

The academic community is beginning to show an interest in cloud computing

as a means of reducing fixed costs for storage and data processing (Dikaiakos

et al., 2009). However, standardisation initiatives for cloud computing are only

just beginning. In an attempt to reach early consensus on best practice the

Open Cloud Consortium (www.opencloudconsortium.org) is championing an

academic cloud test bed, the Open Science Data Cloud (Grossman et al., 2010)

while the OGF has begun work on developing the Open Cloud Computing

Interface (OCCI), a standard API for cloud development.

Cloud service providers have presented several models of utility computing that

each offer different levels of abstraction and resource virtualization (Armbrust et

al., 2009). The models can be broadly categorised into three major groups;

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software

as a Service (SaaS). SaaS simply enables users to run software from their

computer, on demand, without having to install it locally (Schwiegelshohn et al.,

2010); the SaaS model has been popularised by the widespread adoption of

web services and SOAs. PaaS enables users to deploy their own applications

onto a remote platform comprised of hardware, software and data access

(Wang et al., 2008a). IaaS provides a lower level of virtualization that enables

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

47

users to deploy virtual machine instances over which they have almost

complete control at the operating system level. Google App Engine

(http://code.google.com/appengine/) exemplifies PaaS; it offers a limited

software development kit in which to develop web applications that are hosted

and managed by Google, who also handle automatic scaling of service

provision as user demand levels change. The Amazon EC2 service

(http://aws.amazon.com/ec2/) provides an example of IaaS in which users can

deploy virtual machines instances into the cloud. Although IaaS offers a greater

level of flexibility and control than PaaS it cannot offer indefinite scalability by

continually porting the instance to a more powerful machine, or invoking more

instances unless the application has been well designed for this purpose

(Armbrust et al., 2009). Conversely, PaaS such as Google App Engine provide

a restricted API that forces developers to code in a shared-nothing style which

facilitates elastic scaling (Abadi, 2009).

As noted by Baranski et al (2009) the cloud concept shares many features with

the grid but there are some important distinctions between them. Both terms

refer to a distributed computing system that provides data storage and

computational power in a scalable fashion. However, the main target user

group of grid computing is the scientific community with the purpose of running

large scale simulations, whereas the cloud is targeted at small to medium sized

businesses to enable scalability in web applications. A further distinction is that

the grid infrastructure tends to be owned and funded by governments or

research communities whereas cloud infrastructure is owned and operated by

mainstream IT players such as Google, Amazon and Microsoft. Essential to

grid computing is the concept of sharing computational resources amongst

disparate organisations (Foster et al., 2001). However, cloud systems are

based on a model of utility computing in which service providers make a

seemingly infinite pool of resources available on-demand and charge their users

according to the quantity they consume.

Standards for IaaS and PaaS have only recently begun to emerge. A draft of

the OCCI specification was released by the OGF OCCI-WG in December 2010

and is comprised of a RESTful API for managing the lifecycle of virtual machine

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

48

instances. Future work is planned to create aggregators to enable existing

infrastructure providers to adopt the interface. Concurrent work is being carried

out by the Distributed Management Task Force (http://dmtf.org) to define an

Open Virtual Machine Format, an open file format that will enable virtual

machine images to be ported between cloud infrastructure providers.

2.3.8 Summary of Key Issues for OGF and OGC Standards Alignment

Grid computing, sensor web and distributed GIS technologies have reached a

certain level of maturity. Version 2.0 of SWE and OWS standards has recently

been realised and over a decade of development based on these standards has

taken place. A memorandum of understanding between the OGF and the OGC

was signed in 2007 which has resulted in significant collaboration on issues of

interoperability between the grid computing and geospatial communities

(Higgins et al., 2008, Lee and Percivall, 2008). Despite significant headway in

this regard there are several outstanding issues which remain to be addressed.

These are summarised as follows:

1. The architectural challenge of integrating SOAP based and RESTful web

services.

OWS and SWE versions 2.0 have incorporated SOAP/WSDL interfaces and

this is set to facilitate interoperability of geospatial web services with grid

computing services. The use of SOAP/WSDL bindings to OGC services is

exemplified in the work of Hobana (2007), Shu et al (2006), Lanig and Zipf

(2009a) and Kurzbach et al (2009). However, due to the complexity of the OGC

schema, it has been found that the majority of standard web service toolkits

have difficulty in parsing OGC WSDL documents in order to generate client web

service stubs (Sonnet and Savage, 2003). Thus, integrating grid and geospatial

web services into a unified workflow still presents significant difficulties.

2. The inherent lack of security in OWS and SWE

Security in the grid computing domain has traditionally been much stronger than

in the geospatial domain. To this end the OGC GeoDRM working group has

been developing a standard for digital rights management of geospatial data

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

49

(Vowles, 2007). Early work in this area took place under the SEE-GEO project

(Higgins, 2008) that was specifically concerned with providing secure access to

geospatial data on the grid. SEE-GEO addressed the role of Shibboleth, WS-

Security and the Globus Grid Security Infrastructure in enabling secure access

to OWS in a grid environment (Farnhill and McAllister, 2006). SEE-GEO activity

was the foundation for the currently accepted practice of securing geospatial

web services using Shibboleth, an open source software package that facilitates

secure access to web content using a single sign-on

(http://shibboleth.internet2.edu/). Shibboleth operates by redirecting a client to

a shibboleth sign on page when they attempt to access a secured resource. If

successful the client is then redirected back to the requested resource after

logging on.

Matheus and Higgins (2009) have worked through some of the challenges in

securing geospatial web services using Shibboleth such as the initiation of a

login sequence by a web service client, and the establishment of a secure

session without modifying OWS interfaces. This improvement in security is

expected to significantly increase the availability of geospatial web services, as

organisations will be able to publish data while controlling access to it. Although

there are few implementations of secure geospatial web services to date, it

seems likely that their prevalence will grow in the future.

3. Difficulties in complex service orchestration in SWE

Complex orchestration of OWS in a grid environment has been achieved in the

SAW-GEO project (Fairbairn et al., 2008) using Globus, Geoserver and the

ActiveBPEL workflow engine. However, orchestration of SWE services in a grid

environment is likely to encounter additional challenges. For example, issues

such as how to incorporate relentless streams of data into a workflow must be

addressed. This needs further research.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

50

4. Messaging inefficiencies using SOAP and XML to encode and transport

geospatial data.

The messaging inefficiencies of using XML and SOAP encodings (Tham and

Buyya, 2005) are a significant obstacle to the coupling of live geospatial data to

higher level applications. In terms of real-time systems this poses a big

challenge, particularly as communication inefficiencies could negate the

benefits of using a high performance grid resource. In-network aggregation

may be a solution for some applications but it does result in the loss of much of

the collected data. Messaging middleware such as Narada Brokering shows

promise for reliable high performance message delivery in large distributed

systems. This approach does however add an extra layer of complexity to

distributed systems and is unlikely to be worthwhile for smaller implementations.

Furthermore it is not yet clear whether this approach will be universally adopted.

Other solutions such as tightly-coupled geoprocessing (Friis-Christensen et al.,

2007) and mobile grid services (Ghimire et al., 2005) present alternatives that

avoids the transfer of large datasets across the network, but for real-time sensor

sources some data transfer is unavoidable.

5. Monitoring, discovery and general management of sensors in a grid

 environment.

A question is raised about how sensors should be managed in a grid

environment. The approach taken by the GridCC project (McGough and

Colling, 2006) is to simply consider sensors as grid resources and develop a set

of services to manage them along the lines of other grid resources. Using this

approach, sensors would be managed through standard grid services such as

Globus Monitoring and Discovery Service. An alternative would be to grid

enable the CSW; this approach would be favoured by the geospatial community

as it provides an accepted interface and enables discovery of resources through

SWE encodings and through spatial queries.

6. Immaturity of OGSA standards

Integration efforts are stalled by the relative immaturity of OGSA standards.

The standards are rapidly emerging but many have not been approved yet; as a

result there are few implementations to date.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

51

2.4 Parallel Geoprocessing

2.4.1 Why Process in Parallel?

Geoprocessing refers simply to the processing of spatial data (Kiehle et al.,

2006) and is an integral part of most spatial information workflows which

typically follow a three stage pattern of data acquisition, geoprocessing, and

results dissemination (Burrough and McDonnell, 1998). Every operation that

involves the manipulation of spatial data can be considered geoprocessing; it

therefore encompasses a diverse collection of operations that include tasks

from the fields of network analysis, spatial and geostatistics, image-processing,

spatial analysis and generalization in addition to more commonplace tasks such

as spatial and attribute queries and data or format conversions.

Processing spatial data is notoriously time-consuming and it is not uncommon

for geoprocessing to present a bottleneck in spatial information workflows (Shi

et al., 2002). For example, Hawick et al (2003) found that interpolating only 100

points onto a 500x500 unit grid using kriging took over 10 minutes on a single

processor. Commonly such processing delays can be attributed to either the

size of the dataset or the complexity of the processing; an increase in either of

these phenomena causes the processor to execute an increased number of

instructions. Spatial data is often voluminous and there is a trend towards

bigger, higher resolution datasets as data measurement, storage and

processing tools continue to improve (Zhu et al., 2009) and as our thirst for

detailed spatial information continues to grow. Furthermore, the demand for

data analysis capability is rising faster than the volume of data itself because

algorithms are becoming more sophisticated and often carries time complexity

above linearity (Gray et al., 2005). As a consequence many geoprocessing

operations are suitable candidates for parallel processing.

Parallel processing is a form of computation in which many calculations are

carried out simultaneously with the goal of reducing the overall execution time

(Almasi and Gottlieb, 1990). The amount of time saved by processing in

parallel is quantified by Amdahl’s law (1967) which defines the metric ‘speed up’

(Equation 1) in terms of the number of processors and the proportion of the task

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

52

that can be executed in parallel. In Equation 1, SN is the speed-up achieved

with N processors, Ts represents the fraction of sequential operations and Tp

the fraction of parallel operations.

N

T
T

TT
S

P
S

PS
N

+

+=

Equation 1

Unfortunately parallel processing is difficult to implement for a number of

reasons. Firstly, it requires the use of a parallel computer, defined as a set of

processors able to work cooperatively to solve a computational problem (Foster,

1995). Parallel computers take many forms (Section 2.4.2) and usually require

specifically tailored software. This brings us to the second difficulty; parallel

software development is disproportionately labour intensive in comparison to its

serial counterpart (Danelutto et al., 1992). As a result the effort of implementing

parallel code can only be justified under certain circumstances. Healey et al

(1998) have identified three scenarios that justify the use of parallel code;

compute intensive operations (Gittings et al., 1994), operations that have data

volumes so high they cannot be executed in serial (Lehning et al., 2009) and

finally operations that require a real-time response that cannot be met by a

serial system (Xiong and Marble, 1996). Although many geoprocessing

operations can be said to match at least one of these scenarios the ultimate

decision as to whether to invest in parallel code must be made on a case by

case basis. As the remainder of this Section will demonstrate there are a

variety of tools and techniques available to exploit parallelism; different

processing tasks can require dissimilar approaches to achieve a speed up.

2.4.2 Parallel Processing and Data Architectures

Flynn (1966) proposed a four group taxonomy of processing architectures;

Single Instruction Single Data (SISD), Multiple Instruction Multiple Data (MIMD),

Single Instruction Multiple Data (SIMD) and Multiple Instruction Single Data

(MISD). The MIMD element of Flynn’s taxonomy can be subdivided into shared

memory architectures; Single Node Multiple Processors (SNMP), Multiple Node

Multiple Processors (MNMP), and distributed memory architecture referred to

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

53

as Multiple Node Single Processor (MNSP). MNSP can be further subdivided

into high-speed Massive Parallel Processing (MPP) clusters and lower-speed

Network of Workstations (NOW). The dominant architectures to emerge have

been the SISD architecture which is typified by a standalone PC with one

processor, and for distributed applications MIMD which refers to an ability to

asynchronously perform multiple sets of instructions on different sets of data

(Abbas, 2004). Figure 2.3 provides a graphical depiction of how Flynn’s

classification and the common MIMD architectures; MNSP, MNMP and SNMP

are related.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

54

Figure 2.3: Flynn's Taxonomy and MNSP, MNMP, SNMP A rchitectures

Typical computational tasks are designed to run in serial on SISD architectures,

i.e. they have a single thread of execution that is run on a single processor.

SISD architectures are constrained in terms of scalability by the capacity of their

processor and memory; as a system grows in size the cost of running a

centralised architecture will eventually outstrip the cost of a distributed

architecture. SISD architectures are therefore not suitable for very large or

scalable processing operations.

In SNMP systems many processors share the same memory; this design was

popular in early supercomputers but the shared memory aspect limits the ability

of such systems to scale (Hwang and Xu, 1996). Scalability can be achieved in

these systems by networking several machines together to form a MNMP

system but the expense, lack of uptake and the need for different programming

constructs has resulted in the majority of supercomputers using shared memory

Flynn’s Classification

SNMP

MNSP

Node

Shared memory

CPU CPU CPU

SIM

D

SISD

MIS

D

MIM

D

SNM

P

MNM

P

MNS

P

SNS

P

Node

Shared memory

CPU CPU CPU

Node

Shared memory

CPU CPU CPU

Network Fabric

MNMP

Node

Local

memory

CPU

Node

Local

memory

CPU

Network Fabric

MPP (high speed)

COW (low speed)

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

55

architectures to be phased out; MNSP architectures now dominate the tables of

the world’s top performing 500 supercomputers, which shared memory systems

haven’t entered since 2002 (http://www.top500.org).

By far the most common MIMD architecture is MNSP; which can be further

subdivided into MPP and NOW. MPP and NOW are similar in that they are

both affordable as they use commodity microprocessors and they both have

distributed memory and can thus scale to hundreds or thousands of nodes

(Abbas, 2004). The difference lies in that MPP clusters, often referred to as

HPC clusters, are interconnected by high bandwidth low-latency connections.

In addition their network interface connects directly to the memory bus rather

than an input / output bus thus reducing latency further (Hwang and Xu, 1996).

Therefore MPP can quickly exchange messages and thus run parallel programs

whereas NOW is a lower cost alternative that uses standard commodity

connections such as Ethernet (Hwang and Xu, 1996). The scalability,

performance, and cost performance of MNSP have lead to their current

monopolisation of the computing market for both the typical enterprise and

academic market and for the specialised supercomputing market.

Fox et al (2008) make a further distinction between NOW that have high

performance but non-optimised communication networks and distributed or grid

systems. This distinction becomes pertinent when we consider distributing

tasks over a loosely-coupled cluster. For example, in grid systems a cluster

may consist of nodes that are distributed either geographically or amongst a

number of organisations. Communication between these nodes is likely to be

inhibited by network bandwidth and by message envelope overheads. The ‘rule

of the millisecond’ (Fox, 2004) distinguishes these distributed systems from the

aforementioned NOW and MPP systems. Many parallel programming

constructs cannot tolerate latencies of more than a millisecond; typical

messaging latencies in MPP are 20 microseconds, 100-1000 microseconds in

NOW and 100 milliseconds in grid systems (Fox et al., 2008). As a result, new

programming constructs have been developed that enable parallel tasks to be

run on distributed and grid systems; these are reviewed in Section 2.4.4 with

reference to geoprocessing applications.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

56

The major design goals of parallel processing architectures are also shared by

parallel database systems; these are speed-up and scale-up, i.e. the ability to

carry out processing operations faster and on larger amounts of data than their

serial counterparts.

A simple taxonomy of parallel database architectures has been developed by

Stonebraker (1986) that is comprised of three categories; shared memory,

shared disk and shared nothing (Figure 2.4). Shared memory refers to a

database architecture in which all processors share a common global memory

in addition to their own private memory cache and have access to all the

storage disks. Processors in the shared disk architecture also have access to

all the storage disks but each has their own private memory, whereas

processors in the shared nothing architecture each have their own memory and

their own storage disk which only they can access.

Figure 2.4: Parallel Database Architectures [adapte d from Dewitt and Gray

(1992)]

Relational DBMS have been widely used for storing and manipulating

relationally structured data since their conception by Codd (1970) although it

was not until the early 1990s that RDBMS were used to store spatial data

(Adler, 2001). In recent years the massive data volume generated by large

internet companies has prompted them to move away from storing data in

relational DBMS. Google, Amazon and Facebook have each developed their

own non-relational databases to store and analyse their vast quantities of data.

Such databases typically conform to the shared-nothing architecture and

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

57

because many of them do not use Structured Query Language (SQL) they have

collectively become known as Not Only SQL (NOSQL) databases. The key

advantages of such systems over their traditional relational counterparts are

that they can handle non-structured data very efficiently, can easily be scaled

horizontally and can scale write transactions more effectively (Leavitt, 2010).

These gains in scalability are largely achieved by sacrificing consistency. Gray

(1981) set out the rules governing transaction processing which are conformed

to by all major relational DBMS vendors. These rules are referred to by the

acronym ACID which stands for Atomicity, Consistency, Isolation and Durability

(Reuter and Haerder, 1983). Atomicity ensures that all operations in a

transaction will complete, or the entire transaction will be rolled back.

Consistency ensures that the database will be in a consistent state when the

transaction starts and ends by enforcing integrity constraints. Isolation ensures

that each transaction occurs individually without interference from other

transactions, this is typically achieved by locking records for editing. Durability

ensures that once committed a transaction will not be reversed.

Brewer’s CAP theorem (Lynch and Gilbert, 2002) states that it is not possible

for a system to simultaneously provide consistency, availability and partition

tolerance; at most two of these properties can be achieved. Availability refers to

the number of simultaneous users that can access the system, whereas

partition tolerance refers to the ability to split the system amongst multiple

nodes. Single-site databases opt for consistency and availability, whereas

distributed databases opt for consistency and tolerance to network partitions.

Brewer suggests the BASE model as an alternative to ACID; it stands for

Basically Available, Soft state, Eventual Consistency. Using the BASE model

an optimistic approach to consistency is taken whereby partial transaction

failures are supported (Pritchett, 2008). Thus if a transaction fails on one

partition of a database, then it is still committed to the other partitions so

maintaining some degree of availability. The transaction is eventually

committed to the failed partition when it becomes available.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

58

For the majority of spatial applications the commercially available parallel

relational DBMS offers sufficient scalability in terms of data volume and number

of concurrent users (Zhao et al., 2005). However, NOSQL databases may

prove useful for storing and querying massive volumes of spatial data. Existing

implementations include key-value, document-based, column-oriented and

graph databases, some of which include explicit support for spatial data types

although with limited functionality. Currently CouchDB

(http://couchdb.apache.org), MongoDB (http://mongodb.org) and Neo4j

(http://neo4j.org) have facilities to create spatial indexes and to perform

bounding box queries. However, even relatively simple spatial functionality

such as the ability to compare geometry identities and perform intersection,

distance-to and nearest neighbour have not yet been realised.

In NOSQL databases analytical processing other than simple queries is typically

achieved using MapReduce, Dryad or a similar shared-nothing processing

framework. Thus it seems likely that in the future NOSQL databases will

include basic spatial tools written as MapReduce processes to support spatial

data management.

2.4.3 Parallel Geoprocessing Strategies

Various attempts have been made to classify parallel programming paradigms

in the literature and while a number of common themes are in evidence there

does not appear to be a generally accepted classification. Fox (1989) presents

four classes based on the temporal communication structure of the parallel

program; synchronous, loosely synchronous, asynchronous and embarrassingly

parallel. Synchronous refers a style of computation for which the same

algorithm is run in parallel on a number of machines that share information at

regular time steps. Conversely, asynchronous refers to a style for which

different algorithms are executed on different machines and communication

patterns between these machines is irregular and varies through time. Loosely

synchronous is an intermediate between the two styles, for which machines

synchronise with each other sporadically (Fox et al., 1994) and embarrassingly

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

59

parallel refers to an execution style for which no communication is required

between nodes.

Healey and Desa (1990) present a different classification comprised of three

classes; geometric parallelism, algorithmic parallelism and event parallelism.

Geometric parallelism refers to the decomposition of the spatial domain,

whereas algorithmic parallelism refers to a functional decomposition. Event

parallelism is the simplest class presented here in which a master processor

distributes tasks to a set of slave processors. Wilson (1995) suggests another

classification which is based on decomposition technique, these are geometric,

recursive, iterative or pipeline, functional and speculative.

Wagner and Scott (1995) identify three different decomposition strategies;

control, domain and hybrid. Control decomposition involves decomposing the

processing task into a number of constituent parts, each of which is assigned to

a different processor. Conversely, domain decomposition is achieved by

splitting the dataset up into a number of parts and assigning each part to a

different processor. Hybrid decomposition uses both of these techniques and is

particularly useful when a very fine-grained decomposition is required (Foster,

1995).

A further four classes are presented by Hansen (1993); pipelining, divide and

conquer, master / slave (task farm), and cellular automata. Burkhart et al

(1993) presents a more complex classification that encapsulates the

approaches described thus far; it is based on the properties of the algorithm, its

data and the inter-node communication patterns. Silva and Buyya (1999)

identify the most popular paradigms as task farming, geometric decomposition,

pipelining, divide and conquer and speculative parallelism. In the following text

a review of the most relevant approaches to geoprocessing are presented.

Healey and Desa (1990) present event parallelism as the simplest of parallel

strategies. Adopting this strategy, a master processor distributes tasks to a

number of slave processors and reassembles the results when all the tasks

have been completed. This approach of splitting, executing in parallel and then

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

60

merging is often referred to as a task-farm (Bowler et al., 1987) and the type of

problem to which it is suited is referred to as embarrassingly parallel (Foster,

1995). The task farm application graph topology is outlined in Figure 2.5. As

can be seen in the examples that follow, event parallelism is typically used to

perform the same task on different data and thus its use can be considered a

simple form of domain decomposition. The essential problem characteristic that

permits this style of execution is a simple application graph topology in which

each sub process can execute independently of the other processes.

Figure 2.5: The Task Farm Application Graph Topolog y

There are a number of examples in the literature of using a task-farm approach

for geoprocessing. Mineter and Dowers (1999) exemplify the use of a task-farm

to process an atmospheric transport model, the Hull Acid Rain Model (Metcalfe

et al., 1995). Gong and Xie (2009) use a task-farm approach to extract

drainage networks from large Digital Elevation Models (DEM), in this case the

DEM is decomposed by watershed. Tehranian et al (2006) present a more

complex system that combines event and pipeline parallelism for processing

data from the Image Fourier Transform Spectrometer, a hyperspectral

instrument that is scheduled for deployment on the GOES-R satellite and is

expected to produce data at a rate of 130Mbps. The proposed processing

system uses a task-farm approach to allocate incoming data to worker

pipelines, which are comprised of a series of five processors each of which

performs a stage in the processing of the raw inteferogram. Preliminary results

show an almost linear speed-up. In each of these cases, the same process has

been applied to different datasets in parallel to solve a data intensive problem.

 A similar approach known as the Monte Carlo method (Metropolis and Ulam,

1949) is commonly used in simulation to translate uncertainty in a model’s

master

slave

slave

slave

result

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

61

inputs, to uncertainty in its output. This is achieved by running the model

several times with different input parameters and thus it fits with the task-farm

paradigm. The Monte Carlo method is commonly applied to geoprocessing

simulations such as estimating the probability of slope failure (Zhou et al.,

2003), estimating error propagation in seismic activity (Emmi and Horton, 1995)

and carrying out flood simulations (Muzik and Chang, 1993).

Task farms can also be used at a finer granularity when dealing with very large

datasets or computationally intensive problems by dividing a data aggregate

into a number of constituent elements. For example, Baranski (2008) uses a

task-farm approach to perform spatial intersection as a demonstration scenario

for his grid enabled WPS in which different elements of the data aggregate are

assigned to different processors. Hong-Chun et al (2009) apply the task-farm

approach to the spatial filtering of a remotely sensed image and Xue et al

(2005) use a task farm to calculate the Normalised Difference Vegetation Index

from a MODIS satellite image. Hawick et al (2003) provide an example of

classifying remotely sensed images in parallel using a task-farm hierarchy that

enables a coarse-grained classification to be performed by assigning different

images from a time-series to different processors, or a finer grained

decomposition can be achieved by geometrically partitioning each image. A

similarly fine-grained partition for image-processing is achieved by Nicolescu

and Jonker (2002) using a task-farm style data decomposition in conjunction

with a functional decomposition.

Equation 2 shows the total processing time of an operation using the task-farm

approach to divide a dataset into as many segments as there are available

processors (Hong-chun et al., 2009). Total processing time is given by Tall, Tcut

is the time taken to divide the dataset into as many segments as there are

available processors, max(Tproc) is the maximum time taken to perform

processing on the data segments and Tmerge is the time taken to reassemble the

data aggregate.

mergeproccutall TTTT ++=)max(Equation 2

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

62

From Equation 2 it can be observed that a significant speed up is possible using

the task-farm approach, with a proviso that the time taken to split and merge the

dataset is not considerable. However, parallel execution using the task-farm

approach is not always viable; Trewin (1998) notes the following limitations of

task farms. Firstly, inefficiencies can result from applications in which the time

taken to compute a subtask can vary and is not known before execution. For

example, if one sub-task takes substantially longer to complete than others,

then several processors will remain idle whilst waiting for the final subtask to

complete; in parallel database terminology this effect is referred to as skew.

Secondly, the initial and final processes of splitting and merging can themselves

present bottlenecks in execution and this prevents task-farms from scaling

indefinitely to larger numbers of processes although in some cases this effect

can be mitigated by using a slightly more complex application graph topology

such as multi-source or multi-sink task-farms.

The divide and conquer strategy (Quinn, 1994) is an alternative approach to the

task-farm that alleviates the load balancing problem described above; the

procedure is outlined in Listing 2.3 and described as follows. The master

processor divides the task into two subtasks which are each assigned to worker

processors. If a subtask is found to be small enough it is solved directly, this is

termed the base case in Listing 2.3. Otherwise it is divided into two and

allocated to two more processors; this process continues recursively, forming a

tree shaped graph topology. When the problem has been solved the results are

passed back up the branch. The application graph topology of the divide and

conquer approach is shown in Figure 2.6.

Figure 2.6: The Divide and Conquer Application Grap h Topology

master

slave

slave

slave

slave

slave

slave

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

63

Listing 2.3: The Divide and Conquer Strategy (Foste r, 1995)

The divide and conquer strategy has been used to parallelise a 3D viewshed

analysis (Katz et al., 1991) and is a recognised technique for generating voronoi

diagrams and performing delaunay triangulation; there are a number of

examples in the literature (Aggarwal et al., 1988, Davy and Dew, 1989, Cole et

al., 1990, Clematis and Puppo, 1993, Cignoni et al., 1993, Ding and Densham,

1994, Wang and Tsin, 1987). To achieve a spatial interpolation on an

irregularly spaced set of points, Wang and Armstrong (2003) exemplify a

quadtree domain decomposition in which the spatial domain is recursively

partitioned into four quadrants until a constant amount of information is held in

each partition. A quadtree is essentially a divide and conquer approach in

which a region is recursively subdivided into four equal sized blocks until each

block is of the desired data volume (Samet, 1984). This approach was found to

be a successful method of achieving an approximately equal load on each

processor. It is noted by Magillo and Puppo (1998) that the divide and conquer

approach is particularly well suited to coarse-grained MIMD architectures.

The MapReduce programming model (Dean and Ghemawat, 2008) can be

considered a special form of event parallelism; in essence it is composed of two

functions, Map and Reduce. The Map function takes a set of key-value pairs as

input and produces a different set of key-value pairs as output. As such the

Map function can be considered conceptually similar to task-farm data

decomposition because in both cases a master processor subdivides a dataset

amongst a set of slave processors. The key distinction is that the Map function

operates strictly on key-value pairs whereas there is no such restriction for task-

procedure divide_and_conquer
begin
 if base case then
 solve problem
 else
 partition problem into subproblems L and R
 solve problem L using divide_and_conquer
 solve problem R using divide_and_conquer
 combine solutions to problems L and R
 end if
end

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

64

farm decomposition. Once the Map process is complete the resulting key-value

pairs are allocated to Reduce processes which groups values with a common

key, and outputs a list of values. These functions are formally expressed in

Listing 2.4 and a diagram of the process is depicted in Figure 2.7.

Listing 2.4: The Map and Reduce Functions

Figure 2.7: The Map Reduce Programming Model

MapReduce is a relatively recent phenomena; it was devised by Google to

simplify the process of parallelising large data processing tasks such as the

indexing of web pages. However, it has since proved popular for a number of

applications including spatial data processing. Cary et al (2009) demonstrate

the use of MapReduce in two spatial scenarios; firstly to bulk construct a set of

R-tree spatial indexes and secondly to calculate quality metrics for aerial

imagery. Chen et al (2008) developed a MapReduce based GIS workflow

system, MrGIS, that is capable of performing raster algebra operations in

parallel. MrGIS is based on the GRASS (http://www.osgeo.org/grass) open-

source GIS software and operates by wrapping tools from the GRASS raster

algebra toolkit as MapReduce jobs. Wu et al (2007) use MapReduce to

determine road network alignment by combining satellite imagery and vector

data.

Image processing algorithms often exhibit data independence and are therefore

particularly well suited to the MapReduce approach. For example, Lv et al.

map(key1,value1) → list(key2,value2)
reduce(key2,list(value2)) → list(value2)

Input

data

map

map

map

reduce

reduce

Output

data

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

65

(2010) present a parallel implementation of the iterative unsupervised K-Means

classification algorithm. For the K-means algorithm it is assumed that the

number of land cover classes is known in advance but the spectral centre of

these classes in n-dimensional feature space is unknown, where n is the

number of spectral bands in the image. Initially an arbitrary spectral centre is

selected and each pixel is assigned to its nearest centre. Subsequently the

spectral centre of each class is changed to the mean location of all the pixels

assigned to that class. The new spectral centre is used as the starting point for

the next iteration. In the methodology adopted by Lv et al. (2010) a new

MapReduce process is instantiated for each iteration. As the assignment of

each pixel to a spectral centre can be carried out independently of the other

pixels, this process is carried out inside the Map function. In terms of key value

pairs the pixel’s identifier (key) and digital number (value) are mapped to a pixel

(key) and spectral centre (value). Pixels assigned to the same spectral centre

are all sent to the same Reduce process which can then calculate the new

spectral centre by averaging the position of all pixels, for each dimension.

A similar implementation is presented by Li et al. (2010) for the ISODATA

unsupervised classification algorithm. ISODATA does not require the exact

number of land cover classes to be known in advance and extends K-means by

taking into account the compactness of clusters which is measured using their

standard deviation. This enables clusters with a standard deviation above a

certain threshold to be split, and overlapping clusters to be merged. Li et al.

(2010) use almost identical Map and Reduce functions to Lv et al. (2010), but

extend these with another serially implemented Refine function that performs

cluster splitting and merging.

Another image processing example is described by Chapman et al. (2010) who

use MapReduce to perform geo-correction. The cited example determines the

ground location of each pixel sensed by a thermal infra-red satellite by

implementing a geo-correction function (Map) and then averages the resulting

temperature for each of the measured ground regions (Reduce). Despite the

success of these implementations not all geoprocessing tasks can be easily

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

66

transformed into the MapReduce paradigm, notably operations that involve

relational joins or multi-stage processes (Cary et al., 2009).

Geometric parallelism is another parallel strategy that relies on a specific form

of domain decomposition in which the geographical data space is partitioned

into sub regions, each of which are executed on different processors (Healey

and Desa, 1990). In reference to geometric parallelism, Armstrong and

Densham (1992) suggest that two characteristics of spatial domains, regularity

and homogeneity are important in determining decomposition strategy.

Furthermore, they suggest that domain decompositions fall into one of four

classes, regular and homogeneous, irregular and homogeneous, regular and

inhomogeneous and irregular and inhomogeneous. Regular refers to the

spatial arrangement of data elements; i.e. a geometric partition would result in

an equal number of data elements in each segment. Homogeneous refers to

the data elements being of the same type, and implies that each data segment

will require a similar amount of processing effort. Each of these categories are

depicted in Figure 2.8 where it can be seen that although A and B both exhibit a

regular grid, B contains an inhomogeneous arrangement of nodes.

Irregular domains are characterised by irregular mesh data structures such as

Triangulated Irregular Networks (TIN), vector point, line and polygon data and

vector network data. Using geometric partitioning it is difficult to achieve load

balancing for irregular domains. However, through the use of quadtree

partitioning and the divide and conquer strategy this difficulty can be overcome.

Regular domains are characterised by gridded data structures such as regular

gridded DEMs and raster images. Regular and homogeneous domain

decompositions are preferred because they are easily accomplished (Armstrong

and Densham, 1992). Many geoprocessing tasks make use of such

decompositions, particularly in the field of image processing (Hawick et al.,

2003, Plaza et al., 2009), raster GIS (Wagner and Scott, 1995) and even

tsunami wave modelling (Glimsdal et al., 2004). Regular domain decomposition

is most easily achieved by dividing a data aggregate into a number of segments

comprised of contiguous data elements such as rows, columns, blocks or

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

67

columns. However this is not always the case; Kidner et al (1997) use an

equiangular data decomposition for a 360° line of s ight analysis in which 360/n

degrees of data are assigned to each processor, where n is the number of

available processors. Similarly, it is sometimes advantageous to perform

scattered domain decomposition, particularly for scenarios such as ice sheet

modelling (Mineter and Dowers, 1999) in which the majority of computation lies

in certain spatial regions. Scattered decomposition involves decomposing the

data into many more segments than there are processors and assigning each

processor a number of segments from scattered spatial regions of the data

aggregate (Trewin, 1998).

A. Regular and homogenous B. Regular and inhomogeneous

C. Irregular and homogeneous D. Irregular and inhomogeneous

Figure 2.8: Classification of Spatial Domains [(Arm strong and Densham,

1992)]

Using a geometric parallel strategy in a distributed memory environment

necessitates the exchange between processors of data elements that lie on the

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

68

boundary between neighbouring regions; this procedure is known as halo or

boundary exchange. Lee and Hamdi (1995) present the parallel application of a

convolution filter over an image that has undergone a regular domain

decomposition. To successfully apply the filter to the entire image, pixels on the

division boundary must be exchanged between processes. This is depicted in

Figure 2.9; the image has been divided into nine segments each forming a

separate process. In the figure every process exchanges each cell that forms a

boundary with their neighbour, enough exchange to apply a 2x2 convolution

filter. To apply a 3x3 filter, two rows of data would have to be exchanged.

Other examples of boundary exchange in domain decompositions include the

work of Lanthier et al (2003) on implementing a parallel version of the shortest

path algorithm. The alternative is to use a shared memory architecture in which

each processor already has access to the entire dataset. For example Hickman

et al (1995) achieved an almost linear speed-up of texture based feature

extraction from a remotely sensed image using a regular domain decomposition

on a shared memory architecture.

Figure 2.9: Boundary Exchange for a Convolution Fil ter

Because of the relative expense of communication in comparison to

computation (Fox et al., 1994), the exchange of data between processes is a

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

69

common bottleneck in parallel programs. As such this style of parallel

programming is best suited to MPP architectures in which dedicated high speed

connections exist between processors, or shared memory in which all

processors can access all the data. Performance can be increased for

operations requiring boundary exchange by positioning neighbouring regions on

adjacent processors (Bowler et al., 1987).

Pipeline parallelism or ‘pipelining’ involves splitting an operation up into

constituent stages, each of which is assigned to a different processor. Once the

first processor has finished processing the first data item, it relinquishes control

of this item to the second processor and begins processing the next data item,

thus increasing overall throughput (Trewin, 1998). This style of parallelism is

depicted in Figure 2.10; data is fed from left to right and an additional

processing step is performed at each stage. Healey and Desa (1990) referred

to this style of processing as ‘algorithmic parallelism’ and noted that whilst the

concept is attractive, it is difficult to implement as each processor requires a

different set of instructions. Furthermore, it is noted that fast interconnects must

exist between machines in the pipeline, and to perform complicated workflows

the dynamic reconfiguration of machine interconnects is a desirable feature.

Another caveat of this approach is that the time taken to process each stage in

the pipeline must be roughly comparable to maximise efficiency and avoid

either idle processing time or the development of a processing backlog (Trewin,

1998). Finally, there is a limit to the scalability of this approach in that the

maximum number of processors that can be employed is limited to the number

of stages in the workflow.

Figure 2.10: Data Pipelining Structure

Despite the preference to data decompositions in both the GIS domain (Mineter

and Dowers, 1999) and more generally (Foster, 1995) for the reasons stated

Step 2 Step 1 Step 3

Process Process Process

Input Output

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

70

above, there are a number of scenarios for which pipeline parallelism is

suitable. For example, the use of pipeline parallelism in conjunction with event

parallelism for hyperspectral image processing has already been described

above. Additionally, pipeline processing is commonly used to render large high

resolution images (Bethel et al., 2003) although it is noted by Sorokine et al

(2005) that contemporary parallel rendering systems are not yet advanced

enough for the GIS domain. Cited deficiencies include a lack of support for

common geospatial data formats and an inability to render either cartographic

symbology or more than one layer at a time. Kidner et al (1997) successfully

used a 20 processor pipeline to obtain visibility indices from a DEM, achieving a

speed-up of 12 (Equation 1). Koutroumpas and Higgins (2008) make the point

that pipelining is the only valid functional decomposition technique to parallelise

geospatial problems that exhibit flow dependence or anti-dependence. Given

two tasks that are performed in a directed sequence, such as Step 1 and Step 2

in Figure 2.10, flow dependence exists if Step 1 modifies a data item that Step 2

reads. Conversely, anti-dependence exists if Step 2 modifies a data item that

Step 1 reads. Thus in both of these scenarios it is not possible to execute Step

1 and Step 2 for the same data item at the same time, although pipelining can

be used. Koutroumpas and Higgins (2008) describe a pipeline parallel geo-

linking service that streams geographical features from a WFS and attribute

data from a geo-linked data access service using an OGSA-DAI workflow. Data

from each of these sources is combined and the geographic features are

converted to a raster format and delivered to a GridFTP endpoint. Due to a lack

of balance between the processing stages, the processing improvement was

only three times better than a serial execution for this five stage process.

However, this provides a good example of how pipelining can be used to

increase the speed of geoprocessing workflow chains.

Glatard et al (2006) suggests another form of parallelism known as service level

parallelism that achieves a speed-up in a cluster or grid computing environment.

The actual process of submitting a job in a grid environment has a significant

time overhead attached comprising of job submission, scheduling, queuing and

data transfer. Service parallelism enables two or more sequential workflow

tasks to be combined and submitted to the grid as a single task. However,

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

71

service parallelism may negate any time savings if it limits any other form of

parallelism (Glatard, 2008).

2.4.4 Parallel Programming Constructs

According to Foster (1995), there are three major parallel programming models;

message passing, data parallel and shared memory. Associated with each of

these models are a plethora of programming languages, compilers and

standards; this Section provides a brief overview of these constructs.

Parallel programming languages are designed to simplify the process of

developing parallel applications; to date there are several in existence that are

capable of exploiting the parallelisation strategies outlined in Section 2.4.3.

Parallelisation can either be achieved implicitly, using an auto-parallelising

compiler, or explicitly using a parallel programming language (Hwu et al., 2007).

Auto-parallelising compilers have been developed to exploit parallelisms

inherent in sequential programs through automatic restructuring of the code.

Typically this is achieved by searching for loops in the code in which there are

no cross iteration dependencies and dividing them amongst available

processors (Gupta et al., 1999). Power Fortran Accelerator (Hogue and

Graves, 1994) provides an example of a parallelising compiler that enables

Fortran 77 code to run in parallel. Similarly the Sieve C++ compiler (Richards,

2006) enables C++ code to be run in parallel, although this can be considered

semi-explicit as it requires code annotations which point to sections of code to

be parallelised. The major advantages of implicit parallelism are that it enables

legacy code to be implemented in parallel, and that it requires very little

additional development effort. However, it is not as efficient as explicitly defined

code; back in 1996 the NAS benchmark, a set of programs designed by NASA

to evaluate parallel program performance (Bailey et al., 1994) was found to run

two to forty times faster using an explicit approach (Hwang and Xu, 1996).

Recent improvements in parallelising compilers along with higher capacity

hardware that is capable of checking equivalence to serial code has resulted in

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

72

a renewed interest in this approach as a viable alternative to explicit methods

(Hwu et al., 2007).

Data parallel refers to a programming paradigm in which the same operation is

performed on all elements of a data aggregate (Graham et al, 2005); as such it

is suitable for speeding up the processing of large data volumes. Data parallel

languages present an explicit method of developing parallel code for data

aggregates, in which the developer is responsible for specifying the domain

decomposition so the compiler can partition the computation accordingly

(Foster, 1995). Fortran90 and High Performance Fortran (HPF) are both

considered to be data parallel languages; the former is an official International

Standards Organisation (ISO) standard whilst the latter, although more feature

rich and widely supported, has no official status (Healey et al., 1998). Notable

features of HPF include the ability to specify abstract arrays of processors and

the mapping of data array elements to these processors. Using the ALIGN

directive it is possible to allocate specific data array elements to the same

processor, thus if there is much interaction between these elements, inter-

processor communication cost can be minimised. The DISTRIBUTE directive,

enables a data array to be allocated as a BLOCK, i.e. to a single processor, or

in a CYCLIC manner, i.e. consecutive elements in the array are to be mapped

to different processors, thus exemplifying a scattered decomposition (Section

2.4.3). MapReduce can be considered an explicit data parallel approach as the

same operation is applied to each element in a data aggregate at the Map

phase. However, it also incorporates an element of functional decomposition as

a task is split into two consecutive stages, Map and Reduce.

Whilst data parallel languages are useful in many circumstances, they are only

suitable for reasonably simple tasks due to their single thread of control

(Sawyer, 1998). Li et al (2008) exemplify the use of Fortran90 to perform the

point in polygon operation and Douglas-Peucker line simplification. In addition

they present a method of constructing a connectivity matrix between

cartographic objects, as is required for a number of spatial analysis operations.

Mower (1996) compares data parallel and message-passing techniques for

performing line-simplification and concludes that data parallel is generally

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

73

quicker than message passing if all processors are kept active, particularly as

synchronous communication can adversely affect the performance of the

message passing approach. Data parallel constructs have also been used to

perform spatial interpolation on various architectures; Kriging on NOW using

HPF (Hawick et al., 2003, Kerry and Hawick, 1998), Kriging on the CM5

machine which is a MNSP supercomputer using CMFortran, a precursor to HPF

(Hawick et al., 2003, Kerry and Hawick, 1998) and MacDougall’s (1984)

interpolation algorithm on the Encore Multimax, an SNMP supercomputer using

Encore Power Fortran (Armstrong and Marciano, 1993). We can conclude that

data parallel constructs are useful for relatively simple forms of parallel

processing where little inter-processor communication is required. In contrast,

the message passing approach presents a more complex solution but one that

enables more difficult application graph topologies to be executed.

Message Passing refers to a programming model in which processing

operations are divided into a series of tasks that interact with each other by

sending messages (Gropp et al., 1999); the concept originated from the work of

Hoare (1978). According to Sawyer (1998) a message passing system must

provide the programmer with four types of operation; point to point

communications, collective communications, process management and

synchronisation primitives. Point to point refers to one processor sending a

message to another, whereas collective refers to communications between the

entire collection of processors such as broadcast operations in which one

processor sends a message to all other processors, or reduction operations in

which each processor contributes a value to an aggregate operation. Process

management is used to commence and terminate processes, and

synchronisation primitives are markers that one process sends to another to let

it know that a certain point in the program has been reached.

The message passing model has become extremely popular as it enables

processors in distributed memory architectures to synchronise with each other

and to directly read and write to each other’s memory (McBryan, 1994). Like

the data parallel paradigm, processing operations using the message passing

approach can be split up into tasks, each with their associated portion of data.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

74

However, this approach differs from data parallel in that each task can request

and receive pieces of data from each other at any stage in their execution, thus

enabling significantly more complicated process topologies to be performed

than is possible in the data parallel model, whilst remaining suitable for

execution in a distributed memory environment. This ability of processes to

communicate with each other during execution is known as inter-processor

communication. Parallel tasks are often described in terms of their granularity,

a ratio describing the size of computation that can be performed by a

processing node between communication or synchronisation with other

processing nodes (Wilkinson and Allen, 1999). Coarse-grained tasks can

perform a lot of computation before communication with other nodes is required;

this is generally desirable due to the relative expense of communication in

comparison to computation (Fox et al., 1994).

A popular single standard has emerged for message passing programs (Booth

et al., 2003) which is known as the Message Passing Interface (MPI). Unlike

the other languages described here, in message passing applications the

communication between processes must be explicitly coded. MPI offers both a

standard communication interface, and an API that enables parallel message

passing programs to be implemented in C, C++ and Fortran with some degree

of platform portability. Messages can be sent both point to point, using the

MPI_SEND command, or collectively using the MPI_BROADCAST command.

However, despite its flexibility, developing message passing programs is

difficult. Firstly, when using blocking communication deadlock is a common

problem; blocking refers to a style of communication in which process B waits

for a message from process A before continuing execution. Thus dead-lock

occurs when processes A and B are both waiting for messages from each other

and neither can progress. Secondly, there is no easy way to debug an

application that is running on several processors at once (Samofalov and

Konovalov, 1996).

Fox’s ‘rule of the millisecond’ (Section 2.4.2) deems MPI applications suitable

only for MPP architectures. However, a number of alternative MPI

implementations have appeared that tolerate greater communication latencies.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

75

For example, MPICH-G2 (Karonis et al., 2003) and PACX-MPI (Keller et al.,

2003) make it possible to run parallel jobs on distributed grid resources as

though they were a tightly coupled cluster. PACX-MPI has adopted a two-tier

programming model, one for internal intra-cluster communication and one for

inter-cluster communication. MPICH-G2 however appears to the programmer

as a standard MPICH implementation of MPI but it has been developed

specifically for the Globus middleware and can be used in conjunction with

Globus’ security, resource management and job submission services.

Dattilo & Spezzano (2003) provide an example of a message passing

processing operation that demonstrates the increased level of complexity that

the paradigm can withstand. They describe how a problem solving environment

called CAMELOT is used to run a Cellular Automata model that simulates the

debris and mud flow of a landslide. The Cellular Automata approach is useful to

model flow as it captures the collective effect of several locally interacting

components. A Cellular Automata model is comprised of a grid of cells, each

with a state and a set of transition rules that define how the state will change,

based on previous states or the state of neighbouring cells. In this case several

properties of the debris are considered; altitude, thickness, run-up, depth,

mobilisation, outflow direction and water content. The simulation is

implemented in parallel using a high-level language CARPET, which uses an

underlying message passing approach in which every cell is represented as a

process. At each time interval the interactions between cells are managed by

message passing between processes.

Other geoprocessing applications that utilise MPI include parallel image

rendering systems (Sano et al., 2004, Sorokine et al., 2005) and hyperspectral

image processing. Plaza et al (2009) in their work on clustering, classification

and spectral mixture analysis of remotely sensed hyperspectral data use MPI C

extensions to implement their algorithms on both heterogeneous and

homogeneous NOWs. Conversely Tehranian et al (2006) deemed a generic

MPI implementation unsuitable for the constraints of a real-time system in terms

of reliability and availability and thus opted to use a non-standard software

framework to implement their hyperspectral processing system.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

76

The Shared Memory model uses a different approach to parallelisation; it relies

on a processing architecture in which several processors have access to the

entire dataset (Foster, 1995). Parallelisation is achieved by multiple processors

simultaneously processing different parts of the same dataset and locking

mechanisms are used to ensure conflicting read and write operations are not

imposed on data elements.

Shared Memory programming is commonly realised using OpenMP

(http://www.openmp.org), an open standard for shared memory parallel

programming. OpenMP provides an API that enables developers to easily write

code for multiprocessor shared memory architectures (SNMP and MNMP) in

the Fortran, C and C++ languages. Implementing shared memory code is

easily achieved due to a global address space from which each process can

access all the data. As such sequential code can be parallelised for shared

memory execution with relative ease (Sawyer, 1998). An alternative approach

to shared memory programming is to use a message passing library (Sawyer,

1998) which is also capable of running on a shared memory architecture.

There have been a number of efforts to simplify the use of parallel programming

constructs through high level abstractions. The MPI standard itself contains

some abstraction such as collective communication functions like

BROADCAST; before MPI, CHIMP (Bruce et al., 1993) provided some of this

functionality. In addition there have been domain specific efforts at producing

parallel libraries such as the image processing library described by Seinstra et

al (2002) which attempts to mask parallelism from the user.

As described by Trewin (1998) the Parallel Utilities Library is the most

comprehensive of these libraries; built on the MPI standard it consists of a

number of C and Fortran 77 modules that can be harnessed to perform basic

parallel operations. The modules are categorised into paradigm specific,

domain specific and non-specific. Whilst non-specific modules include generic

tools to perform tasks such as parallel IO, the paradigm specific modules

include tools specific to a parallel strategy such as task-farming (PUL-TF) or

regular domain decomposition (PUL-RD). Finally, domain specific modules are

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

77

targeted at specific applications, for example PUL-SM provides a basis for

decomposing irregular mesh data structures. Mineter and Dowers (1999)

provide an example of using PUL-RD to decompose an image to perform a

moving window noise reduction filter. PUL-RD handles the splitting of data

amongst processors, halo exchange and reassembling of the results.

2.5 Summary

The goals and structure of this literature review were set out in Section 2.1. In

Section 2.2 the key characteristics of Earth systems monitoring and prediction

applications were reviewed in order to establish the computational and data

requirements of such systems and to evaluate the suitability of grid computing

as a processing resource. Five key motivations for integrating grid computing

were identified; the ability to access computing on demand, the ability to scale-

out analysis without hardware restrictions, the ability to share resources across

organisations, the ability to access high performance computing resources and

a minimisation of initial hardware investment costs.

Section 2.3 describes the current status of generic web service standards, and

reviews existing work on integrating web services across the grid computing

and geospatial domains. Middleware standards in OWS, SWE and OGSA are

discussed and incompatibilities between these specifications are considered.

Furthermore, strategies to align these specifications are reviewed and a list of

key issues in the alignment of standards is presented.

In Section 2.4 parallel processing architectures are described and existing work

on parallel geoprocessing is presented. Furthermore, tools and compilers for

parallel processing are also briefly discussed. The key outcome of this Section

is a presentation of geoprocessing strategies.

It can be concluded that grid based geoprocessing is a vast and rapidly

expanding field in which there has been a lot of recent work. Considerable

progress has been made in identifying and overcoming the architectural

challenges of integrating grid and geospatial web services such as OWS and

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

78

SWE although there appears to be a general consensus that more geospatial

grid implementations are required to fully understand the remaining challenges.

A similar research effort has gone into parallel geoprocessing. The majority of

this work was carried out in the 1990s since which time the interest in parallel

geoprocessing, and parallel computing in general has declined due to

advancements in processing hardware and an overall trend away from high

performance computing ‘scale up’ approaches towards a high throughput ‘scale

out’ approach as realised in grid and cloud based systems. However, the

processing strategies remain highly relevant and renewed interest in parallel

geoprocessing from the perspective of real-time processing remains pertinent.

A number of individual real-time geoprocessing systems are described in the

literature that have been developed for specific applications but it appears that

to date there has been a failure to consider real-time geoprocessing from a

more generic perspective. Thus it is the aim of this thesis to fill this research

gap by attempting to identify the broad categories of real-time geoprocessing

operations and determine the relevant strategies for their implementation. The

aims, objectives and major research questions of this thesis are therefore set

out in the following Section.

2.6 Aim, Objectives and Research Questions

Aim:

To develop an appropriate conceptual and implemented framework in which

open standards in grid computing, sensor web and geospatial web services can

be combined as a technological basis for monitoring and prediction of

geospatial phenomena in the Earth systems domain, to facilitate real-time

decision support.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

79

Objectives:

1. Describe the current and emerging standards in sensor web, grid

 computing and geospatial web services that are relevant to the

 integration of large scale geospatial processing operations.

2. Investigate the difference in approach to standards development

 across the geospatial and distributed computing domains and the

 impact these differences have on geospatial workflows. Suggest

 areas where such workflows can be improved.

3. Assess the design of existing monitoring and prediction systems reliant

 on computationally intensive processing of geospatial data in the Earth

 systems domain.

4. Develop an initial prototypical categorisation of geospatial processing

 algorithms for both static and real-time data.

5. Design standards-based middleware to seamlessly incorporate real

 time sensor data into distributed geospatial processing operations

 within a web services environment.

6. Design and develop use cases for a real-time distributed

 geoprocessing framework that are exemplar of each algorithm category

 specified in objective 4. Test and evaluate each system.

7. Propose frameworks and areas for future research and development

 and suggest areas where existing standards need to be augmented or

 improved.

By fulfilling the aim of this thesis and addressing the objectives it will be

possible to evaluate several core research questions in relation to this work.

These research questions are listed as follows:

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

80

To what extent can standards in geospatial web services, sensor web and

distributed computing be integrated within a geoprocessing context?

This is a natural starting point for this project. Further work in this project is

dependent on the extent to which these technologies can be aligned using

existing and emerging open standards.

What are the potential bottlenecks in a distributed real-time monitoring and

prediction system in relation to distributed geoprocessing?

Bottlenecks in data transfer and processing are inherent in real-time monitoring

and prediction systems. It is important to identify the stages in the workflow that

are constraining each system in order to streamline each system and make it fit

for purpose.

Are there any generic methods of distributing real-time geoprocessing

operations?

One of the most interesting outcomes of this research project will be whether a

family of methods can be developed to distribute static or real-time

geoprocessing operations amongst several processors in a grid or cloud

architecture.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

81

Chapter 3 Categorisation of Real-Time Distributed

Geoprocessing Paradigms

3.1 Introduction

A major goal of this thesis is to explore how grid computing can be used in

conjunction with sensor web to assist in the monitoring of spatially complex

systems, processes and activities. It is expected that the primary function of

grid computing in this regard is the provision of a pool of computational

resource that enables geospatial data to be processed in a timely fashion.

However, given the diversity that exists amongst geoprocessing scenarios and

algorithms it is difficult to ascertain the most effective method of integrating grid

computing into geospatial processing workflows.

In the previous Chapter the motivation for integrating grid computing with

geospatial monitoring and prediction systems was asserted and the

technicalities of integrating web service technologies from different domains

were explored. Furthermore the array of tools and techniques for performing

geoprocessing operations in parallel was also evaluated. However, much of

what can be concluded from the technical discussion in Chapter 2 is that

different monitoring and prediction scenarios require very different

geoprocessing techniques and architectural approaches. There is no single

best way to integrate these technologies; it is a complex choice that is

dependant on the nuances of the dataset, the execution environment, the

geoprocessing operation, the network and the encapsulating interfaces

(Padberg and Kiehle, 2009). For example, the processing of a remotely sensed

satellite image for a disaster monitoring scenario may gain a significant

improvement in performance if it is executed in parallel on a grid, but similarly

this performance gain could also be offset by the time spent transferring the

image on to the grid. As such, an important step in the advancement of this

field is to determine which combinations of data type, execution environment

and monitoring / prediction scenario characteristics work well together.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

82

In this Chapter an attempt is made to develop a typology of geoprocessing

operations with respect to distributed processing architectures with a particular

focus on real-time operations. The typology defines geoprocessing operations

in terms of those characteristics that influence the design choices made by

system architects in the development of distributed geospatial processing

systems. This delineation of commonly occurring paradigms in geoprocessing

is intended to facilitate the future development of application specific tools,

frameworks and software development kits for real-time distributed

geoprocessing. Furthermore it is anticipated that the typology will enable

generic methodologies and integration profiles to be developed that suit the

majority of cases and provide a template for geoprocessing application and

system design.

The typology developed in this Chapter provides a framework for the practical

work of this thesis. An exemplar operation from each geoprocessing category

is implemented in Chapters 4-6. This serves to provide a firm foundation for

discussion and a basis for answering the research questions set out in Section

2.6. Within this Chapter Section 3.2 reviews existing efforts at classifying

geoprocessing operations and Section 3.3 provides a thorough examination of

the differences between static and real-time geoprocessing. The main focus of

this Chapter, the typology of geoprocessing operations is detailed in Section

3.4. In Section 3.5 an attempt is made to classify common geoprocessing

operations in the context of this typology and a critique of the typology is

conducted in Section 3.6; the main conclusions of this Chapter are summarised

in Section 3.7.

3.2 Review of Existing Geoprocessing Classification s

The ISO has defined a classification of geographic processing services, ISO

19119 (Percivall, 2002) that essentially groups processing services by the

function that they perform. Four major classes are defined; spatial, thematic,

temporal and metadata. Example operations for each of these classes

respectively, are spatial coordinate conversion, thematic feature generalisation,

temporal sampling and aggregate statistical operations. This functional

Categorisation of Real-Time Distributed Geoprocessing Paradigms

83

classification is useful for defining broad classes of geoprocessing operations

although in terms of RM-ODP (Section 2.3.5) it is biased towards the

informational viewpoint. According to Faroqui et al (1995) it is the

computational and engineering viewpoints that are the most important factors in

determining the design and implementation of distributed systems as these

viewpoints consider issues such as problem partitioning and the matching of

applications to platforms. As such this functional classification is not particularly

helpful in mapping geoprocessing operations to processing methodologies and

architectures.

Di et al (2008) suggest a crude classification of geoprocessing based on the

stage of the geoprocessing operation in the workflow. It is suggested that there

are three stages in the process of converting geospatial data to information.

The first stage, geoquery is the discovery and acquisition of data, the second

stage pre-processing involves assembling the data and converting it to the

required format and the final stage geocomputation is concerned with

conducting analysis and simulations with the data. This classification is more

pertinent to distributed computing architectures as it considers geoprocessing

operations in relation to the workflow. For example, data reducing geoquery

operations and some pre-processing or transformation operations should be

performed close to the data. This is noted by Friis-Christensen (2007) who

suggests that the OGC WFS be augmented with data reducing operations such

as clipping, generalisation and coordinate conversion. While this classification

does not specifically consider processing architectures it introduces the

workflow as an important geoprocessing characteristic.

Wang and Armstrong (2009) explore the decoupling of parallel geoprocessing

solutions from specific high-performance computing architectures through the

use of computational transformations which characterise the computational

intensity of geographical analysis. Four major types of geoprocessing

operations are considered; operation-centric, data-centric, operation and data-

centric, neither operation nor data centric. Data-centric transformations are

considered to be functions that have a high memory or I/O requirement such as

large spatial database transactions, whereas operation-centric transformations

Categorisation of Real-Time Distributed Geoprocessing Paradigms

84

have a high computing time requirement. This classification helps to determine

the processing methodology that the operation is most suited to. For example,

operation-centric tasks may seek to exploit a message passing processing

methodology (Section 2.4.4), whereas an operation and data-centric task may

be more suited to a data parallel processing methodology (Section 2.4.4). A

similar typology is defined by Shi et al (2002) who suggest three types of

geoprocessing algorithms that are suitable for parallelisation; algorithms for

which loop constructs in the code can be exploited by explicit or implicit

parallelism (operation-centric), algorithms that can be sub-divisible into smaller

geographical areas (data and operation centric), and algorithms with a large

data volume but modest compute requirement (data-centric). Shi et al (2002)

consider it unnecessary to parallelise operations that are neither data nor

compute intensive.

In the context of real-time systems, geoprocessing operations may also be

classified by the type of sensing system used to collect the data. Beard (2007)

proposes three types of sensing system. The first type is termed a Spatial Field

of Time Series (SFTS) and refers to multiple fixed spatial locations where one

or more attributes are measured at regular intervals resulting in one or more

time series. Therefore, for multiple locations a spatial field of time series is

created. For example, a fixed set of weather observing stations over a given

area would collectively comprise an SFTS. The second type in the

classification is a Time Field of Spatial Series (TFSS) and this refers to a time

ordered set of spatial fields. For example, a set of images collected by an

orbiting satellite over a month would represent a TFSS. The key difference is

that SFTS represents a temporally continuous but spatially fixed data series

whereas the TFSS represents a data series that is spatially continuous. The

final type is a Moving Point Time Series (MPTS) and refers to a sensor that

moves and measures its location at regular intervals. The attribute being

measured is typically the label for the unit carrying the sensor, i.e. a person, an

animal or a vehicle. The MPTS outputs a set of observed positions for the

moving object. The three sensing systems described here are depicted in

Figure 3.1.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

85

Figure 3.1: Types of Sensor System [Langran et al, 1992]

The development of Map Algebra (Tomlin, 1991) resulted in the delineation of

four major classes of geoprocessing operation; local, zonal, focal and

incremental. Functions in the local category operate on each individual

location, such as a pixel in a raster image, or a point or feature in a vector

dataset, and produces for each location a new value that is some function of

one or more existing values from that location. Common local operators include

math functions such as maximum, minimum, difference, product, square root,

sin, cosine and tan.

Global functions compute a new value for each location that are a function of

existing values associated with the entire layer. For example, a global

maximum function would set the value of each location to the maximum value

found in the entire layer, whereas a local maximum function would set the value

of each location to the maximum value found at the corresponding location in

each of the specified layers.

Zonal functions compute a new value for each location that are a function of

existing values within the same region in another layer. For example, the

ZonalProduct function multiplies each of the values in one layer by the value of

each zone in another layer.

Focal functions calculate a new value for each location as a function of the

values taken from surrounding although not necessarily adjacent locations.

1. Spatial Field of

Time Series

2. Time Field of

Spatial Series

3. Moving Point

Time Series

Categorisation of Real-Time Distributed Geoprocessing Paradigms

86

Common focal functions include high-pass and low-pass frequency filters and

the focal mean that calculates the area weighted average of all values within a

neighbourhood.

In Tomlin’s (1991) classification the incremental class contains functions that

are biased towards hydrological modelling such as aspect, drainage, volume

and linkage. However, a subsequent revision of this classification has

amalgamated the incremental class into the zonal class due to its algorithmic

similarity (DeMers, 2002).

Mennis et al (2005) extend the notion of map algebra from two dimensional

Cartesian data-space to include time as a third dimension. It was found that

this approach enables map-algebra functions to successfully be performed on

time-series data thus enabling phenomena to be modelled in both time and

space.

 Nicolescu and Jonker (2002) conform to the notion of global, zonal and focal

operators in their classification of image processing functions. Here they are

referred to as point, neighbourhood and global. Point operators are defined as

those for which each output pixel is dependant only on the corresponding input

pixel such as arithmetic and logical operators on two corresponding images.

Neighbourhood operators however create an output pixel that is dependant on

the value of several input pixels from the surrounding region. Examples include

moving kernel functions such as low/high pass filters and edge detection

algorithms. Global operators are dependant on the entire image; examples

include average, maximum and minimum functions. The dependence of each

operation on other elements in the data aggregate has wide reaching

consequences for data decomposition strategy and architectural considerations.

For example, point operators can be easily parallelised using a task-farm style

decomposition but neighbourhood and global operators are more difficult to

parallelise (Braunl et al., 2001). Similarly, geoprocessing operations involving

global operators are better suited to processing at source to avoid the transfer

of unwieldy datasets across a network.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

87

3.3 Geoprocessing and Time

Introducing real-time data into distributed geoprocessing workflows has a

substantive effect on the relative suitability of different processing architectures

and methodologies. Primarily this effect is due to differences in the volume and

nature of the data and the way in which it is delivered. However, the effect can

also be attributed to the overall context in which geoprocessing is taking place.

Issues such as how the workflow is invoked, for what purpose and with what

degree of immediacy, are crucial to the selection of suitable tools and

techniques.

3.3.1 Snap vs Span

GIS have traditionally taken a simplistic view of the world in which all

phenomena are represented in a static manner (Langran, 1992). Various

attempts have been made to represent the dynamic nature of real world

phenomena within GIS; Worboys and Duckham (2004) outline the following four

stages in this progression:

Static: A single static view of the world.

Snapshot: A view in which dynamic phenomena

 are represented as a collection of time-

 stamped states.

Object Lifeline: A view in which the lifecycle of objects

 including creation and destruction are

 recognised.

Events, actions & A view in which continuous and

processes: instantaneous phenomena can be

 modelled.

Towards the events, actions and processes end of this spectrum the

complexities inherent in modelling the real-world in time and space become

apparent. Mourelatos (1978) attempted to rationalise the representation of

reality by using a taxonomy in which every situation is comprised of both a state

and an occurrence, and the occurrence could be represented by either an event

Categorisation of Real-Time Distributed Geoprocessing Paradigms

88

or a process. Whereas events occur at a fixed instant in time, processes occur

over a time interval; this disparity between instantaneous and interval

representations of spatial phenomena is formalised by Grenon and Smith

(2004) with their SNAP and SPAN ontology.

In terms of geoprocessing systems, ‘real-time’ implies we are dealing with

temporal representations at the snapshot level or higher in Worboys and

Duckham’s (Worboys and Duckham, 2004) progression. As such, real-time

geoprocessing covers a range of temporal scenarios. At the simplest level an

operation may involve the processing of a fixed snapshot of recently collected

spatial data. An example of this form of snapshot processing is given by the

interpolation of a sea surface temperature map from a series of weather buoys

for a given time instant. Only minor differences exist between this form of

snapshot geoprocessing and classical static geoprocessing. The actual

computation involved is the same but the data may be corrupt or missing due to

less reliable sensor data sources. Furthermore, snapshot geoprocessing on

live sensor data is likely to take place in an environment in which the results are

required immediately.

Conversely, real-time geoprocessing may involve the processing of a series of

observations representing a time interval. Extracting information from an

observation sequence requires a radically different approach to static

geoprocessing and draws on techniques from the field of Data Stream

Processing (DSP). In DSP terms a data stream is a potentially unbounded

sequence of tuple, timestamp pairs; DSP can be considered an alternative to

database technology for coping with streams of data as opposed to persistent

datasets (Babu and Widom, 2001). In contrast to traditional database

management systems, DSP is concerned with performing static queries on

transient data rather than vice versa. Data Stream Management Systems

(DSMS) have emerged as a means of managing data streams, both as

extensions to existing DBMS (Krishnamurthy et al., 2003) and as systems in

their own right (http://esper.codehaus.org). Furthermore, a query language,

Continuous Query Language (Arasu et al., 2006) has emerged as a standard

means of performing queries over data streams. Notable geoprocessing work

Categorisation of Real-Time Distributed Geoprocessing Paradigms

89

in this field includes the GeoStreams project (Hart and Gertz, 2005) on

processing streams of remotely sensed image data and the doctoral thesis of

Rueda-Velasquez (2007) that presents a framework for stream based change

detection in remotely sensed images.

3.3.2 Real-time Data Sources

Madden (2002) in his work on query processing of remote sensors noted that a

major difference between sensor data sources and traditional databases is that

real-time data is generally delivered in streams without being specifically

requested. Sensor network architectures conform to either the warehousing

approach of extracting data from devices in a predefined manner and depositing

it in a database, or the distributed approach in which only specifically requested

data is retrieved directly from the sensors. Clearly the warehousing approach is

similar to a static data source; subsequent processing operations can simply

adopt a polling mechanism to retrieve data from a repository. In the distributed

approach sensor devices form part of the database and processing operations

can request streams of data directly from the devices. As noted by Bonnet et al

(2000) the preferred architecture is dependant on the prevailing type of query.

Historical queries that aggregate data over a long time period are better suited

to the warehousing approach. However, snapshot queries where data for a

given epoch is retrieved on request, and long-running queries that retrieve data

over a given time period are better suited to the distributed approach as it

avoids the unnecessary collection, transfer and storage of large data volumes.

Real-time applications often depend on long running or snapshot queries and

the ability of real-time workflows to handle streams is therefore desirable.

Delivery of data in streams does have certain advantages for real-time

processing. Transferring large static data sets across networks presents a

bottleneck in distributed architectures whereas transferring observations as they

are collected enables pipeline parallelism to be exploited (Section 2.4.3); this

allows actors on the same branch in the workflow to work at the same time on

different parts of the same stream (Rueda et al., 2006).

Categorisation of Real-Time Distributed Geoprocessing Paradigms

90

In the OGC SWE architecture, sensor data is obtained through an SOS or

SAS/SES interface which represents pull and push based access to

observations respectively. Whether these services adopt a distributed or

warehousing approach is unrelated to the service interface, this decision is left

to the service implementer. However, the SOS does support the querying of

historical data and most implementations to date (52North, NASA, Northropp

Grumman) have chosen the warehousing approach. Consequently, in a

distributed architecture, the nature of data delivery is on the whole irrelevant,

unless access to historical observations are required, in which case a

warehousing approach must be used.

3.3.3 Invocation of Real-time Geoprocessing

Coping with continuous data streams introduces a new set of challenges to web

service based GIS workflows. In a number of real-time scenarios new data is

constantly being produced which must be processed. For example, monitoring

applications typically produce observations which must be pre-processed. This

presents a design choice for processing services; either the service can be

invoked every time a new piece of data arrives, or a long-running process can

be established that listens for new observations, and processes each piece of

data as it arrives.

Due to the request-response pattern of web services the former approach is the

simplest; each item of input data can be passed to the processing service as a

parameter in the form of a request, the geoprocessing operation will have a

finite runtime and will return a result on completion. However this approach is

inefficient and particularly so in a grid environment. Firstly, numerous requests

must be formulated by wrapping each data item in a messaging envelope to

send to the processing service. Secondly, each request must be sent over

HTTP thus consuming network bandwidth and suffering from latency. Thirdly

each request must be de-serialized by the processing service and finally, in the

case of a grid based processing service the job must be scheduled and queued

before it is executed. This is likely to result in significant delays between the

Categorisation of Real-Time Distributed Geoprocessing Paradigms

91

data arriving at the source, and the processing results being delivered at the

destination.

The alternative is to invoke a single processing task, and pass it a reference to

the data source as a parameter. The processing service can then poll the data-

source directly and deliver results to the destination as they are processed. The

advantages of this approach are that the client need only make a single request

to start the processing service and that scheduling and queuing delays are only

incurred once when the processing is initiated. Therefore, provided that the

frequency of data arrival doesn’t exceed the time taken to process the data, the

time between the arrival of the data at the source and delivery at the sink is

minimised. There are however some disadvantages to this approach. Firstly

the ability of OWS to maintain state is poor, thus there is no inbuilt mechanism

to provide lifetime management of ongoing processes. As a result, ongoing

processes that are started, using a WPS Execute request, cannot be stopped.

Secondly, each ongoing process is assigned to only a single processor; thus

the processor must be able to keep pace with the incoming data. If this is not

possible then a backlog will occur, causing the time between arrival of data at

source and delivery at destination to steadily increase. Thirdly, this approach

doesn’t represent an efficient use of grid resources. Once an ongoing process

is allocated to a processor, the processor is entirely unavailable to other users,

for the duration of the ongoing process. As already discussed, the process

must be able to keep pace with the incoming data, thus it will spend a

proportion of its time waiting for new data to arrive. It could be argued that

these wasted processor cycles could be better utilised by others, and in a utility

grid scenario in which compute processing time is charged per hour this may

prove to be expensive.

3.3.4 Reliability and Variability of Real-time Data

A major requirement of many real-time geoprocessing systems is full

automation; geoprocessing must be able to take place without any manual

intervention in the workflow. However, such applications are often safety

critical and it is therefore vital that such systems can be relied on (Zerger and

Categorisation of Real-Time Distributed Geoprocessing Paradigms

92

Smith, 2003). Furthermore, it is often the case in hazard monitoring

applications that sensors detect no change for the majority of the time and

therefore require very little processing capacity, but when an event does occur

the need for processing power suddenly increases to cope with the influx of

data (Hingne et al., 2003). Real-time systems must therefore be capable of

dynamically scaling up and down to cope with the processing burden whilst

minimising the usage of processing resources.

3.4 A Real-time Geoprocessing Typology

Following an extensive review above of existing geoprocessing classifications a

new geoprocessing typology is presented in this Section. This new typology

takes into account the data, compute and usage characteristics of

geoprocessing operations as well as considering the real-time scenarios in

which they are employed. The purpose of this typology is to relate the physical

data and compute aspects of geoprocessing to specific styles of monitoring and

prediction problem. It is anticipated that the formalisation of this relationship will

be of benefit to the future development of large scale distributed monitoring and

prediction systems.

Let us consider three temporal representations of geospatial data; static,

snapshot and stream-based. Static data represents a single unchanging view

of reality, snapshot data represents a fixed view of reality at a number of

discrete moments in time and stream-based data represents a dynamic view of

reality over a continuous time interval. These three representations are

depicted in Figure 3.2 in which a two-dimensional data space is extruded

through time in accordance with its temporal representation.

In reality data streams are always comprised of a series of discrete

observations. Therefore snapshot and stream based data representations

could be considered one and the same. However, in terms of data processing

the key difference between stream and snapshot representations is that

processing operations on data streams are invoked regularly and frequently, i.e.

they are time triggered rather than event triggered. Typically data stream

Categorisation of Real-Time Distributed Geoprocessing Paradigms

93

processing involves basic pre-processing or change detection monitoring

whereas snapshot processing typically involves large one-off modelling or

simulation tasks.

A further difference between these two paradigms is that stream processing is

typically confined to processing a single stream of data and this usually implies

a single sensor data source. Conversely snapshot processing may incorporate

data from multiple sources for a given time instant. As a consequence, more

complex operations involving multiple sensors such as simulations and

predictions usually fall into the snapshot processing category.

Figure 3.2: Static, Snapshot and Stream Data Repres entations

Categorisation of Real-Time Distributed Geoprocessing Paradigms

94

Two distinct geoprocessing categories have been delineated, stream

geoprocessing and snapshot geoprocessing. The characteristics of each of

these categories are outlined in Table 3.1

Table 3.1: Characteristics of Geoprocessing Paradig ms

Characteristic Stream Snapshot

Regularity of invocation Regular Regular or irregular

Trigger Time Event

Number of sensors 1 >=1

Temporal

representation

Interval Instant

With regards to a distributed processing architecture the above categorisation

facilitates the choice of design. The processing of numerous observation

streams can easily be parallelised by assigning one stream to each processor,

or by using pipeline parallelism as data items are already divided into an

ordered sequence (Section 2.4.3). Alternatively, for stream based processing

operations that carry a high time complexity, data stream partitioning can be

used to divide the workload amongst several processors. Furthermore, the

small but relentless torrent of data associated with the stream paradigm is

easily managed in a distributed network environment whereas larger data files

are more cumbersome to work with as they require longer transfer times and

can often not be read until the transfer is complete.

In processing terms the snapshot paradigm can be co nsidered very

similar to static processing; input and output data are discrete and the

operation has a finite lifetime. The main differen ces are that snapshot

processing is triggered by an event and the tempora lly discrete input data

is obtained from sensor data sources. Furthermore the results are likely

to be required within a certain time frame. The ap propriate parallelisation

technique for processing snapshot data is dependant on the granularity of

the geoprocessing operation, thus requiring snapsho t processing to be

further disaggregated. Granularity can be consider ed a spectrum (

Categorisation of Real-Time Distributed Geoprocessing Paradigms

95

Figure 3.3) with high data volume and low computational intensity operations

such as spatial database transactions at one extreme and low data volume,

high computational intensity operations at the other. The former are termed

‘fine-grained’ operations because the dominant resource constraints are

memory and I/O which result from excessive communication. Conversely,

coarse-grained operations utilise virtually no communication but a large amount

of processor cycles, serial tasks fall into this category.

Figure 3.3: The Granularity Spectrum

Considering these categories it is proposed that the snapshot geoprocessing

category can be further subdivided into fine-grained and coarse-grained

geoprocessing operations. Fine-grained geoprocessing operations are typically

global, i.e. they require the entire data aggregate to compute a result. This

includes simple spatial database operations such as unary and binary selection

as well as complex simulations and predictions that involve machine learning.

Partitioning fine-grained operations is difficult and often unnecessary as the

primary resource constraint is that of memory and I/O. Where the partitioning of

computation is unnecessary, fine-grained geoprocessing operations can often

be performed within a spatial database using either standard database queries

(SELECT,JOIN,INSERT,UPDATE) or tightly integrated spatial functions (area,

boundary, buffer, distance_to), i.e. SQL-MM. However, if the partitioning of

computation is necessary then two approaches are possible. Firstly, a parallel

relational DBMS could be used as these are capable of automating the process

of parallelisation using table partitioning (DeWitt and Gray, 1992) and parallel

spatial joins (Zhou et al., 1998). Processing at the database is preferred

FINE

GRAINED

COARSE

GRAINED

Spatial DB Data Embarrassingly Serial

Operations Centric Parallel

Categorisation of Real-Time Distributed Geoprocessing Paradigms

96

because fine-grained operations are best performed in a tightly coupled

manner, i.e. close to the data, as this minimises costly data transfers.

However, in some cases it may be necessary to partition fine-grained

operations that are unsuitable for database processing. Typically complex

models and simulations will fall into this category that involves significant

interaction and manipulation of data which cannot be expressed in SQL, or that

have a very high time complexity. In these situations an MPP architecture

(Figure 2.3) and a message passing programming paradigm (Section 2.4.4) is

likely to be the most suitable combination. Fine-grained operations have a high

degree of data dependence so the MPP / message-passing approach allow

complex interactions between sub-processes to be rapidly exchanged. These

two styles of fine-grained geoprocessing are depicted in Figure 3.4.

Figure 3.4: Database and MPI / database styles of f ine-grained

geoprocessing

Coarse-grained operations are easier to partition than their fine-grained

counterparts; less interdependency between sub processes ensures that less

inter-processor communication is required. Consequently coarse-grained

operations are easy to partition using an event parallelism or geometric

approach to decomposition. Coarse-grained geoprocessing operations are

typically point or neighbourhood operations that can be processed as a series of

independent sub-processes.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

97

Thus, three distinct geoprocessing paradigms have been identified, data stream

geoprocessing, coarse-grained snapshot geoprocessing and fine-grained

snapshot geoprocessing. This simple taxonomy of geoprocessing paradigms is

depicted in Figure 3.5 and formally described below.

Figure 3.5: Geoprocessing Paradigms

3.4.1 Data Stream Geoprocessing (DSG)

Data Stream Geoprocessing (DSG) is carried out in monitoring scenarios for

which a steady stream of incoming geospatial observations must be processed.

DSG data consists of an observation stream that is unbounded in time;

observations are frequently and regularly occurring but typically small in

volume. The corresponding processing operation is thus perpetual. A UML2

sequence diagram (Figure 3.6) outlines the relationship between sensor,

observation and geoprocessor in a DSG environment.

Figure 3.6: A UML2 Sequence Diagram of Data Stream Geoprocessing

SNAPSHOT

STREAM

Coarse-grained Snapshot Geoprocessing

Fine-grained Snapshot Geoprocessing

Data Stream Geoprocessing

Categorisation of Real-Time Distributed Geoprocessing Paradigms

98

3.4.2 Fine-grained Snapshot Geoprocessing (FGSG)

Fine-grained Snapshot Geoprocessing (FGSG) occurs in prediction systems

and simulations. FGSG involves the one-off execution of a geoprocessing

operation on a regularly updated data aggregate. Data dependence is high in

FGSG and operators are typically global. Whereas DSG operates on a stream

of observations over an unbounded time period, FGSG operates on an

observation set at a fixed snapshot in time. FGSG are likely to be triggered by

an alert caused by the change in a real-world condition.

3.4.3 Coarse-grained Snapshot Geoprocessing (CGSG)

Coarse-grained Snapshot Geoprocessing (CGSG), like FGSG involves the one-

off execution of a geoprocessing operation on a fixed snapshot of a regularly

updated data aggregate. However, CGSG operations have lower data

dependence than FGSG. As such they are more likely to involve local or focal

(point or neighbourhood) operators rather than global operators so the

processing operation can be naturally subdivided for parallel processing through

data decomposition. CGSG form the majority of parallel geoprocessing

examples in the literature, encompassing both event parallel and geometric

parallel approaches (Section 2.4.3).

3.5 Categorisation of Common Geoprocessing Operatio ns

In this Section the typology outlined above is considered with reference to a

number of geoprocessing operations that are commonly found in standard GIS

software packages as well as those operations that are commonly used in

monitoring and prediction scenarios. In a number of cases the examples are

taken from studies cited in the previous Chapter (Chapter 2).

Using this typology it is not possible to categorise the geoprocessing operations

commonly found in GIS toolboxes outside of the context in which they are used.

For example, let us consider a simple boolean intersection operation on two

real-time data layers; boolean intersection is a geoprocessing operation in

which two layers of map data are overlaid and only the features that intersect

Categorisation of Real-Time Distributed Geoprocessing Paradigms

99

are retained. Supposing we have a field of 100 temperature sensors and 100

rainfall sensors, each sensing 1m2 of a 10m2 grid and we are interested in

identifying areas that have had no rainfall in the past hour and that has a

temperature over 15°C. The first stage is to conve rt each dataset into binary,

so for the rainfall datast the grid cells that have had no rainfall are assigned a

value of 1, and all other cells are assigned a value of 0. Similarly for the

temperature dataset, cells with a value of 15°C or less are assigned a value of 0

and cells with a value greater than 15°C are assign ed a value of 1. The actual

intersection operation on these two layers simply involves multiplying the value

of corresponding cells in each layer. The resulting layer will show only the dry

cells for which the temperature is greater than 15°C as having a value of 1.

This style of operation is easily sub divisible as each multiplication operation

could be performed as a separate process in which case the operation would be

classed as CGSG.

We could however consider boolean intersection in a different context. Let us

consider a similar scenario in which the rainfall dataset is a static dataset

comprised of yearly average values rather than regularly updated values from

live sensors, but our temperature data is still sourced from a sensor network. In

this case we are interested in identifying cells in which the temperature is

greater than 15°C and the yearly rainfall is less t han 800cm. Given that our

temperature sensors collect readings every 1 minute we want to update a map

with the areas that meet our criteria, every minute. In this case the operation is

invoked continuously and regularly and has only one sensor input, thus the

same boolean intersection operation would be classified as DSG in this

instance.

There are numerous instances in which some overlap occurs between DSG and

CGSG operations as well as DSG and FGSG operations. However, FGSG and

CGSG operations never overlap. This relationship is depicted in Figure 3.7.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

100

Figure 3.7: Venn Diagram showing the relationship b etween classes in the

geoprocessing typology

In Table 3.2 the granularity of common geoprocessing operations are displayed.

Coarse-grained operations may belong to either the DSG or the CGSG

category depending on context. Similarly fine-grained operations may belong to

either the FGSG or the DSG category.

Table 3.2: Common Geoprocessing Operations

Operation Description Granu
larity

Explanation

Subset:
Select /
Clip

Subsetting a dataset
either by clipping it to the
extents of a bounding box
(raster data) or through a
select query (vector data)

Fine The entire dataset must
be scanned through to
select features of interest,
i.e. this is a global
operation. Although
extract operations can be
performed in parallel using
one of several techniques,
the primary constraint is
that of data volume rather
than computational power.

Overlay:
Intersect /
Union

The process of taking two
layers of map data and
overlaying them to form a
new layer. The Intersect
operator (Boolean ‘and’)
retains only features that
exist in both layers, the
Union operator retains all
features (Boolean ‘or’)

Coars
e

Overlay can be achieved
on a feature by feature
basis with no knowledge
of other features.
Therefore this operation
can be naturally
subdivided using domain
decomposition.

Buffer The process of finding the
region within a certain
distance of a feature or
featureset

Coars
e

Features can be buffered
on a feature by feature
basis

Line
Simplificati
on

The process of simplifying
features to condense a
dataset.

Coars
e

Features can be
generalised on a feature
by feature basis.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

101

Create
theissen
polygons

The process of creating a
polygon dataset from a
point dataset where each
polygon contains only one
point and all locations
within the polygon are
closer to its point than its
neighbours

Fine The polygon surrounding
each point cannot be
generated without
knowledge of
neighbouring points in the
dataset

Line of
Sight
Analysis

The process of analysing
a digital elevation model to
determine where features
are visible from

Fine Determining where a point
is visible from is a global
operator as it requires
analysis of the entire
dataset.

Network
Analysis

The process of analysing
a spatial network.
Common functions
include:
Calculate network
proximity
Assign point to nearest
point on a network
Calculate the shortest
path between two points

Fine The entire network must
be considered for every
network computation.

Geostatisti
cal
Kriging

The process of
interpolating the value of a
variable at unsampled
locations weighted using
spatial dependence

Fine Requires knowledge of all
other values in the
dataset.

Inverse
Distance
Weighted
Interpolati
on

The process of
interpolating the value of a
variable at unsampled
locations weighted by
inverse distance

Coars
e

Interpolation at each
location requires
knowledge of
neighbouring values but
not the whole dataset.

High-pass
filter

The process of applying a
moving window kernel to
an image that increases
the constrast and thus
emphasizes edges and
detail

Coars
e

Requires knowledge only
of neighbouring values

Low-pass
filter

The process of applying a
moving window kernel to
an image that reduces the
contrast, i.e. has a
smoothing effect

Coars
e

Requires knowledge only
of neighbouring values

Geometric
image
correction

The process of resampling
a remotely sensed image
from image coordinates to
ground coordinates, either
using a mathematical
model or ground control
points

Coars
e

Depending on the
approach taken this
operation requires
knowledge of the
transformation parameters
and in some cases the
values of surrounding

Categorisation of Real-Time Distributed Geoprocessing Paradigms

102

pixels.

3.5.1 Data Stream Geoprocessing (DSG) Operations

Typical examples of DSG operations include basic transformations such as unit

conversion, data format conversion and coordinate system transformations on

observations from sensor data sources. DSG can also include sub-setting and

filtering operations such as unary and binary selection and this category

therefore fits a variety of real-time change detection applications. Included in

this category are geoprocessing operations that search for specific patterns in

an observation stream; this is termed Event Stream Processing (ESP)

(Luckham and Schulte 2008). ESP is a subtype of Complex Event Processing

(CEP) (Luckham, 2006) that enables higher level information to be extracted

from a stream of observations. Recent interest in ESP has prompted the OGC

to produce a discussion paper on a language for specifying event patterns,

Event Pattern Markup Language (EML) (Everding and Echterhoff, 2008) which

is currently used to specify level 3 filters for the proposed SES specification.

Finally DSG can also include operations that augment observations with

information from other static datasets. For example, the map-matching

operation (Section 4.3.4) relates position observations taken by a moving entity

to a road network dataset.

The face recognition CCTV system described by Peacock et al (2004) (Section

2.2.2) fits the DSG criteria. A stream of CCTV frames are analysed and

compared to a static database of facial images in an attempt to identify persons

of interest. Observations occur frequently, regularly and perpetually and the

only data dependency is on an external static database of facial images.

The ANGEL vehicle monitoring project (Planas et al., 2008) described in

Section 2.2.2 provides another DSG example. Vehicle position data is

continually processed by a risk monitoring system that analyses the vehicle’s

position and identifies safe stopping places.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

103

3.5.2 Fine-grained Snapshot Geoprocessing (FGSG) Operations

FGSG encompasses a wide variety of geoprocessing operations such as spatial

interpolation, geostatistical and spatial statistical operations on a field of

sensors. Additionally network analysis route finding operations such as

Dijkstra’s shortest path (Dijkstra, 1959) and the A* algorithm (Hart et al., 1972)

can be considered to fall into this category if the network cost is updated in real-

time. Furthermore, most geo-hazard prediction and simulation algorithms also

lie in this category as they are global operators based on regularly updated real-

time information. FGSG operations are well suited to a tightly coupled

processing style as they typically require access to a large data aggregate. Due

to the high data dependence inherent in FGSG operations they are not easy to

parallelise. However, parallelisation is possible either using a parallel database

or a message passing approach.

The REIS described by Nakamuru et al (2009) (Section 2.2.1) in which

observations from 800 seismometers are stored in shared memory and updated

every second is an example of a FGSG system. The system calculates 1 and

30 second averages of ground acceleration and maximum amplitude. Although

this operation is carried out regularly and frequently it can be considered

snapshot processing as it combines observations from an array of sensors for a

given snapshot in time. As the entire data aggregate is required to calculate

average values this operation falls into the fine-grained category.

Evacuation planning simulators such as those described in Section 2.2.1 also

fall into the FGSG category; a snapshot of the current situation is used to plan

for several scenarios in which the entire data aggregate is required for

computation.

3.5.3 Coarse-grained Snapshot Geoprocessing (CGSG) Operations

Coarse-grained Snapshot Geoprocessing (CGSG) is another geoprocessing

paradigm that commonly forms part of geoprocessing workflows. Like FGSG,

CGSG involves the one-off execution of a geoprocessing operation on a fixed

snapshot of a regularly updated data aggregate. However, CGSG operations

Categorisation of Real-Time Distributed Geoprocessing Paradigms

104

have lower data dependence and typically involve point or neighbourhood

operators so the geoprocessing operation can be naturally subdivided for

parallel processing through data decomposition. Common examples of CGSG

operations include raster intersection, raster overlay, buffering, generalisation,

frequency filters and geometric image correction.

Examples of CGSG in the literature are chiefly comprised of static

geoprocessing operations although there are some cases in which such

operations form part of a real-time workflow. Hawick et al (2003) describes the

classification of remotely sensed imagery using a CGSG approach, Lee and

Hamdi (1995) describe a CGSG convolution filter over a remotely sensed image

and Wagner and Scott (1995) describe a number of parallel raster cost volume

operations that fits the CGSG category (Section 2.4.3).

3.6 Typology Evaluation & Critique

The typology described in Section 3.4 provides a basis on which to relate

geoprocessing operations to distributed computing architectures. An attempt

has been made in Section 3.5 to consider geoprocessing operations in the

monitoring and prediction domain in the context of this typology which is based

on two broad principles. Firstly, operations that are invoked frequently and

regularly should be treated differently to operations that are invoked on an

occasional basis in a grid computing architecture to avoid cumulative job

submission overheads. Secondly, coarse-grained and fine-grained operations

should be treated differently because coarse-grained operations can easily be

parallelised in a grid computing architecture using domain decomposition or

through an event-parallel approach, whereas fine-grained operations are more

difficult to parallelise because they require a larger degree of inter-processor

communication. Furthermore it is unnecessary in many cases to parallelise

such operations as the computational load is not always constrictive.

Although this typology appears to fit the majority of cases there are a number of

geoprocessing operations that can be considered exceptions, and are

consequently difficult to categorise. Firstly are operations that seemingly fit the

Categorisation of Real-Time Distributed Geoprocessing Paradigms

105

DSG category but that process observations from more than one sensor. One

example of this is the Firegrid project described by Han et al (2010);

observations must be processed continually and regularly but data is arriving

from several sensors. In this case data from a large sensor array is fed into a

model that calculates fire parameters and likely structural building damage in

real-time; the data is fed in at 0.1 second intervals. As numerous sensors are

involved this does not fall into the DSG category. However, nor does it fall

directly into the snapshot category as data from a time-interval is processed. It

could be argued that in these cases the processing operations described are of

a higher taxonomical level because the processing resulting from each time

step forms an FGSG operation in itself, thus the overall process can be

considered an iterative sequence of FGSG operations.

Another situation that could be regarded as an anomaly in the context of this

classification occurs when a geoprocessing workflow is comprised of several

operations, each of which falls into different categories. A common scenario

may involve a DSG operation that performs some pre-processing on a raw data

stream which is subsequently stored as a data aggregate and subject to further

CGSG or FGSG operations. For example, a set of GPS observations from a

moving vehicle may undergo a coordinate conversion as a DSG operation

before being stored in a database. Occasional analysis operations on this

stored data may follow, such as the calculation of the vehicle’s mean position

which would constitute an FGSG operation. Multi-type workflows such as this

are common, particularly in monitoring and prediction systems. As such it is

important to recognise that this typology can only be used to categorise

contextualised geoprocessing operations, not entire monitoring and prediction

systems. This means that a certain operation may fall into one category in one

system and another in a different system, depending on its frequency and

regularity of invocation.

A final noteworthy point is that there appears to be a substantive difference

between fine-grained data intensive operations such as spatial database

transactions and fine-grained compute intensive transactions such as network

analysis yet they appear in the same category in this typology. The key

Categorisation of Real-Time Distributed Geoprocessing Paradigms

106

difference between these two types of operation is that in the former case there

is rarely a need to parallelise the processing operation due to a low time

complexity whereas in the latter case there is often a need to parallelise.

Unless a spatial database can be utilised the parallelisation of either type of

FGSG operation is non-trivial and is likely to require a HPC architecture and a

message passing programming model. Although the parallelisation of complex

FGSG operations is an interesting topic it has already been the subject of

considerable research in the parallel processing and high performance

computing domains and falls outside of the scope of this thesis. As such, the

further sub-division of FGSG operations may be a topic that is worthy of future

research but at this stage all FGSG operations are considered as one broad

category.

3.7 Conclusion

A prototypical typology of geoprocessing operations has been developed in this

Chapter that has attempted to relate geoprocessing to grid computing

architectures and geoprocessing methodologies. The aim of this thesis as set

out in Section 2.6 is to develop an appropriate conceptual and practical

framework in which open standards in grid computing, sensor web and

geospatial web services can be combined. In this regard the typology set out in

this Chapter provides a skeleton for the conceptual framework. An attempt will

be made in subsequent Chapters to build up the practical framework by

providing an implementation of each geoprocessing category described in this

Chapter.

Three classes of geoprocessing operation have been suggested and specific

examples of each operation type have been given. The CGSG and DSG

operations are suited to run on grid type architectures; i.e. geographically

disparate processors that are connected using standard internet connections.

However, FGSG are better suited to execution close to the data source, either

in a spatial database or on tightly coupled HPC clusters.

Categorisation of Real-Time Distributed Geoprocessing Paradigms

107

The snapshot geoprocessing operations, CGSG and FGSG lie within the remit

of the OGC WPS interface. However, this interface may need to be extended

or modified to cope with stream-based geoprocessing operations because in its

current state it does not support the execution of on-going processing

operations such as DSG. Geoprocessing operations are currently invoked via

the WPS interface using the Execute operation but there is no mechanism to

start or stop an ongoing set of operations. Conversely, the OGC SAS and SES

interfaces provide a mechanism to filter streams of geospatial observations, and

in the case of the SES, complex ESP filters can be performed. However, it is

not possible to transform observations through this interface.

CGSG operations appear to be well suited to basic low-level atomic

geoprocessing operations such as might be found in a standard geoprocessing

toolbox. Similarly, a number of FGSG operations such as network analysis and

spatial joins can be considered generic, in that they are widely found in

geoprocessing toolboxes. However the majority of spatial models and

simulations also fall into the FGSG category and these tend to be complex,

high-level operations that do not form a part of standard toolboxes.

Stream-based geoprocessing operations are fundamentally different, they input

and output streams of data rather than discrete data elements or aggregates.

This raises the question as to whether a new geoprocessing toolbox is required

for real-time GIS that provides stream-based processing on geospatial data.

In order to further develop the classification described here and to help answer

some of the remaining research questions in this field, the implementation of an

operation from each category is described in subsequent Chapters. The

systems presented in the following Chapters serve to address specific

questions about the suitability of the proposed design strategies, tools, and

techniques for implementing scalable and interoperable geospatial monitoring

and prediction systems.

Data Stream Geoprocessing

108

Chapter 4 Data Stream Geoprocessing

4.1 Introduction

In this Chapter a practical example of a scalable real-time geoprocessing

system that conforms to current relevant standards in geospatial web services

and grid computing is presented. Specifically, the geoprocessing system is to

belong to the DSG category outlined in Chapter 3 and is to demonstrate how

real-time data from a collection of independent sensors can be processed in

near real-time by running several concurrent processes on the grid.

Two distinguishing features of this system set it aside from previous work in this

field; first is the idea of using grid computing to run continuous open-ended jobs

to process streams of sensor data in near real-time, as opposed to invoking

finite compute jobs to process a portion of a sensor stream (Chen et al., 2010,

Williams et al., 2009). Secondly, is the concept of pre-processing sensor data

as soon as it is collected, and publishing the added value data alongside the

raw data, thus enabling users or higher-level applications to usefully consume

the pre-processed data in a timely fashion.

4.2 System Design

4.2.1 User Scenario

The geoprocessing system in question is designed to facilitate a scenario in

which a fleet of vehicles equipped with onboard GPS receivers require the road

they are positioned on to be identified. This geoprocessing operation is

commonly known as map-matching and is a necessary pre-cursor for vehicle

tracking and vehicle routing systems (Ochieng et al., 2004). From a fleet

management perspective vehicle tracking systems enable better vehicle

utilisation through analysis of trends in historical data (Couillard, 1993).

Furthermore, they are capable of improving response times for emergency jobs

(Ghiani et al., 2003) and for providing a means of accountability to service

recipients by proving that a vehicle was at a particular place at a specific time

(Crainic et al., 2009). In addition to their application as a fleet management

Data Stream Geoprocessing

109

tool, the Floating Car Data (FCD) provided by vehicle tracking systems can also

be usefully applied to traffic monitoring scenarios (Akinci et al., 2003). For

example Torp and Lahrmann (2005) developed a system that utilises FCD for

traffic queue detection that was found to be substantially cheaper than using in-

situ road sensors. Similarly, Wang et al (2008b) developed a navigation system

that used both historic and real-time FCD data to predict road travel speed.

Local government agencies in the UK have been quick to adopt vehicle tracking

systems; this is perhaps unsurprising given their combined interest in both

traffic management and in the operation of a large fleet of maintenance

vehicles. The system described in this Chapter is designed for use by

Newcastle City Council (NCC) which currently operates a fleet of 890 vehicles

(Anderson et al., 2008). This system is not an entire vehicle monitoring,

tracking and navigation solution as offered by a number of commercial

companies; rather it provides only the map-matching aspect which could be

further augmented with more complicated routing and fleet management

functions as required.

A key functional requirement of this system is to correctly identify the road that

each GPS measurement corresponds to, in near real-time. Given that the map-

matched data is to be used for a wide range of fleet management and traffic

monitoring tasks it is important that an acceptable level of map-matching

accuracy is maintained. A trade-off exists between absolute map-matching

accuracy and speed of computation and although a number of very accurate

map-matching algorithms have been developed, the best of these are not

capable of working in real-time (Marchel et al., 2005). This system must be

able to provide matched positions within an acceptable time period so its use in

near real-time navigation systems is not precluded. Consequently, design goals

of this system include the maximisation of map-matching accuracy and the

minimisation of latency. The system must also be capable of scaling to the size

of the entire fleet of NCC, and to provide map-matching for the entire Tyne and

Wear output area.

Data Stream Geoprocessing

110

4.2.2 Design Considerations

The proposed system requires the tracked vehicles to be fitted with GPS

receivers that are capable of wirelessly streaming their observations back to a

web server via a communication protocol such as GSM. To reduce costs a

sensor emulator that publishes historical GPS measurements at regular

intervals is used, mimicking the function of a real on-board GPS receiver.

Grid computing elements and associated services are accessed through the UK

National Grid Service (NGS) (http://www.ngs.ac.uk). The NGS is a

computational and data grid comprised of a number of computing clusters

located at academic institutions throughout the country. The primary goal of the

NGS is to federate access to computational and data resources at four core

sites and a number of other affiliate and partner sites throughout the UK. It is a

service run for researchers that aims to support a national grid infrastructure.

A flexible agile approach to software development

(http://www.agilemaninfesto.org) is to be taken as this enables design changes

to be made as new ideas come to light. The system as a whole is to adopt a

SOA and will therefore not be tied to a specific operating system, although

specific components may be subject to platform constraints.

4.2.3 Software & Tool Selection

Where possible, the components used in this system will use or extend existing

open source tools and software. This approach minimises costs, avoids

duplication of effort and provides scope to make a useful contribution to the

open source community.

Spatial databases have become the preferred method of storing spatial data for

a number of applications, largely due to their use of indexes to efficiently

retrieve both spatial and attribute data (Worboys and Duckham, 2004). In this

system, spatial databases are used to store data behind servers, both for the

WFS and SOS. For this purpose it has been opted to use PostGIS (version 1.5)

(http://postgis.refractions.net), a spatial extension to PostgreSQL (version 8.3)

Data Stream Geoprocessing

111

(http://www.postgresql.org) which is a free and open source object-relational

database management system. PostGIS complies with the OGC’s Simple

Features Specification for SQL (Herring, 2006) and most of the Multimedia SQL

standard (Stolze, 2003). Furthermore it is supported by a wide variety of open

source software tools and applications. For example 52 North use PostGIS

databases in their web applications and PostGIS can be configured as a data

source in Geoserver.

52 North (http://www.52north.org) is an international research and development

company that develop and promote open source geospatial software (Kraak et

al., 2005). Notably 52 North have been tracking the OGC standards process

and have developed early implementations of young and proposed

specifications. Currently the initiative is focusing its efforts on geoprocessing,

sensor web and security. The system outlined in this Chapter relies on a 52

North SOS (version 3.0.1) and extends a 52 North WPS (version 2.0). Apache

Tomcat (http://tomcat.apache.org) version 6.0 is used as an application

container for the WPS and the SOS. Tomcat is a reliable servlet container that

is widely used for deploying server-side Java applications.

 Geoserver (http://www.geoserver.org) is the official reference implementation

of OGC WFS, WMS and WCS. It is written in Java and is capable of serving

spatial data from a variety of sources, including PostGIS databases. Geoserver

(version 2.0.2) is to be used in the proposed system to serve road network data

through a WFS interface.

There are a number of open source Java libraries available for storing and

manipulating spatial data that are designed to facilitate the development of

geospatial software, many of which form a part of the Open Source Geospatial

Foundation (http://www.osgeo.org). Geotools (http://www.geotools.org) is one

of the most comprehensive libraries and it is arranged in modules of

functionality. A core part of Geotools is the Java Topology Suite (version 1.7)

(http://www.vividsolutions.com/jts/jtshome.htm) that provides a useful library for

representing two dimensional geometries in Java. GDAL/OGR

(http://www.gdal.org) provides a comprehensive library for reading and writing

Data Stream Geoprocessing

112

both raster and vector data formats, and also for providing conversions between

formats. PROJ4 (http://trac.osgeo.org/proj/) (version 1.6.2) provides a similar

function, but for re-projecting and transforming data between coordinate

systems. Whilst PROJ4 is built into PostGIS, OGR is packaged inside a

software kit called FWTools (version 2.4.7) (http://fwtools.maptools.org) that

enables data to be loaded into PostGIS from a variety of formats.

The OMII Campus Grid Toolkit version 2.2 (http://www.omii.ac.uk/wiki/CGT)

forms a part of the OMII-UK software stack and provides a unified interface from

which to access computational and data resources on the grid. In this work the

Campus Grid Toolkit is used as a GridSAM client through which computational

jobs can be submitted to the NGS through one of their published GridSAM

endpoints. GridSAM is a JSDL and OGSA-BES compliant job submission

interface that enables jobs to be submitted to a variety of back end distributed

resource managers such as Globus, Condor and PBS.

Other tools used in the development of the system described in this Chapter

include Apache Maven (http://maven.apache.org) (version 3.0.3) for building

projects and managing dependencies, InterpOSe (http://www.dottedeyes.com/

spatial_data_loading/interpose/) for transforming Ordnance Survey data and the

Eclipse (http://www.eclipse.org) (version Ganymede) and Netbeans

(http://www.netbeans.org) (versions 6.1 - 6.9) software development

environments. Apache JMeter (http://jakarta.apache.org/jmeter/) (version 2.4)

was used in the testing phase to carry out load and performance tests.

4.2.4 Architectural Overview

The proposed system is to be comprised of the components outlined in Figure

4.1; the request / response pattern which describes how the system operates is

described here and outlined as a UML sequence diagram in Figure 4.2.

Example requests and responses are detailed in Appendix D.

Initially, each instrumented vehicle must register with a SOS instance using a

RegisterSensor request (Label 1 in Figure 4.1). This creates a unique identifier

Data Stream Geoprocessing

113

for each vehicle and this identifier is appended as a new procedure element in

the SOS database. Once registered to the SOS each vehicle begins streaming

their position measurements to the SOS using an UpdateSensor request (Label

2 in Figure 4.1). This request updates the SensorML document for each sensor

with a new position and time stamp.

At this stage each vehicle is streaming their position to the SOS; at any point a

client is now able to begin the process of map-matching these positions. Map-

matching is invoked on a per vehicle basis by a client via a WPS Execute

request (Label 3 in Figure 4.1). The Execute request must contain five

parameters, firstly the unique identifier of the vehicle on which to commence

map-matching, secondly the endpoint address of the SOS instance, thirdly the

endpoint address of a WFS that contains road network data and finally the WFS

namespace and typename parameters. These final parameters are used to

identify the road network dataset from the collection of datasets hosted at the

WFS address.

The WPS translates the Execute request into JSDL and submits the map-

matching task as a new Grid processing job through a GridSAM client (Label 4

in Figure 4.1). Upon submission, GridSAM creates a unique identifier for the

job which is returned by the WPS in the Execute response. The GridSAM

service parses the JSDL document, authenticates the request, retrieves proxy

credentials (Label 5 in Figure 4.1), translates the request into an infrastructure

specific job submission language and submits the job (Label 6 in Figure 4.1).

Authentication and credential retrieval is carried out by contacting the MyProxy

service using MyProxy parameters embedded in the JSDL request. The NGS

production grid to which the GridSAM instance submits jobs is built on the

Globus Toolkit version 2, so in this case the request is translated into Globus

Resource Specification Language which is the native job submission language

of the Globus toolkit. Native Globus services subsequently handle all aspects

of execution management, including job scheduling and submission.

Once the scheduled job reaches the front of the queue it is assigned to a

suitable processor and the executables are staged onto this machine from the

Data Stream Geoprocessing

114

user’s home directory on the GridSAM head node. The job is a Java program

that performs the map matching operation and it inherits the arguments

specified in the JSDL document, which in turn were inherited from the WPS

Execute request (Label 7 in Figure 4.1). Initially the program polls the SOS to

obtain positions sampled by the vehicle in the previous 60 seconds. This is

done by making a DescribeSensor time period request that retrieves a

SensorML document detailing the vehicle’s position history.

For each sampled position in the SensorML document the bearing between

observations is derived and a WFS bounding box request geographically

centred on the observation is constructed and submitted to the WFS. Matching

is performed by comparing each sampled position to the feature collection

returned by the WFS to deduce the most probable road to which the

observation belongs. The map matching algorithm is explained in more detail in

Section 4.3.5. Finally, the unique identifier of the matched road is inserted into

the SOS as a new observation, as is the bearing of the vehicle at each sampled

position.

The whole process is repeated every 60 seconds and continues to run until the

client passes a StopExecuting request to the WPS-proxy containing the unique

identifier of the job they wish to stop. The WPS-proxy forwards this request to

GridSAM and cancels the job.

Data Stream Geoprocessing

115

Figure 4.1: Interaction Sequence between map-matchi ng system

components

1. Vehicle sends RegisterSensor request to SOS.

2. Vehicle starts streaming UpdateSensor requests to SOS with latest

position.

3. Client begins map-matching by sending an Execute request to WPS

4. WPS translates Execute request into JSDL and forwards to GridSAM.

5. GridSAM retrieves user credentials from MyProxy service.

6. Executables are staged from head node to a node on the cluster and the

map-matching job is started.

7. The map-matcher retrieves recent position observations from the SOS,

matches them against the road network stored in the WFS and inserts

the matched position back into the SOS. This process continues until a

StopExecuting request is sent by the client to the WPS.

Data Stream Geoprocessing

116

Figure 4.2: Map-matching message sequence diagram

Data Stream Geoprocessing

117

4.2.5 Review of Map-matching Algorithms

Map-matching is the process of reconciling the users location with the

underlying map data (White et al., 2000). Here we consider only global map-

matching strategies that are concerned with identifying the most likely road

segment within the network, as opposed to local map-matching that considers

the position of a vehicle within a road segment (Hummel, 2006).

 According to Jagadeesh et al (2004) map-matching algorithms can be divided

into three main categories. The simplest category includes algorithms that

consider only the geometric relationship between the road network and the GPS

point, the next category also considers position history and topological

information and the final class also uses probabilistic information to define a

confidence region in which the vehicle is positioned.

The first category of map-matching algorithm can be further subdivided into four

categories (Noh and Kim, 1998). Distance of point to point matching is the

simplest of these techniques but it suffers from poor accuracy (Yang et al.,

2005). Using distance of point to point, matching is carried out by considering

all the points of which the road network is comprised and matching the GPS

measurement to the closest point. Distance of point to curve is a slightly more

complex variation; matches are made by selecting the road with the shortest

distance between any point on the road’s sub-segment and the GPS

measurement, i.e. the minimum distance from the road line to the GPS

measurement. Although an improvement on the previously described

technique, Yang et al (2005) reveal how distance of point to curve often results

in a vehicle jumping from one road to another road running in parallel. The

distance of curve to curve technique uses two GPS points and matches the

road segment that has the shortest distance from the baseline between the two

GPS measurements. Surprisingly, in a study carried out by (White et al., 2000)

it was found that curve to curve matching did not consistently outperform point

to curve matching. The distance of angle to curve method uses two GPS

measurements to calculate the bearing of the vehicle, and the match is made by

finding the road sub-segment whose angle deviates from the bearing of the

vehicle the least.

Data Stream Geoprocessing

118

The second category of algorithm that incorporates historical and topological

information introduces another layer of complexity, examples are provided by

Greenfeld (2002) and White et al (2000). However, such algorithms have been

proven to be fragile because one wrong match can lead to a whole series of

wrong matches (Yang et al., 2005).

The third category of algorithm utilises probabilistic techniques and performs

better than the first category and can recover more quickly from a wrong match

(Jagadeesh et al., 2004). However they tend to suffer from increased

computation time. Hummel (2006) describes an algorithm in this category that

performs extremely well. It was found that only 0.4% of points were

misclassified over a 15000 point sample. A Bayesian statistical method is used

to perform the initial map-match, which relies only on the position and

orientation of the vehicle. Accuracy is improved by using the road network

topology in conjunction with the vehicle’s position history to calculate probability

distributions for each possible transition from one road to the next and the

Viterbi algorithm (Forney, 1973) is used to find the best possible path based on

these transition probabilities.

It has been shown that a wide variety of map-matching algorithms exist that use

an array of available information and techniques. A trade-off clearly exists

between speed of matching and overall accuracy. In this system the Bayesian

statistical matching technique described by Hummel (2006) is used that relies

only on vehicle position and orientation. For the sake of simplicity, position

history and road network topology were not included in this implementation and

it is therefore expected that the resulting matching accuracy will be less than

optimal. Nevertheless, absolute accuracy of the map-matching algorithm is not

the goal of this work; rather it is to demonstrate how real-time data from a

collection of independent sensors can be processed in near real-time by

running several concurrent processes on the grid.

Data Stream Geoprocessing

119

4.3 Implementation

The implementation and deployment details of the map-matching system are

outlined in this section. Figure 4.3 depicts the arrangement of components

which are described in the following sub-sections.

Figure 4.3: Map Matching System Component Diagram

4.3.1 Sensor Observation Service (SOS)

A 52 North SOS was deployed in a Tomcat container using PostGIS as the

backend database system. The 52 North SOS complies with the version 1.0.0

schema (Na et al., 2007), implementing the core and transactional profiles in

addition to some of the operations in the enhanced profile. Detailed build and

deployment steps are set out in Appendix A.

4.3.2 Sensor Emulator

The type of platform envisioned to be installed on each vehicle is a smart-phone

or personal digital assistant, as these devices are small, portable, internet

accessible and often contain built in GPS receivers. A Java desktop application

was developed to emulate such a device, built using a Java Swing graphical

user interface, PostGIS JDBC drivers and the Java Topology Suite. The

function of this application is to read GPS position and time observations from a

PostGIS database and to translate these into XML based UpdateSensor

requests that conform to the SOS mobile profile (Stasch et al., 2008).

Data Stream Geoprocessing

120

The first stage in developing this application involved loading GPS observations

into a PostGIS database. GPS observations were sourced from a variety of

vehicles travelling around Newcastle upon Tyne. This included data from the

NCC fleet such as road sweeper vehicles, refuse disposal vehicles and work

vans. In addition some of the data collected as part of the MESSAGE project

(Blythe et al., 2006) was used; this is data sourced from ordinary cars travelling

around Gateshead equipped with sensors to measure air quality. The data was

delivered in various comma separated text file formats; a comprehensive

description of the steps followed to load this data into PostGIS is included in

Appendix B.

The purpose of the Sensor Emulator is to enable users to easily emulate a

series of in-vehicle GPS devices in order to test the other components in this

system. It is anticipated that the in-vehicle mobile devices will update the SOS

with their position via web service requests. Therefore the Sensor Emulator

was designed to consecutively read GPS observations from the PostGIS

database, transform them into SOS UpdateSensor requests, and send the

requests to the SOS at regular intervals. The application was designed around

the concept of a virtual sensor which is essentially a one to one mapping

between a table of static GPS observations stored in a database and an SOS

sensor. Virtual sensors can be created by specifying the connection

parameters of the database from which to read observations, and the address

of the SOS at which to publish position measurements. It is assumed that each

observation table will conform to the schema in Listing 4.1. Figure 4.4 depicts a

screenshot of the graphical interface used to create a virtual sensor. Once a

virtual sensor has been created it must be saved; a process that serializes the

mapping to a custom virtual sensor file format.

Figure 4.4 shows a screenshot of the application. To initiate the streaming of

observations from a database to an SOS instance via a set of web service

requests, the user must first select a file system directory containing one or

more virtual sensors. When streaming is initiated by pressing the start button,

observations are read sequentially from the database table of each virtual

Data Stream Geoprocessing

121

sensor in the directory, translated into web service requests and sent to their

respective SOS instance. The time delay between each web service request

can be specified by entering a number of milliseconds in the delay textbox, prior

to starting the application. Additionally it is possible to use the system’s current

time, rather than the timestamp specified in the database observation table by

checking the use current time checkbox. This option enables several vehicle

tracks that were sampled at different times to be simulated together. It is

possible to suspend, resume, stop and reset streaming. There is also an option

to clear all observations from the SOS by connecting to its underlying database

and resetting the data model by executing a SQL script.

Listing 4.1: Schema of the Observation Table

Figure 4.4: Screenshot of the graphical interface t o create a virtual sensor

Observations(id integer, elevation real, time_stamp timestamp(4)
without timezone, the_geom geometry)

Data Stream Geoprocessing

122

Figure 4.5: Screenshot of the graphical user interf ace of the Sensor

Emulator

4.3.3 Web Feature Service (WFS)

Ordnance Survey MasterMap® Integrated Transport Network™ (ITN) is the

definitive road structure dataset for the UK; it details the current topology of the

UK’s road network. Furthermore, each road link is assigned a unique

Topographic Identifier (TOID) which enables the dataset to be stored in a

spatial database using the TOID as a primary key. Consequently, ITN was

selected to represent the underlying road network in this system. Although ITN

data is a commercial product it is available free of charge from Digimap

(http://www.edina.ac.uk/digimap) for academic purposes.

Geoserver was used in this system to serve road network data in WFS format.

Geoserver is capable of serving spatial data in a number of OWS formats. The

served data can be stored in a variety of file or spatial database formats;

PostGIS was selected to store the ITN data. Initially the tool OGR2OGR, part of

the GDAL/OGR translator library, was used to import the road network data into

PostGIS from the GML format (Portele, 2007) in which it is supplied by Digimap.

However, it became apparent that this tool did not preserve the TOID of each

feature, a shortcoming resulting from the way in which data is delivered by

Digimap. Although ITN is a spatially continuous dataset, it is served by Digimap

as a spatial tessellation of tiles. When a feature is requested that straddles a

Data Stream Geoprocessing

123

tile boundary, the feature is served twice, thus destroying the uniqueness of

each feature and preventing the features from being inserted into a database

because Codd’s First Normal Form (Codd, 1972) is not adhered to.

Another data loading tool, InterpOSe was selected to import data into PostGIS.

InterpOSe is supplied by a commercial organisation Dotted Eyes and

automatically discards duplicate features. It contains a wizard based interface

to import data from a GML file into a variety of formats, although PostGIS is not

supported. This tool was therefore used to convert the road network GML file

into ESRI shapefile format. Subsequently OGR2OGR was used to import the

shapefile data into a PostGIS database.

Unfortunately the version of PostGIS that was used, version 1.3.5 relies on an

underlying Proj4 library (version < 1.6.2) that contains an error in the British

National Grid record of the spatial_ref_sys table that results in incorrect

coordinate transformations. This was corrected by executing the SQL

commands stated in Listing 4.2 from the Postgres shell, before importing data

into the database. The entire procedure of loading the ITN data in listed in

Appendix C.

Listing 4.2: Correction to spatial_ref_sys table in PostGIS

4.3.4 Map Matcher

A Java application was developed to perform the actual map matching

processing operation. Unlike many of the other components in this system, the

map matching program was created as a self contained program rather than a

service because it is designed to be run as a grid processing job. The chosen

algorithm uses Bayesian classification to assign a GPS observation to a road

segment; it is based on the work of Hummel (2006) and is described as follows:

UPDATE spatial_ref_sys SET proj4text= ‘+proj=tmerc +lat_0=49
+lon_0=-2 +k=0.999601 +x_0=400000 +y_0=-100000 +el lps=airy
+units=m +no_defs +datum=OSGB36’ WHERE srid=27700;
UPDATE spatial_ref_sys SET proj4text = '+proj=longl at
+ellps=airy +datum=OSGB36 +no_defs' WHERE srid=4277 ;

Data Stream Geoprocessing

124

A minimum of two raw observations are required to estimate position on a road

network; 1 (X1,Y1) and 2 (X2,Y2) in order to derive vehicle orientation. We can

assume that position has been observed by a commercial off the shelf GPS

receiver operating in the standalone coarse acquisition mode. As such we can

approximate the standard deviation of horizontal position to be 12.5 metres and

the standard deviation of orientation, as calculated from the whole circle bearing

between X1, Y1 and X2, Y2 to be 15°. Initially, a section of map data is

retrieved centred on the most recent observation X2, Y2 by performing a

bounding box query on a road dataset. We can now derive the road segment

from which the most recent observation was most likely to have been taken

using the algorithm detailed in Listing 4.3. A graphical overview of the

components in this algorithm is given in Figure 4.6.

A simple Java command line program was developed to implement this

algorithm. Furthermore, the program was designed to interact directly with

OGC services, thus it is capable of extracting observation geometry and time

stamp from a SOS and road network geometry from a WFS.

The map matcher program can be initiated with either five or seven parameters.

If the program is initiated with all seven parameters it performs map matching

only for the time period between the start time and the end time, it then exits

normally. However, if the program is executed with only the five mandatory

parameters it runs in real-time mode. In this mode the program performs map

matching for each of the observations taken in the past 60 seconds, i.e.

between the system’s current time and 60 seconds before the system’s current

time. The program then waits until another minute has elapsed and repeats the

operation. It continues to run every 60 seconds until it is forced to exit by user

intervention.

On initialisation the program contacts the SOS and retrieves the observations

for the specified vehicle over the specified time period. This is achieved using

the 52North mobile schema (Stasch et al., 2008) which offers a DescribeSensor

operation which returns a SensorML document detailing the position history of

Data Stream Geoprocessing

125

the sensor. The position observations are then parsed into Java Topology Suite

format and the time into java.util.GregorianCalendar format.

Listing 4.3: Map Matching Algorithm using position and orientation

Figure 4.6: Diagrammatic representation of the map- matching algorithm

showing the vehicle’s current (X2,Y2) and previous (X1,Y1) positions, the

muB: Standard deviation of horizontal position (m etres)
muDeltaPhi: Standard deviation of orientation (degr ees)
dist: Euclidean distance between vehicle position and
road segment (metres)
deltaPhi: Angular difference between vehicle orien tation and
 orientation of the road element (degrees)
iTemp: the cost associated with X2,Y2 belonging to the
 current road subsegment
ii: the minimum cost of all road subsegments exam ined
so far
muB= 12.5
muDeltaPhi = 15
dist, deltaPhi=0

ii = + ∞

for each road subsegment
(
dist = shortest distance between X2,Y2 and road sub segment
deltaPhi = difference between road subsegment orien tation and
vehicle orientation
iTemp = (dist 2 / muB) + (deltaPhi 2 / muDeltaPhi)

 if(iTemp < ii) {
 ii = iTemp
 result = this road subsegment
 }
}

Data Stream Geoprocessing

126

standard deviation of horizontal position (muB), an d the standard

deviation of orientation (muDeltaPhi) in relation t o the position and

orientation of road sub-segments

For each observation, the position is converted from WGS84 to OSGB36 and a

WFS bounding box query is constructed, centred on the observation. The

query is executed on the WFS using the supplied connection parameters, thus

retrieving a relevant subset of the road network dataset. The program invokes

the map matching algorithm for each observation using the road network data

extracted from the WFS and the GPS observations extracted from the SOS.

Next, SOS requests are constructed to insert the results of the map matching

algorithm, i.e. the road identifier, into the SOS. This is achieved using the

transactional InsertObservation operation; the road identifier is inserted as a

Category Observation (Cox, 2007). As a by product of this operation the

orientation of the vehicle is calculated and this is also inserted as a

Measurement Observation (Cox, 2007), again using the InsertObservation

operation.

4.3.5 Web Processing Service (WPS) Proxy

The WPS provides an OGC compliant interface through which to submit

geoprocessing tasks. As the goal of this system is to forward processing

operations to the grid, the WPS itself does not carry out the processing, it

merely translates the execution request into JSDL (Anjomshoaa et al., 2005)

and submits it to a grid endpoint to be processed remotely and asynchronously.

52 North provide an open source WPS implementation that complies with the

version 1.0.0 specifications. Unfortunately the current specifications have

limited support for asynchronous processing; there are no operations defined to

pause, cancel or restart asynchronous processing tasks. Recently a number of

change requests have been submitted to the OGC to rectify this problem,

namely 09_093 (Woolf and Shaon, 2009b) and 09_109 (Woolf and Shaon,

2009c). However, these are likely to undergo a lengthy discussion and

modification process before they are included in a revised version of the

Data Stream Geoprocessing

127

specification. It was therefore decided to modify the 52 North implementation to

meet our requirements, albeit in a manner that doesn’t completely conform to

the OGC specifications.

The goals of the modified service are the ability to submit jobs to a grid

infrastructure using the Execute request, and to add a new operation

StopExecuting that enables continuous running jobs, such as the map matcher,

to be terminated. It should be noted that the 52 North implementation already

contains a grid module that enables developers to implement their own task-

farm style processing algorithm and to submit it to a Unicore

(http://www.unicore.eu) infrastructure. It was opted not to extend this module

but to start afresh for the following reasons. Firstly, the embedded grid module,

although it carries out processing remotely, returns the results in a synchronous

fashion; i.e. embedded in the ExecuteResponse document. In our scenario the

results are automatically inserted into an SOS and therefore we simply require a

reference to our asynchronous job to be returned. Secondly, the embedded

module is designed to execute a task-farm style scenario whereas the

extension we are trying to implement simply executes one long-running

process. Finally, the embedded module is of a flexible design and provides

interfaces to enable any grid infrastructure to be plugged in. For simplicity and

ease of development it was decided to implement our own interfaces, although

it is noted that there would be benefit in streamlining this code for a future

production version to avoid code duplication.

Initially, a GridJobManager interface was created that enables other developers

to plug in their own grid job submission interfaces. Subsequently an

implementing class was coded for the GridSAM web service based job

submission endpoint. GridSAM exposes both a Java API and a command line

API. The Java API initially appeared the most flexible and easy to use; however

in practice it proved difficult to use in a service environment as it requires

different build and runtime classpaths and a number of system properties to be

set. Eventually it was decided to use the command line API through the Java

Runtime.getRuntime.exec method to manage job submission and termination.

Data Stream Geoprocessing

128

52 North provide an abstract class ‘AbstractAlgorithm’ to enable developers to

code their own geoprocessing algorithm. This class was extended by

appending a new field to hold the class reference of the job submission class.

Additionally, get and set methods were appended and the new abstract class

was named ‘AbstractAsynchronousAlgorithm’. The relationship between these

classes and interfaces is shown in Figure 4.6 in UML notation.

Figure 4.7: UML Diagram showing Algorithm and Grid extensions to 52

North WPS

To represent our map matching algorithm, the ‘AbstractAsynchronousAlgorithm’

class was extended with a concrete class ‘MapMatchingAlgorithm’. This class

implements the run method which is invoked when a client calls the Execute

request for the map matching algorithm. The method parses the input

parameters and ensures that they are correct, otherwise an exception is thrown.

Data Stream Geoprocessing

129

It then sets the ‘GridJobManager’ to ‘GridSAMJobManager’ and creates a JSDL

document by passing the input parameters to a CreateJSDL(String[] arguments)

method. The job is submitted using this GridJobManager and the resulting

process identifier is returned.

Immediately after an Execute request is received by the WPS an

ExecuteResponse document is returned. However, this doesn’t give the WPS a

chance to submit the job to GridSAM and return the unique job identifier created

by GridSAM to the client. Nonetheless the 52 North WPS has a built in

AfterExecute method that is run after the execute operation has completed and

is used to update the ExecuteResponse if the client refreshes their page. A

clause was appended to this method to return the job identifier to the client as a

web accessible reference. This is an inbuilt feature of the WPS specifications

that enables voluminous processing results to be stored at a web accessible

location rather than consuming network bandwidth by delivering them directly.

Due to the real-time and continuous nature of our process, once an Execute

request has been submitted to the service, the process will run eternally. There

is clearly a need then to be able to stop this process. To plug this gap in the

specifications a StopExecuting operation was created. For simplicity this

operation can only be submitted as an HTTP GET request. Listing 4.4 gives an

example stopExecuting GET request for a WPS at http://myWpsServer/wps and

a job with process identifier urn:mygridsamjob:id:123. Listing 4.5 details the

stopExecuting response.

Listing 4.4: StopExecuting Request

Listing 4.5: StopExecuting Response

http://myWpsServer/wps?request=stopExecuting&servic e=wps&version=1
.0.0& job_id=urn:mygridsamjob:id:123

<StopExecutingResponse>
<Response urn=”urn:mygridsamjob:id:123”> OK </Respo nse>
</StopExecutingResponse>

Data Stream Geoprocessing

130

This operation was implemented by extending the Request and Response

classes in the 52 North WPS; it requires a single parameter ‘job_id’ which is the

unique identifier of the job to be terminated. A StopExecuting request calls the

terminateJob method of the GridJobManager’s implementing class. If

successful this will return a very simple StopExecutingResponse document

(Listing 4.5) that confirms that the job has been successfully terminated,

otherwise an exception is thrown. The exact format of the request and

response patterns for such an operation is a matter for the OGC WPS Working

Group; current change requests indicate that the ability to stop an

asynchronous process is more likely to be done using cancel, restart and pause

operations. However, in the absence of official guidelines the StopExecuting

operation provides a temporary solution.

4.3.6 GridSAM Client

GridSAM is an open source job submission and monitoring web service

developed by OMII UK (http://www.omii.ac.uk). It supports JSDL and tracks the

OGSA-BES job submission standard as well as providing a native interface.

GridSAM can be connected to a wide variety of distributed resource managers

such as Globus (http://www.globus.org), Condor (http://www.cs.wisc.edu/

condor/), Unicore (http://www.unicore.eu) or PBS; its role is not to carry out

processing itself but to provide an OGSA compliant endpoint through which to

submit jobs. It is up to the host to connect the service to a distributed resource

manager. GridSAM was chosen as a job submission endpoint, primarily

because it supports JSDL and OGSA-BES, and because it enables jobs to be

submitted to a variety of distributed resource managers without any

reconfiguration at the client end. In addition to its OGSA-BES WSDL interface,

GridSAM also exposes a native job submission interface through both the

command line and through a Java API.

Jobs were submitted to a GridSAM endpoint hosted by the UK NGS at

https://gridsam-test.oerc.ox.ac.uk:18443/gridsam/services/gridsam by the WPS

proxy component, using the native command line interface. There are two

prerequisites for successfully running a job on GridSAM; firstly a valid proxy

Data Stream Geoprocessing

131

must be uploaded to the MyProxy server specified in the JSDL and secondly if

file staging is required then a GSI-SSH connection must be established

between the submission node and the GridSAM head node from which the files

are staged. Grid Security Infrastructure SSH (GSI-SSH) is an extension of

Secure SHell (SSH); a secure connection protocol between two computing

nodes that supports authentication and encryption. The grid enabled version of

this protocol includes support for grid authentication and credential delegation.

The entire sequence of interaction between components is illustrated in Figure

4.2.

4.4 Results

4.4.1 Functionality Testing

Tests were carried out initially to verify that the map-matching system was

working correctly. Two journeys were selected from the available GPS data.

Journey 1 was sampled by a car travelling from Washington into Gateshead

and back on major arterial roads taking readings every 2 seconds. Journey 2

was sampled by another car monitoring air quality in a residential area of

Gateshead taking readings every 5 seconds. It was opted not to test the

system on data from council vehicles due to their atypical behaviour; for

example refuse disposal vehicles are continually stopping and starting.

Figure 4.8 and 4.9 show the results of applying the map-matching algorithm to

Journey 1 and Journey 2 respectively. Sampled GPS observations are

displayed as black dots, and matched roads are displayed as black lines.

Roads that were matched incorrectly, i.e. roads that weren’t actually travelled

on are shown in dark grey. In Figure 4.7 the scale box shows the southern part

of the route at an enlarged scale as this contains the majority of the

mismatches.

For each observation the map matching algorithm generates one of three

possible states; a correct match, a mismatch or a null match. Null matches

occur when the algorithm cannot find a road segment that correlates to the GPS

measurement and mismatches occur when a measurement is incorrectly

Data Stream Geoprocessing

132

assigned to a road segment. A correct match occurs when a measurement is

correctly assigned to the road segment from which it was captured. Using only

the GPS measurement data it is difficult to determine whether a match is correct

or not, even if the actual path of the vehicle is well known (White et al., 2000,

Brakatsoulas et al., 2005). For example, at road junctions an observation may

be erroneously matched to the vehicle’s previous or future road and this would

be difficult to detect without validating which road the vehicle was actually on at

the time of measurement. As validation data is not available such errors will be

ignored and all observations matched to a road on which the vehicle actually

travelled are considered correct.

The percentages of correct matches for Journey 1 and Journey 2 are shown in

Table 4.1. Journey 2 is comprised of a large number of measurements taken

from car parks and therefore a considerable amount of null matches resulted.

Because the vehicle was not actually on the road network when these

measurements were taken these null matches cannot be considered to be

erroneous. Therefore an additional row has been appended to Table 4.1

showing correct matches in Journey 2, excluding the car park observations.

To assess the performance of the system, the length of time between the

instant at which the GPS measurement was taken, and the instant at which the

matched road was inserted into the SOS, was measured. These results are

displayed in Table 4.2.

Table 4.1: Percentage of Correct Matches for Journe y 1 and Journey 2

 No.

observations

Null

matches

Mismatches Correct

Matches

% correct matches

Journey 1 709 1 43 665 93.7%

Journey 2 1172 184 35 953 81.3%

Journey 2

excluding car

park

observations

898 42 18 838 93.3%

Data Stream Geoprocessing

133

Table 4.2: Time interval between GPS measurement an d insertion of

observation into Sensor Observation Service

 Sampling Frequency

(seconds)

Mean Time Interval

(seconds)

Standard Deviation

Journey 1 2 54.30 24.96

Journey 2 5 35.57 13.25

Figure 4.8: Map Matching Results for Journey 1

Data Stream Geoprocessing

134

Figure 4.9: Map Matching Results for Journey 2

It can be seen from these results that the map-matching algorithm performs

well. In each case the algorithm is matching over 90% of observations

correctly, and the majority of results are inserted into the SOS within 60

seconds.

In many cases the mismatched observations are surprising, from Figure 4.8 and

4.9 it can be seen that the majority of mismatched roads are side-roads with a

very different orientation to the actual path of the vehicle. In each of these

cases the incorporation of position history into the algorithm is likely to correct

these mismatches.

It can also be seen in Table 4.2 that the interval between GPS measurement

and insertion of results is considerably lower for Journey 2. This can be

attributed to the lower sampling rate of Journey 2. The map-matcher extracts

Data Stream Geoprocessing

135

position observations from the SOS for the previous 60 seconds and matches

these before inserting them into the SOS as new observations. The lower

sampling rate of Journey 2 means that only 12 positions must be extracted and

matched each minute, as opposed to Journey 1 for which 30 positions must be

processed.

4.4.2 Scalability Testing

So far it has been demonstrated that the map-matching system meets basic

functional requirements for the operation of a single vehicle. The algorithm

meets basic performance requirements and has been implemented as part of a

service oriented system, thus enabling processing to be executed on a remote

grid cluster and invoked through standards compliant interfaces. However, the

goal of this work is not to evaluate the performance of the map matching

algorithm. Rather it is to demonstrate the applicability of a grid based

processing architecture to the problem of multiple real-time data stream

instances, and to identify any potential bottlenecks. To this end a number of

load tests were conducted to identify weak components and acquire system

capacity information. The system was tested against its ability to process

multiple data streams concurrently.

In this system a new map-matching instance is launched on a remote grid node

every time a vehicle comes online. The scale-out approach adopted in this

design necessitates a one-to-one relationship between the vehicle data stream

and the map-matcher instance; however it is possible for several vehicles to

store their observations in the same SOS repository and for each map-matcher

instance to query the same WFS. This many-to-one relationship between

vehicle/map-matcher and SOS/WFS is depicted in Figure 4.9. While it is

desirable to minimise the number of SOS and WFS instances, there is a finite

limit to the number of concurrent requests each of these components can

handle, imposed by network bandwidth constraints and limited processing

capacity.

Data Stream Geoprocessing

136

Figure 4.10: Many to one relationship between vehic le/map matcher and

SOS/WFS

Tests were carried out to find the maximum number of vehicle data streams that

can be assigned to each SOS and WFS without having an adverse affect on

performance. Load testing was conducted using JMeter to simulate several

concurrent requests to each service and to monitor the response time. In each

case JMeter was used to steadily increase the number of concurrent requests

over a ramp-up period of 60 seconds after which time the number of concurrent

requests was maintained. The results from this test are shown in Table 4.3 and

Figure 4.11; response times are given in milliseconds and are averaged over

1500 requests that were sampled after the ramp-up period. The maximum

number of concurrent requests that could be maintained was found to be 560

for the WFS and 200 for the SOS; above these figures HTTP error codes were

returned. It should be noted that the WFS contained all the road features in the

Tyne and Wear output area; 95803 features in total. Better performance was

observed with smaller database sizes.

Table 4.3: WFS and SOS Response Time

 Response Time (milliseconds)

Number of

concurrent

requests

WFS Get

Feature

SOS

Describe

Sensor

SOS InsertCategory

Measurement

SOS Insert

Observation

1 316 88 93 101

10 386 88 474 551

20 527 88 957 1098

50 3488 98 2332 2910

Geoserver

vehicle

vehicle

vehicle

vehicle

vehicle PostGIS

map-matcher

map-matcher

map-matcher

map-matcher

map-matcher PostGIS

Tomcat

SOS WFS

Data Stream Geoprocessing

137

100 8921 118 4527 5688

200 20710 1391 10190 10867

300 31999 2918 N/A N/A

400 43405 N/A N/A N/A

560 59963 N/A N/A N/A

0

5000

10000

15000

20000

25000

1 10 20 50 100 200

Number of Concurrent Requests

R
es

po
ns

e
T

im
e

(m
s)

WFS Get Feature SOS Describe Sensor

SOS InsertCategoryMeasurement SOS InsertObservation

Figure 4.11: Graph showing Response Time of SOS and WFS requests

These response time metrics provide useful information from which to deduce

the most appropriate ratio of SOS / WFS to vehicle data streams. Using a 2

second sampling rate the ratio of describeSensor requests to other requests is

1:30 because each describeSensor request retrieves all the observations

recorded in the previous 60 second cycle whereas the other requests are made

for each observation.

Because this system operates on a single execution thread there is a danger

that time-lag could build in the system. This situation would arise if the entire

map-matching cycle were not to complete within the 60 second time period and

would result in an ever increasing time interval between each observation being

Data Stream Geoprocessing

138

recorded and being processed. To avoid this scenario the map-matcher was

profiled to find the average execution time of each processing stage and these

results were subsequently used to select the ratio of WFS and SOS to data

streams. Profiling was carried out on a single instance of the map-matching

program using Netbeans (http://netbeans.org); results are detailed in Table 4.4.

Response times from both the WFS and SOS services were disregarded during

profiling as each of these services were running locally and so the results are

likely to be unrealistic, however, their response times have already been

established (Table 4.3). Based on the combined results of profiling and SOS /

WFS response times it was decided to allocate 20 data streams per WFS and

10 data streams per SOS; the cumulative time expenditure of this configuration

is under the 60 seconds maximum and is summarised in Table 4.5.

Table 4.4: Profiling results for map matcher

Procedure Number of operations

per minute

Processing

Time (ms)

Actual

Processing Time

(ms)

Generate describeSensor

request

1 3 3

Parse SensorML 1 29 29

Generate WFS query 30 112 3360

Parse GML and perform

match

30 328 9840

Generate insertObservation

and insertCategory

Measurement requests

30 0 0

Total 92 472 13232

Table 4.5: Map matcher time expenditure (millisecon ds)

Processing Time 13232

10 x describeSensor requests 88

10 x 30 x InsertCategoryMeasurement requests 14220

10 x 30 x InsertObservation requests 16530

30 x 20 WFS getFeature requests 15810

Total 59880

Data Stream Geoprocessing

139

This configuration was tested by running the map-matching system over a one

hour period for 20 vehicles concurrently and although this number only

represents a fraction of the Newcastle City Council vehicle fleet it was deemed

sufficient to test this system. This is because the maximum number of data

streams assigned to a single component instance is 20, with the exception of

the WPS and the GridSAM client that were not replicated as they were unlikely

to present a bottleneck because they simply perform job submission. To

capture performance data a minor modification was made to the SOS database

in that a trigger was added that records for each observation the time difference

between insertion into the SOS database and the actual time stamp at which

the position measurement was taken; this difference is termed time-lag. The

test was initiated by sending a series of WPS Execute requests to the WPS. It

was found that the first 13 sensors were scheduled promptly within 2 – 3

minutes. However, due to the NGS scheduling policy, the remaining 7 jobs

were not scheduled for another 25 minutes. Figure 4.12 and Figure 4.13 show

the time-lag results for both SOS servers, each of which was assigned 10 data

streams which are labelled as s1 – s10 and s11-s20 in Figure 4.12 and Figure

4.13 respectively. The mean time-lag for SOS Server 1 was found to be 1

minute 51 seconds with a standard deviation of 2 minutes 31 seconds. For

SOS Server 2 the mean time-lag was 1 minute 3 seconds with a standard

deviation of 1 minute and 4 seconds. The results show that of the initial 20 data

streams, only 12 of these were still being processed after the one hour period; 5

from SOS Server 1 and 7 from SOS Server 2. This was found to be the result

of deadlock occurring in the database due to a large number of concurrent

requests preventing the affected sensors from inserting observations into the

database. The map-matcher processes terminated after polling the SOS and

finding no observations for the latest 60 second time period.

Data Stream Geoprocessing

140

Figure 4.12: Time-lag results for SOS Server 1

Figure 4.13: Time-lag results for SOS Server 2

Of the remaining data streams it can be seen from Figure 4.12 and Figure 4.13

that the majority of observations are matched within the required 90 second

time frame. However, the graphs also contain a number of spikes that

Data Stream Geoprocessing

141

represent latency in the processing chain, the most severe of which exhibits a

23 minute delay. These delays can also be attributed to deadlock occurring in

the SOS database caused by too many concurrent requests. However, in each

case it can be seen that the SOS recovers within a matter of minutes and there

is no cumulative effect on time-lag in the medium or long-term.

The graphs also show that the performance of SOS Server 2 is considerably

better than that of SOS Server 1; there are two possible causes for this. Firstly,

SOS Server 1 is located on the same physical server as the WFS.

Consequently both services share a database instance and the increased load

on the database is likely to reduce its speed. Also, the increased load on

network bandwidth is likely to have a similar effect on the throughput of the SOS

in terms of the number of requests it can serve per second. Secondly, due to

the delay in scheduling the processing jobs SOS Server 2 experienced a

significantly lighter load for the first 25 – 30 minutes of execution as only three

map-matching jobs had been scheduled at this stage.

4.5 Discussion

The design, implementation and testing of a real-time grid-based map-matching

system has been described in this Chapter. The system is capable of

performing map-matching for a fleet of vehicles and can be considered OGC

compliant in that it uses compliant data repositories, WFS and SOS, and can be

accessed through a compliant WPS interface. The system uses the NGS

production grid to carry out processing which is accessed through a GridSAM

web service and authenticated using a MyProxy credential delegation service.

The scalability results are surprising, it was anticipated that each SOS and WFS

would have handled a much larger number of data streams than was found in

testing. The main constraint in this system was found to be an I/O bottleneck at

the SOS database that resulted in database deadlock. Marginal increases in

performance could almost certainly have been gained by tuning the SOS and

WFS server parameters such as connection pool size and Java Virtual Machine

settings. Performance could also have been increased by reducing the load on

Data Stream Geoprocessing

142

the SOS either by only inserting the road identifier into it rather than also

including the vehicle’s bearing, or by inserting the results into an altogether

separate SOS from the one containing raw position information. However, it

seems unlikely that the gains in performance brought from these changes would

be sufficient to make the system viable.

To implement the system in its entirety for the Newcastle City Council fleet of

890 vehicles would require a minimum of 89 SOS servers. It could be argued

that this hardware requirement negates the benefit of the distributed approach

adopted here. The primary driver for this approach is the ability of the system to

scale up and down as demand fluctuates whilst minimising the use of

computing resources and therefore maintaining a large server cluster to handle

SOS transactions is unviable. One solution would be to host these SOS

servers in the cloud, which is often cited as a solution to the problem of scaling

web applications on-demand by means of resource virtualisation and dynamic

provisioning (Buyya et al., 2008, Vaquero et al., 2008). However, considering

that the processing cost of the map-matching operation is trivial in comparison

to the communication costs of the system (Table 4.5), if this approach were to

be adopted it may be easier for each cloud node to carry out the map-matching

processing locally rather than porting the computation to a processing grid.

It is anticipated that latency in this system could be reduced through better

program design. For example, a multi-threaded program could continually poll

the SOS for new observations on one thread, perform the processing on

another, and update the SOS with processing results on a third thread.

The concept of using grid computing resources to achieve high throughput

processing of near real-time data is original and these results show that it is

possible. However, there are a number of issues with running this type of

problem on a production grid. Firstly, job scheduling is unpredictable and is

dependant on a number of factors such as the cluster availability, fair usage

policy, user’s priority level and the anticipated size of job. The NGS indicated

that they would be willing to prioritise jobs related to the monitoring and

mitigation of natural disasters, as these are both time and safety critical and for

Data Stream Geoprocessing

143

the greater public good. However, they are not willing to prioritise jobs related

to road traffic monitoring and management and so a dedicated grid cluster

would be required to implement a production version of this system.

The second issue is that this approach could be considered an inefficient use of

resources. The results show that processing is only being performed for a small

percentage of the time that the map-matching job is running; the rest of the time

is spent waiting for new data to arrive. By assigning one data stream to each

processor it is unlikely that the computational load of the data stream will

perfectly match the processors capabilities and therefore it is almost

unavoidable that the processor will either experience a processing backlog or

will spend time idle. In a grid environment resource usage is typically measured

by the number of CPU hours used and so it is advantageous to fully utilise each

processor whilst a job is running, particularly in the pay-per-usage grids we are

likely to see in the future. Thus it can be concluded that the single processor

per data stream approach is inflexible, although this style would be useful for a

particular type of job that require as much processing to be done as possible in

the time available such as iterative convergence problems. An alternative for

more computationally intensive problems would be to perform data stream

partitioning by sending different sections of the data stream to different

processors, although in this case each section would suffer a scheduling delay

and there would be no guarantee that the processing jobs would be executed in

the order they were submitted.

The third issue is that both the OGC WPS interface and most grid job

submission interfaces are not strictly designed to submit open-ended compute

jobs. As such, neither interface explicitly exposes a stopExecuting operation.

However, the OGSA-BES interface does expose operations for managing

asynchronous processes such as ‘pause’ and ‘cancel’ and these are sufficient

for controlling open-ended compute jobs. Support for these operations is

currently being approved by the OGC for inclusion into the WPS specifications.

Data Stream Geoprocessing

144

4.6 Conclusion

Using the grid to process spatial data in near real-time is possible for soft real-

time applications but two challenges must be overcome before this approach

becomes viable. Firstly, a mechanism for consistently scheduling real-time jobs

within an acceptable time-frame must be devised. A potential solution to this

problem would be to search a number of grid information services for under

utilised compute clusters to submit the processing job to. Alternatively the

JSDL language could be extended with an attribute acting as a real-time

identifier, thus real-time jobs could be given priority at certain participating grid

clusters. In future pay-per-usage grids these clusters could offer cheap

processing for non-urgent jobs which could be paused to make way for real-

time jobs.

The second challenge is balancing the trade-off between efficient grid resource

utilisation and processing latency. Because high throughput grid clusters are

designed to process static computationally intensive jobs their scheduling policy

is to allocate one job per machine. As can be seen in the case of real-time

processing, much of the time the job is running is spent idle and thus several

jobs could potentially run on the same processor and a better resource

utilisation could be achieved. Alternatively, for data streams that are too

computationally intensive to be processed in near real-time by a single

processor, data-stream partitioning could be used to allocate different segments

of the data stream to different processors.

Performing continuous near real-time processing of spatial data streams is

problematic in a distributed service environment because IO bottlenecks occur

on spatial data retrieval. Replicating spatial data sources on the cloud presents

a possible solution that requires further research.

Fine-grained Snapshot Geoprocessing

145

Chapter 5 Fine-Grained Snapshot Geoprocessing

5.1 Introduction

In this Chapter an exemplar implementation of the FGSG operation as

described in Section 3.5.2 is presented. The key characteristic of FGSG is that

it requires an entire dataset as input and as such the geoprocessing is most

efficiently carried out close to the data to minimise costly network data transfers.

The geoprocessing scenario described in this Chapter involves road traffic

routing in which real-time FCD is used to weight the cost of travelling on road

segments. Furthermore, this real-time data is augmented with traffic travel-time

data collected by NCC for the city of Newcastle upon Tyne. This additional

dataset serves two purposes; firstly it provides a base set of travel times to use

where no real-time data is available, and secondly it provides a means to

validate the accuracy of travel times derived from real-time data.

The concept of using FCD to provide real-time travel-time data for use in routing

applications has already proven successful (Wang et al., 2008b). The novelty

of the work presented in this Chapter is that it incorporates OGC SWE services

to provide and filter the real-time FCD and uses a NGS hosted Oracle grid

database service to store the road network data, pre-process the FCD and

perform routing functions. In conformance with distributed design principles the

spatial data and geoprocessing functionality in this system are to be accessed

through a set of web services. As such, a web-based map interface to this

system is made available that enables end-users to perform shortest path

routing queries based on real-time travel time information derived from FCD

sensors.

Although a number of studies have previously attempted to make travel-time

predictions from real-time FCD combined with travel-time data (Miwa et al.,

2008, Lee et al., 2009), this presents a number of difficulties; traffic flow

parameters are required to make accurate predictions and such studies are

typically location specific. Thus a rigorous travel-time prediction is beyond the

scope of this study, which concentrates purely on the architectural challenges of

performing near real-time, data-centric geoprocessing operations using a

Fine-grained Snapshot Geoprocessing

146

distributed grid environment in a framework based on open standards. Instead

of predicting future road traffic levels the work outlined in this Chapter is

concerned only with presenting current traffic conditions and making a shortest-

path routing function available based on these current conditions. Although the

prediction of future traffic levels presents an arguably more interesting topic, the

complexity of modelling required to carry out prediction in a rigorous manner is

beyond the scope of this thesis.

The remainder of this Chapter is set out as follows. Section 5.2 provides a basic

review of real-time traffic routing using floating car data. Section 5.3 outlines

the design of a distributed traffic monitoring system using geospatial web

services and a relational database system; the implementation of this system is

described in Section 5.4. Section 5.5 describes how the system was tested for

functionality and scalability and presents the results. A discussion of these

results is presented in Section 5.6 and concluding remarks in Section 5.7.

5.2 Review of Real-Time Traffic Routing using Float ing Car Data

FCD has been identified as a useful source of live traffic data that has a

potential application in real-time traffic routing (Liu and Meng, 2008, Schäfer et

al., 2002, Wang et al., 2008b). In comparison to fixed traffic sensors FCD is

capable of providing a robust overview of current road traffic conditions at

significantly less cost (Lahrmann, 2007). FCD can be used to help motorists

avoid congestion and thus has a clear application for the general public as a

route-planning tool but is also of particular benefit to emergency services

Private companies have been quick to see the benefits of FCD; commercial

systems such as the Tom-Tom XL-HD One (Section 2.2.2) source FCD from

mobile phone and satellite navigation system users and feed this data back into

a real-time traffic repository that can then be accessed through in-car satellite

navigation systems.

Road traffic monitoring systems that use FCD are reliant on a significant

amount of hardware and communication infrastructure. Such systems are

comprised of numerous in-vehicle sensors and a central data repository; as

Fine-grained Snapshot Geoprocessing

147

such they are inherently distributed. The major barrier to the widespread use of

FCD to obtain accurate road-traffic information is that a significant proportion of

vehicles are required to contribute to data collection. For urban areas Cheu et

al (2002) suggest that 4% to 5% of total vehicles are required to achieve

accuracies of 5 kmh-1, 95% of the time, while Huber et al (1997) state that 1% to

5% of vehicles are required depending on the level of accuracy required.

However, a significantly lower proportion of vehicles, 0.24% (Brackstone et al.,

2001) are required for freeway travel time estimation because traffic streams do

not suffer interference from traffic control and because there is no interplay

between traffic streams from opposing directions (van Lint, 2004). As a result

of this constraint the majority of pilot studies that have trialled the use of FCD

augment their data with in-situ traffic loop sensors.

Liu and Meng (2008) implemented a system in Shenzhen, China that used 4000

taxis as FCD probe vehicles. This system focussed on obtaining accurate

travel times for each road segment. GPS observations were combined with the

taxi status, i.e. free, waiting or occupied, and the observations were pre-

processed to eliminate irrelevant data. Subsequently the observations were

transmitted at approximately one minute intervals to an Oracle database. A

web mapping client was developed using Java Server Pages that interacted

with the database using ArcSDE and ArcIMS web services. Although not

implemented it was suggested that the data could also be delivered to mobile

clients using ArcIMS web services to enable access to this data from within

vehicles. Wang et al (2008b) implemented a similar system using data

collected from a small volunteer sample augmented with historically collected

in-vehicle FCD. Speed limit data was used to estimate travel-time for road links

where no other data was available. Models were used to predict future traffic

conditions on each link in the short and long-term based on fuzzy inference

systems (Jang and Sun, 1996). Initial results suggest that this approach was

capable of determining reasonable routes based on current traffic conditions.

However the prediction models relied heavily on domain knowledge and could

not be easily transferred to other locations.

Fine-grained Snapshot Geoprocessing

148

5.3 System Design

5.3.1 User Scenario

The purpose of the system set out in this Chapter is to make real-time road

traffic information sourced from FCD usefully available to the public. Such

information would enable motorists to plan their journeys using the latest

available information and would also enable organisations responsible for traffic

management to rapidly identify regions of congestion. City council vehicle fleets

are particularly useful sources of FCD because they are deployed city-wide and

are easy to manage as they fall within a single ownership domain. The system

presented in this Chapter relies on map-matched data from a fleet of city council

vehicles equipped with on-board GPS receivers. In this respect the work

augments that of the previous Chapter which set out a grid-based map

matching system.

A filtering mechanism is to be used in this system to poll the repository of live

map-matched observations and to detect road change events which occur when

a vehicle moves from one road to another. The combined information provided

by the road identifier and the time at which the road change event takes place

provides enough information to deduce the travel time of each vehicle on each

road segment. This data can then be fed into a data repository and be used to

weight road segments based on their average travel time. Subsequently routing

applications can use this information to find the quickest route to their

destination based on the most up to date traffic information.

The major design goal of this work is to provide a scalable system that

exemplifies FGSG on a distributed computing architecture in an open

standards-based framework. The extent to which this system can scale is the

key metric on which the performance of this system will be evaluated; scalability

is to be measured in terms of the number of vehicles that can be supported.

5.3.2 Software and Tool Selection

As in the previous Chapter, Ordnance Survey MasterMap® ITN is to be used as

the base road network dataset (Section 4.3.3). To evaluate the applicability of

Fine-grained Snapshot Geoprocessing

149

SWE components to real-time FGSG operations a SES (Section 2.3.6) has

been chosen as a notification broker. SES is a proposed OGC standard that

builds on OASIS WSN specifications (Section 2.3.1) to provide publish /

subscribe access to sensor data observations. A prototypical implementation

available from 52 North is to be used which builds on a variety of open source

components such as the Apache Muse framework (http://ws.apache.org/muse/),

the Esper CEP engine (http://esper.codehaus.org/) and the Apache XMLBeans

Java XML binding tool (http://xmlbeans.apache.org/). The SES is to be

deployed in an Apache Tomcat servlet container. Experimentation with

automatic web service code generation tools such as Apache Axis2

(http://axis.apache.org/axis2/java/core/tools/index.html) and the Metro stack

(http://jax-ws.java.net/) failed to parse the SES WSDL document and so a

custom binding was found to be necessary.

To insert the SES notifications into a database they must be captured, parsed

and translated into a SQL insert query. Thus a notification consumer service is

to be developed that uses the J2EE JAX-WS 2.0 and SOAP with Attachments

API for Java (SAAJ) APIs (https://jax-ws.dev.java.net/; https://saaj.dev.java.net/)

to build the service interface and parse the SES SOAP messages.

Furthermore, Oracle (http://www.oracle.com) JDBC drivers are to be used to

interface with the Oracle relational DBMS at the back-end. The notification

consumer service is to be deployed in a Glassfish

(https://glassfish.dev.java.net/) container, which was selected because it is both

open-source and J2EE compliant.

An Oracle database service hosted by the UK NGS is to be utilised to store and

process the FCD data. The NGS Oracle service is comprised of a cluster of

eight nodes running Oracle Spatial 11g spread over two sites; each node has a

dual CPU 3.06Ghz processor and 4GB RAM. A 2TB Storage Area Network is

attached to each site and the nodes are physically connected via a fast Myrinet

interconnect. Oracle Real Application Clusters (RAC) is used to federate the

nodes using a parallel shared-disk architecture (Section 2.4.2), thus providing

significantly greater performance and scalability than a single instance.

Furthermore, using RAC each node has direct access to the cache on each

Fine-grained Snapshot Geoprocessing

150

other node which facilitates high-availability and the execution of queries in

parallel (Greenwald et al., 2008). Triggers and stored procedures to manage

incoming data are to be coded in Oracle’s procedural query language PL/SQL

(http://www.oracle.com/technology/tech/pl_sql/index.html).

To facilitate access to the road network data, the real-time travel time data and

the associated geoprocessing functionality such as shortest path routing a

number of client facing web services are also to be developed. Road network

data will be published as a WFS and WMS through Geoserver

(http://geoserver.org). To enable web mapping clients to access a visual

representation of the road network data in a timely fashion a Web Map Tile

Service (WMTS) (Maso et al., 2010) will be made available via Geowebcache

(http://geowebcache.org). WMTS are designed to serve cached tile images of

map data at a variety of styles and zoom levels to avoid image processing

bottlenecks at the server.

Shortest path routing will be made available through a JAX-WS web service that

returns an ordered list of road links given the network node identifiers for the

route’s start and end locations. Another JAX-WS service is to be created that

requires a point location as a coordinate pair and returns the closest network

node to this location. This service is designed to help end users graphically

select valid start and end locations using a mapping client.

To demonstrate the back-end services described above, a web mapping client

is also to be developed that enables end users to view the road network data

and to perform shortest path routing queries on this data. The mapping client is

to be developed in Adobe Flex (http://www.adobe.com/products/flex/) and

Actionscript (http://www.adobe.com/devnet/actionscript/) using the OpenScales

(http://openscales.org/) open source mapping API. Flex and ActionScript are

proprietary technologies but have become rapidly adopted in web mapping

applications as they provide a rich end user experience that enables content to

be downloaded asynchronously without the need to reload browser pages

(Fraternali et al., 2010). The draft HTML5 standard (Hickson and Hyatt, 2008)

Fine-grained Snapshot Geoprocessing

151

is likely to supersede existing rich internet application technologies but to date

no standard mapping APIs have been developed for it.

5.3.3 Architectural Overview

The proposed system can be logically divided into three main parts; data input,

geoprocessing and user interface. The data input sub-system is responsible for

filtering map-matched FCD observations from a fleet of vehicles and inserting

the results into a database. The geoprocessing sub-system is responsible for

organising this data and augmenting it with static travel-time data obtained from

NCC and for providing traffic routing functionality based on this static and real-

time travel time data. Finally, the user interface sub-system is to enable clients

to visualise current traffic conditions and find the quickest route to their

destination using a web mapping client. Figure 5.1 shows a UML2

communication diagram that outlines the message flow and the basic

associations between components in the system. A full UML sequence diagram

is given in Figure 5.2 and a component diagram is given in Figure 5.3.

Figure 5.1: A UML2 communication diagram outlining message flow and

basic association between system components

Fine-grained Snapshot Geoprocessing

152

Figure 5.2 UML Sequence Diagram of Road Traffic Mo nitoring System

Fine-grained Snapshot Geoprocessing

153

Figure 5.3 Component Diagram of Road Traffic Monito ring System

5.4 Implementation

5.4.1 Data Preparation and Loading

The MasterMap ITN road link and road node datasets were loaded into Oracle

Spatial 11g using the SQL Plus and SQL Loader tools. The full procedure for

loading these datasets is detailed in Appendix E. Two tables were generated;

ROAD_LINK_POLYLINE and ROAD_NODE_POINT which contained the road

link and road node features respectively. Subsequently a spatial network was

generated from this road network data comprising a link table LINK_TABLE, a

node table NODE_TABLE, an empty path table PATH_TABLE and a path link

table PATH_LINK_TABLE used to store the link sequence for each path. For

each link in ROAD_LINK_POLYLINE two road links were created in the spatial

network, one representative of each direction of travel. These tables were

transformed into a spatial network by inserting a network definition into the user

Fine-grained Snapshot Geoprocessing

154

table USER_SDO_NETWORK_METADATA. The procedure used to generate

the spatial network is outlined in Appendix F.

A spatially referenced travel-time dataset was obtained from NCC that contains

the average speed of travel in kmh-1 for each direction on major roads in

Newcastle upon Tyne, for each hour of the day from 04:00h until 24:00h. This

travel-time dataset was loaded into Oracle and joined to the road network link

table as columns (HR_4,…,HR_24). Subsequently the average speed of each

road (kmh-1) was converted to average travel-time (s) by dividing the length of

each road by its average speed and performing a unit conversion. Twenty

additional columns, (C_4,…,C_24) were appended to LINK_TABLE to store the

average travel time for each road at each hour of the day. The purpose of

performing this join and conversion is to enable shortest path routing

calculations to exploit the NCC provided average speed dataset to weight each

road segment by travel-time. Appendix F details the process of loading, joining

and converting the average travel speed dataset. Figure 5.3 details the

resulting database schema after performing the data loading and manipulation

procedures described here.

Unfortunately the travel-time dataset provided for this work was incomplete and

although it contained travel times for most major roads in Newcastle upon Tyne,

only 19% of road segments within the study area had travel-times attached. In

order to ensure that an entire road travel-time dataset was available for analysis

a spatial interpolation was performed; values were interpolated for each missing

travel-time of each road link. However, in order to avoid spatial extrapolation

the missing values were only calculated for those features that fell within the

bounding box of the features attributed with travel-time values. To this end a

new feature table STUDY_AREA_CLIPPED was created containing a copy of

LINK_TABLE but clipped to contain only the features described above, and

attributed with additional columns (T_4,…,T_24 and HRN_4,…,HRN_24) to

contain the interpolated speed and travel-time values. The resulting

STUDY_AREA_CLIPPED table contained 50248 road links of which 9598

contained measured travel times and of which the remaining travel times were

Fine-grained Snapshot Geoprocessing

155

interpolated. Appendix F details the SQL commands to create and populate the

STUDY_AREA_CLIPPED table.

An Inverse Distance Weighted (IDW) interpolation was performed using five

nearest neighbours using the formula given in Equation 3. IDW was selected

for its simplicity, it is an interpolation method used to provide an estimate F of a

variable Z at an un-sampled location r. This is achieved by taking a weighted

average of m values from the surrounding neighbourhood where the inverse of

the distance from the un-sampled location r to each of the surrounding points i,j

is used to weight their respective contribution (Mitas and Mitasova, 1999). In

this implementation the distance between neighbouring road segments is

calculated using the shortest Euclidean distance. It is noted that the use of

network distance would be a more rigorous approach but considerably more

computationally expensive (Wang and Kockelman, 2009). Furthermore,

existing studies have shown that using Euclidean distance yields satisfactory

results for reasonably small networks (Hoef et al., 2006, Kruvoruchko and

Gribov, 2004). Interpolation was performed for each travel time column inside

the Oracle Spatial database using a PL/SQL procedure that is detailed in

Appendix G.

∑
∑

∑

=

=

=

−

−
==

m

t
m

j
j

m

i
ii

ii

rr

rrrz

rZWrF
1

1

2

1

2

||/1

||/)(
)()(Equation 3

Fine-grained Snapshot Geoprocessing

156

Figure 5.4: Database schema showing the spatial roa d network tables and

the input data tables used to generate the road net work

5.4.2 Data Input Subsystem

A simple Java command-line program was developed to poll the SOS for new

map matched observations, to wrap these observations in a SOAP envelope

and to forward them to the SES for filtering. Figure 5.1 shows that this

component provides connectivity between the SES and the SOS.

On invocation the program polls the SOS at a regular time interval using a

DescribeSensor request to retrieve an O&M ObservationCollection. This

ObservationCollection is parsed into a series of single Observations because

the current 52 North SES version cannot yet handle whole

ObservationCollections. Finally, each Observation is wrapped in a SOAP

Fine-grained Snapshot Geoprocessing

157

envelope as a WSN Notification and sent to the SES via HTTP. Listing 5.1

shows an example WSN Notification containing a map-matched Observation.

Listing 5.1: Example WSN Notification produced by S ES pusher and sent

to SES

<env:Envelope xmlns:env="http://www.w3.org/2003/05/ soap-envelope"
xmlns:om="http://opengis.net/om/1.0"
xmlns:swe="http://www.opengis.net/swe/1.0.1"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
<env:Header>
 <wsa:To>http://localhost:8762/ses-main-3.0-
 SNAPSHOT_2010_05_07/services/SesPortType</wsa:To>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
 2/NotificationConsumer/Notify</wsa:Action>
 <wsa:MessageID>1259772321843</wsa:MessageID>
 <wsa:From>
 <wsa:Address>http://www.w3.org/2005/08/addressing/ role/anony
 mous</wsa:Address>
 </wsa:From>
</env:Header>
 <env:Body>
 <Notify xmlns="http://docs.oasis-open.org/wsn/b -2">
 <NotificationMessage>
 <Topic xmlns:sestopic="http://www.opengis.n et/ses/topics"
 Dialect="http://docs.oasis-open.org/ wsn/t-
 1/TopicExpression/Simple">sestopic:Measurements
 </Topic>
 <Message>
 <om:Observation gml:id="co_1837"
 xsi:schemaLocation="http://www.opengis.ne t/om/1.0
 http://schemas.opengis.net/om/1.0.0/om.xs d
 http://www.opengis.net/sampling/1.0
 http://schemas.opengis.net/sampling/1.0.0 /sampling.xsd"
 xmlns:om="http://www.opengis.net/om/1.0"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xsi="http://www.w3.org/2001/XMLSche ma-instance"
 xmlns:sa="http://www.opengis.net/sampling /1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink ">

 </gml:TimeInstant>
 </om:samplingTime>
 <om:procedure xlink:href="ses5"/>
 <om:observedProperty xlink:href=
 "urn:ogc:def:phenomenon:OGC:1.0.30
 :roadID"/>
 <om:featureOfInterest>
 <sa:SamplingPoint gml:id="position2">

Fine-grained Snapshot Geoprocessing

158

A 52 North implementation of the SES was used in this system to filter the map-

matched observations and to notify a consumer whenever a road change event

is detected. The premise of this system is that every time a vehicle moves onto

a new road the SES will detect the change and emit a notification so that the

real-time travel-time cost of the previous road can be updated. The 52 North

SES parses complex spatial filters encoded in EML and uses an Esper CEP

engine to perform the pattern matching. In WSN terms the SES is an OASIS

compliant Notification Broker so input and output messages conform to the WS-

BrokeredNotification specifications; this WSN functionality is provided through

the Apache Muse framework. Both input and output observations are encoded

as a WSN Notification. Filters are applied to the SES by sending a WSN

Subscribe message containing the filter encoding.

An EML filter was created to identify road change events, i.e. to perform a

match every time a vehicle moves from one road, A to the next road B. This

was achieved by creating a set of simple, complex and timer pattern filters that

collectively identify road change events. Initially a simple pattern, every

<om:samplingTime>
<gml:TimeInstantxsi:type="gml:TimeInstantType">
<gml:timePosition>2010-04-13T14:00:08.000+01:00
 </gml:timePosition>

<gml:name>position2</gml:name>
 <sa:sampledFeature
 xlink:href="urn:ogc:roadFeature"/>
 <sa:position>
 <gml:Point>
 <gml:pos srsName="urn:ogc:def:c rs:EPSG:4326">
 54.95528 -1.66898
 </gml:pos>
 </gml:Point>
 </sa:position>
 </sa:SamplingPoint>
 </om:featureOfInterest>
 <om:result>4000000008044075</om:result>
 </om:Observation>
 </Message>
 </NotificationMessage>
 </Notify>
 </env:Body>
</env:Envelope>

Fine-grained Snapshot Geoprocessing

159

observation, was created that matches each observation received by the SES.

Subsequent filters odd and even match alternately; i.e. one matches every odd

observation and the other matches every even observation. This enables the

comparison of observation events that occur consecutively. The next two

patterns road change 1 and road change 2 detect adjacent even and odd

events for which the result value, the road’s TOID are not equal; an outcome

that signifies that a road change event has occurred. Although we are only

interested in adjacent odd and even events the EML syntax necessitates the

use of the BEFORE operator, hence there are two road change patterns, one

that matches odd before even and the other that matches even before odd.

Two final patterns remain that are used to ensure that the resulting output

notification contains the correct information, i.e. the same information that was

contained in the input notification. These patterns respectively match when

road change1 and road change 2 match and output the initial input observation.

The resulting notification contains the unique identifier of the vehicle, the unique

identifier of road A and the timestamp of the road change event. The EML filter

and associated Subscribe envelope are detailed in Appendix H. This

subscription is sent to an SES instance deployed in an Apache Tomcat

container.

In order to record the aggregate traffic conditions at a centralised location it is

necessary to consolidate the notifications resulting from the SES instances and

insert them into a spatial database. Thus a Notification Consumer service was

developed to receive road change event notifications from the SES, parse them

and insert them into the central database. The JAX-WS API was utilised to

develop a one-way service, i.e. a service that does not send a response but

simply carries out some business logic when it receives a request. In this case

the service listens for notifications from the SES and uses the SAAJ API to

extract the required information from the Notification document. Subsequently

the extracted information such as the observation, road and vehicle identifiers

as well as the event timestamp are added to a prepared SQL statement and

inserted into the central database. Oracle JDBC drivers were used to provide

Fine-grained Snapshot Geoprocessing

160

connectivity to the Oracle instance hosted by the UK NGS. The service was

deployed in the Glassfish container.

5.4.3 Geoprocessing subsystem

Within the Oracle database a trigger was developed in PL/SQL to derive higher

level information such as the direction of travel, the duration and the cost of

travel from the raw notification. The trigger calculates these derived attributes

every time a new observation is inserted into the ROAD_CHANGE_EVENT

table. Initially it is important to determine the direction of travel of the vehicle so

that the resulting cost can be applied to the road link representing the correct

direction of travel. The direction of travel is calculated by comparing the identity

of the node that connects road A and road B. If the connecting node is labelled

as road A’s end node in the network table then the direction of travel along road

A is forwards. Conversely if the connecting node is labelled as road A’s start

node then the direction of travel is backwards. Duration is calculated by

subtracting the timestamp of the previous road change event for the vehicle that

submitted the observation from the current event timestamp. Travel time cost is

calculated by converting this duration from hours, minutes and seconds into

seconds. Finally each of the derived attributes and the original raw observation

are inserted into a new table PROCESSED_EVENTS. Using a new table to

store all the information results in redundancy as each observation is

duplicated. However, this is necessary as it overcomes an Oracle constraint

that prevents a trigger procedure from updating the table that it is operating on.

Once the vehicle’s direction of travel along the road link and the duration it has

spent on the road link has been established the next phase involves updating

the network cost column. To maximise flexibility it was decided that end users

should be able to perform routing queries based on either real-time data or on

the static travel speed datasets recorded by NCC. Therefore a further set of

spatial networks were defined on the STUDY_AREA_CLIPPED table by

inserting new entries into the USER_SDO_NETWORK_METADATA table for

each cost column (C_4,…,C_24) as well as a new cost column named COST to

Fine-grained Snapshot Geoprocessing

161

store the real-time data, for which the trigger is responsible for keeping up to

date.

To obtain useful and valid routes from the spatial network weighted by real-time

cost it is necessary to account for the road links for which no real-time

information is available. It is unlikely that at any given time the limited set of

available probe vehicles will collectively traverse each road segment in the

study area. Therefore it was opted to augment the real-time COST column with

the interpolated travel time dataset for the current time of day, when no real-

time information is available. An additional table COST_SET_TO(id,hour) was

defined with a single tuple to store the hour of day the COST column is currently

set to. Furthermore, an additional column, N_RT_OBS was appended to the

network table STUDY_AREA_CLIPPED to store the number of real-time

observations that have been captured for each road segment. Once derived

duration and direction attributes have been calculated the trigger then attempts

to update the real-time COST column; this is done as follows.

If COST_SET_TO is equal to the current hour of day then only one tuple is

updated in STUDY_AREA_CLIPPED, i.e. the road-segment for which new

travel-time information is available. If this is the first real-time observation for

this tuple then the cost is simply set to the calculated duration and N_RT_OBS

is incremented. Otherwise the existing COST value is averaged with the

calculated duration.

However, if COST_SET_TO is not equal to the current hour of day then each of

the tuples must be updated to reflect the current time of day; this will occur for

the first observation to be inserted in each calendar hour. Subsequently, for

each road link that appears in PROCESSED_EVENTS with a timestamp within

the past hour N_RT_OBS is updated to reflect the number of observations in

PROCESSED_EVENTS and COST is calculated by averaging the calculated

durations for these observations. Finally SET_COST_TO is updated to indicate

that the COST column values for which no real-time information is available are

set to the current hour. The part of this trigger responsible for updating the

Fine-grained Snapshot Geoprocessing

162

COST column is listed as pseudo-code in Listing 5.2. The entire PL/SQL trigger

procedure is detailed in Appendix I.

Listing 5.2: Trigger procedure to update real-time COST column

ROAD_CHANGE_EVENT1

PK ID

OBS_ID

TOID

OBS_TIME

PROCEDURE_ID

PROCESSED_EVENTS1

PK ID

OBS_ID

TOID

/TOID_DIRECTION

PROCEDURE_ID

/DURATION

/COST

Figure 5.5: UML class diagram showing the parent ch ild relationship

between ROAD_CHANGE_EVENT and PROCESSED_EVENTS tabl es

IF COST_SET_TO != CURRENT_HOUR {
 UPDATE STUDY_AREA_CLIPPED SET COST = HRN(CURRENT HOUR);
 UPDATE STUDY_AREA_CLIPPED SET COST_SET_TO = CURRENT_HOUR;
 UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS = 0;

FOR EACH RECORD IN PROCESSED_EVENTS{
NO_OBS = number of observations in processed events that relate to
the same road_segment as this record

UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS = NO_OBS WHERE TOID =
RECORD.TOID and TOID_DIR = RECORD.TOID_DIR;

Sum_COST = the sum of RECORD.DURATION for each of N O_OBS;

UPDATE STUDY_AREA_CLIPPED SET COST = sum_COST / NO_ OBS WHERE TOID
= RECORD.TOID AND TOID_DIR = RECORD.TOID_DIR;
}

}ELSE{

IF STUDY_AREA_CLIPPED.N_RT_OBS ==0 THEN {
UPDATE STUDY_AREA_CLIPPED SET COST = duration WHERE TOID = toid
AND TOID_DIR = toid_dir;
UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS= 1 WHERE TOID = toid AND
TOID_DIR=toid_dir;
}ELSE{
UPDATE STUDY_AREA_CLIPPED SET COST = ((COST*N_RT_OBS) +
duration)/N_RT_OBS + 1 WHERE TOID = toid AND TOID_D IR = toid_dir;
UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS= N_RT_OBS + 1 WHERE TOID =
toid AND TOID_DIR=toid_dir;
}

Fine-grained Snapshot Geoprocessing

163

Shortest-path routing is carried out using the Oracle Network Analysis Load on

Demand (LOD) Java API. LOD is a recent feature in Oracle Spatial that

enables the analysis of networks that are too large to fit into memory. In order

to use LOD the network must be partitioned into segments that fit into memory.

Oracle contains a built in function to partition network geometry tables

automatically; it performs a spatial partition by recursively bisecting the

geometry tables until each partition is of the desired size (Oracle Wang and

Gong, 2009). Performance can also be further improved by representing each

partition as a BLOB which is defined as a very large data object whose value is

composed of unstructured binary data (Shapiro and Miller, 1999). The full

procedure to generate and partition the spatial network is detailed in Appendix

E.

Network analysis is managed through the LODNetworkManager class in the

Java LOD API. Initially the getCachedNetworkIO method must be called to

obtain a handle on the network reader, subsequently analysis can be carried

out using a NetworkAnalyst object. Analysis is achieved by loading the relevant

network partition tables from the database into the user’s private session

memory as a set of Java objects; each partition is loaded as and when it is

needed (Oracle Wang and Gong, 2009, Kothuri et al., 2007). The network

tables are locked for editing during analysis to prevent corruption. Data is

loaded into private session memory inside the Oracle instance from one of the

partitioned network tables at a time on the request of a remote user connected

via JDBC.

In this implementation, shortest path network analysis was carried out from a

web mapping client described in the following Section. The Dijkstra shortest

path algorithm (Dijkstra, 1959) was used to find the least cost route from source

to destination by analysing the relative cost of traversing each link using the

relevant cost column to weight each link, either HRN_4,…,HRN_24 for static

queries or COST for real-time queries.

Fine-grained Snapshot Geoprocessing

164

5.4.4 Client User Interface

A JAX-WS web service was developed to access the routing functionality

described in Section 5.4.3. The service accepts three string arguments

containing the node identifier of the start node and the end node and the cost

column on which to base analysis. It returns an ordered list of link identifiers

representing the shortest route from the start node to the end node using the

selected cost column. Internally the Oracle network analysis LOD API is used

to query the Oracle database via JDBC. The service is deployed in a Glassfish

v2 container.

Another JAX-WS web service was developed to assist users in finding the

nearest node to a particular geographical location. This service accepts an

OSGB36 coordinate pair and returns the identifier of the nearest node.

Internally this service queries the backend Oracle database by sending a

prepared SQL statement via JDBC. The nearest neighbour is identified by

using the built in SDO_NN function in Oracle spatial. The prepared statement

used to extract this information is given in Listing 5.3. The service was

deployed in a Glassfish v2 container.

Listing 5.3: SQL prepared statement to identify nea rest neighbour to

OSGB36 coordinates <easting><northing>

A Style Layer Descriptor document was created for each road network cost

column to display categorised views of the road network data based on travel

speed using four categories; 0-30 kmh-1, 30-50 kmh-1,50-70 kmh-1 and >70 kmh-

1 coloured green, light yellow, dark yellow and red in this order. The Oracle

Geoserver plugin was installed to enable Geoserver to use the Oracle road

network as a data source and styled map layers were created for each of the

cost columns. A Geowebcache instance deployed in a Tomcat container was

used to cache each of these layers at 15 zoom levels.

SELECT n.node_id AS RESULT from node_table n where
sdo_nn(n.geometry_column,sdo_geometry(2001,27700,SD O_POINT_TYPE(
<easting>,<northing>,null),null,null),'sdo_num_res= 1')='TRUE'");

Fine-grained Snapshot Geoprocessing

165

A WFS was deployed using Geoserver to serve road network features in vector

format. Using this approach web mapping clients using the Route Service and

the Nearest Neighbour Service can request specific features such as road links

and nodes from the WFS and display them on a map.

A user interface component was developed as a front end web page to enable

end users to visualise the average travel speed on the road network at different

times of the day, and to visualise shortest path routes between locations within

the study area. A screenshot of the client is shown in Figure 5.6. Open Street

Map (http://www.openstreetmap.org/) data is used to display base mapping

data, a blue polygon represents the extent of the study area and the WMTS

speed layer is shown as an overlay. There are two major user interaction

components. On the left hand side of the screen is a navigation panel that

enables the user to navigate the map using zoom and pan controls. This panel

also enables users to turn each layer on and off, or change the transparency of

each layer. On the right hand side of the screen is the routing options control

panel. Within this panel is a dropdown menu that enables the user to select the

time of day they want to travel. Selecting a new time of day causes the WMTS

travel speed overlay to update, and changes the cost column that is used to

perform any routing calculations. Alternatively the user can check the ‘use real-

time’ box which causes routing analysis to use the real-time cost column to

weight the cost of travel on each road segment. Checking this box also

changes the WMS speed overlay to only show the road links for which real-time

observations are available, all other road links are displayed in grey, although

routing analysis will weight these segments with their cost value for the current

time of day.

To calculate a route the user has to click on the ‘select start location’ button, this

creates a marker on the map and invokes the Nearest Neighbour service which

finds the closest road node to this point. This road node is then requested from

the WFS and displayed on the map in a different style; the same procedure is

carried out to select the end node. Clicking on ‘get route’ invokes the Route

service which returns the shortest route between the start and end nodes as an

array of road identifiers. This string array is translated into a WFS request

Fine-grained Snapshot Geoprocessing

166

which returns the corresponding road features and these are displayed on the

map. Clicking on reset removes all the markers and routes from the map.

The user interface was developed in Flex 4 and Actionscript 3 using the

OpenScales API. It was packaged as a web application and deployed in a

Tomcat container.

Figure 5.6: Screenshot of the user interface compon ent

5.5 Testing & Results

A thorough testing and verification process was undertaken to ensure that the

system as a whole functioned correctly. Initially each component was

individually tested to ensure that no logical errors existed in the code and that

the interfaces were correctly defined. Subsequently the system was tested in

its entirety to ensure that the whole web service workflow ran smoothly and

performed the functions required of it; namely to transform a collection of

vehicle GPS observation tracks into road network travel-time weightings. A

series of load tests were also performed on the system to determine its

maximum capacity in terms of number of vehicle sensors and volume of client

traffic.

5.5.1 Amazon Machine Image (AMI) Configuration

A collection of 304 vehicle GPS observation tracks were obtained from NCC.

The data was sourced from GPS data loggers fitted onboard a heterogeneous

Fine-grained Snapshot Geoprocessing

167

fleet of council maintenance vehicles travelling around Newcastle-upon-Tyne.

Observations were recorded throughout the day at one minute intervals on 21st

September 2010. Stop-start vehicles such as refuse disposal wagons were

excluded as their speed of travel does not give an accurate indication of road

traffic conditions.

The track data for all vehicles was provided in a single comma delimited text file

with geographical coordinates encoded using the ETRS89 reference frame.

The data was transformed and loaded into a PostGIS spatial database using a

PL/pgSQL script. The loading procedure incorporated steps to remove

corrupted observations, transform the coordinates into the WGS84 reference

frame and divide the data into a set of tables, each containing a time-ordered

sequence of observations from a single vehicle. The procedure is documented

in Appendix K.

Given the extent of the scalability issues previously identified with the 52N

implementation of the SOS and the Geoserver WFS (Section 4.4.2) it was clear

that numerous data input server instances would be required to sufficiently

strain the geoprocessing subsystem. Consequently it was decided to deploy

the data-input subsystem in the Amazon cloud using EC2

(http://aws.amazon.com). EC2 is Amazon’s IaaS product; EC2 virtual machines

can be dynamically provisioned on-demand for a relatively low cost.

An Amazon Machine Image (AMI) was built on top of a 64-bit Windows Server

2008 operating system. Each of the web services in the data input subsystem

was installed on the AMI; the SOS, SES and WFS. Additionally, the sensor

emulator (Section 4.3.2), the SES Pusher (Section 5.4.2), the map-matching

program (Section 4.3.4) and the PostGIS database were installed. It was opted

not to install the Notification Consumer service on the AMI because this

requires JDBC connectivity to the NGS Oracle server which only allows

connections from a set of pre-approved IP addresses. Although EC2 instances

do retain their IP address until they are terminated it was opted to host the

Notification Consumer service off the cloud at a real physical host with a static

IP to avoid constant renegotiations with the NGS.

Fine-grained Snapshot Geoprocessing

168

Based on the findings of the previous Chapter (Section 4.4.2) it was decided to

run a single Geoserver WFS instance and a single 52N SOS on each EC2

node, and to allocate 10 sensors to each node. SES deployment proved to be

problematic because each sensor in this system requires its own SES instance

in order to handle stream based observation filtering. It was found that only one

SES instance could be deployed per Tomcat container and thus 10 Tomcat

containers had to be installed on the AMI, each using a different set of ports. A

Java program was written to bulk create a set of 304 virtual sensors (Section

4.3.2) and to register each of these sensors to the SOS. The set of virtual

sensors were divided into groups of 10 and placed in different directories, one

for each AMI instance. Finally, a Java program was used to create a set of

batch scripts, one for each sensor group, that invokes the data input workflow

chain. For each of the sensors in the group the sensor emulator program is

invoked which streams observations from the database into the SOS.

Subsequently the map-matching program is initiated which performs matching

by retrieving a road network subset from the WFS, after which the SES pusher

is initiated that pushes map-matched observations from the SOS into one of the

SES instances.

Once the AMI was configured, EC2 nodes could be launched through the

Amazon web management console. It was found that an ‘m1.large’ hardware

configuration was required for each instance; this includes 7.5GB of memory

and 5 EC2 Compute Units (ECU). ECU is a metric used by Amazon to quantify

the compute capacity provided to EC2 instances; 1 ECU roughly corresponds to

a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor (http://aws.amazon.com).

5.5.2 Estimation of the Probable Route between Non-Adjacent Network

Links

This system was designed to process a dense data stream containing an

observation every one or two seconds. Consequently the assumption was

made at the system design stage that each road change event would occur

between two adjacent road links; i.e. links that share a start node or an end

Fine-grained Snapshot Geoprocessing

169

node. However, only GPS observation streams of one minute frequency were

available from NCC and initial trials with this data showed that a very small

proportion of road change events occurred between adjacent road links. The

majority of events occurred between road links that were close but not adjacent

to each other. Thus it was deemed necessary to estimate the route travelled

between each pair of road links in order to correctly determine the actual road

links travelled on, the direction of travel of the vehicle and the length of time

taken to traverse each road link.

The trigger procedure set out in Listing 5.2 was amended to estimate the path

between non-adjacent road links in a road-change event. Each time a road

change event occurs between non-adjacent links A and B a shortest path

computation is performed between the two links, based on physical distance

rather than interpolated travel-time cost. The assumption is made here that the

route taken by each vehicle between A and B will be the route with the shortest

network distance, thus road length is used to weight each link rather than travel

time cost. In order to carry out this localised shortest path computation in an

efficient manner a new road network TEMP_ NETWORK is defined on two new

tables, TEMP_NODES, TEMP_LINKS containing only the road links and nodes

within a 2Km radius of road A. Unless the vehicle is travelling at over 120Kmh-1

then the second road link will fall within this radius. Similarly, in all but the most

unusual road network topologies the shortest path between the two nodes will

also lie within this radius. Once the path taken between the two road links has

been established, the time difference between the two observations is divided

amongst each of the links in the path, weighted by link length. In this way an

estimated cost is assigned to each of the links travelled on. The revised trigger

procedure is listed in Appendix I.

There are two major advantages to using this sub-network approach; firstly, to

perform a shortest path computation in Oracle it is necessary to read the entire

road network into private session memory. Using the PL/SQL API this is

impossible for the Newcastle road network as it is too large, although it can be

achieved using the Java load on demand API by reading different parts of the

network as and when they are required. The second advantage to this

Fine-grained Snapshot Geoprocessing

170

approach is that the length of time taken to perform a shortest path computation

is significantly reduced as there are considerably fewer links to scan.

Performance tests were carried out to compare the relative performance of

route calculation on both the mini-network and the full-network using 8 randomly

selected routes of various lengths. The mini-network approach was found to

outperform the full-network on average by a magnitude of 7.

As road links A and B are not adjacent the direction of travel along each link

cannot be determined by simply comparing the identity of their start and end

nodes (Section 5.4.3). The road network is directed so the shortest path

computation selects the correctly directed links between road A and road B.

However, in order to select the correct start node and end node for the shortest

path computation it is necessary to perform two comparisons to obtain the path

that travels along road A but not road B. Figure 5.7 shows the four possible

paths between road A and road B. Path 1 represents the correct configuration

as it includes the road links travelled on between T0 and T1, time instants

representing the previous and current road change events respectively. To find

the correct start and end nodes, two comparisons must be performed. The start

node corresponds to the starting node of the longest path, in number of links,

between either of road B’s nodes and each of road A’s nodes. Conversely the

end node corresponds to the ending node of the shortest path between either of

road A’s nodes and each of road B’s nodes. As travel time costs are calculated

by dividing the time difference between T0 and T1 over each of the road links

that lie between road A and road B it is important that this is calculated

correctly.

Fine-grained Snapshot Geoprocessing

171

Figure 5.7: Diagram showing the four possible path configurations

between road A and road B. Path 1 shows the correc t configuration as it

represents the distance travelled between road chan ge event at T0 and

road change event at T1

5.5.3 Functional Testing for a Single Vehicle

A functional test was carried out to confirm that the system assigns the correct

cost weighting to each road link; initially only one observation stream from a

single vehicle was analysed. A map is provided in Figure 5.8 that shows the

first part of the route travelled by this vehicle which begins its journey on the

West of the map and heads in an Easterly direction. GPS observations are

depicted as grey squares on the map and their corresponding map-matched

road links are depicted as broad dashed black lines and labelled with their

identifying TOID. This observation stream is typical of the data acquired from

NCC; position is observed only at 60 second intervals and thus it can be seen

that no two map-matched roads are adjacent. There are also a small

percentage of observations which have not been map-matched due to

Fine-grained Snapshot Geoprocessing

172

discrepancies between the position and bearing of the vehicle and those of the

surrounding road network.

Figure 5.8: Sample vehicle route showing GPS observ ations and map-

matched road links

To verify that the system works correctly the road link travel times for the above

route were calculated manually, and then compared to the travel times

produced by the system. Table 5.1 lists the raw observations, the map-

matched roads and the associated road change events as identified by the SES

for the route depicted in Figure 5.8. The duration column denotes the total

travel-time cost between road change events. The data shows that the vehicle

makes a number of stops at road links 4000000007753817,

4000000007753888, 4000000007753513 and 400000000774913. These stops

explain why road change events do not occur at each and every minute interval.

Unfortunately there is no mechanism in this system to account for stationary

parked vehicles and so these observations will cause an over estimation in

travel-time for the road links in question.

Fine-grained Snapshot Geoprocessing

173

Table 5.1: Raw Observations and their corresponding Road Change

Events

Raw Observation Map-matched road

TOID

Road Change

Event

Position (OSGB36 WKT) Time
hh:mm:ss

Time
hh:m
m:ss

Duration
ss

POINT(429528.02668635

563592.364480371)"
07:57:00 4000000007753817

"POINT(429528.02668635

563592.364480371)"
07:58:00 4000000007753817

"POINT(429544.97030135

563579.677950211)"
07:59:00 4000000007753817

"POINT(429544.071589793

563586.535008899)"
08:00:00 4000000007753817

"POINT(429535.503444385

563591.30072277)"
08:01:00 4000000007753817

"POINT(429583.836682928

563705.871664461)"
08:02:00 4000000007753888

08:02

:04

"POINT(429581.839862056

563701.221271016)"
08:03:00 4000000007753888

"POINT(429571.446909098

563707.645304683)"
08:04:00 4000000007753888

"POINT(429585.017783863

563704.766581186)"
08:05:00 4000000007753486

08:05

:04

180

"POINT(429566.335565731

564046.846085716)"
08:06 4000000007753517

08:06

:04

60

"POINT(429164.125716246

563743.193043373)"
08:07 4000000007753518

08:07

:05

61

"POINT(428702.622021928

563441.609577328)"
08:08 4000000007753513

08:08

:05

60

"POINT(428347.396768455

563471.443775008)"
08:09 4000000007753513

"POINT(428346.764698489

563470.141096373)"
08:10 4000000007749082

08:10

:12

127

"POINT(427978.09568244

563603.415897156)"
08:11 4000000007749130

08:11

:12

60

"POINT(427202.759552821

563882.99326178)"
08:12 null

"POINT(426614.32461212

564130.234670907)"
08:13 4000000007749442

08:13

:12

120

Fine-grained Snapshot Geoprocessing

174

Figure 5.9 shows the road links that were assigned a new cost value after

insertion of the road change events into the database. It can be seen that the

route estimated between each GPS observation on the basis of shortest

network distance appears to be valid. The calculation of travel-time cost

weighting for these road links is given in Table 5.2 for the first four road change

events. The first column in Table 5.2 shows the identifier of the previous and

the new road links, road A and road B, in addition to the duration between this

and the previous road change event. The second and third columns show the

identifier and length of each road link travelled upon between road A and road

B. In the fourth column the expected proportion of time spent travelling on the

road link is calculated by dividing the length of the road link by the total length of

road travelled between road A and road B. The fifth column shows the

calculated travel-time cost, derived by multiplying the distance proportion by the

duration. Finally the sixth column shows the results produced by the system, it

can be seen that in each case the correct result was produced.

Figure 5.9: Map showing the road links assigned a new cost value by the

system

Fine-grained Snapshot Geoprocessing

175

Table 5.2: Road link Cost Calculation from Road Cha nge Events

Road Change

Event

Road links between

Road A and B

Link

Length

(m)

Proportion

of Distance

between A

and B

Calculated

Cost

Duration *

proportion

Assigned

Cost

EXPLANATION The road links

comprising the

shortest path

between road A and

road B

Length

of the

road

link

(link length/

total link

length) *

100

(link length

/ total link

length)*

duration

The cost

weighting

assigned to

the road

link by the

system

Road A:

4000000007753888

Road B:

4000000007753486

Duration:

180 seconds

Total:

4000000007753888

390.9 48.26% 86.869 86.87

4000000007753889 147.59 18.22% 32.799 32.79

4000000008046200 60.34 7.45% 13.41 13.41

4000000008041716 73.37 9.06% 16.31 16.31

4000000007753552 26.57 3.28% 5.90 5.90

4000000007753534 37.27 4.60% 8.28 8.28

4000000007753520 73.93 9.13% 16.43 16.43

 809.97 100% 180 180

Road A:

4000000007753486

Road B:

4000000007753517

Duration:

60 seconds

Total:

4000000007753486 318.27 46.44% 27.87 27.87

4000000007753533 55.31 8.07% 4.84 4.84

4000000007753551 26.24 3.83% 2.30 2.30

4000000007753550 31.24 4.56% 2.74 2.74

4000000007753519 111.66 16.29% 9.77 9.78

4000000007753496 142.58 20.81% 12.48 12.48

 685.30 100% 60 60

Road A:

4000000007753517

Road B:

4000000007753518

Duration:

61 seconds

Total:

4000000007753517 86.34 23.91% 14.59 14.58

4000000007753516 56 15.51% 9.46 9.46

4000000007753530 51 14.12% 8.62 8.62

4000000007753515 60.13 16.65% 10.17 10.16

4000000007753514 107.63 29.81% 18.18 18.18

 361.1 100% 61 61

Fine-grained Snapshot Geoprocessing

176

5.5.4 Functional Testing for Multiple Vehicles

To ensure that the system is capable of estimating travel-time for more than one

vehicle another test was performed using a sample of 10 vehicles. The GPS

tracks from these vehicles intersect with each other in both time and space;

each of the tracks was recorded between 08:00 and 09:00 on 21st September

2010. In order to gauge the systems performance the state of the road link cost

column was captured every 15 minutes during this one hour period. The

performance of the system can be gauged on two levels; assignment accuracy

and travel-time cost accuracy. Respectively these measures refer to the

system’s ability to calculate travel-time cost for the correct set of road links, and

the accuracy of the resulting travel-time costs. Unfortunately the true path

taken by each vehicle is unknown, as is the true travel-time cost of each road

link. However, by visually comparing the raw GPS observations with the set of

road links that have been assigned travel-time costs, it is possible to make a

reasonable assessment of assignment accuracy. Likewise, the interpolated

travel-time data acquired from NCC for the 08:00 to 09:00 time period provides

a best estimate of the actual travel-time on these road links and thus by

comparing the observed travel-time values with the interpolated values it is

possible to assess the travel-time cost accuracy.

Figure 5.10 displays the road links that had been assigned cost values after

running the system for one hour, alongside the raw GPS observations fed into

the system during this period. On inspection, it can be seen that a significant

proportion of road links have not been assigned a travel-time cost despite an

obvious path of GPS observations. The clearest example of this in Figure 5.10

is the cluster of observations between grid reference 421000 567500 and

422200 568500. It was found that in the majority of cases these observations

without a corresponding road link occurred during the latter part of the hour

period. By removing the clause in the trigger procedure to reset the real-time

cost column every hour it was found that these road links were eventually

assigned a cost value. Thus it can be concluded that latency in the data input

subsystem is largely responsible for this shortfall in assignment accuracy; this is

discussed further in Section 5.5.5. There are also some cases for which roads

have been assigned a travel-time cost where no vehicles have travelled upon

Fine-grained Snapshot Geoprocessing

177

them. There are two obvious examples of this in Figure 5.10 at 420800 565000

and at 420900 565200. The most likely explanation for this is that the road links

were map-matched incorrectly. Figure 5.11 shows the road links that should

have been assigned a travel-time cost; these links have been derived from

visual analysis of the raw GPS observations.

Figure 5.10: Map showing the road links assigned a travel-time cost and

the raw GPS observations

Figure 5.11: Map showing the estimated set of road links that should have

been assigned a travel-time cost and the raw GPS ob servations

Fine-grained Snapshot Geoprocessing

178

To assess the accuracy of the resulting real-time travel-time costs, each real-

time cost value was compared to the interpolated travel-time cost value for the

same road link and the same time period of 08:00 to 09:00. For each 15 minute

period the mean and standard deviation of the absolute difference between the

two travel-time costs were calculated; the results are summarised below in

Table 5.3. It can be seen that there is very little change in the accuracy of the

real-time system over the hour period.

Table 5.3: Summary statistics for the absolute diff erence between

interpolated and real-time travel-time costs

Sample Time 08:15 08:30 08:45 09:00

No. of Assigned Roadlinks 75 233 317 401

Mean of the absolute difference between

interpolated and real-time travel time

(seconds) 10.06 9.29 12.96 12.36

Standard Deviation of difference between

interpolated and real-time travel-time

(seconds) 12.36 11.74 17.30 19.57

Each road link’s travel-time cost value is calculated by averaging the travel time

of each vehicle that has travelled along it, thus it is anticipated that the accuracy

of each link will increase proportionally to the number of vehicles that have

travelled on it. Table 5.4 presents the mean absolute difference in travel-time

cost again, but broken down by the number of real-time observations for each

road link. This clearly shows that as more vehicles travel upon a road link the

real-time travel-time cost becomes significantly closer to the interpolated value.

Table 5.4: Mean absolute difference between interpo lated and real-time

travel-time costs by number of real-time observatio ns

No. of real-time

observations

Mean absolute difference in travel-time cost (seconds)

08:15 08:30 08:45 09:00

1 8.91 6.87 9.19 9.96

2 1.11 2.42 3.01 2.12

3 0.58 0.08

4 0.17 0.17

Fine-grained Snapshot Geoprocessing

179

5.5.6 Scalability Testing

The system was subjected to an increased data load and its performance was

monitored. The load was increased by launching new AMI instances, each of

which performs data input for 10 sensors in a shared nothing configuration. As

such the expected points of failure in the system are the Notification Consumer

and the database which must handle all the database insert transactions. The

Notification Consumer was monitored by logging the time delay between each

notification and its associated road change event. Within this time period a

complex processing chain is executed; the observation is map-matched,

inserted into the SOS, pushed to the SES where it is filtered and forwarded to

the Notification Consumer. This portion of the processing chain takes 3 to 4

minutes. Subsequently the Notification Consumer waits for a free connection

and then inserts the observation into the database. Due to database atomicity

constraints (Section 2.3.2) the connection is not released until the database’s

internal trigger procedure has returned; tests show that the average processing

time of each trigger procedure was found to be 45 seconds although this figure

varies significantly depending on whether the implicated road links are adjacent.

It can be seen from the results in Table 5.5 that the delay between observation

and notification increases proportionally to the number of sensors. This

suggests that the database insert and associated trigger procedure is the

source of a bottleneck.

Table 5.5: Time Delay between Road Change Event and Notification

No. of

Sensors

No. of Road Change Events per

hour

Average time delay between road change

event and notification(mm:ss)

10 67 06:02

20 94 14:40

50 195 18:51

Another aspect of the database design that does not scale well was found to be

the exclusive lock required by each vehicle on the temporary network tables

used to estimate the vehicle’s path between known positions. This is likely to

account for a significant portion of the bottleneck as each vehicle’s path must be

processed sequentially. As a result of this bottleneck another flaw in the

system was observed. It was found that as the number of sensors is increased,

Fine-grained Snapshot Geoprocessing

180

observations from the same sensor are not necessarily inserted into the

database in the same order that their notifications occurred. This is problematic

as the trigger procedure relies on observations being inserted in their correct

order. Travel-time cost is calculated by comparing the time stamp of the latest

observation with that of the previous observation from the same sensor, which

is retrieved from the PROCESSED_EVENTS table. A clause in the trigger

prevents new observations from being inserted if the previous observation from

the same sensor has a timestamp that occurs after the new observation, as this

would result in a negative cost value. Clearly this is unsatisfactory because as

the number of sensors is increased the proportion of inserted travel-time

observations is reduced. Solutions to this problem are discussed in Section 5.6.

Although the scalability of this system from the data input side presents an

interesting problem the major focus of the work in this Chapter is fine-grained

snapshot geoprocessing. In this system, fine-grained snapshot geoprocessing

occurs primarily when an end-user invokes a routing query through the web

mapping client. In the scenario presented in this Chapter it is anticipated that a

high volume of end-users require the use of this real-time routing service. The

focus of this Section is determining how well the nearest neighbour and

shortest-path web services scale cope with an increased workload, rather than

attempting to increase the availability of the client application itself.

For the shortest-path service 100 start and end nodes within the study area

were randomly selected; for each set of nodes a SOAP request to the shortest-

path service was constructed. Using Apache JMeter a large set of users was

simulated using concurrent execution threads; on each thread one of the 100

shortest path requests was randomly selected and sent to the service. For the

nearest neighbour service the same procedure was followed, although

randomly selected coordinates from within the study area were used in place of

start and end nodes. The results are displayed in Table 5.6 and Figure 5.12.

Surprisingly the response time for each of these services is similar, despite the

greater computational complexity of the shortest-path service. These results

are promising and show that the services scale well to a large number of users;

Fine-grained Snapshot Geoprocessing

181

only a 14 second delay is experienced when 500 different requests are made

simultaneously.

Table 5.6: Response Time of Shortest Path Routing a nd Nearest

Neighbour Web Services

No. Threads Shortest Path Response Time Nearest Neighbour

Response Time

1 544 532

10 569 558

20 609 615

50 1476 1265

100 2758 2306

250 7426 6867

500 12731 14113

0

2000

4000

6000

8000

10000

12000

14000

16000

1 100 199 298 397 496

No. of Threads

R
es

po
ns

e
T

im
e

(m
s)

Shortest Path Route Service Nearest Neighbour Service

Figure 5.12: Response Time of Shortest Path Routing and Nearest

Neighbour Web Services

No attempt was made to test the scalability of the Geoserver WFS and WMS or

the GeoWebCache WMTS as these services are not anticipated to present a

bottleneck in the system.

Fine-grained Snapshot Geoprocessing

182

5.6 Discussion

In this Chapter a road traffic monitoring system has been designed and

implemented that incorporates elements of data stream geoprocessing and fine-

grained snapshot geoprocessing. The system is composed of geospatial web

services and a parallel relational database hosted by the NGS. Additionally the

Amazon EC2 cloud infrastructure has been utilised to deploy the system on a

large scale.

This system has successfully demonstrated how real-time geospatial sensor

data streams can be filtered and processed using a complex geoprocessing

workflow. A variety of open standards have been incorporated into this system

including SOS and SES elements from Sensor Web Enablement, WMS, WMTS

and WFS elements from OWS and WSN from the OASIS framework.

Furthermore SOAP based and RESTful services have been seamlessly

combined into a unified workflow. It was found that the SES SOAP bindings

and the adherence of the SES interface to WSN specifications presented a

useful alternative to the traditional OGC RESTful interface. The key advantage

of this interface was that the Notification Consumer service could be easily

constructed using the Metro JAX-WS stack (https://jax-ws.dev.java.net/) and a

standard WSDL document published by OASIS. This ease of deployment

provides a good example of the benefits of creating SOAP bindings for OGC

services.

It was observed that integration of the SOS and the SES could be improved. In

this system the SES is made aware of new observations in the SOS through a

bridge program, the SES pusher. This program polls the SOS every two

minutes using a RESTful HTTP request, parses the resulting observations,

encodes them as a WSN notification and sends them to the SES. There are a

number of problems with this approach. Firstly, this process introduces latency

as there may be a delay of up to two minutes before the SES is aware of new

observations at the SOS. Secondly, the process of parsing and reformatting the

observation document is computationally expensive which increases the use of

computational resources and could also introduce a processing bottleneck.

Finally, this approach adds an additional layer of communication which

Fine-grained Snapshot Geoprocessing

183

contributes to latency and which may also produce a bottleneck if observations

are voluminous.

One solution to this problem would be to move the SES forward in the

processing chain; raw observations could be fed directly into the SES which

would forward these observations to both the SOS and the map-matcher

program. The map-matcher program could then output map-matched

observations as notifications to another SES which both archives the

observations in the SOS and forwards road change events to the Notification

Consumer program. Alternatively an integrated service could be developed that

publishes both an SOS and SES interface, thus enabling both push and pull

access to observations from a single data service. An integrated service would

greatly simplify sensor web workflows but is unlikely to be developed unless the

SES is approved as a SWE standard.

The use of a parallel spatial relational database to perform the bulk of

geoprocessing in this system produced mixed results. Road network data

provides a good fit to the relational data model and there is a clear performance

advantage to carrying out fine-grained geoprocessing operations such as

shortest path and nearest neighbour analysis in close proximity to the physical

data store. However, insertion of new observations into the database produced

a bottleneck. In part this was due to the system design that appended a block

of pre-processing to the insert transaction, thus monopolising database

connections for a lengthy period of time. Another contributing factor was that

insertions were being made on an individual basis; aggregating a collection of

new observations and performing a bulk insert is likely to have reduced the

bottleneck although it would have further increased latency.

An interesting question is whether relational databases are a suitable storage

medium for real-time sensor observations. The ACID guarantees (Section

2.4.2) of a relational database ensure that data consistency is maintained but at

the expense of availability (Lynch and Gilbert, 2002). As a result it is difficult to

constantly update a data aggregate stored in a relational database and to query

it concurrently because records are locked while they are being updated.

Fine-grained Snapshot Geoprocessing

184

Furthermore, sensor data is notoriously unreliable and systems need be robust

to corrupt and erroneous observations, which violate ACID constraints. The

new movement of NOSQL databases show promise for storing sensor data as

they have more relaxed consistency rules (Leavitt, 2010). However, to date

such systems are only capable of the most trivial spatial analysis operations.

The concept of sensor-network databases (Madden, 2002, Govindan et al.,

2002) also present an interesting solution to this problem. Sensor-network

databases are capable of running analysis on a network of sensors without

storing the data in a centralised location; queries are processed in-network.

Although these sensor-network database systems have been successfully used

for wireless sensor networks (Gaynor et al., 2004), it would be difficult to

implement for this traffic monitoring system. Our aggregated dataset is not an

aggregation of raw observations; rather it is a derived phenomenon of

approximated road link travel times. As such it would not be possible to retrieve

this information directly from sensors as a pre-processing chain must first be

executed.

Part of the problem with the data input system design was that it relied on

observations being inserted into the database in the order that they occurred. It

was found that this condition did not hold true as the number of input sensors

was increased. A simple solution to this problem would be to add another layer

of abstraction to the SES. In its current state the SES emits a road change

events to the Notification Consumer containing only the timestamp of the event

and the identifier of the current and previous road links. This could be improved

by including the timestamp of the previous road change event, thus providing

enough information for the trigger to calculate travel-time costs for each road

link regardless of the order in which the road change events arrive at the

database.

5.7 Conclusion

This system has demonstrated how fine-grained snapshot geoprocessing can

be incorporated into an end-to-end monitoring and prediction system. The

Fine-grained Snapshot Geoprocessing

185

system did not scale well to a large number of data input sensors due to a

bottleneck caused by the insertion of processed observations into the database.

Aggregation of observations before insertion into the database presents a

potential solution to this problem. NOSQL databases may also present a

solution as they do not adhere to the strict consistency rules of traditional

relational databases. This technology has not yet reached maturity and has

poor support for spatial data, although it does present an interesting topic for

further research.

No attempt was made to scale this system over a larger geographical area. It is

anticipated that the shortest-path geoprocessing operation would scale well in

this regard because it operates on a set of partitioned tables and utilises a load-

on-demand approach to processing. However, the problem of scaling over

multiple vehicles would have to be solved before this could function as an

effective system.

Coarse-grained Snapshot Geoprocessing

186

Chapter 6 Coarse-Grained Snapshot Geoprocessing

6.1 Introduction

This Chapter details the design and implementation of a geoprocessing system

that executes a CGSG operation in parallel. The operation is an

implementation of the Spatial Reclassification Kernel (SPARK) image

processing algorithm which has been modified to run on Amazon’s EC2 Elastic

MapReduce service.

Applying the SPARK algorithm to a classified image has been shown to improve

the precision of thematic classification by translating broad land cover classes

such as trees or buildings into more specific land use classes such as

residential housing or industrial wasteland (Barnsley and Barr, 1996). The

SPARK algorithm operates by passing a kernel window over a classified image

and comparing the spatial frequency and arrangement of pixels in each kernel

window to a set of predefined land use templates.

We have found that the SPARK algorithm is a good fit to the MapReduce

programming model and that its execution time can be significantly reduced by

applying the presented MapReduce (Section 2.4.3) approach. A major goal of

this work is to evaluate the effectiveness of the cloud infrastructure at

performing parallel CGSG operations in an efficient and scalable manner.

6.2 Background and Context

6.2.1 Elastic MapReduce

Amazon offers an Elastic MapReduce service (http://aws.amazon.com/

elasticmapreduce/) that enables the elastic deployment of MapReduce jobs on

their EC2 infrastructure using Hadoop (http://hadoop.apache.org), a popular

open-source java implementation of the MapReduce framework. Elastic

MapReduce fits into the PaaS category of distributed system as it encompasses

a software framework, Hadoop MapReduce, as well as hardware resources;

Coarse-grained Snapshot Geoprocessing

187

EC2 and S3. Amazon S3 (http://aws.amazon.com/s3/) is a set of web services

that provide redundant and scalable data storage as a service. MapReduce

jobs are elastically deployed onto EC2 instances using S3 as a back-end data

resource. As such entire workflows can be executed remotely on the Amazon

infrastructure without consuming any local computational or data resources.

Key benefits of MapReduce include the automatic handling of fault-tolerance,

load balancing and data distribution, thus it shields the developer from many of

the complexities of parallelisation. Hence the framework offers a relatively

straightforward way to develop task-farm style distributed applications.

However, MapReduce has attracted criticism on the basis that it is inferior to

parallel relational DBMS for many applications and has even been described as

a ‘major step backwards’ by prominent members of the parallel database

community (Dewitt and Stonebraker, 2008b, DeWitt and Stonebraker, 2008a,

Stonebraker et al., 2010). The main criticisms levelled at the MapReduce

model by Stonebraker et al (2010) are summarised here. Firstly, MapReduce

does not make use of indexes or columns to rapidly access data items of

interest; instead it uses a brute-force approach that requires each data record to

be scanned in its entirety. This has the effect of reducing performance for query

intensive operations on relationally structured data. Secondly, MapReduce

natively operates on text files and thus each record must be parsed before it

can be operated on. Conversely parallel DBMS store typed data and so the

parsing stage can be omitted in each processing workflow. Thirdly, MapReduce

schedules tasks to each worker node at runtime using a fixed data granularity

corresponding to the storage block size. This is considerably less efficient than

the approach taken by parallel DBMS in which tasks are scheduled and

optimised at compile time by means of a distributed query plan. Fourthly,

parallel DBMS use streaming to transport data between nodes whereas

MapReduce writes intermediate data structures to disk between the Map and

Reduce stages, thus introducing another IO bottleneck into the workflow.

Despite these criticisms, Stonebraker et al (2010) concede that MapReduce

works well for certain types of operation. Notably, MapReduce excels at

Extract, Transform, Load (ETL) operations that extract data from heterogeneous

Coarse-grained Snapshot Geoprocessing

188

data sources, performs a transformation and loads into a database. Additionally

it is considered a useful tool for processing operations on non-structured data.

An overview of MapReduce work in the geospatial domain is provided in

Section 2.4.3.

The work presented in this Chapter fits into the raster processing category but

rather than performing a simple raster algebra operation it attempts to execute

an algorithmic workflow by applying a processing kernel to an image and

comparing the similarity of resulting kernel windows with a set of predefined

land-use templates.

Figure 6.1 outlines a component diagram showing the basic components of

Amazon`s Elastic Map Reduce.

Figure 6.1 Component Diagram of Elastic Map Reduce

6.2.3 The Spatial Reclassification Kernel (SPARK) Algorithm

The remainder of this Chapter describes the implementation of the SPARK

algorithm using MapReduce on the Amazon cloud. Originally developed by

Barnsley and Barr (1996) this algorithm reclassifies satellite sensed imagery to

improve land-use type inference.

Classification algorithms typically do not perform well in urban areas due to the

large number of spectrally distinct land-cover types in close proximity to each

other. Barnsley and Barr (1996) have presented a reclassification algorithm,

Coarse-grained Snapshot Geoprocessing

189

SPARK that translates broad spectral land-cover types such as building, trees,

water, grass and tarmac into more specific land-use categories such as

agricultural, residential and industrial. This is accomplished by passing a kernel

over the classified image in which each kernel window is compared to a set of

pre-defined land-use templates and the central pixel of each kernel window is

reclassified to the most similar land-use type. The similarity between each

kernel window and the set of pre-defined land-use templates is determined

through the examination of frequency and spatial arrangement of pixels in each

window. The SPARK process is described here in 5 steps:

1. Perform an Initial Classification of a Satellite Sensed Image into Land-

cover Types.

Classification is the process of identifying the real-world land-cover type of each

pixel in a remotely sensed image, and assigning the pixel a new value to

indicate this land-cover type. Classification techniques fall into two major

categories referred to as supervised and unsupervised classification

respectively. Supervised classification requires a-priori knowledge of the study

area in the image; training areas in the image exemplar of each land-cover type

must be identified manually. The remaining pixels in the image are grouped

into one of the land-cover types defined by the training areas based on their

spectral similarity. Unsupervised classification algorithms perform a similar

process but without manual user intervention; land-cover types are inferred

based on the spectral separability of pixels in the image. A variety of methods

exist for performing both supervised and unsupervised classification; a full

treatment is given in Mather (2004).

2. Define a set of Land-use Templates

Identify the major land-use types in the study-area using a-priori knowledge,

and for each of these land-use types select a training area on the classified

image that is representative of each land-use type. Define the size of kernel

window to be used in the analysis, and then for each land-use class take a

template for this window size from a random location within the polygon or set

of points that have been recognised as belonging to the given land-use class.

Coarse-grained Snapshot Geoprocessing

190

The random location forms the centre pixel of the template window and the

adjacency events are derived relative to this random location.

3. Calculate Adjacency Matrices

For every given kernel window and land-use template a corresponding

adjacency matrix must be defined. An adjacency matrix is an immutable matrix

with width and height equal to the number of land-cover types defined in the

classified image. Each adjacency matrix contains the frequency and type of

adjacency event that occurs between different land-cover type pixels in a

window. Adjacency events refer simply to a pair of contiguous pixels; for

example if two pixels classified as grass occur next to each other in a window

then it can be said that a grass-grass adjacency event has occurred. Adjacent

edges and adjacent vertices in each window are counted in this way but only

one adjacency event exists for each pair of pixels, thus two adjacent pixels

grass and tree would only result in a single adjacency event grass-tree, not

grass-tree and tree-grass. Figure 6.2 shows the adjacency events in a 3x3

kernel window. Adjacency-events are grouped together in an adjacency matrix

M that stores the frequency fij with which pixels from land-use i and pixels from

land-use j are adjacent (Equation 4).

Figure 6.2: Adjacency Events in a 3x3 Kernel Window [adapted from

Barnsley and Barr (1996)]

Coarse-grained Snapshot Geoprocessing

191

=

333231

232221

131211

fff

fff

fff

M Equation 4

4. Calculate Kernel Window and Template fit

The similarity between a kernel window and a land-use template is measured

by comparing their respective adjacency matrices and normalising the result.

For a given classified image the similarity between an image adjacency matrix

Aij and a template adjacency matrix Tij can be expressed as an index between 0

and 1. This index is referred to as ∆ k and can be calculated using Equation 5,

where C is the number of land-use types and N is the total number of adjacency

events in the window, i.e. 20 for a 3x3 kernel or 72 for a 5x5 kernel. The

resulting metric, ∆ k, represents the degree of coherence between the two

windows and ranges from 0 which indicates no similarity to 1 which indicates an

exact match.

{ }∑∑
= =

−−=∆
C

i

C

j
ijij fTfA

N
k

1

2

1
2

)()(
)(2

1
1 Equation 5

5. Perform Reclassification

A new output image is defined to represent the reclassified study-area. Each

pre-defined land-use template is mapped to a byte value in the output image;

e.g. industrial 0, residential 1, agricultural 2. The location of each pixel in the

reclassified output image corresponds to the central pixel of each kernel window

on the input image. Thus, for each kernel window the corresponding pixel in the

output image is assigned to the byte value of its most similar land-use template;

i.e. the template that has the maximum value of ∆ k for the corresponding

kernel window.

6.3 Design & Implementation

The SPARK algorithm is suitable for coarse-grained parallelisation because it

involves repetitive computation on independent subsets of the classified image.

The significant portion of computation in this algorithm is the calculation of an

Coarse-grained Snapshot Geoprocessing

192

adjacency matrix and ∆ k for each kernel window. For example, let us consider

a simple processing scenario involving the reclassification of a 3000 x 5000

pixel image using a 3x3 kernel window and 5 land-use templates. Computation

of an adjacency matrix and ∆ k must be performed for every pixel except for

those on the outside perimeter of the image due to incomplete kernel window

information; this amounts to (3000 x 5000) – 15996 = 14,984,004 pixels.

Adjacency matrix construction involves 20 comparison operations for each 3x3

kernel, and comparison with each of the 5 land-use templates involves at least

another 10 arithmetic operations. Thus (14,984,004 x 20) + (14,984,004 x 10 x

5) = 1,048,880,280 instructions must be processed even for this simple

example. The work presented here will concentrate on parallelising the

calculation of adjacency matrices and ∆ k as set out in steps 3 and 4 in Section

6.2.3 with the aim of reducing the overall processing time. An overview of the

workflow described in the following text is outlined in Figure 6.3.

Coarse-grained Snapshot Geoprocessing

193

Figure 6.3: Pre and post processing stages in the MapReduce SPARK

workflow

6.3.1 Data Partitioning

Hadoop automatically divides input data files into chunks referred to as input

splits and allocates these amongst available processors. The size of an input

split typically corresponds to the file block size which defaults to 64MB in the

Hadoop File System (HDFS) although it is possible to customise both the input

split size and the file-block size. Input data can be passed to Hadoop in text or

binary format but must be comprised of key-value pairs that are referred to as

records. Thus data partitioning involves two major elements; selecting an

Coarse-grained Snapshot Geoprocessing

194

appropriate input split and file block size, and selecting the type of data item to

encode in each record.

The input data for the SPARK algorithm is an image of the study area, classified

by land-use. In the first instance it was opted to partition this dataset into kernel

windows. For a given kernel window of dimension n pixels, every pixel P in the

image with the exception of those that are less than (n-1)/2 pixels from the edge

of the image, has a corresponding kernel window W. The kernel window W is

simply a square subset of the image, centred on P with a width and height of n

pixels. A custom java object Window was designed to represent each kernel

window, comprised of a two-dimensional byte array to store the pixel values,

and an IntPair field, comprised of two integer values denoting the Cartesian

coordinates of the window kernel’s central pixel P in relation to the image. The

Window object implements Hadoop’s Writable interface which enables it to be

serialized and deserialized internally by Map and Reduce functions in Hadoop.

The IntPair field implements Hadoop’s WritableComparable interface, an

extension to the Writable interface that enables the results to be sorted. Using

the Unidata NetCDF java library (http://www.unidata.ucar.edu/software/netcdf/)

a java method was written to read a classified image in NetCDF format into an

array of Window objects and to write these objects to a SequenceFile, a binary

encoded file format specified by Hadoop that can be used as input to a

MapReduce job. For each kernel window a record was written to the

SequenceFile containing the kernel window’s image coordinates as an IntPair in

the key field and the serialized Window object in the value field.

This partitioning method was chosen because it prepares the input data for

subsequent processing operations; the calculation of each adjacency matrix

and ∆ k can easily be performed by the Map function by simply deserializing

each Window object. However, this approach to data partitioning was found to

be extremely inefficient due to the considerable expansion in file size from the

raw image to the SequenceFile. For a 9x9 kernel window the transformation of

a 12MB NetCDF file into SequenceFile format resulted in a SequenceFile over

2GB in size which took over 10 hours to upload to S3 from a standard

broadband internet connection. Consequently an alternative partitioning

Coarse-grained Snapshot Geoprocessing

195

strategy was sought; it was decided to write larger blocks of data to each

SequenceFile record in an attempt to reduce the amount of data redundancy in

the SequenceFile.

A new partitioning method was devised with a lower level of data granularity.

This was found to be considerably more efficient in terms of storage volume and

upload speed; it is described as follows. For a kernel window dimension of 3

pixels, a classified image of width 5000 pixels is subdivided into two-

dimensional blocks of data of 5000 pixels width and 3 pixels height. Each block

is serialized into a java object referred to as a RowSet containing a two

dimensional byte array of 3 x 5000 pixels and a text field indicating the position

in the image of the block’s central row. A SequenceFile record is written for

each RowSet object containing the x coordinate of the central row as the key,

and the serialized RowSet as the value. Using this approach for a 12MB

NetCDF image and a 9x9 kernel window the generated SequenceFile was

reduced to 108MB in size and took only 42 minutes to upload.

The downside of this approach is that each Map function has to convert the

RowSet into an array of Window objects and generate an adjacency matrix and

∆ k for each of these kernel windows, thus reducing the data granularity of the

Map task. For an image of width x pixels and height y pixels, Equations 3 and 4

relate the SequenceFile storage volume Sv to the image size and the kernel

window dimension n for the Window method (Equation 6) and the RowSet

method (Equation 7) given an arbitrary key size of k. It can be seen that the

RowSet method reduces the storage volume of the resulting SequenceFile by a

factor of n.

)1)(1(2 +−+−= nynxknSv Equation 6

)1(+−= nxnykSv Equation 7

As a consequence of this more compact file format the amount of computation

to be performed in each InputSplit is considerably greater, resulting in a lower

data granularity and a reduced ability to exploit as many processors. To

Coarse-grained Snapshot Geoprocessing

196

compensate for this it was decided to reduce the file block size and input split

size from 64MB to 8MB, thus enabling a job with a 108MB input file to be

distributed amongst 14 processors rather than 2.

6.3.2 Hadoop Configuration

Hadoop provides a mechanism referred to as a Distributed Cache that makes a

small set of auxiliary files available to each MapReduce process. This was

used to supply each MapReduce process with a copy of land-use templates

with which to compare each Window. A further set of Window objects were

created to store the land-use templates and these were initialised with the

template’s byte code value in the key field, and a land-cover pixel arrangement

exemplar of the template’s land-use category in the byte array. An additional

mapping file was also distributed to each processor containing a mapping of

each land-use type to its corresponding byte code value in the image.

Each land-use template Window object was serialized and uploaded to an

Amazon S3 storage bucket, as was the SequenceFile and the mapping file. A

java archive file containing the SPARK logic encoded as Hadoop Map and

Reduce processes (Section 6.3.3) was also uploaded to S3.

6.3.3 The Map and Reduce Functions

A custom map function was written to read each record from the SequenceFile

containing RowSet key-value pairs into an array of Window objects, and to

transform these Window objects into a different set of key-value pairs as set out

in the following steps:

1. Calculate the adjacency matrix for the kernel window

2. Calculate the adjacency matrix for each land-use template

3. Compare the window kernel’s adjacency matrix to the adjacency matrix

 of each land-use template to produce a value for ∆ k.

4. Emit a new key-value pair for each land-use template using the window

 kernel’s image coordinates as the key and a new key-value pair as the

Coarse-grained Snapshot Geoprocessing

197

 value, in which the key is the byte value of the land-use type represented

 by the template and the value is ∆ k.

A custom reduce function was written to combine records with the same key,

and to emit a single key value pair containing the identifier of the window and

the byte value identifier of the land-cover template with the greatest value of

∆ k, i.e. the land-cover that is most similar to the kernel window. The map and

reduce processes using the approach described here are detailed in Listing 6.1.

Listing 6.1: SPARK Map and Reduce Functions

6.3.4 Output Conversion

Hadoop produces an output file for each reducer process and because each

window’s image coordinates are stored as IntPair objects which implement

WritableComparable the results are sorted by image coordinates. A java

method was written to combine the output files and generate a new NetCDF file

containing the re-classified image.

6.4 Testing & Evaluation

6.4.1 Test Scenario

A multispectral (XS) SPOT-1 HRV image of South East London (4195 x 2995

pixels) was selected to test this system. Using ERDAS Imagine software

(http://www.erdas.com/) the image was geometrically corrected to fit the British

National Grid using a nearest neighbour resampling method. The image was

classified using a Maximum Likelihood supervised classification that identified

six land-cover classes; water, grass, crops, forestry, small buildings and large

buildings. The classified image was converted into NetCDF format using the

GDAL library (http://www.gdal.org/) and the FWTools package

(http://fwtools.maptools.org/). The full pre-processing, classification and format

conversion procedures are detailed in Appendix J. The confusion matrix for this

),()),(,(

),(,(),(

entifierTemplateIdtifierWindowIdenlistkentifierTemplateIdlisttifierWindowIdenreduce

kentifierTemplateIdtifierWindowIdenlistRowSettifierRowSetIdenmap

→∆
∆→

Coarse-grained Snapshot Geoprocessing

198

land-cover classification is shown in Table 6.1, and the classified image is

shown in Figure 6.4.

Figure 6.4: Supervised Classification of a SPOT-1 H RV image of South

East London

Coarse-grained Snapshot Geoprocessing

199

Table 6.1: Confusion Matrix for Land-cover Classifi cation

Land Cover

Type

unclassifie

d

small

building

large

building forest crops grass water

Unclassified 218 0 0 0 0 0 0

small building 0 39 3 2 0 3 1

large building 0 2 6 0 0 1 0

forest 0 3 0 23 10 26 0

crops 0 0 0 4 11 0 0

grass 0 1 1 2 0 39 0

water 0 0 0 0 0 0 5

Total test pixels 218 45 10 31 21 69 6

Overall Kappa Statistics = 0.7684

Overall Classification Accuracy = 84.75%

Following the approach set out by Barnsley and Barr (1996), nine land-use

templates were created from the classified image; low-density residential,

medium-density residential, woodland, arable farmland, permanent pasture,

water, commercial/industrial, vacant / fallow land and unclassified. The

templates were sampled at random from large training areas in the image using

a-priori knowledge of the study area gained from large scale Ordnance Survey

mapping; a 9x9 pixel kernel size was used. The land-use templates are

detailed in Appendix K.

A wizard-based Java tool was developed to facilitate the preparation and

uploading of input files and to handle job invocation and monitoring. Using this

tool the job is prepared and invoked over seven stages; definition of land use

templates, definition of mapping file, conversion of input file from NetCDF to

SequenceFile, upload of input files to S3, submission and monitoring of job,

download of result files and conversion back to NetCDF format.

6.4.2 Results

The resulting re-classified image is shown in Figure 6.5. An accuracy

assessment was performed on the image which shows that the reclassification

Coarse-grained Snapshot Geoprocessing

200

was successful. A confusion matrix for the reclassification is given in Table

Table 6.2.

Figure 6.5: SPARK Re-classified Image of South East London

Table 6.2: Confusion Matrix for Land-Use Reclassifi cation

Land-Use

Type

Uncl

assif

ied

W

at

er

Ar

abl

e

Pas

tur

e

Woo

dlan

d

Wast

elan

d

Low

density

residential

Medium

density

residential

Com

merci

al

Unclassified 188 0 0 0 0 0 0 0 0

Water 0 3 0 0 0 0 0 0 0

Arable 0 0 9 1 0 0 0 0 0

Pasture 0 0 0 26 0 1 0 0 0

Woodland 0 0 7 13 35 5 0 2 0

Wasteland 1 0 1 4 1 15 1 1 0

Low density

residential
3 0 0 2 0 1 45 20 3

Medium

density

residential

0 0 0
0

1 1 0 6 1

Commercial 0 1 0 0 0 0 2

Total test

pixels
192 4 17 46 37 23 46 29 6

Coarse-grained Snapshot Geoprocessing

201

Overall Kappa Statistics = 0.7551

Overall Classification Accuracy = 82.25%

The algorithm was computed several times on different processing architectures

in an attempt to measure the performance improvement resulting from

parallelisation. The tested architectures include stand-alone Hadoop running

locally on an Intel Core i-3, 2.13 GHz processor and Hadoop running on

different sized Amazon EC2 instances using Amazon Elastic Map Reduce.

Amazon measure computational power in EC2 compute units, one of which is

approximately equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor (http://aws.amazon.com); specifications of the different Amazon

instance types are detailed in Table 6.3. To provide a meaningful indication of

performance the algorithm was also executed on a local standalone processor

as a native java job. Results are detailed in Table 6.4 and Figure 6.6. Note that

the processing time referred to in Table 6.4 includes upload and download

times, not solely execution time.

Coarse-grained Snapshot Geoprocessing

202

Table 6.3: Amazon EC2 Instance Type Specifications

Instance

Type

Instance

Name

EC2

Com

pute

Units

Mem

ory

(GB)

Default

No.

Concurre

nt Map

Tasks

Per Node

Default No.

Concurrent

Reduce

Tasks Per

Node

I/O

Performa

nce

Elastic

MapReduc

e price per

hour in EU

/ Ireland

($USD)

Small m1.small 1 1.7 2 1 Moderate 0.015

Large m1.large 4 7.5 4 2 High 0.06

Extra Large m1.xlarge 8 15 8 4 High 0.12

High

Memory XL

m2.xlarge 6.5 17.1 4 2 Moderate 0.09

High

Memory

Double XL

m2.2xlarge 13 34.2 8 4 High 0.21

High

Memory

Quadruple

XL

m2.4xlarge 26 68.4 16 8 High 0.42

High CPU

Medium

c1.medium 5 1.7 4 2 Moderate 0.03

High CPU

XL

c1.xlarge 20 7 8 4 High 0.12

Table 6.4: Processing Time of the SPARK algorithm o n increasing numbers of processors for a 4195 x 299 5 pixel image and 9

land-use templates

Platform Processing Time

Hadoop /

Native

Processor No.

Processors

Conversion to

SequenceFile

Upload to S3 from

local machine

Execution

Time

Download from

S3

Conversion to

NetCDF

Total

Native Intel Core i-3

2.13Ghz

1 N/A N/A 1:13:20 N/A N/A 1:13:20

Hadoop Intel Core i-3

2.13Ghz

1 00:00:30 N/A 1:37:00 N/A 00:1:20 1:38:50

Mr EC2

Medium EC2

High-CPU

1 00:00:30 00:42:00 01:06:00 00:01:55 00:1:20 1:51:45

Mr EC2

Medium EC2

High-CPU

4 00:00:30 00:42:00 00:28:00 00:01:55 00:1:20 1:13:45

Mr EC2 Medium EC2

High-CPU

8 00:00:30 00:42:00 00:14:00 00:01:55 00:1:20 00:59:45

MR EC2 Large EC2 1 00:00:30 00:42:00 00:46:00 00:01:55 00:1:20 01:31:45

MR EC2 Large EC2 2 00:00:30 00:42:00 00:45:00 00:01:55 00:1:20 01:30:45

MR EC2 Large EC2 4 00:00:30 00:42:00 00:20:00 00:01:55 00:1:20 01:05:45

MR EC2 Large EC2 8 00:00:30 00:42:00 00:08:00 00:01:55 00:1:20 00:53:45

MR EC2 X Large EC2 1 00:00:30 00:42:00 00:30:00 00:01:55 00:1:20 01:15:45

MR EC2 X Large EC2 2 00:00:30 00:42:00 00:28:00 00:01:55 00:1:20 01:13:45

MR EC2 X Large EC2 4 00:00:30 00:42:00 00:14:00 00:01:55 00:1:20 00:59:45

MR EC2 Small EC2 1 00:00:30 00:42:00 04:06:00 00:01:55 00:1:20 04:51:45

MR EC2 Small EC2 2 00:00:30 00:42:00 04:05:00 00:01:55 00:1:20 04:50:45

MR EC2 Small EC2 4 00:00:30 00:42:00 01:28:00 00:01:55 00:1:20 02:13:45

MR EC2 Small EC2 8 00:00:30 00:42:00 00:46:00 00:01:55 00:1:20 01:31:45

MR EC2 Small EC2 16 00:00:30 00:42:00 00:24:00 00:01:55 00:1:20 01:09:45

MR EC2 Small EC2 20 00:00:30 00:42:00 00:25:00 00:01:55 00:1:20 01:10:45

Coarse-grained Snapshot Geoprocessing

205

00:00:00

01:12:00

02:24:00

03:36:00

04:48:00

06:00:00

1 2 4 8 16 20

No. Processors

P
ro

ce
ss

in
g

T
im

e

EC2 Small

EC2 Medium (High CPU)

Local Hadoop

Local Native

EC2 Large

EC2 X Large

Figure 6.6: Processing Time of the SPARK algorithm for a 4195 x 2995

pixel image and 9 land-use templates using differen t Elastic Map Reduce

configurations

It can be seen in Figure 6.6 that for each processor type, as the number of

processors increase, the marginal increase in performance diminishes.

Furthermore, when using more than 4 processors, there is very little difference

in processing time for each instance type except for EC2 Small. Consequently,

the deciding factor when selecting the appropriate processing type for a given

job may come down to cost. In Figure 6.7, processing time is plotted against

the total execution cost for the given EC2 processor types. It can be seen that

at the $0.24 price point 8 Medium EC2 High CPU gives the best performance at

14 minutes, compared to 4 Large EC2 ($0.24, 20 minutes) and 2 XL EC2

processors ($0.24 28 minutes). Similarly at the $0.12 price point, 4 Medium

EC2 High CPU computes in a favourable 28 minutes compared to a single XL

EC2 which computes in 30 minutes. It can thus be concluded that the Medium

EC2 High CPU instance type offers the best cost performance, although the

single Large EC2 instance type offers the best value for money at the cheapest

price point of $0.06, and also offers the best overall performance at 8

processors with an overall processing time of 8 minutes.

Coarse-grained Snapshot Geoprocessing

206

00:00:00

00:28:48

00:57:36

01:26:24

01:55:12

02:24:00

02:52:48

03:21:36

03:50:24

04:19:12

0 0.1 0.2 0.3 0.4 0.5 0.6

Cost ($US)

P
ro

ce
ss

in
g

T
im

e
Medium EC2 High CPU
Large EC2
XL EC2
Small EC2

Figure 6.7: Graph Showing Cost Performance of Diffe rent EC2 Instance

Types

6.5 Discussion

Overall the results show that MapReduce is capable of significantly reducing the

execution time of the SPARK algorithm. The best results were achieved when

the algorithm was run on 8 large Elastic MapReduce nodes which reduced the

execution time to just 8 minutes, compared to 73 minutes using native java

code. In the context of time critical scenarios it is likely that this reduction in

execution time is sufficient to render the algorithm useful in many situations.

To provide a meaningful comparison to local code execution, the total

processing times in Table 4 include data pre-processing, upload, download and

conversion steps. It can be seen that despite reducing the SequenceFile

volume by using a RowSet data partitioning strategy (Section 6.3.1) , the data

upload still occupies a significant portion of total processing time to the extent

that it almost negates the benefit of parallelisation for a job of this size.

However, upload speeds from EC2 instances were found to be several orders

of magnitude quicker than from a local machine; the upload time of 42 minutes

for a 108MB SequenceFile was reduced to 3 minutes when uploaded from an

EC2 instance. Consequently it can be argued that processing data on the

Coarse-grained Snapshot Geoprocessing

207

Amazon cloud is only viable for data that is also stored in the Amazon cloud

when dealing with large datasets.

The results detailed in Figure 6.6 and Table 6.4 show that the processing time

of the SPARK algorithm on a single local processor took only 73 minutes using

native Java code but increased to 97 minutes using a locally executed Hadoop

MapReduce instance. It seems likely that a large portion of this increase in

processing time is the result of automatic fault tolerance measures built into

MapReduce such as the calculation of checksums after each file block read; a

measure that is designed to ensure data integrity. Other Hadoop mechanisms

that could reduce performance include the reading of intermediate files from

disk using a pull based approach (Dewitt and Stonebraker, 2008b) as well as

the performance penalty suffered by running master and slave processes on the

same node.

Figure 6.6 shows that executing the job on small EC2 nodes is considerably

slower than using the more expensive instance types when using a small

number of processors. However, this gap narrows as the number of processors

increases. An out of memory exception prevented the scaling of larger instance

types above 4 processors for x-large, and 8 for medium (high-cpu) and large.

This is a result of Amazon’s cluster configuration parameters that set larger

instances to run a greater number of mappers and reducers concurrently, as

specified in Table 6.3. Additionally, each process runs by default inside its own

Java Virtual Machine and thus consumes a significant amount of memory.

However, no attempt was made to adjust these configuration parameters given

that an acceptable run-time of 8 minutes, on 8 large instances was achieved.

Nonetheless it seems likely that execution time could be reduced further by fine

tuning the cluster and job configuration parameters.

It was possible to translate the SPARK algorithm to the MapReduce paradigm

with relative ease; this can be attributed to a number of factors. Firstly, because

of the coarse-grained nature of the SPARK algorithm, individual subsets of the

data aggregate could be processed independently of each other. This greatly

simplified the task of parallelising the algorithm using MapReduce as individual

Coarse-grained Snapshot Geoprocessing

208

data subsets could easily be mapped to key-value pairs. Secondly, the SPARK

algorithm can broadly be considered as a unary transformation that operates

primarily on one dataset. It should be noted that although a number of auxiliary

datasets were required for the SPARK algorithm in the form of land-use

templates, each of them was small enough to be distributed to each Map

process without generating a significant IO bottleneck. It would be more difficult

to translate a binary algorithm to the MapReduce paradigm because each Map

process is only capable of processing a single input file. A number of methods

have been suggested to overcome this problem such as the default Hadoop join

which involves combining two datasets into a single input file using a common

key, and the Map-Reduce-merge (Yang et al., 2007) method that involves

combining multiple MapReduce jobs in a workflow chain. These techniques

require considerable effort to code and therefore simple coarse-grained binary

operators such as raster intersection and union may be better achieved using a

different distributed processing environment such as Condor

(http://www.cs.wisc.edu/condor). Thirdly, the SPARK algorithm can neatly be

divided into Map and Reduce processes. The calculation of ∆ k for each kernel

window corresponds to a simple Map transformation and the process of finding

the template with the maximum value of ∆ k corresponds to a simple Reduce

operation. Although this feature of SPARK simplifies the coding of the algorithm

in MapReduce it is not strictly required as MapReduce jobs can be defined

without a Reduce stage.

For this work the Amazon cloud infrastructure proved to be suitable;

MapReduce functionality was provided through an easy to use interface and a

respectable speed up was achieved. However, some problems are envisioned

for using both Elastic MapReduce and the cloud in general as a generic

geoprocessing tool. The MapReduce environment is quite restrictive and as

discussed above, it only appears to be suitable for certain types of

computational job. Even for computational jobs that are well suited to this

approach the environment is restrictive; the results outlined in Section 6.4 show

that a considerable proportion of the total processing time was spent uploading

data to cloud storage in the voluminous SequenceFile format as there was no

mechanism to perform the data expanding transformation closer to the data

Coarse-grained Snapshot Geoprocessing

209

source. Due to data locality the transfer times between EC2 nodes and S3

storage is reputedly much quicker than transfers from local machines to S3

(Murty, 2008). Consequently, the concept of co-locating data and processing

capabilities is gaining popularity. There is a current drive in academia, realised

through projects such as the Open Science Data Cloud (Grossman et al.,

2010), to host large scientific datasets in data centres with fast network

connections that are capable of providing both persistent storage and

computational analysis. It seems likely that large geospatial datasets such as

satellite imagery archives will eventually be hosted in such an environment and

this is expected to greatly expedite their processing and analysis (Gray et al.,

2005).

Another issue is that the level of performance achieved in a cloud cluster is

unpredictable and can vary depending on the current workload the cluster is

subject to (Armbrust et al., 2009). This unpredictability of performance may

present a problem for geoprocessing operations that have a hard real-time

deadline. This can clearly be seen in the results set out in Table 6.4; a

MapReduce job assigned 20 processor instances takes one minute longer to

process than the same job assigned only 16 processor instances. Although the

example presented in this Chapter considers the geoprocessing of a static

dataset, there are numerous scenarios in which such datasets are required to

be processed rapidly such as emergency disaster response. A potential

solution to the lack of predictability in performance is to use cloud-aware

scheduling (Schad, 2010) which compensates for poor performance as a result

of an increased overall workload by allocating the given job to either faster

processors or to a larger number of processors.

The third issue with geoprocessing in the cloud is the lack of interface and API

standards in cloud computing models such as SaaS, PaaS and IaaS which

could have severe consequences for cloud users in terms of vendor lock-in, a

scenario that could result in an inability to transfer data or software between

providers (Nelson, 2009). Commercial infrastructure providers have little

incentive for standardisation (Buyya et al., 2008) although it does seem likely

that specifications from standards bodies such as the Open Science Grid

Coarse-grained Snapshot Geoprocessing

210

(http://www.opensciencegrid.org), the Open Grid Forum (http://www.ogf.org)

and the Open Cloud Consortium (http://www.opencloudconsortium.org) will

eventually become adopted in scientific and academic systems.

6.6 Conclusion

This chapter has provided a working example of a CGSG system deployed in

the Amazon cloud. The system successfully demonstrated how a unary,

coarse-grained geoprocessing operation could be implemented in the

MapReduce paradigm. However, MapReduce is only a suitable candidate for

certain types of processing operation; namely coarse-grained operations on a

single dataset. Currently, a lack of predictability in performance impedes the

usage of the cloud as a generic geoprocessing platform; this is particularly the

case for applications with a hard real-time requirement. Furthermore, the lack

of standardised web service interfaces provide a barrier to adoption of cloud

technologies as users are unwilling to become tied in to a particular proprietary

system.

Discussion

211

Chapter 7 Discussion

7.1 Introduction

This study set out to develop an appropriate conceptual and implemented

framework in which open standards in grid computing, sensor web and

geospatial web services could be combined, as a technological basis for

monitoring and prediction of geospatial phenomena in the Earth systems

domain. The results show that it is possible to significantly improve the

performance and scalability of geoprocessing tasks in Earth systems monitoring

and prediction using distributed computing. The framework set out in this thesis

has outlined three styles of geoprocessing that occur in monitoring and

prediction systems, and has demonstrated how they can be implemented in a

manner that overcomes the limitations imposed by single processor

architectures through the use of parallelisation techniques. Furthermore, it has

been demonstrated that open web service standards in the geospatial and

distributed computing domains can be integrated despite apparent

incompatibilities in web service policy, style and message semantics. The goal

of this chapter is to draw on the relevance of these findings, to address the

limitations of this study, and to relate this work to other research in the field.

7.2 Harmonisation Issues

It was hypothesised that integrating SWE, OWS and distributed computing

standards could facilitate the development of high performance, scalable and

loosely coupled applications that rely on live sensor data, such as monitoring

and prediction systems. Various methods of integrating near real-time sensor

data into distributed geoprocessing workflows have been considered throughout

this thesis. The three implementations (Chapters 4-6) have highlighted some

important issues relating to standards integration and interoperability. In this

work we have only considered open standards published by the major

standards organisations in each domain; the OWS and SWE frameworks

published by the OGC, the OGSA framework published by the OGF, and the

WS-Notification and WSRF specifications published by OASIS. Currently these

frameworks represent consensus on best practice in industry and academia in

Discussion

212

their respective domains. With regards to cloud services the discussion refers

to Amazon Web Services (EC2 and S3) which, in the absence of formally

recognised standards have become a de-facto industry standard.

7.2.1 OGC-OGF Harmonisation

There has been considerable progress in integrating OGC and OGF standards

in recent years but there is still a long way to go before these frameworks are

fully harmonised. One of the main issues is that full adoption of WS-I by OWS

and SWE has not yet been realised. WS-I standards are of significance

because they provide a common messaging and interface format for both OGC

and OGSA standards.

Compatibility between WS-I tools and OGC schema is another issue that has

yet to be resolved. WS-I tools greatly simplify the process of grid service

development as they enable service and client stubs (service implementation)

to be automatically generated from WSDL documents (service interface). It was

found (Section 5.3.2) that standard web service tools such as Apache Axis2

(http://axis.apache.org/axis2/java/core/tools/index.html) and the Metro stack

(http://jax-ws.java.net/) were unable to parse the SES WSDL document and so

were unable to generate client stubs. This suggests that there is still a certain

level of incompatibility between OGC schema and web service tools. This was

also experienced in the OGC SOAP Interoperability Experiment in which the

same issues were encountered (Sonnet and Savage, 2003). As the SES is not

an official OGC standard its WSDL may not follow specific OGC conventions

but it is expected that the forthcoming SOS version 2.0 specification (Broering

et al., 2010) will provide a more stringent test of compatibility. Several of the

problems encountered in the SOAP Interoperability Experiment could only be

rectified by altering the schema or by combining all the schemas into a single

file. These problems suggest that there is still work to be done on either

improving web service tools or in improving OGC schema compatibility with

such tools.

Discussion

213

Progress has been made in integrating OGSA job execution standards such as

JSDL and OGSA-BES with the WPS. Woolf and Shaon’s (2009a) JSDL-WPS

profile extends the capabilities of WPS job execution in a grid environment by

enabling end users to select their hardware requirements and thus the speed at

which a given task will run. In the map-matching system (Chapter 4) it was

deemed unnecessary to integrate JSDL into WPS because provided that

incoming observations could be processed more quickly than the data arrival

rate there was no performance advantage to be gained from running the task on

a faster machine. Consequently the JSDL was hard wired into the WPS in an

opaque manner. This had the effect of shielding the WPS user from the

unfamiliar JSDL schema, albeit at the expense of flexibility in resource

provisioning.

7.2.2 Improvements to SWE Data Services

With regards to SWE data services it appears that there is considerable scope

for existing and proposed standards to be consolidated. For example, in order

to interface the SES with the SOS in the road traffic monitoring system (Chapter

5) it was necessary to create a bridge program to poll the SOS for new

observations and forward them to the SES as SOAP encapsulated WSN

compliant notifications. Although the adopted approach was relatively

straightforward it is noted that interoperability between these components could

be significantly improved. There is no reason why both the SOS and SES

service interfaces could not be implemented by a single service instance that

provides both push and pull based access to observations. This would have the

potential to greatly simplify the road traffic monitoring system, as three

components, the SOS, SES pusher and SES, could be reduced to one.

Furthermore this would enable overall system latency to be reduced as

observations could be forwarded to consumers as soon as they arrived rather

than waiting for the SOS to be polled. According to the OWS-7 engineering

report (Fairgrieve, 2010) there is currently ongoing discussion within the OGC

as to whether asynchronous filtering and notification should be incorporated into

the SOS specification.

Discussion

214

Certain design features of the SES encourage better performance and

interoperability compared to the SAS design. The incorporation of CEP into the

SES enabled voluminous observations to be condensed into a smaller amount

of relevant information, thus significantly reducing the processing and

messaging overheads further on in the geoprocessing chain. In terms of

interoperability the inclusion of WSN specifications is likely to improve

compatibility with other services in both the web and grid domain, given their

widespread adoption.

7.2.3 Improvements to the WPS

The WPS specification is not designed for running continuous open-ended jobs.

In the map-matching system the WPS interface was modified to enable

continuous jobs to be managed. Although the method of launching a grid

process for each sensor resulted in resource provisioning inefficiency (Section

7.4.1) it did enable real-time observations to be processed relatively quickly as

job scheduling delay was only encountered when starting the job rather than for

every observation. It is suggested that for continuous jobs the Execute

operation be replaced by startExecuting and stopExecuting operations to

provide a clearer management interface for continuous processes (Section

4.3.5).

Rather than providing the WPS with all the input data on invocation, a URL

reference to the SOS repository was provided so the process could dynamically

poll this repository for new observations. A proposed extension to the WPS

(Woolf and Shaon, 2009b, Woolf and Shaon, 2009c) to handle asynchronous

jobs includes the ability to pause and cancel processes, which proved to be

useful for controlling long-running processes. For example, the existing

Execute operation could be used to start a long-running job and the proposed

cancel operation could be used to stop the job. In the Sensors Anywhere

discussion paper (Uslander, 2009) this style of execution is referred to as cyclic

and it is suggested that a total duration or total number of cycles be provided as

an Execute input parameter rather than allowing the process to run

continuously. This time-out concept presents an improvement to the approach

Discussion

215

adopted in the map-matching system because it prevents a job from running

eternally in the event of user carelessness or accidental loss of the job’s unique

identifier.

7.2.4 OGC Services using IaaS and PaaS

Despite the current lack of standards in the cloud computing domain, it presents

a promising solution to the performance and scalability problems facing OWS

and SWE services. Presently cloud computing is driven by large IT companies

for commercial gain. Many organisations consider this a disincentive to cloud

adoption, preferring instead to use community driven and standards-based grid

infrastructures. By their very nature cloud data centres must be large to benefit

from economies of scale (Buyya et al., 2008). However, cloud infrastructure

does not necessarily have to be operated by corporations and we are likely to

see the cloud model adopted by academia in the future. Current open source

cloud software such as Eucalyptus (http://www.eucalyptus.com) and

OpenNebula (http://www.opennebula.org) present a solution for organisations to

host their own private cloud and it is likely that emerging academic cloud test

beds will be based on these.

Usability is a primary motivation to use cloud technology. Commercial cloud

infrastructures offering IaaS and PaaS are significantly easier to use than grid

services. From an end user’s perspective, access to a grid service requires a

valid grid certificate which must be installed correctly and this alone requires

some degree of expertise in grid security. Grid portals and Problem Solving

Environments go some way to alleviate this problem by providing a user friendly

interface to grid applications, but these also add another layer of complexity to

grid application development. From the developer’s perspective, expertise in

SOAP based web services is mandatory in order to develop and deploy

applications on the grid. Furthermore, almost all grid middleware can only be

deployed on Linux based platforms. In comparison, applications built on IaaS

and PaaS do not require distributed computing expertise to use. Additionally,

cloud service providers present easy to use web based management consoles

Discussion

216

to manage the virtual machine lifecycle, as well as providing a set of well

documented RESTful APIs to the developer.

Standardisation in IaaS and PaaS is important for cloud users. For example, in

the road-traffic monitoring system the Amazon EC2 IaaS was used to scale-out

the data input subsystem by building an AMI containing the required software

and data. It would have been very difficult to port this AMI to a different

infrastructure provider because the AMI file format is not an open standard.

However, the adoption of the proposed Open Virtual Machine Format (Section

2.3.6) would solve this problem. IaaS could benefit from standardisation in

three areas; web service lifecycle management interface, virtual machine image

file format, and the adoption of a common security model. Major GIS vendors

are beginning to develop cloud based GIS platforms and this trend is likely to

continue. For example, it is already possible to deploy ESRI’s ArcGIS on EC2

instances, and ERDAS Apollo is available as a cloud service for a monthly

subscription.

7.3 Performance Issues in Distributed Monitoring an d Prediction

Monitoring and prediction systems collect vast quantities of data which must

normally undergo some filtering and analysis before it can be used in decision

support scenarios. In the implemented systems job scheduling (Chapter 4),

data I/O (Chapters 4-5) and data transfer (Chapter 6) were found to be the

major bottlenecks. The problems encountered and potential solutions to these

are discussed below.

7.3.1 Job Scheduling

The timely scheduling of grid compute jobs is problematic for on demand

monitoring and prediction applications that have a hard real-time deadline. In

itself job scheduling is an NP-hard problem (Moreno, 2003) in which queued

jobs must be allocated to available resources while minimising some user cost

function. Sufficient resources are not always available and significant

scheduling delays may result. A 28 minute scheduling delay was experienced

in the map-matching system which allowed hundreds of GPS observations to go

Discussion

217

unprocessed because their processing window had ended before the job was

launched. For mission critical monitoring and prediction applications it is often

necessary for all observations to be processed within a short time window

(Kopetz, 1999). The majority of geohazard early warning and post-disaster

management systems fall into this category and for such systems the significant

delay experienced here would be unacceptable.

If there are insufficient available resources to run all the jobs then scheduling

delays are unavoidable. However, grid interoperability has made it possible to

balance a job workload not only within a compute cluster, but also between

clusters and in some cases between grids (Yagoubi and Slimani, 2007).

Recruiting from a wider pool of resources in this way improves the chance of

obtaining an available processor. As yet, resource sharing amongst cloud

providers is not widespread despite the economies of scale it provides. It

seems likely that more cooperative academic clouds will emerge in the future

but this is dependant on the definition and uptake of open standards.

Many scheduling systems enable computing resources to be reserved in

advance for a specific time of day (Xing et al., 2004). This capability is likely to

be of use only for monitoring and prediction applications for which the

computational requirements are known in advance, rather than for event driven

applications. Service Level Agreements (SLA) are a bilateral agreement

between the service provider and consumer (MacLaren et al., 2004) which have

emerged as a more flexible way of negotiating scheduling priorities. The OGF’s

WS-Agreement specification (Andrieux et al., 2007) is used for negotiating

SLAs; one of its goals is to provide assurance to the consumer of the level of

service they can expect. For monitoring and prediction systems SLAs have the

potential to guarantee quality of service in terms of job scheduling delay

(Baranski and Schäffer, 2010).

Job scheduling algorithms often require an estimate of each job’s execution

time in order to optimise scheduling (Malarvizhi and Uthariaraj, 2009). Due to

their continuous style of execution the compute jobs in the map-matching

system would not be able to provide this information, as the length of job is not

Discussion

218

known at the time of job submission. At the NGS, jobs are scheduled using a

fair share policy; those users who have used the least computing resources in

the recent past are given priority. For event driven monitoring and prediction

applications this is likely to pose a problem because the level of access to

computational resources will be restricted after a major computational event has

occurred.

It can be concluded that despite difficulties in job scheduling it is possible to use

grid processing for near real-time geoprocessing applications, provided that a

SLA is in place that guarantees a minimum provision of service. The

standardisation of resource negotiation through the uptake of WS-Agreement is

likely to be of benefit to monitoring and prediction applications as this provides a

mechanism through which they can be assured a particular level of service.

Given that the processing time of a job is often required in advance by

scheduling algorithms it may be concluded that continuous running compute

jobs are not always a satisfactory solution for data streaming applications. This

problem can be circumvented by scheduling numerous finite jobs as opposed to

a continuous job but is likely to suffer a performance penalty due to scheduling

overheads.

7.3.2 Data I/O

According to Szalay and Blakeley (2009) data access is becoming the major

limiting factor in computing systems. This view was reinforced by the scalability

results from both the map-matching and traffic monitoring systems. Poor

performance can be attributed to hardware constraints such as slow disk seek

times and low I/O bandwidth. Such issues are exacerbated when there is a lot

of competition for storage resources, and in database systems this often

manifests in the form of deadlock which impedes performance further.

Database deadlock occurs when two or more transactions are each waiting for

locks to be released that are held by the other (Connolly and Begg, 2005). In

the map-matching system it was found to occur in the SOS database and

caused a 23 minute processing delay. The unpredictable but generally poor

response time observed in the WFS and SOS at an increasing number of user

Discussion

219

requests suggest that bottlenecks are the combined result of database deadlock

and more general I/O constraints.

Poor availability in non-transactional data stores is commonly alleviated by

replicating the data store amongst several servers and load balancing the

incoming requests in a round-robin fashion (Cardellini et al., 2002). The WFS in

the map-matching system could have been replicated in this way because it is

used in a read-only manner, but it is rarely possible to replicate a transactional

data store because it violates data consistency in accordance with Brewer’s

CAP theorem (Lynch and Gilbert, 2002). Strong data consistency is important

in the map-matching SOS. For example if a describeSensor query were

performed on one data replica before insertObservation requests from another

data replica were made consistent, then many observations would go

unprocessed. An alternative to replicating the data source is to minimise the

number of transactions at the data store. This is achievable in data streaming

applications by filtering out irrelevant observations before committing them, or

by aggregating observations before insertion as this reduces the overall

transaction lock time.

On the other hand, some spatial data services may tolerate eventual

consistency. Cloud services provide an eventually consistent platform from

which high availability spatial data services can be published. For example,

Amazon S3 has adopted the eventual consistency model and the Google App

Engine API provides both strong and eventually consistent data access.

Sensor data services that handle a large volume of incoming observations but

that are only occasionally subjected to batch queries are likely to be well suited

to an eventually consistent data store. A SOS backed by a distributed,

document oriented (NOSQL) CouchDB database (http://couchdb.apache.org)

has recently been developed as part of the GeoCENS project (Liang et al.,

2010). This database has a strongly consistent data model but is still likely to

provide a significant performance advantage over relational databases as it has

a lock-less update model. Lock-less update enables updates to be committed

on a first come first served basis, with transactions either being committed or

failing completely. A performance comparison between the GeoCENS SOS

Discussion

220

and relational SOS such as the 52North implementation would make an

interesting piece of future work. Similarly, the development of an eventually

consistent SOS using cloud services and performance comparison to its

strongly consistent counterparts would also be worthwhile extension to this

thesis.

In the road traffic monitoring system the insertion of new observations into the

database was found to present a bottleneck which was caused by executing a

complex pre-processing trigger on the insertion of each observation. The

trigger determined the direction of each vehicle in relation to the road, the

travel-time spent on each road, and estimated the path taken between non-

adjacent road links. A potential solution to this bottleneck would be to create

multiple read-only replicas of the road network database, and load balance the

pre-processing queries between replicas. In this way the pre-processing

overhead would be separated from the transactional updates to the road

network travel cost.

It was found that the road network dataset used in the traffic monitoring system

was too large to load into main memory and this prevented analysis from being

performed on the road network. This was solved by horizontally partitioning the

road network tables using regular data decomposition, and using the load-on-

demand API provided by Oracle to analyse each network partition sequentially.

A secondary motivator for this approach was to bolster query performance in

the pre-processing trigger. However, it was not possible to compare the

performance of the trigger over partitioned and non-partitioned tables due to the

lack of available dense GPS tracks. As only sparse GPS tracks were available,

the trigger was redesigned to incorporate shortest path analysis to determine

the path between non-adjacent road links, which meant that partitioned road

network tables had to be employed to run the analysis.

It can be concluded that it is difficult to scale-up transactional data sources in a

distributed architecture and that they can often present a considerable

bottleneck. Eventual consistency may be appropriate for some sensor data

applications and an eventually consistent SOS has been suggested as an

Discussion

221

interesting future research topic. Data de-clustering through horizontal

partitioning goes some way towards alleviating data access bottlenecks

(Cruanes et al., 2004) but in the road traffic monitoring application, queries over

the partitioned road network still suffered from poor response times.

7.3.3 Data Transfer

Data transfer is a significant problem in distributed systems because bandwidth

improvements have not kept pace with improvements in storage capacity (Gray

et al., 2005). It is recognised that co-locating data and computation is the

preferred solution for processing large datasets (Skillicorn, 2002). In the

context of sensor geoprocessing this suggests that sensor data repositories

should be hosted in grid or cloud data centres to enable analysis to be

performed in close proximity to the data. The key advantage of geoprocessing

at the data source is that costly network data transfers are minimised, thus

providing a performance advantage over the alternative method of sending data

to a remote geoprocessing service. However, this performance advantage can

only be realised if the operation is data-reducing in nature, i.e. the resulting

feature set is smaller than the original dataset (Friis-Christensen et al., 2007).

The approach taken in the road traffic monitoring system was to co-locate data

and computation in a parallel relational database. The relative merits and

shortcomings of this approach are discussed in detail in Section 7.2.3. An

alternative approach to database geoprocessing is high-level gridification

whereby data and processing services are hosted on the grid. Besides fast

interconnects between storage and computational nodes, GridFTP can be used

to rapidly transfer data between locations using multiple parallel streams

(Allcock et al., 2003), and OGSA-DAI can be used to federate access to

multiple databases. This approach was exemplified in the SEE-GEO project

(http://www.edina.ac.uk/projects/seesaw/seegeo) in which spatial extensions to

OGSA-DAI were developed to provide access to grid-based data services from

a standard web service client. However, this method requires a significant

development effort.

Discussion

222

The same end result of close proximity between data and processing services

can be more easily implemented on the cloud infrastructure as exemplified by

the SPARK MapReduce work (Chapter 6). The main obstacle in this

implementation was the excessive time taken to upload a classified satellite

image to cloud storage. Network bandwidth is not responsible for this

bottleneck, as the observed download speed for the re-classified image was 28

times faster than upload speed. This discrepancy between upload and

download speed is a phenomenon known as asymmetric communication, and in

many cases is artificially introduced by internet service providers to account for

the imbalance between upload and download volume of typical internet users

(Bose et al., 2003).

In this thesis it has largely been assumed that HTTP can be used for the

transportation of data from sensor devices and data services to geoprocessing

services. However, the uploading of data to distributed storage within

reasonable time constraints presents a considerable challenge considering the

asymmetric communication phenomenon. To avoid upload bottlenecks it is

necessary for organisations that carry out computational geoprocessing on

large data sets with a near real-time requirement to migrate the entire workflow

to a data centre, or to host their own data centre in the form of a private cloud or

compute cluster. Gray and Patterson (2003) stated that the cheapest and

fastest solution to upload very large datasets was to send a disk to the data

centre via postal services; this is still the case today and Amazon have began to

offer such a service for uploading data to S3. This method is not viable for near

real-time datasets although it does present a useful alternative for the

occasional transportation of large data archives. Extremely poor transfer time

from a standard web client to S3 was observed in the SPARK MapReduce work

to upload a file representing a single satellite image. For real-time analysis of

satellite imagery it would thus make sense to couple satellite receiving stations

with data centres, either by locating them in the same place, or by creating a

fast network link between them.

For geoprocessing tasks that operate on small data items there is less of a case

for co-locating data and computation. For example, in the map-matching

Discussion

223

architecture the actual algorithm was processed in a computational grid, but

spatial data was retrieved from web components exposing OGC compliant

interfaces. The system was expected to withstand the physical separation of

data and processing components because in each case only small volumes of

data were being transferred. Indeed, data access was found to be the limiting

factor in this system rather than bandwidth constraints. This data access

bottleneck was the result of excessive load being placed on the spatial

databases behind the data services, so locating the data services on the grid in

this case would have had little effect on performance. Instead, addressing the

database bottleneck through techniques such as de-clustering (Section 2.4.2) is

likely to have achieved better results.

7.4 Methodologies for Real-time Distributed Geoproc essing

A review of parallel geoprocessing techniques was conducted in Section 2.3. It

was found that most of the techniques assume a static dataset and that the

introduction of real-time data poses a new set of challenges. In this Section an

evaluation of the typology, and the techniques employed within the

implementation Chapters is conducted in an attempt to highlight generic

methods of distributing real-time geoprocessing operations.

7.4.1 Data Stream Geoprocessing (DSG)

It was hypothesised that processing multiple streams of geospatial data from a

sensor collection could be achieved by allocating one processor to each sensor

data stream. This approach was used to develop a grid based map-matching

system to process multiple streams of vehicle GPS observations concurrently.

The major advantage of this approach was its simplicity; minimal software

development was required to process numerous streams of data concurrently.

Although this technique did prove to be effective it was noted that for sparse

data streams the monopolisation of grid computing resources for long periods

using this configuration was likely to be wasteful. Conversely, for dense data

streams the workload could overburden a single processor and result in the

development of a processing backlog. Thus it can be concluded that the single

Discussion

224

sensor stream per processor approach is valid for some DSG applications but is

likely to be unsatisfactory in the majority of cases due to its lack of flexibility.

The problem of resource provisioning for stream-based processing systems is

often complicated because unpredictability in the rate of data arrival is typical

(Babcock et al., 2002). This difficulty is further compounded when attempting to

perform processing on grid systems because grid resource changes and

failures are common (Kalogeraki et al., 2008). In the Data Stream Management

System (DSMS) literature a variety of methods are suggested to overcome this

problem of resource provisioning such as load shedding and data stream

partitioning.

Load shedding is a commonly used technique in which some of the incoming

observations in a data stream are dropped to ensure that a processing backlog

does not develop. Essentially load shedding sacrifices the quality of

observations in terms of loss ratio or sampling rate to ensure a shorter

processing delay (Tu et al., 2006). Although this trade off may be acceptable

for some applications it is likely to be unacceptable for mission critical

monitoring and prediction systems.

An alternative to load shedding is data stream partitioning, a technique that

parallelises the processing of a data stream using either a functional

decomposition or a data decomposition. Functional decomposition is relatively

easy to achieve using a processing pipeline. Data decomposition is more

difficult, particularly if there are dependencies between the data items in a

stream. In the simplest case, each data item can be processed independently

of each other. In a more complex scenario, the processing of each data item

relies on information from a window of preceding data items. Finally, the most

complex scenario involves the detection of complex events, i.e. events that are

an abstraction of other events (Luckham and Schulte, 2008). These different

levels of dependence are respectively termed atomic transformations, stream-

dependant transformations and event correlations. In the examples

implemented in this thesis, the map-matching algorithm can be considered a

stream-dependant transformation, because the determination of vehicle

Discussion

225

orientation requires both the current and the preceding data item in the stream.

In the traffic monitoring system, road change event detection falls into the event

correlation category because it is impossible to predetermine the number of

data items (map-matched observations) that will occur between road change

events. For example, in a given time window or count window there is no

guarantee that the vehicle will move onto a different road.

Cherniack et al (2003) present two data stream partitioning approaches termed

box sliding and box splitting that are used in the Aurora DSMS. The former

approach uses a functional decomposition whereas the latter uses data

decomposition. Query execution in DSMS is achieved using a processing

pipeline which can be conceptualised as a chain of boxes in which each box

represents a process. In a distributed DSMS the processing pipeline may span

several processors although more than one box may be located on each

processor. Box sliding is the practice of relocating a box from processor 1 to

another processor that sits immediately before or after processor 1 in the

pipeline. Shifting a box upstream is recommended if a data reducing operation

is being performed, whereas shifting a box downstream is useful if the operation

is data expanding in nature. The process of box sliding is a useful method of

balancing the load in a processing pipeline. Box sliding can be applied

regardless of the level of dependency between data items, but the processing

operation must be composed of multiple independent stages. Figure 7.1

demonstrates upstream box sliding.

Figure 7.1 Upstream box sliding: Process B is mov ed from Processor 2

to Processor 1 [adapted from Cherniack et al., (2003)]

Discussion

226

Box splitting is the practice of duplicating a box to another processor and

diverting some of the load from the original box to the newly duplicated box.

Box splitting requires that a new box be placed on each side of the split

process; the upstream box is a filter that divides the data stream amongst the

split processes, and the downstream box merges the results. Box splitting is

depicted in Figure 7.2. It should be noted that to maintain the integrity of the

data stream the order of observations should be preserved, thus the merge

operator is also required to sort the observations into their original order.

Figure 7.2 Box Split: Process A is duplicated on Pr ocessor 2 and

Processor 3, the filter operator equally allocates incoming observations

amongst the three processors [adapted from Cherniac k et al., (2003)]

Atomic transformations can easily be processed using the box-splitting method;

the Aurora (Carney et al., 2002) and Borealis (Abadi et al., 2005) distributed

DSMS both use this approach. A requirement of this approach however, is that

to achieve a significant speed-up the cost of the computational phase must

outweigh the cost of merging the results (Brito, 2008). Processing stream-

dependent transformations is more difficult because it requires incoming

observations to arrive or to be retrieved in order. Data stream sources can be

unpredictable and thus there is no guarantee that observations will arrive in the

correct order (Tatbul et al., 2003); this is particularly the case when

observations from multiple streams are retrieved from a single endpoint. For

example, in the map-matching system this was experienced when the SOS was

overloaded by incoming observations and deadlock occurred in the database

causing some observations to arrive out of order. Commonly, this problem is

mitigated by buffering the stream before processing (Babcock et al., 2002,

Discussion

227

Abadi et al., 2005) as this allows delayed observations to arrive before they

miss their processing window.

A potential problem with box-splitting is that the procedure of creating a new

instance of the process may incur a significant delay attributed to job

scheduling, dependant on the current level of usage at the grid cluster (Section

7.3.1). In DSG systems observations will continue to accumulate while job

scheduling is taking place so an important requirement is that sufficient storage

is available to ensure observation persistence. Mission critical monitoring and

prediction systems may not be able to tolerate such scheduling delays in which

case a prioritised scheduling policy or a dedicated compute cluster may be

necessitated. On the NGS it is possible to reserve CPU time but this requires

advance knowledge of the amount of resource required, which is not always

possible for streaming applications.

Brito (2008) presents optimistic parallelisation as a technique to accomplish

complex event detection in parallel. The problem with processing such tasks in

parallel is that consecutive observations or events may be processed out of

order resulting in an incorrect solution being computed. In optimistic

parallelisation observations or events are scheduled for processing based on

their timestamp; processing begins as soon as the likelihood of the item being

processed successfully becomes acceptable. Using this method items may be

processed out of order, but the output from the process is not committed until

preceding items have been processed. If a preceding item affects the outcome

of the item that was processed out of order then it is recalculated. Although this

technique wastes some compute cycles it is capable of processing data

streams more quickly than is possible using sequential methods and ensures

that the correct output is generated.

The system presented in Chapter 4 highlighted the inefficiencies of the single

sensor per processor approach. Grid computing was used in the map-matching

system to process numerous data streams in parallel. However, for very dense

data streams, or for computational processing, it may also be necessary to

parallelise the processing of each stream. Possible solutions include load

Discussion

228

shedding, box-splitting, box-sliding and optimistic parallelisation. In this regard,

the DSG category of geoprocessing operation could be further subdivided into

the aforementioned atomic transformations, stream-dependent transformations

and event correlation to better reflect the possible methods of parallelisation.

7.4.2 Fine-grained Snapshot Geoprocessing (FGSG)

Two methods of performing FGSG were suggested in Section 3.4. For fine-

grained geoprocessing operations with a relatively simple computational

complexity it was proposed that a spatial database be used to perform the

computations. However, for more computationally intensive operations the use

of the message passing paradigm was suggested.

The approach taken in the road traffic monitoring system was to position data

storage and processing together in a parallel relational DBMS. The key merit of

this approach is its simplicity to implement. Additionally, the expression of

geoprocessing operations in SQL is advantageous because of its declarative

style; query execution is kept separate from task definition. As a result, process

optimisations can be performed by the query interpreter using indexes, without

altering the query statement.

However, there are also a number of drawbacks to geoprocessing at the

database. Firstly, many geoprocessing tasks operate on raster and coverage

datasets but relational database geoprocessing is biased towards relationally

structured data. Nevertheless this is changing, and support for rasters and

coverages amongst commercial and open source spatial databases is growing.

For example, Oracle Spatial can store raster data and supports a wide variety of

processing operations (Kothuri et al., 2007) and similarly PostGIS 2.0 is set to

include full raster support (Racine, 2010).

Secondly, the expression of particular geoprocessing algorithms in SQL can be

problematic. For example, it is not possible to declare variables, loop through a

feature set, or use exception handling in SQL and this severely restricts its use

as a geoprocessing language. Consequently Simple Features for SQL

Discussion

229

(Herring, 2006) and the SQL/MM (Stolze, 2003) specifications concentrate

primarily on low-level geoprocessing operations. In some cases database

vendors have applied their own extensions to the SQL language to make

complex geoprocessing functionality available. For example, it is possible to

perform nearest neighbour analysis using SQL commands in Oracle Spatial.

Alternative procedural and object oriented database programming APIs provide

a more powerful interface that enable higher level operations to be performed,

but these have not been standardised.

Another problem with database geoprocessing is that certain operations may

need to reference data from sources external to the database, or the database

may simply be unable to handle the memory or computational requirements of a

particular operation. Furthermore, this approach introduces a tight-coupling

between data and processing operations which goes against the principles of

distributed architectures. For example, SQL requires table and column names

of a particular dataset to be hard-coded into the task definition. Recent work by

González Cortéz and Leduc (2010) has attempted to overcome this constraint

using Gearscape Geoprocessing Language, a geoprocessing language that

implements spatial SQL. The presented approach decouples the

geoprocessing script from the data using tables and literals as parameters.

Overall the database geoprocessing technique can be considered effective.

Improvements could be made to existing spatial database implementations by

building in more high-level geoprocessing functionality. The nearest neighbour

functionality in Oracle Spatial was found to be extremely useful, and this could

be adopted by other spatial database vendors. Similarly, other fine-grained

operators such as Theissen polygon creation and line-of-sight analysis could be

made available as pre-defined functions. Such extensions would make an

interesting topic for further research, particularly if they were designed to take

advantage of distributed databases by running on several processors

concurrently. Additionally, further investigation into the use of MPI for fine-

grained geoprocessing is required. No attempt was made to use MPI in this

work because of the large amount of development work involved. However, the

development of a standard library of parallel geoprocessing tools that takes

Discussion

230

advantage of MPI is likely to be useful considering that MPP clusters on which

to run such functions are now widely available through grid and cloud

computing interfaces.

7.4.3 Coarse-grained Snapshot Geoprocessing (CGSG)

The parallel geoprocessing of coarse-grained tasks has reached a high level of

maturity. Several tools and frameworks are available to facilitate the execution

of embarrassingly parallel problems on cluster, grid and cloud platforms.

Numerous examples of using such tools to perform coarse-grained

geoprocessing in parallel are presented in the literature and in nearly all cases a

significant speed-up is achieved.

As stated in Section 3.4, snapshot geoprocessing shares many similarities with

static geoprocessing and the main difference is that CGSG operations are

triggered by a real world event, rather than through manual invocation. In the

parallel SPARK implementation (Chapter 6) no attempt was made to define a

scenario, or to implement a service based framework in which the system was

triggered by a real-world event. The main reason for this omission was due to

the amount of manual user input required to prepare the initial classified image

and the predefined land-use templates.

The MapReduce programming model proved to be suitable for CGSG. With

regards to the creation of tools that enable parallel processing operations to be

rapidly developed, a geospatial MapReduce format converter would appear to

be a useful asset. For example, a tool to translate common image file formats

into Hadoop SequenceFile format would reduce the development effort of

writing MapReduce geoprocessing code. The proposed tool could offer a

number of partitioning strategies that roughly follow the approach taken in

Section 6.3.1. For example, partitioning options could include both overlapping

and non-overlapping Windows, RowSets and ColumnSets. A similar tool could

be developed to convert a set of output files back into a recognised image

format. A raster algebra MapReduce tool, MrGIS is currently being developed

by Chen et al (2008) and this is expected to contain some similar functionality.

Discussion

231

Unfortunately MapReduce is not a standardised framework and this is likely to

impede future work on the integration of MapReduce with geoprocessing.

Recently, the MapReduce patent was granted to Google Inc. (Dean and

Ghemawat, 2010) and this potentially puts the future of open source

MapReduce projects such as Hadoop in jeopardy. Although it seems unlikely

that the patent will be vigorously enforced it still presents a significant

disincentive to the use of MapReduce in open geoprocessing systems.

7.5 Conclusion

It can be concluded that interoperability problems in grid based geospatial

monitoring and prediction systems could be mitigated by making recommended

changes to SWE data services and the WPS interface. Furthermore,

compatibility between OGC schema and web service tools needs to be

addressed. IaaS and PaaS technologies have the potential to improve

performance and scalability in real-time monitoring and prediction systems but

standard interfaces must be adopted if a long lasting benefit is to be maintained.

Performance constraints in real-time geospatial monitoring and prediction

systems are primarily caused by job scheduling bottlenecks and data transfer

and data access issues. For jobs with a finite runtime scheduling delays can be

mitigated using SLAs. However, continuous running jobs present a problem in

this regard as the job lifetime is not known in advance and therefore cannot be

made available to the scheduling algorithm. Data access bottlenecks

commonly manifest in the form of database deadlocks but can be mitigated by

minimising data access through observation aggregation, or by using an

eventually consistent data store. Data transfer bottlenecks can be avoided by

performing processing close to the data where possible; consequently the use

of data centres to store and process data is increasing.

The monitoring and prediction systems implemented in this work enabled

important interoperability and performance issues to be highlighted. However,

in each implementation the methodology undertaken represents only one of

many possible approaches and unsurprisingly certain deficiencies in the

Discussion

232

implemented systems have been highlighted. It was found that in DSG the

single stream per processor approach is not universally applicable, and in the

FGSG system, no attempt was made to implement or evaluate the effectiveness

of the MPI/ MPP approach. Nonetheless the simple geoprocessing typology set

out in this work has on the whole proven to be an effective means of

determining the appropriate processing architecture and methodology for real-

time geospatial monitoring and prediction applications.

Conclusion

233

Chapter 8 Conclusion

8.1 Thesis Summary

This research has been driven by technological advancements in two fields;

distributed computing and sensor web. The integration of these fields has been

shown to benefit geospatial monitoring and prediction systems by enhancing

their ability to process and analyse observations in real-time. In Chapter 2

background was provided on the key technological components to this work;

namely distributed computing, parallel processing and geospatial web services.

In particular, Chapter 2 focuses on how distributed computing technologies can

be used to solve issues of scalability and performance in real-time

geoprocessing workflows for Earth systems monitoring applications. Within

Chapter 2 objectives 1 – 3 are addressed.

Chapter 3 set out the conceptual foundation for this thesis. Within this chapter

an attempt was made to classify geoprocessing operations in relation to

distributed computing architectures. The classification was intended to facilitate

system architects in the design of geospatial monitoring and prediction tools

and can be considered a first step towards the development of a generic

distributed geoprocessing toolbox. Three distinct classes of geoprocessing

operation were identified; DSG, FGSG and CGSG. DSG involves the

processing of an unbounded stream of input such as a set of observations from

a single sensor through time. Conversely, snapshot geoprocessing refers to the

processing of data from one or more sensors at a given instant in time.

Snapshot geoprocessing is further subdivided in this classification into coarse-

grained and fine-grained operations; coarse-grained operations can be easily

parallelised whereas fine-grained operations cannot. The process of

developing and evaluating a system representative of each operation type has

shown that distributed computing can be integrated with the sensor web and

has also highlighted a number of interesting scalability and interoperability

issues (Section 7.2 and Section 7.3). Objective 4 is addressed within Chapter

3.

Conclusion

234

Chapter 4 presents a scalable map-matching (DSG) system that uses ongoing

grid compute jobs to process a continuous stream of real-time GPS

observations from a fleet of vehicles. This system seamlessly integrates OGC

and OGSA web services into a real-time geoprocessing workflow;

geoprocessing is carried out on grid compute nodes which are interfaced to

OGC services using low-level gridification.

In Chapter 5 a real-time road traffic monitoring system is developed that uses

FCD acquired from a fleet of GPS equipped council vehicles to estimate travel-

time. Through a web mapping interface this system enables clients to query the

fastest route between any two points in the study area based on real-time road

traffic information. This provides an example of a FGSG operation in which a

parallel relational database is used to perform the bulk of the processing and

Amazon EC2 IaaS is used to load test the system.

Chapter 6 explores the use of cloud computing and the MapReduce paradigm

to perform a coarse-grained snapshot geoprocessing operation. The operation

is an image processing algorithm that reclassifies a satellite image on the basis

of the spatial frequency and arrangement of pixels. Collectively Chapters 4-6

address objectives 5 and 6.

Chapter 7 attempts to answer the main research questions of this thesis relating

to performance, interoperability and processing methodologies. An attempt is

also made to relate the content of this thesis to other work in the field.

In this Chapter the thesis is summarised (Section 8.1) and the main

interoperability and architectural recommendations are stated (Section 8.2).

Opportunities for future work are presented (Section 8.3) and in Section 8.4 a

direction is set out for the future in this field. Objective 7 is addressed by both

Chapter 7 and this Chapter.

Conclusion

235

8.2 Interface and Architectural Recommendations

8.2.1 Improvements to OGC standards

Recommendations for improvements to OGC standards resulting from this

thesis are summarised as follows.

1. Extension of WPS specification to accommodate continuous processing

operations.

The WPS specification does not currently enable continuous processing

operations to be performed and it is assumed that every processing operation

has a finite lifespan. In the context of sensor web geoprocessing, the extension

of the WPS specification to allow for the management of open ended

computational tasks is recommended. Specifically, the inclusion of a

StopExecuting operation would enable continuous processing tasks to be

managed through the WPS interface.

2. Integration of OGC push and pull interfaces for sensor data

The current distinction in the OGC specifications between the push interfaces to

sensor data (SAS/SES) and the pull interface (SOS) is unnecessary.

Integrating these two service interfaces into a single unified interface would

significantly improve and simplify sensor based geoprocessing workflows that

conform to these specifications.

3. OGC schema and web service tool compatibility

The lack of interoperability between OGC schema and standard web service

tools presents a major barrier to the integration of geospatial web services with

distributed computing. To make progress in this field, solving this compatibility

problem is crucial.

8.2.2 Architectural Recommendations

The geoprocessing typology developed in this thesis was used to determine the

appropriate architecture for each geoprocessing scenario. To process multiple

independent streams of geospatial data on the grid (DSG), the one sensor per

processor approach was found to be over simplistic. It is recommended that a

Conclusion

236

tool be developed to balance the processing load produced by a sensor array,

such that a single sensor data stream can be partitioned amongst multiple

processors if necessary, and conversely so multiple sensor data streams can

be managed by a single processor as required. In this regard, three distinct sub

categories of DSG operations have been identified; atomic transformations,

stream dependent transformations and event correlation.

To process snapshots of geospatial data that require little or no synchronisation

between sub-processes (CGSG) there are already a plethora of frameworks

available to process in parallel, common examples include Condor and Hadoop

MapReduce. CGSG geoprocessing operations are well suited to the NOW

processing architecture but require data partitioning to be performed which adds

complexity to the workflow. It is suggested that a new language is required to

express how spatial data be partitioned and reassembled. Inclusion of

information on data partitioning and reassembly into WPS specification would

enable existing geoprocessing infrastructure and services to be leveraged in a

standardised fashion.

To process snapshots of geospatial data that require considerable

synchronisation between sub-processes (FGSG) two architectural approaches

are suggested; processing within a spatial database and processing using the

message passing paradigm on an MPP cluster. In this thesis only the spatial

database approach was evaluated. The approach was found to be effective but

not universally applicable as the range of geoprocessing operations that can be

performed at the database is limited, due to restrictions in the type of data that

can be stored in the database, and in the expression of geoprocessing tasks

using SQL. It can thus be concluded that the spatial database approach is

suitable for the majority of simple fine-grained geoprocessing operations, but for

complex modelling it is suggested that the message passing / MPP approach is

more suitable.

A summary of the popular combinations of geoprocessing task, processing

architecture, parallel strategy, partitioning schema and programming model is

displayed in Table 8.1

Conclusion

237

Table 8.1: Geoprocessing Operations, Architectures and Parallel

Strategies

 Parent

Category

Processing

Architecture

Parallel Strategy Partitioning Strategy Programming

Model /

DSG

MPP Pipeline Functional Any

NOW Sensor per

processor

Data (by sensor) Any

NOW / DSMS Data stream

partitioning

Data (by observation) Any

CGSG NOW Task farm Data (geometric) Data parallel

NOW Divide &

Conquer

Data (geometric) Any

NOW MapReduce Data + Functional Data parallel

FGSG MPP MPI Data or Functional Message

passing

DBMS De-clustering Data SQL

8.3 Future Work

This research has resulted in many questions and topics that are in need of

further investigation. Firstly, the implementations in Chapters 4-6 served to

highlight some important omissions in the geoprocessing typology developed in

Chapter 3. It was found that two of the three identified geoprocessing

categories were not finely divided enough to deduce the most appropriate

parallel processing architecture. Limitations of the typology are highlighted in

Section 7.4 and some refinements are proposed; namely that the DSG category

could be further subdivided into atomic transformations, stream-dependent

transformations and event correlation to better reflect the possible methods of

parallelisation.

 Implementing a system from each of the suggested sub-categories is

proposed as future work to validate these refinements in the context of the

geoprocessing typology.

Conclusion

238

A major limitation in this study was found to be job scheduling bottlenecks which

prevented sensor data streams from being processed in near real-time. Further

research into SLAs for near real-time processing is likely to be of considerable

benefit to the sensor web geoprocessing community, and to several other

communities that have an interest in on-demand near real-time processing.

The WPS-JSDL profiling work carried out by Woolf and Shaon (2009a) adds

considerable flexibility to the provisioning of computational resources to

geoprocessing tasks. A possible extension to this concept of flexible resource

provisioning would be to enable end-users to specify their target grid

infrastructure. In the map-matching system the WPS was tightly coupled to an

NGS GridSAM endpoint. This tight coupling between the WPS service interface

and the grid endpoint negates one of the benefits of low-level gridification in that

the end-user is unable to choose the infrastructure on which their job runs. A

complete separation between the front end service interface and the back end

processing resource would require two significant changes to the system.

Firstly, the interface would have to be changed to accommodate an endpoint

parameter; for SOAP based WPS this could be achieved by incorporating WS-

Addressing into the WPS request. The second issue is the staging of

executables from the WPS to the target grid. In the map-matching system this

issue was bypassed by storing the executables on a user’s home directory from

where they could be staged on to the compute node via GridFTP. Were the

user allowed to specify their own grid endpoint then a mechanism would be

required to stage the executables from the WPS to the endpoint. Currently this

presents a problem for low-level gridification as it requires a secure GridFTP

server to be running on the non-gridified WPS. An infrastructure agnostic WPS

would be an important step towards OGC-OGF interoperability and this concept

presents an interesting opportunity for further work.

With regards to OWS and SWE deployment, a further study investigating the

deployment of such services onto the cloud is likely to be of value to the

research community. Cloud technologies circumvent many of the obstacles

presented by gridification as geospatial web services that are deployed on the

cloud can be interfaced by the end user in the same way as normal web

Conclusion

239

services so there is no need to set up a web based proxy. As a result, the

benefits of high-level gridification (Krüger and Kolbe, 2008) can be realised

without the negative aspect of poor interoperability with other geospatial web

services. Furthermore, OGC data services backed by eventually consistent

databases are likely to alleviate the I/O bottleneck experienced at strongly

consistent databases in this systems implemented in thesis. Some work has

been carried out on cloud based OWS (Baranski et al., 2009, Liang et al., 2010)

but a full ecosystem of geospatial web services in the cloud has not been

implemented.

8.3 Future Outlook

The current trends in Earth systems monitoring are being driven by

technological improvements. Sensors monitoring the Earth are becoming

cheaper, smaller and more plentiful. They are also capturing data at resolutions

previously unattainable, resulting in huge amounts of spatial data that must be

filtered and analysed. To a large extent these improvements are driven by

growing concerns about environmental problems such as climate change.

Increasingly complex scientific techniques and Earth systems models now

require extremely detailed data from environmental sensors. If this trend

continues then the role of distributed computing to share, manage and analyse

data will become increasingly important.

At the global and national levels, research in this area is being carried out

through Spatial Data Infrastructure (SDI) projects. An SDI is defined as an

internet-based mechanism for the coordinated production, discovery, and use of

geospatial information in a digital environment (Budhathoki et al., 2008).

European funded SDI projects such as GDI-GRID, ORCHESTRA, GEOSS,

INSPIRE and GMES are attempting to put in place a set of core services to

facilitate Earth systems monitoring. Higher level applications can be rapidly and

dynamically composed from these core services for all kinds of purposes. As

these projects operate at the global and national level, a large amount of data is

involved as well as a potentially huge numbers of users. Consequently,

Conclusion

240

distributed computing is an important element that is required to ensure the

success of these projects.

As we have seen in the work carried out in this thesis, distributed computing is

also necessary for Earth systems monitoring at the regional level. Traffic

monitoring applications and remotely sensed image processing can benefit from

distributed computing to improve processing time performance, and scalability

in terms of the amount of data that can be processed by a given system.

To achieve large scale Earth systems monitoring it seems that there are few

alternatives to using distributed computing for geoprocessing. Reducing the

scale or depth of analysis, or running compute jobs for long time periods are not

sustainable solutions. Supercomputing is a valid alternative to distributed

computing for large-scale geoprocessing, but it cannot compete in terms of cost

performance (Abbas, 2004). Additionally, supercomputing can in many cases

be accessed via distributed systems. For example, grid infrastructures such as

the NGS offer supercomputing services, and cloud platforms such as AWS offer

a platform from which MPI jobs can be run. Consequently, improving the ease

with which parallel geoprocessing can be interfaced is required, if our Earth

systems monitoring programmes are to be sustained in the long term.

Barriers to integration of geospatial web services with distributed computing are

beginning to diminish as research into standards harmonisation continues. The

work presented in this thesis has made a contribution to the field by defining a

categorisation of real-time geoprocessing, and showing how these different

types of geoprocessing can be achieved in a distributed computing

environment, through a set of real world examples. In the future it seems likely

that the cloud architecture will see widespread adoption in the geospatial field.

Unlike the grid, which has been driven by academia, the cloud model is driven

by commercially driven IT companies. Consequently software providers are

likely to turn to this infrastructure because it is well supported and relatively

simple to use. Cloud computing is a combination of grid computing, utility

computing and virtualisation technology. It therefore incorporates the

advantages of grid computing, but it also provides a model that enables

Conclusion

241

infrastructure providers and service providers to benefit from economies of

scale, which is likely to prove successful in the commercial environment, as well

as in academia.

Appendix A

242

Appendix A Sensor Observation Service (SOS) Build &
Deployment Steps

Prerequisites

1) Java Development Kit (JDK) version 1.5 or higher

http://java.sun.com/javase/downloads

2) Working installation of Apache Maven

http://maven.apache.org/ (v2.2.1)

3) Working installation of PostgreSQL database management system

http://www.postgresql.org/ (v8.3)

4) PostGIS spatial extension to PostgreSQL

http://postgis.refractions.net/ (v1.5)

5) Working installation of Apache Tomcat (v6.0)

http://tomcat.apache.org/

6) Subversion client, e.g. TortoiseSVN

http://tortoisesvn.tigris.org/

Procedure

The following steps were followed to build, configure and deploy the 52 North

SOS. Note: This procedure assumes a windows platform although this is not

strictly required

1) Create a Spatial Database

a. Open the PostgreSQL PgAdmin console

b. Click on the local database server in the right hand pane and connect.

c. Right click on the server and select ‘new database’

d. Name the database ‘SOS’ and select ‘template_postgis’ from the

template dropdown box.

2) Configure Maven

Appendix A

243

a. Open the conf folder in the Maven install directory and edit the

settings.xml file

b. Under the profile tag insert the following profile:

<profile>
<id>52n-start</id>

<repositories>
<repository>

<id>n52-releases</id>
<name>52n Releases</name>
<url>http://52north.org/maven/repo/releases</url>
<releases>

<enabled>true</enabled>
</releases>
<snapshots>

<enabled>false</enabled>
</snapshots>

</repository>
<repository>

<id>geotools</id>
<name>Geotools repository</name>
<url>http://maven.geotools.fr/repository</url>

</repository>
<repository>

<id>Refractions</id>
<name>Refractions repository</name>
<url>http://lists.refractions.net/m2</url>

</repository>
<repository>

<id>Apache</id>
<name>Apache repository</name>
<url>http://repo1.maven.org/maven2</url>

</repository>
</repositories>

</profile>

c. After the profiles section insert the following active profile:

<activeProfiles>
<activeProfile>52n-start</activeProfile>

</activeProfiles>

3) Checkout the project from SVN:

a. Create a windows folder in which to install the sources

b. Right click in this folder and select SVN Checkout from the popup menu

c. Checkout the project by filling out the SVN URL

http://52north.org/svn/swe/main/SOS/service/trunk/SOS and the destination

directory for the source code.

Appendix A

244

4) Configure the Maven project object model: pom.xml

Once the sources have finished downloading open the pom.xml in a text editor and

make the following changes:

a. The name of your SOS webapp

<conf.sos.name>52nSOSv3</conf.sos.name>

b. The public IP of your SOS webapp

<deploy.target.host>128.240.60.30</deploy.target.host>

c. The port

<deploy.target.port>9090</deploy.target.port>

d. Your tomcat manager connection settings

 <!-- Tomcat Manager username **HAS TO BE CHANGED**-->

 <deploy.tomcat.manager.username>admin</deploy.tomcat.manager.username>

 <!-- Tomcat Manager password **HAS TO BE CHANGED**-->

 <deploy.tomcat.manager.password>******</deploy.tomcat.manager.password>

<!--installation directory of the tomcat servlet engine **HAS TO BE CHANGED, IF

NECESSARY**-->

<deploy.tomcat.home>C:/Programme/Apache Software Foundation/Tomcat

6.0</deploy.tomcat.home>

e. The connection settings for the database created in Step 1.

<!--connectionstring to the DB **HAS TO BE CHANGED** -->

Appendix A

245

 <conf.sos.ds.connectionstring>

 jdbc:postgresql://localhost:5432/SOS

 </conf.sos.ds.connectionstring>

 <!-- your DB-username **HAS TO BE CHANGED** -->

 <conf.sos.ds.user>aengus</conf.sos.ds.user>

 <!-- your DB-password **HAS TO BE CHANGED** -->

 <conf.sos.ds.password>a4131673</conf.sos.ds.password>

f. The request decoders

 <conf.sos.postRequestDecoder>

org.n52.sos.decode.impl.HttpPostRequestDecoderMobile

</conf.sos.postRequestDecoder>

<conf.sos.getRequestDecoder>

org.n52.sos.decode.impl.HttpGetRequestDecoderMobile

 </conf.sos.getRequestDecoder>

g. Mobile enabled

<conf.sos.mobileEnabled>true</conf.sos.mobileEnabled>

h. Capabilities settings

<conf.sos.capabilities.provider.name>

Newcastle University

</conf.sos.capabilities.provider.name>

 <conf.sos.capabilities.provider.site>

http://ceg.ncl.ac.uk

</conf.sos.capabilities.provider.site>

<conf.sos.capabilities.provider.individual.name>

Mr Aengus McCullough </conf.sos.capabilities.provider.individual.name>

 <conf.sos.capabilities.provider.position.name>

PhD Student

</conf.sos.capabilities.provider.position.name>

 <conf.sos.capabilities.provider.phone>

+44(0)777777777

</conf.sos.capabilities.provider.phone>

<conf.sos.capabilities.provider.address>

Cassie Building, Claremont Rd

</conf.sos.capabilities.provider.address>

<conf.sos.capabilities.provider.city>

Newcastle upon Tyne

</conf.sos.capabilities.provider.city>

<conf.sos.capabilities.provider.zip>

NE17RU

</conf.sos.capabilities.provider.zip>

<conf.sos.capabilities.provider.state>

Appendix A

246

Tyne and Wear

</conf.sos.capabilities.provider.state>

 <conf.sos.capabilities.provider.country>

UK

</conf.sos.capabilities.provider.country>

<conf.sos.capabilities.provider.email>aengus.mccullough@ncl.ac.uk</conf.sos.capabiliti

es.provider.email>

i. URL of the web application

<conf.sos.service.url>

http://128.240.60.30:9090/${conf.sos.name}

</conf.sos.service.url>

5) Populate the SOS database with the SOS data structure

a. Open PgAdmin and the SOS database and select the toolbar button

‘execute SQL query’.

b. Open the SQL file located in the SOS

 sourcedir/db/datamodel_postgres83.sql

c. Execute the SQL and exit PgAdmin

6) Adjust the capabilities skeleton mobile and the SensorML skeleton

a. Browse to the /52n-sos-service/src/main/webapp/WEB-INF/conf/ folder

and modify the /capabilities/capabilities_skeleton_mobile file to describe

the SOS capabilities.

b. Next, for each vehicle in the fleet insert a SensorML description of the

sensor into the /sensors folder, named sensor-name.xml where sensor-

name is the name given to the sensor in the SensorML file.

7) Start Tomcat

a. If Tomcat is installed as a service then open the services manager as

follows:

i. Click on Start >> Run and type services.msc

ii. Select the Tomcat Service and right click start service

Otherwise browse to the Tomcat installation folder and select /bin/startup.bat

8) Build and deploy the SOS

a. Open a windows command prompt Start >>Run and type cmd

b. Browseto the root source directory of the SOS project that was checked

out and type mvn –Pwith-deploy install

Appendix A

247

9) Restart Tomcat, the SOS should now be available at the path specified as URL

of web application (Step 4).

10) Consult the 52 North SOS documentation for troubleshooting advice.

Appendix B

248

Appendix B Loading GPS Observations into PostGIS

Prerequisites

1) A working installation of PostgreSQL database management system

http://www.postgresql.org/ (v8.2) with the PostGIS spatial extension

http://postgis.refractions.net/ (v1.4.2)

2) Microsoft Excel 2003

Procedure

Note: This procedure assumes a windows platform although this is not strictly

required

11) Create a Spatial Database

a. Open the PostgreSQL PgAdmin console

b. Click on the local database server in the right hand pane and connect.

c. Right click on the server and select ‘new database’

d. Name the database ‘SOS’ and select ‘template_postgis’ from the

template dropdown box.

12) Write SQL:

CREATE TABLE observations(id INTEGER, time TIMESTAM PTZ,
elevation FLOAT(5), geometry VARCHAR(50));

 SET Datestyle = ‘DMY’;

13) Prepare GPS observation file

Open the text file containing the observations in Microsoft Excel and

ensure that the order of columns returned by the database query:

SELECT * FROM observations matches the column order in the text

file. If there is a header row then remove it. Save as a tab delimited text

file with a .txt extension.

14) Fix bug in Proj4 library

If using Proj4 library < 1.6.2 (postgis 1.4.2) then need to fix a bug in the

‘spatial_ref_sys’ table. If the query ‘SELECT proj4text FROM

spatial_ref_sys WHERE srid=27700’ returns: ‘+proj=tmerc

+lat_0=49 +lon_0=-2 +k=0.999601 +x_0=400000 +y_0=-

Appendix B

249

100000 +ellps=airy +units=m +no_defs’ then it is necessary

to append ‘datum=OSGB36’ to the string to ensure correct reprojections.

UPDATE spatial_ref_sys SET proj4text= ‘+proj=tmerc +lat_0=49
+lon_0=-2 +k=0.999601 +x_0=400000 +y_0=-100000 +el lps=airy
+units=m +no_defs +datum=OSGB36’ WHERE srid=27700;
UPDATE spatial_ref_sys SET proj4text = '+proj=longl at
+ellps=airy +datum=OSGB36 +no_defs' WHERE srid=4277 ;

5) It is now possible to correctly transform the coordinate system from

wgs84(EPSG:4326) to osgb36 (EPSG:27700)

UPDATE observations SET osgb_geom = transform(wgs_g eom,27700);

Appendix C

250

Appendix C Publishing Ordnance Survey MasterMap
Integrated Transport Network (ITN) data with
Geoserver

Prerequisites

1) A Java Development Kit (JDK) version 1.5 or higher

http://java.sun.com/javase/downloads

2) A working installation of Geoserver

http://geoserver.org/ (v2.0)

3) A working installation of PostgreSQL

 http://www.postgresql.org/ (v8.2)

4) The PostGIS spatial extension

http://postgis.refractions.net/ (v1.4.2)

5) An InterpOSe installation

http://www.dottedeyes.com/spatial_data_loading/interpose/

Procedure

Note: This procedure assumes a windows platform although this is not strictly

required

1) Download Master-Map ITN Data from http://www.edina.ac.uk/digimap

a. Ordnance Survey Collection >> Data Download Service>> MasterMap

Download>>ITN layer (road network)

b. Select GZip GML download format

2) Load GML data into PostGIS database

a. Create a database to store the data. From the postgres shell type the

command: createdb –T template_postgis <yourDBname> and enter your

password. If using PostGIS version <1.5 then follow Step 4 in Appendix B

to correct the proj4 library.

b. Open InterpOSe and follow the wizard based instructions to convert the

downloaded Mastermap data in GML format, to ESRI Shapefile format.

Note that although it is possible to load GML directly into PostGIS using

OGR2OGR this method does not preserve the unique TOID identifier of

Appendix C

251

each feature, thus it is necessary to first convert it to shapefile using the

interpose tool.

c. Use the PostGIS shp2pgsql tool to load the data in ESRI shapefile format

into PostGIS. From the postgres shell type the following for each shapefile

layer, i.e. roadlink_polyline and roadnode_point. Substitute in the

parameters for the database created above:

d:\Program Files\postgresql\8.2\bin>shp2pgsql -s 27 700 -d -g
the_geom d:\data\ITN\Road_Link_polyline public.road Link |
psql -h localhost -d itn_test -U Administrator

d. Ensure the data has loaded correctly. From the postgres shell, connect to

the db: psql <myDBName> and check it has tables: show columns

from table \d

3) Publish the data as a WFS using Geoserver

a. Start GeoServer and point browser at http://localhost:8080/geoserver

Click on config >> Data >>Namespace>> New and type osgb as the prefix and

http://www.ordnancesurvey.co.uk/xml/namespaces/osgb as the URI.

b. Click on Data >> DataStores >>New and select Postgis from the Feature

Data Set Description. Type MasterMap_ITN as the feature dataset ID and

click New.

c. Select osgb as the namespace and fill out the connection details for

<yourDBname>. Click on submit and in the left hand panel click Apply >>

Save>> Load.

d. Click on Data >> FeatureTypes >> New and select from the

Feature_Type_Name drop down <yourDBname>..roadlink and click New.

e. From the following page select a display style that is appropriate to the

geometry, ‘simple_roads’ for example. Click on ‘Lookup SRS’ and

‘Generate Bounding Box’, check ‘Enable caching’ and click submit and

Apply >> Save>> Load.

f. Once a feature type has been created it should be possible to view the data

by clicking on Welcome >> Demo >> Map Preview >>

<yourFeatureTypeName> The layer should be visible.

g. Send a test GetCapabilities request to the WFS:

http://localhost:8080/geoserver/wfs?request=getCapabilities&service=WFS

&version=1.0.0

h. Finally, the WFS can be ported to a publicly accessible server once it is

successfully running locally.

Appendix D

252

Appendix D Example Requests and Responses

SOS RegisterSensor Request

Appendix D

253

SOS RegisterSensor Response

Appendix D

254

SOS UpdateSensor Request

SOS UpdateSensor Response

Appendix D

255

SOS InsertCategoryObservation Request

SOS InsertObservation Response

SOS InsertMeasurement Request

Appendix D

256

SOS DescribeSensorTimePeriod Request

WFS GetFeature Request

Appendix D

257

WPS Execute (HTTP GET) Request

http://localhost:8080/wps/WebProcessingService?requ est=execute&DataInp
uts=SOS_URL=http://128.240.60.1:9091/52nSOSv3/sos;S ENSOR_ID=gpsobs3;WF
S_URL=http://128.240.60.30:8762/geoserver/wfs;WFS_N S=osgb;WFS_TN=roadl
ink&version=1.0&Identifier=org.n52.wps.server.algor ithm.mmproxy1.MMPro
xyAlgorithm

WPS Execute Response

WPS StopExecuting (HTTP GET) Request

http://128.240.60.1/wps?request=stopExecuting&servi ce=wps&version=1.0.
0& job_id=urn:mygridsamjob:id:123

WPS StopExecuting Response

Appendix E

258

Appendix E Loading Ordnance Survey MasterMap ITN da ta
into Oracle Spatial 11g

Prerequisites

1) Working installation of Oracle Client (not the Instant Client)

2) Mastermap ITN dataset in ESRI shapefile format. See Appendix C for

details on converting MasterMap GML into shapefile format.

3) Connection parameters and write access to an Oracle Spatial 11g database

instance

4) Install of Oracle’s shp2sdo tool

Procedure

The following steps were followed to load the Ordnance Survey Mastermap ITN

network dataset into Oracle 11g spatial database.

1) Set up Connection to Oracle

Create a text file named ‘tnsnames.ora’ containing the following text and

save it into the bin subdirectory of Oracle Client’s install directory:

sand =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
oracle.vidar.ngs.manchester.ac.uk)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = sand)
)

)

2) Set Environment

Set an environment variable named TNS_ADMIN to point to the aforementioned bin

subdirectory of the Oracle Client install directory.

3) Convert shapefile to Oracle Input File

Run the shp2sdo utility by browsing to the shp2sdo install directory and

the subdirectory that reflects the operating system you are using; i.e.

Appendix E

259

shp2sdo_nt for windows users. Both the road_link and road_node

shapefiles must be converted.

The following syntax is used to run shp2sdo which converts ESRI

shapefiles into Oracle input files:

-g = the desired name of the geometry column in the resulting feature

table

-x, -y = the maximum and minimum bounding box extents of the data. If

not known this can be determined by opening the shapefile in a data

browsing tool such as ArcCatalog (http://www.esri.com) or UDig

(http://udig.refractions.net).

-t = tolerance

-s = SRID, i.e 27700 for OSGB36

shp2sdo path-to-shapefile-shapefilename-noextension –g
nameofgeomcolumn –x(-180,180) –y(-90,90) –t 0.0001 –s 27700

For example:

D:\documents and settings\administrator\my
documents\downloads\shp2sdo\shp2sdo_nt>
shp2sdo d:\data\itn\road_link_polyline –g geom. –x
(422785,434334) –y (556566,566761) –s 27700

This procedure should create three new files in your working directory

with the same name as the shapefile, but with three different extensions,

.sql, .dat and .ctl. Respectively these files are used to create the table

structure in Oracle, store the data and define how the data is to be

inserted into the tables.

4) Create Table Structure in Oracle

Run sqlplus from the Oracle Client/bin directory using the following command :

D:\Oracle_client\product\11.1.0\client_2\BIN>sqlplu s
username/password @database-instancename

This command will refer to the tnsnames.ora file to connnect to the Oracle instance.

To create the table structure run the SQL file created in the previous step :

@ road_link_polyline.sql
Finally exit sqlplus by typing :

Exit

Appendix E

260

5) Load Data

Edit the .ctl file INFILE value to point to path of .dat file (put in single

quotes, eg INFILE=’D:/TEMP/MYFILE.DAT’

Set up the environment to run sqlldr:

 set ORACLE_BASE=C:\oracle\product\11.2.0
 set ORACLE_HOME=c:\oracle\product\11.2.0\dbhome_1
 set PATH=$PATH:$ORACLE_HOME/bin

From the Oracle client/bin directory run sqlldr using the following command:

Sqlldr username/password@database-instancename
CONTROL= d:\data\itn\road_link_polyline.ctl

6) Validate Data

To ensure the data has loaded successfully connect to the database

through SQLPLUS once more and run the following commands.

create table validation(sdo_rowid rowid, status var char2(2000));
execute
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('road_link_pol yline','geom'
,'validation');
SELECT * FROM VALIDATION;

If successful the value ‘TRUE’ should appear as result.

7) Create a spatial index on the table

create index roads_index on road_link_polyline(geom) indextype
is mdsys.SPATIAL_INDEX;

Appendix F

261

Appendix F Generation of a Spatial Road Network in Oracle

1) Create LINK_TABLE

2) Create and Populate TOID_LINKID_LOOKUP

3) Join and Populate LINK_TABLE

Appendix F

262

4) Create, Validate and Partition the Network

5) Add Travel Time Column

6) Create and Populate STUDY_AREA_CLIPPED

Appendix F

263

Appendix G

264

Appendix G PL/SQL Interpolation Procedure

Appendix H

265

Appendix H Event Pattern Markup Language (EML) Filt er
Subscribe Request

Appendix H

266

Appendix H

267

Appendix I

268

Appendix I PL/SQL Derived Attribute and COST Column
Calculation Trigger

Appendix I

269

Appendix I

270

Appendix I

271

Appendix I

272

Appendix I

273

Appendix I

274

Appendix J

275

Appendix J PL/pgSQL GPS Vehicle Track Data Loading
Procedure

This procedure details the process of transforming a comma separated text file

containing GPS observations from several vehicles, into a number of PostGIS

database tables, one for each vehicle. The input format of the .CSV file is

detailed as follows:

Input File Format
DateTime,vehicle,vehicletype,eventid,fix,latitude,l ongitude,bearing,sp
eed,inputs,geofence,status
21/09/2010 06:56:46,CS3675,COMPACT SWEEPER,240,0,54 .9728883333333,-
1.57299666666667,0,0,8,0,2
21/09/2010 06:57:02,CS3675,COMPACT SWEEPER,16,0,54. 9728883333333,-
1.57299666666667,0,0,8,128,2

Prerequisites

1) Microsoft Excel (2003)

2) PostGIS database (PostgreSQL 8.3 / PostGIS 1.5.1)

Procedure

1) Open the .CSV file in Microsoft Excel and remove the header row. Save it as a

tab delimited text file: ‘observations.txt’. Note that due to file size limits in

Microsoft Excel, this will only save the first 64536 records. Thus it is necessary

to open the original file again, delete the first 64536 records and the header

row, and save the remaining records as another tab delimited text file:

‘observations_part2.txt’

2) Create a PostGIS database by typing the following command from the

PostgreSQL shell:

C:\postgresql\8.3\bin> createdb –T template_postgis all_gps

3) Login to the database from he PostgreSQL shell and create an observation

table:

 C:\postgresql\8.3\bin> psql all_gps

Appendix J

276

all_gps=# create table observations(dateTime timest amptz,
vehicle varchar(30), vehicleType varchar(50), event id integer,
fix integer, latitude varchar(50), longitude varcha r(50),
bearing integer, speed integer, inputs integer, geo fence
integer, status integer);

4) Load observations into the table:

all_gps=# \copy observations from ‘<path to observa tions.txt’
all_gps=# \copy observations from ‘<path to
observations_part2.txt’

5) Create a Primary Key:

all_gps=# ALTER TABLE observations ADD fid serial p rimary key;

6) Add columns for geometry

 all_gps=# ALTER TABLE observation ADD numlat double precision;

 all_gps=# ALTER TABLE observation ADD numlong doubl e precision;

all_gps=# ALTER TABLE observation ADD etrs_geom dou ble

precision;

all_gps=# ALTER TABLE observation ADD wgs_geom doub le precision;

7) Cast Latitude / Longitude to numeric type

UPDATE observations SET numlat = cast(latitude as d ouble

precision);

UPDATE observations SET numlong = cast(longitude as double

precision);

8) Convert to Geometry and transform

UPDATE OBSERVATIONS SET etrs_geom =

st_setsrid(st_point(numlong,numlat),4258);

UPDATE observations SET wgs_geom = transform(etrs_g eom,4326);

9) Remove erroneous observations

DELETE FROM observations WHERE numlat < 53 or numla t > 56;

 DELETE FROM observations WHERE numlong < -3 or num long > 0;

10) Register the geometry column

INSERT INTO geometry_columns(f_table_catalog, f_tab le_schema,

f_table_name, f_geometry_column, coord_dimension, s rid, "type")

SELECT '', 'public', 'observations', 'wgs_geom',

ST_CoordDim(wgs_geom), ST_SRID(wgs_geom), GeometryT ype(wgs_geom)

FROM public.observations LIMIT 1;

Appendix J

277

11) Rename tubples that have a whitespace in vehicle name

SELECT DISTINCT VEHICLE FROM OBSERVATIONS WHERE VEHICLE LIKE

‘% %’;

UPDATE OBSERVATIONS SET VEHICLE = <name without spa ce> WHERE

VEHICLE=<result of previous query>;

12) From PgAdmin console open and run the following script to create a function

13) Run the function

all_gps=# SELECT vehiclePerTable();

14) Finished

The PostGIS database ‘all_gps’ should now contain all the GPS observations in

separate tables, one per vehicle. The observations are all time ordered. Each

vehicle is also listed in table ‘vehicles’.

Appendix K

278

Appendix K Supervised Classification of a multispec tral
(XS) SPOT-1 HRV image of South East London

Prerequisites
1) ERDAS Imagine v9.3

http://www.erdas.com

2) Multispectral image to be classified

3) Background mapping of the area represented in the image

(http://edina.ac.uk/digimap)

4) GDAL library (FWTools)

http://fwtools.maptools.org/

Procedure

1) Geometric Correction

a. Download Ordnance Survey 1:25000 raster mapping in GeoTIFF format

from www.edina.ac.uk/digimap for the entire area covered by the image.

b. Load the image to be processed in Erdas Imagine in one viewer, and

load each of the Ordnance Survey tiles in another viewer

c. From the Imagine toolbar select Dataprep >> Geometric Image

Correction

d. Follow the prompts to select the viewer containing the classified image

e. Select POLYNOMIAL from the model properties dialogue box and then

close the box.

f. Select Existing viewer when prompted for where to select reference

control points from and click in the viewer containing the Ordnance

Survey Data.

g. Select at least 12 ground control points from the map data and identify

the corresponding location on the image. Ideally the points should be

spread both around the edges of the image and in the centre.

h. Click on Display Model Properties and change the polynomial order to 2.

i. Click Resample Image and select Nearest Neighbour from the following

dialogue box

Appendix K

279

j. Open the corrected image in the same viewer as the map data and use

the Utility >> Blend tool to ensure that it is a good fit. If necessary

repeat this process until a good fit has been achieved.

2) Classification

a. Define Land-cover Classes

It was opted to use six land-cover classes in this study that represent the

major spectral classes in the image. These are listed as follows:

a. water

b. crops

c. forest

d. grass

e. small buildings

f. large buildings

b. Select Training Areas

Open the geometrically corrected image in Erdas Imagine and use the

Area of Interest (AOI) tool and the Signature Editor to manually select

training areas corresponding to each of the land-cover classes defined

in step 1. This is achieved by cross referencing features on the image

with features on an Ordnance Survey base map of the area. The size of

each training area should be at least 30p pixels per class where p is the

number of spectral bands. It should be noted that for this image the

blue band was stripped out as it was of a poor quality, so only the green,

red and near-infrared bands were used.

c. Perform Classification

Select the Supervised Classification tool from the Classification menu in

Erdas and specify the image to be classified, the signature file

containing the training area samples and an output location for the

classified image. Ensure ‘Maximum Likelihood’ is selected in the

Parametric Rule box and, ‘None’ is selected in the Non Parametric Rule

box and click OK to start the classification.

d. Accuracy Assessment

An assessment of classification accuracy must be performed to ensure

that the resulting classification is valid. The following procedure details

how to use the Imagine Accuracy Assessment tool:

Appendix K

280

i) From the Imagine toolbar click on Classifier and then Accuracy

Assessment.

ii) Click on File >> Open and select the classified and geometrically

corrected image.

iii) Click on Edit >> Add/generate random points

iv) Open the Ordnance Survey map data in a new viewer and from the

accuracy assessment window select View >> Select Viewer and

click on the viewer containing the map data.

v) Click View >> Show All to display all of the random points on the

map data viewer. Now click Edit >> Show class values to show the

class each random point is assigned to.

vi) Now from the map data viewer select Utility >> Enquire Box and for

each random point copy the coordinates into the enquire box to find

the random test point on the map. Enter the code corresponding to

the land-cover class actually found at the location of each test point.

vii) When complete click on Report >> Accuracy Report to generate a

confusion matrix and calculate the Kappa co-efficient.

3) Format Conversion

The GDAL open-source raster translation library was used to convert the image

from ERDAS Imagine proprietary format (.img) to NetCDF format. During this

conversion some of the empty grid surrounding the image was also stripped out

to reduce the amount of redundant processing required. It was opted to convert

into a CF convention NetCDF file. Although GMT (http://gmt.soest.hawaii.edu/)

compatible NetCDF is better supported by GDAL than NetCDF, reading and

writing such files using the Java API proved to be more problematic. Thus the

following translation command was used:

gdal_translate –ot Byte –of NetCDF –srcwin 0 0 4200 3000
c:\temp\geo_corrected.img c:\temp\geo_corrected.nc

Appendix L

281

Appendix L Land-use Templates

Key: L large building S small building

 G grass C crops

 W water F forest

L L S S S L L L S

 L L L S L L L S S

L L S S L L L S S

S S S S S S L S L

L S S S L L L L L

S S L S L L L L L

S S S S L S L L L

S S S L S S S S S

S S S S S L S S S

F F F S S S S S S

S F F S S S S S G

S S F S S S S S G

S S S S S S S S S

S S S S S S S S S

S S S S S S S S L

S S S G S S S S S

S S G G S L S S S

S G G S L L S S S

1. Commercial / Industrial 2. Low Density Residential

Appendix L

282

S S S S S S S S S

S S S S S S S S S

S S S S S G L L S

S S S S S S S S S

S S S S L L L L L

S S S L L L S S L

S S L S S S L L L

S S G S L L L S L

S L S S S S S S L

C C C C C C C C C

C F C C C C C C C

F F F C C C C C C

F F C C C C C F C

C C C C C C C C G

C C C C C C C C F

F C C C C C C C C

C C C C C C C C C

C C C C C C C C C

F F F F C G C F F

C C G G G G G G G

G G G G G G G G G

G G G G G G G G G

G G G G G G G G S

G G G G G G G G F

G G G F G G C C C

G G G G G G F F G

G G G G G G F F G

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

W W W W W W W W W

F F F F F F F G F

3. Medium Density Residential 4. Arable

5. Pasture 6. Water

Appendix L

283

F F F F F F F G F

F F F F F F F F F

F F F F F F F F F

F F G F F F F C C

S G F F F F F F F

S G C F F F F F F

S G S F F F F F F

F G G G F F F F F

G G G G G G F G G

G G G G G G F G G

G G G G G G F G G

G G G G G G F G G

G G G G G G C G G

G G S S G G G G G

G G S S G G G G G

C G G G C C G G G

G G G F C C C G G
7. Woodland 8. Wasteland

References

284

Chapter 9 References

Abadi, D. J. (2009) 'Data Management in the Cloud: Limitations and

Opportunities', Data Engineering, 32, (1), pp. 3-12.

Abadi, D. J., Ahmed, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,

J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.

and Zdonik, S. (2005) 'The Design of the Borealis Stream Processing

Engine'.2nd Conference on Innovative Data Systems Research

(CIDR'05). Asilomar, California, USA:ACM.

Abbas, A. (2004) Grid Computing: A Practical Guide to Technology and

Applications. Charles River Media: London.

Abel, D. J., Volker, J. G., Taylor, K. L. and Xiaofang, Z. (1999) 'SMART:

Towards Spatial Internet Marketplaces', Geoinformatica, 3, (2), pp. 141-

164.

Acache, J. (2007) The Full Picture. Group on Earth Observations [Online].

Available at: http://www.earthobservations.org/documents

/the_full_picture.pdf (04/05/2009).

Adler, D. W. (2001) 'IBM DB2 Spatial Extender - Spatial data within the

RDBMS'.27th VLDB Conference. Roma, Italy,

Aggarwal, A., Chazelle, B., Guibas, L., O'Dunlaing, C. and Yap, C. (1988)

'Parallel computational geometry', Algorithmica, 3, pp. 293-327.

Akinci, B., Hendrickson, C. and Karaesmen, I. (2003) 'Exploiting Motor Vehicle

Information and Communications Technology for Transportation

Engineering', Journal of Transportation Engineering 129, (5).

Alexander, J., Box, D. and Cabrerra, L. F. (2006) Web Services Transfer (WS-

Transfer). W3C (http://www.w3.org/TR/2011/CR-ws-transfer-2011042).

Allcock, W., Bester, J., Bresnahan, J., Meder, S., Plaszczak, P. and Tuecke, S.

(2003) GridFTP: Protocol Extensions to FTP for the Grid. Open Grid

Forum (GFD.20).

Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raica, I.

and Foster, I. (2005) 'The globus striped GridFTP framework and

server'.Supercomputing, SC05. Seattle, WA, USA:ACM.

Almasi, G. S. and Gottlieb, A. (1990) 'Review of Highly parallel computing', IBM

Systems Journal, 29, (1), pp. 165-166.

References

285

Aloisio, G., Cafaro, M., Epicoco, I., Fiore, R., Lezzi, D., Mirto, M. and Mocavero,

S. (2005) 'iGrid, A Novel Grid Information Service '.First European Grid

Conference.

Aloisio, G., Conte, D., Elefante, C., Epicoco, I., Marra, P. G., Mastrantonio, G.

and Quarta, G. (2006) 'SensorML for Grid Sensor Networks', 2006

International Conference on Grid Computing Applications. Las Vegas,

Nevada, USA, SensorML for Grid Sensor Networks: CSREA Press, pp.

141-146.

Amdahl, G. (1967) 'The validity of the single processor approach to achieving

large scale computing capabilities', AFIPS / Spring Joint Computer

Conference. The validity of the single processor approach to achieving

large scale computing capabilities: pp. 483-485.

Anderson, J., Ahmed, R., Bourn, H. and McGraffin, R. (2008) Tyne & Wear Air

Quality Delivery Plan. Newcastle upon Tyne: Planning and

Transportation Dept, Newcastle City Council

Andrews, C. J. (2007) Emerging Technology: AJAX and GeoJSON. Available

at: http://www.directionsmag.com/article.php?article_id=2550&trv=1

(Accessed: 29/10/2007).

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,

Pruyne, J., Rofrano, J., Tuecke, S. and Xu, M. (2007) Web Services

Agreement Specification (WS-Agreement). Open Grid Forum (GFD-R-

P.107).

Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, A.,

Pulsipher, D. and Savva, A. (2005) Job Submission Description

Language (JSDL) Specification, Version 1.0. Open Grid Forum (GFD-

R.056).

Antonioletti, M., Collins, B., Krause, A., Laws, S., Magowan, J., Malaika, S. and

Paton, N. (2006) Web Services Data Access and Integration. Open Grid

Forum (GFD 75, GFD 76).

Arasu, A., Babu, S. and Widom, J. (2006) 'The CQL continuous query language:

semantic foundations and query execution', The VLDB Journal, 15, (2),

pp. 121-142.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2009) Above the

References

286

Clouds: A Berkeley View of Cloud Computing. Berkeley, USA: University

of California at Berkeley (Technical Report No. UCB/EECS-2009-28).

Armstrong, M. P. and Densham, P. J. (1992) 'Domain Decomposition for

Parallel Processing of Spatial Problems', Computers, Environment and

Urban Systems, 16, pp. 497-513.

Armstrong, M. P. and Marciano, R. (1993) 'Parallel Spatial Interpolation', Auto-

Carto 11. Bethesda, MD, USA, Parallel Spatial Interpolation: ASPRS and

ACSM, pp. 414-423.

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., Henderson, P., Hey, T., Paton,

N., Newhouse, S., Parastatidis, S., Trefethen, A., Watson, P. and

Webber, J. (2004) 'Web Service Grids: An Evolutionary Approach',

Concurrency & Computation: Practice and Experience, 17, pp. 377-389.

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002) 'Models

and Issues in Data Stream Systems', 21st Symposium on Principles of

Database Systems. Madison, Wisconsin, USA, Models and Issues in

Data Stream Systems: ACM SIGACT-SIGMOD-SIGART, pp. 1-16.

Babu, S. and Widom, J. (2001) 'Continuous Queries over Data Streams', ACM

SIGMOD Record, 30, (3), pp. 109-120.

Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,

R., Fineberg, S., Frederiskson, P., Lasinski, T., Schreiber, R., Simon, H.,

Venkatakrishnan, V., Weeratunga, S. and (1994) The NAS Parallel

Benchmarks, . NASA (RNR-94-007).

Ballinger, K., Ehnebuske, D., Ferris, C., Gudgin, M., Liu, C., Nottingham, M. and

Yendluri, P. (2006) Basic Profile Version 1.1. Web Services

Interoperability Organization (http://www.ws-i.org/Profiles/BasicProfile-

1.1-2006-04-10.html).

Baranski, B. (2008) 'Grid Computing Enabled Web Processing Service', 6th

Geographic Information Days (GI-Days 2008). Institut fur Geoinformatik,

Munster, Grid Computing Enabled Web Processing Service: IfGIprints

Baranski, B. and Schäffer, B. (2010) 'Towards Service Level Agreements in

Spatial Data Infrastructures'.GSDI 12 World Conference. Singapore,

Baranski, B., Schäffer, B. and Redweik, R. (2009) 'Geoprocessing in the

Clouds', Free and Open Source Software for Geospatial. Sydney,

Australia, Geoprocessing in the Clouds

References

287

Barcelló, J., Ferrer, J., Garcia, D., Florian, M. and Le Saux, E. (1998)

'Parallelization of microscopic traffic simulation for ATT systems', in

Marcotte, P. and Nguyen, S.(eds) Equilibrium and Advanced

Transportation Modelling. Kluwer Academic Publishers: Dordrecht, pp. 1-

26.

Barcelló, J. and Grau, R. (1993) 'PACKSIM: An experience in using traffic

simulation in a demand responsive traffic control system', XIII World

Conference on Operations Research. Lisbon, Portugal, PACKSIM: An

experience in using traffic simulation in a demand responsive traffic

control system

Barnsley, M. J. and Barr, S. L. (1996) 'Inferring Urban Land Use from Satellite

Sensor Images Using Kernel-Based Spatial Reclassification',

Photogrammetric Engineering & Remote Sensing, 62, (8), pp. 949-958.

Baumann, P. (2010) OGC WCS 2.0 Interface Standard - Core. Open Geospatial

Consortium Inc. (09-110r3).

Beard, K. (2007) 'Modelling Change in Space & Time: An event based

approach', in Drummond, J.(ed), Dynamic and Mobile GIS: Investigating

Changes in Space and Time.

Bermudez, L., Bogden, P., Bridger, E., Cook, T., Galvarino, C., Creager, G.,

Forrest, D. and Graybeal, J. (2009) 'Web Feature Service (WFS) and

Sensor Observation Service (SOS) comparison to publish time series

data', International Symposium on Collaborative Technologies and

Systems. Web Feature Service (WFS) and Sensor Observation Service

(SOS) comparison to publish time series data: Baltimore, Maryland, USA

Bethel, E. W., Humphreys, G., Paul, B. and Brederson, J. D. (2003) 'Sort-first,

distributed memory parallel visualization and rendering', IEEE

Symposium on Parallel and Large-Data Visualization and Graphics, pp.

41-50.

Black, M. and Smith, R. G. (2003) 'Electronic monitoring in the criminal justice

system', Trends and Issues in Crime and Justice, 254, pp. 241-260.

Blower, J. D. (2010) 'GIS in the cloud: implementing a Web Map Service on

Google App Engine', COM.Geo. Washington D. C, USA, GIS in the

cloud: implementing a Web Map Service on Google App Engine: ACM

References

288

Blunck, H., Godsk, T., Gronbaek, K., Kjaergaard, M. B., Jensen, J. L.,

Scharling, T., Toftkjaer, T. and Schougaard, K. R. (2010) 'PerPos: A

Platgorm Providing Cloud Services for Pervasive Positioning', COM.

Geo. Washington D. C., USA, PerPos: A Platgorm Providing Cloud

Services for Pervasive Positioning: ACM

Blythe, P. T., Bell, M. C., Sharif, B. and Watson, P. (2006) 'Pervasive

Environmental Monitoring using Smartdust: The MESSAGE Project'. The

Institute of Engineering & Technology Seminar on RFID and Electronic

Vehicle Identification. Newcastle, UK:IEEE.

Bonnet, P., Gehrke, J. E. and Seshadri, P. (2000) 'Querying the Physical

World', IEEE Personal Communication, 7, (5), pp. 10-15.

Bonnet, P. and Seshadri, P. (2000) 'Device Database Systems'.16th

International Conference on Data Engineering. San Diego, California,

USA,

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. and

Orchard, D. (2003) Web Services Architecture: working draft. W3C

Böse, M., Erdik, M. and Wenzel, F. (2007) 'A New Approach to Earthquake

Early Warning', in Gasparini, P., Manfredi, G. and Zschau, J.(eds)

Earthquake Early Warning Systems. Springer Berlin Heidelburg.

Bose, P., Krizanc, D., Langerman, S. and Morin, P. (2003) 'Asymmetric

Communication Protocols via Hotlink Assignments', Theory of Computing

Systems, 36, pp. 655-661.

Botts, M., Percivall, G., Reed, C. and Davidson, J. (2006) OGC Sensor Web

Enablement: Overview and High Level Architecture. Open Geospatial

Consortium (OGC 06-050R2).

Botts, M. and Robin, A. (2007) OpenGIS Sensor Model Language (SensorML)

Implementation Specification. Open Geospatial Consortium (OGC-05-

086).

Bowler, K. C., Bruce, A. D., Kenway, R. D., Pawley, G. S. and Wallace, D. J.

(1987) 'Exploiting Highly Concurrent Computers for Physics', Physics

Today, 40, (10), pp. 40-48.

Box, D., Cabrerra, L. F., Critchley, C., Curbera, F., Ferguson, D., Graham, S.,

Hull, D., Kakivaya, G., Lewis, A., Lovering, B., Niblett, P., Orchard, D.,

Samdarshi, S., Schlimmer, J., Sedukhin, I., Shewchuk, J., Weerawarana,

References

289

S. and Wortendyke, D. (2006) Web Services Eventing (WS-Eventing).

W3C (http://www.w3.org/Submission/2006/SUBM-WS-Eventing-

20060315/).

Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Hadley, M., Kaler,

C., Langworthy, D., Leymann, F., Lovering, B., Lucco, S., Millet, S.,

Mukhi, N., Nottingham, M., Orchard, D., Shewchuk, J., Sindambiwe, E.,

Storey, T., Weerawarana, S. and Winkler, S. (2004) Web Services

Addressing (WS-Addressing). W3C

(http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/).

Brackstone, M., Fisher, G. and McDonald, M. (2001) 'The use of probe vehicles

on motorways, some emperical observations'.World Congress on

Intelligent Transport Systems. Sydney, Australia,

Brakatsoulas, S., Pfoser, D., Salas, R. and Wenk, C. (2005) 'On Map-Matching

Vehicle Tracking Data'.31st Very Large Data Bases (VLDB) Conference.

Trondheim, Norway,

Brauner, J., Foerster, T., Schaeffer, B. and Baranski, B. (2009) 'Towards a

Research Agenda for Geoprocessing Services'.12th AGILE Conference

on Geographic Information Science. Leibniz Universitat, Hannover,

Germany,

Braunl, T., Feyrer, S., Reinhardt, M. and Wolfgang, R. (2001) Parallel Image

Processing. Springer: Berlin.

Brito, A. (2008) 'Optimistic Parallelization Support for Event Stream Processing

Systems', Middleware Doctoral Symposium 2008 Leuven, Belgium,

Optimistic Parallelization Support for Event Stream Processing Systems:

ACM, pp. 7-12.

Broering, A., Stasch, C. and Echterhoff, J. (2010) OGC SOS 2.0 Interface

Standard. Open Geospatial Consortium Inc. (OGC 10-037).

Bruce, R. A. A., Chapple, S. R., MacDonald, N. B. and Trew, A. S. (1993)

'CHIMP and PUL: Support for Portable Parallel Computing'.4th Annual

Conference of the Meiko User Society. Southampton,UK,

Budhathoki, N. R., Bruce, B. and Nedovic-Budie, Z. (2008) 'Reconceptualizing

the role of the user of spatial data infrastructure', GeoJournal, 72, pp.

149-160.

References

290

Burkhart, H., Korn, C. F., Gutzwiller, S., Ohnacker, P. and Waser, S. (1993)

BACS: Basel Algorithm Classification Scheme. Basel, Switzerland:

University of Basel, Switzerland (Technical Report 93-03).

Burrough, P. A. and McDonnell, R. (1998) Principles of Geographic Information

Systems. Oxford University Press, UK.

Burton, A. M., Miller, P., Bruce, V., Hancock, P. J. B. and Henderson, Z. (2001)

'Human and automatic face recognition: a comparison across image

formats', Vision Research, 41, pp. 3185-3195.

Buyya, R., Yeo, C. S. and Venugopal, S. (2008) 'Market-oriented cloud

computing: Vision, hype and reality for delivering IT services as

computing utilities', 10th IEEE International Conference on High

Performance Computing and Communications. Dalian, China, Market-

oriented cloud computing: Vision, hype and reality for delivering IT

services as computing utilities: IEEE, pp. 5-16.

Cameron, G. D. B. and Duncan, C. I. D. (1996) 'PARAMICS - parallel

microscopic simulation of road traffic', Journal of Supercomputing, 10,

(1), pp. 25.

Cardellini, V., Colajanni, M. and Yu, P. S. (2002) 'Dynamic load balancing on

web-server systems', IEEE Internet Computing, 3, (3), pp. 28-39.

Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,

Stonebraker, M., Tatbul, N. and Zdonik, S. (2002) 'Monitoring Streams -

A New Class of Data Management Applications'.28th International

Conference on Very Large Databases (VLDB'02). Hong Kong, China,

Carrara, A., Guzzetti, F., Cardinala, M. and Reichenbach, P. (2000) 'Use of GIS

Technology in the Prediction and Monitoring of Landslide Hazard',

Natural Hazards, (20), pp. 117-135.

Cary, A., Sun, Z., Hristidis, V. and Rishe, N. (2009) 'Experiences on Processing

Spatial Data with MapReduce', Lecture Notes in Computer Science,

5566, pp. 302-319.

Catlett, C. (2002) 'The Philosophy of TeraGrid: Building an Open, Extensible,

Distributed TeraScale Facility', 2nd IEEE International Symposium on

Cluster Computing and the Grid. Berlin, Germany, The Philosophy of

TeraGrid: Building an Open, Extensible, Distributed TeraScale Facility:

pp. 8.

References

291

Chapman, D., Joshi, K. P., Yesha, Y., Halem, M., Yesha, Y. and Nguyen, P.

(2010) 'Scientific Services on the Cloud', in Furht, B. and Escalante,

A.(eds) Handbook of Cloud Computing. Springer: New York, pp. 379-

406.

Chappell, D. and Liu, L. (2006) Web Services Brokered Notification 1.3 (WS-

BrokeredNotification). OASIS (wsn-ws_brokered_notification-1.3-spec-

os).

Chatterjee, S. and Webber, J. (2004) Developing Enterprise Web Services: An

architects guide. Prentice Hall PTR.

Chen, A., Di, L., Wei, Y., Bai, Y. and Liu, Y. (2006) 'An Optimised Grid Based,

OGC Standards Compliant Collaborative Software System for Serving

NASA Geospatial Data'.30th Annual IEEE/NASA Software Engineering

Workshop.

Chen, N., Di, L., Yu, G. and Gong, J. (2010) 'Geo-processing workflow driven

wildfire hot pixel detection under sensor web environment', Computers &

Geosciences, 36, pp. 362-372.

Chen, Q., Wang, L. and Shang, Z. (2008) 'MRGIS: A MapReduce-Enabled High

Performance Workflow System for GIS'.Fourth IEEE Conference on

eScience. Indiana, Indianapolis, USA,

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U.,

Xing, Y. and Zdonik, S. (2003) 'Scalable Distributed Stream

Processing'.First Biennial Conference on Innovative Data Systems

Research. Pacific Grove, California, USA,

Cheu, R. L., Xie, C. and Lee, D. H. (2002) 'Freeway traffic prediction using

neural networks', Computer-Aided Civil and Infrastructure Engineering,

17, (1), pp. 53-60.

Chien, S., Tran, D., Davies, A., Johnston, M., Doubleday, J., Castano, R.,

Scharenbroich, L., Rabideau, G., Cichy, B., Kedar, S., Mandl, D., Frye,

S., Song, W., Kyle, P., LaHusen, R. and Cappaelare, P. (2007) 'Lights

Out Autonomous Operation of an Earth Observing

Sensorweb'.International Symposium on Reducing the Cost of

Spacecraft Ground Systems and Operations (RCSGSO). Moscow,

Russia,

References

292

Chiu, K., Govindaraju, M. and Bramley, R. (2002) 'Investigating the Limits of

SOAP Performance for Scientific Computing', 11th International

Symposium on High Performance Distributed Computing Edinburgh, UK,

Investigating the Limits of SOAP Performance for Scientific Computing:

pp. 246.

Chu, K., Brewer, R. and Joseph, S. (2008) Traffic and navigation support

through an automobile head up display. Manoa, Hawaii: University of

Hawaii, USA (ICS-2008-05-02).

Chu, X. and Buyya, R. (2007) 'Service Oriented Sensor Web', in Mahalik, N.

P.(ed), Sensor Network and Configuration: Fundamentals, Standards,

Platforms, and Applications. Springer-Verlag,: Germany, pp. 51-74.

Cignoni, P., Montani, C., Perego, R. and Scopigno, R. (1993) 'Parallel 3D

Delauney triangulation'.Computer Graphics Forum.Blackwell Publishers.

Clematis, A. and Puppo, E. (1993) 'Effective parallel processing of irregular

geometric structures - an experience with the Delaunay triangulation',

AICA - International Section: Parallel and Distributed Architectures and

Algorithms. Effective parallel processing of irregular geometric structures

- an experience with the Delaunay triangulation: pp. 235-251.

Codd, E. F. (1970) 'A Relational Model of Data for Large Shared Data Banks',

Communications of the ACM, 13, (6), pp. 377-387.

Codd, E. F. (1972) 'Further normalization of the data base relational model', in

Rustin, R.(ed), Data Base Systems. Prentice-Hall: Englewood Cliffs, NJ,

USA.

Cole, R., Goodrich, M. T. and O'Dunlaing, C. (1990) 'Merging free trees in

parallel for efficient Voronoi diagram construction', in Lecture notes in

computer science. Vol. 443 Springer-Verlag: Berlin, pp. 432-445.

Connolly, T. and Begg, C. (2005) Database Systems: A practical approach to

design, implementation, and management. Pearson Education Ltd.

Cook, W. R. and Barfield, J. (2007) 'Web Service versus Distributed Objects: A

Case Study of Performance and Interface Design', International Journal

of Web Services Research, 4, (3), pp. 49-64.

Cooper, M., Dzambasow, Y., Hesse, P., Joseph, S. and Nicholas, R. (2005)

Internet X.509 Public Key Infrastructure: Certification Path Building.

Available at: http://tools.ietf.org/html/rfc4158.html (Accessed:

References

293

Couillard, J. (1993) 'A decision support system for vehicle fleet planning',

Decision Support Systems, 9, (2), pp. 149-159.

Cox, S. (2007) Observations and Measurements Open Geospatial Consortium,

Inc (07-022r1, 07-002r3).

Cox, S., Botts, M., Robin, A., Davidson, J. and Falke, S. (2006) Observations &

Measurements. Open Geospatial Consortium Inc. (OGC® 05-087r4).

Crainic, T. G., Gendreau, M. and Potvin, J.-Y. (2009) 'Intelligent freight-transport

systems: Assessment and the contribution of operations research',

Transportation Research Part C: Emerging Technologies, 17, (6), pp.

541-557.

Cruanes, T., Dageville, B. and Ghosh, B. (2004) 'Parallel SQL execution in

Oracle 10g'.2004 ACM SIGMOD international conference on

Management of data.

Culler, D., Estrin, D. and Srivastava, M. (2004) 'Guest Editors' Introduction:

Overview of Sensor Networks', Computer, 37, (8), pp. 41-49.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.

(2002) 'Unraveling the Web services web: an introduction to SOAP,

WSDL, and UDDI', Internet Computing, IEEE, 6, (2), pp. 86-93.

Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I.,

Snelling, D., Tuecke, S. and Vambenepe, W. (2004) The WS-Resource

Framework. Available at: http://www-106.ibm.com/developerworks/

library/ws-resource/ws-wsrf.pdf (Accessed:

Danelutto, M., Di Meglio, R., Orlando, S., Pelagatti, S. and Vanneschi, M.

(1992) 'A methodology for the development and the support of massively

parallel programs', Future Generation Computer Systems, 8, (1-3), pp.

205-220.

Dashitenezhad, S., Nadeem, T., Dorohonceanu, B., Borcea, C., Kang, P. and

Iftode, L. (2004) 'TrafficView: a driver assistant device for traffic

monitoring based on car-to-car communication', IEEE 59th Vehicular

Technology Conference 2004. 19th May 2004. TrafficView: a driver

assistant device for traffic monitoring based on car-to-car

communication: IEEE, pp. 2946-2950.

References

294

Dattilo, G. and Spezzano, G. (2003) 'Simulation of a cellular landslide model

with CAMELOT on high performance computers', Parallel Computing, 29,

(10), pp. 1403-1418.

Davis, D., Malhotra, A., Warr, K. and Chou, W. (2009) Web Services Resource

Transfer (WS-RT). W3C (http://www.w3.org/TR/2009/WD-ws-resource-

transfer-20090317).

Davy, J. R. and Dew, P. M. (1989) 'A note on improving the performance of

Delaunay triangulation', in Patrikalakis, N. M.(ed), Scientific Visualization

of Physical Phenomena. Springer-Verlag: Hong Kong, pp. 209-226.

de Groot, W., Goldammer, J. G., Keenan, T., Brady, M., Lynham, T., Csiszar, I.

A., Justice, C. O. and O'Loughlin, K. (2006) 'Developing a global early

warning system for wildland fire'.V International Conference on Forest

Fire Research.

Dean, J. and Ghemawat, S. (2008) 'MapReduce: Simplified Data Processing on

Large Clusters', Communications of the ACM, 51, (1), pp. 107-113.

Dean, J. and Ghemawat, S. Google Inc. (2010) System and method for efficient

large-scale data processing. 7650331.

DeMers, M. N. (2002) GIS modelling in raster. John Wiley & Sons: Chichester,

UK.

DeWitt, D. and Gray, J. (1992) 'Parallel database systems: the future of high

performance database systems', Communications of the ACM, 35, (6),

pp. 85-98.

DeWitt, D. and Stonebraker, M. (2008a) 'MapReduce II', Database Column,

[Online]. Available at: http://databasecolumn.vertica.com/database-

innovation/mapreduce-ii/ (Accessed: 15/09/2010).

Dewitt, D. and Stonebraker, M. (2008b) 'MapReduce: A major step backwards',

Database Column, [Online]. Available at:

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-

major-step-backwards/ (Accessed: 15th September 2010).

Di, L., Chen, A., Yang, W., Liu, Y., Wei, Y., Mehrotra, P., Hu, C. and Williams,

D. (2008) 'The development of a geospatial data Grid by integrating OGC

Web services with Globus-based Grid technology', Concurrency &

Computation: Practice and Experience, 20, (14), pp. 1617 - 1635.

References

295

Di, L., Chen, A., Yang, W. and Zhao, P. (2003) 'The Integration of Grid

Technology with OGC Web Services in NWGISS for NASA EOS

Data'.Global Grid Forum 8 / HPDC12. Seattle, USA,

Dijkstra, E. W. (1959) 'A Note on Two Problems in Connexion with Graphs',

Numerische Mathematik, 1, (269-271).

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G. and Vakali, A. (2009)

'Distributed internet computing for IT and scientific research', IEEE

Internet Computing, 13, (5), pp. 10-13.

Dillaway, B., Humphrey, M., Smith, C., Theimer, M. and Wasson, G. (2007)

HPC Basic Profile Version 1.0. Open Grid Forum (GFD-R-P.114).

Ding, Y. and Densham, P. J. (1994) 'A dynamic and recursive parallel algorithm

for constructing Delaunay triangulations.', 6th International Symposium

on Spatial Data Handling. Edinburgh, A dynamic and recursive parallel

algorithm for constructing Delaunay triangulations.: pp. 682-696.

Echterhoff, J. and Everding, T. (2008) OpenGIS Sensor Event Service Interface

Specification (proposed). Open Geospatial Consortium, Inc. (08-133).

Emmi, P. C. and Horton, C. A. (1995) 'A Monte Carlo simulation of error

propogation in a GIS based assessment of seismic risk', International

Journal of Geographical Information Science (IJGIS), 9, (4), pp. 447-461.

Etzion, O. (2005) 'Towards an Event-Driven Architecture: An Infrastructure for

Event Processing Position Paper', in Rules and Rule Markup Languages

for the Semantic Web. Vol. 3791/2005 Springer Berlin / Heidelberg, pp.

1-7.

Everding, T. and Echterhoff, J. (2008) Event Pattern Markup Language (EML).

Open Geospatial Consortium, Inc. (08-132).

Everding, T. and Echterhoff, J. (2009) OGC OWS-6 SWE Event Architecture

Engineering Report. Open Geospatial Consortium, Inc. (09-032).

Fairbairn, D., James, P., Hobona, G. and Watson, P. (2008) SAW-GEO.

Available at: http://edina.ac.uk/projects/seesaw/index.html (Accessed:

23/11/2008).

Fairgrieve, S. (2010) OWS-7 CCSI-SWE Best Practices Engineering Report.

Open Geospatial Consortium Inc. (10-073r1).

References

296

Fang, Y., Lee, B., Chou, T., Lin, Y. and Lien, J. (2009) 'The implementation of

SOA within grid structure for disaster monitoring', Expert Systems with

Applications, 36, pp. 5784-5792.

Farnhill, J. and McAllister, A. (2006) Grid and Open Geospatial Consortium

Collision. JISC (JISC Circular 02/2006 Full Text).

Farooqui, K., Logrippo, L. and Meer, J. d. (1995) 'The ISO Reference Model for

Open Distributed Processing: an introduction', Computer Networks and

ISDN Systems 27, pp. 1215-1229.

Fielding, R. (2000) Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis. University of California.

Flynn, M. (1966) 'Very High Speed Computing Systems', Proceedings of IEEE,

54, pp. 1901-1909.

Follino, G., Forestiero A., Papuzzo, G. and Spezzano, G. (2010) 'A Grid Portal

for Solving Geoscience Problems using Distributed Knowledge Discovery

Service', Future Generation Computer Systems, 26, (1), pp. 87-96.

Forney, G. D. (1973) 'The Viterbi Algorithm', Proceedings of the IEEE, 61, (3),

pp. 268-278.

Foster, I. (1995) Designing and Building Parallel Programs: Concepts and Tools

for Parallel Software Engineering. Addison Wesley.

Foster, I. (2002) 'What is the Grid? A Three Point Checklist', Grid Today, 1, 6,

Foster, I. (2005) 'Service-Oriented Science', Science, 308, (5723), pp. 814-817.

Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D.,

Leymann, F., Nally, M., Sedukhin, I., Snelling, D., Storey, T.,

Vambenepe, W. and Weerawarana, S. (2004) Modeling Stateful

Resources with Web Services: Version 1.1.

Foster, I., Grimshaw, A., Lane, P., Lee, W., Morgan, M., Newhouse, S., Pickles,

S., Pulsipher, D., Smith, C. and Theimer, M. (2008) OGSA Basic

Execution Service Version 1.0. Open Grid Forum

Foster, I. and Kesselman, C. (1998) 'Computational Grids', CERN European

Organization for Nuclear Research 8, pp. 87-114.

Foster, I. and Kesselman, C. (1999) 'Computational Grids', in Foster, I.(ed),

The GRID: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann Publishers Inc.

References

297

Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S. (2002) 'The Physiology of

the Grid: An Open Grid Services Architecture for Distributed Systems

Integration'.

Foster, I., Kesselman, C. and Tuecke, S. (2001) 'The Anatomy of the Grid:

Enabling Scalable Virtual Organisations', International Journal of High

Performance Computing Applications, 15, (3), pp. 200-222.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,

B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J. and Von

Reich, J. (2005) The Open Grid Services Architecture, Version 1.0. GGF

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,

B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J. and Von

Reich, J. (2006) The Open Grid Services Architecture Version 1.5. Open

Grid Forum

Foster, I., Parastatidis, S., Watson, P. and McKeown, M. (2009) 'How Do I

Model State? Let Me Count the Ways', Queue, 7, (2), pp. 54-55.

Fox, G. (1989) 'Parallel Computing Comes of Age: Supercomputer Level

Parallel Computations at Caltech', Concurrency & Computation: Practice

and Experience, 1, (1), pp. 63-103.

Fox, G. (2004) 'Software Development Around a Millisecond', Computers in

Science and Engineering (CISE Magazine), March/April, p.93-96.

Fox, G., Aktas, M., Aydin, G., H, G., Pallickara, S., Pierce, M. and Sayar, A.

(2008) 'Algorithms and the Grid', Computing and Visualization in

Science, 12, (3), pp. 115-124.

Fox, G., Williams, D. and Messina, P. (1994) Parallel Computing Works.

Morgan Kaufmann Publishers Inc.

Fraternali, P., Rossi, G. and Sanchez-Figueroa. (2010) 'Rich Internet

Applications', IEEE Internet Computing, 14, 3, p.9-12.

Freeman, P. K., Keen, M. and Mani, M. (2003) Dealing with Increased Risk of

Natural Disasters: Challenges and Options. International Monetary Fund

(WP/03/197).

Friis-Christensen, A., Lutz, M., Ostlander, N. and Bernard, L. (2007) 'Designing

Service Architectures for Distributed Geoprocessing: Challenges and

Future Directions', Transactions in GIS, 11, (6), pp. 799-816.

References

298

Frizziero, E., Gulmini, M., Lelli, F., Maron, G., Oh, A., Orlando, S., Petrucci, A.,

Squizzato, S. and Traldi, S. (2006) 'Instrument Element: A New Grid

component that enables the control of remote instrumentation',

International Conference on Cluster Computing and Grid. Singapore,

Instrument Element: A New Grid component that enables the control of

remote instrumentation

Gagliardi, F., Jones, B., Grey, F., Begin, M. and Heikkurinen, M. (2005)

'Building an infrastructure for scientific Grid computing: status and goals

of the EGEE project', Philosophical transactions of the Royal Society,

363, (1833), pp. 1729-1742.

Gaynor, M., Moulton, S. L., Welsh, M., LaCombe, E., Rowan, A. and Wynne, J.

(2004) 'Integrating Wireless Sensor Networks with the GRID', IEEE

Internet Computing, 8, 4, July-August 2004, p.32-39.

Ghiani, G., Guerrriero, F., Laporte, G. and Musmanno, R. (2003) 'Real-time

vehicle routing: Solution concepts, algorithms and parallel computing

strategies', European Journal of Operational Research, 151, pp. 1-11.

Ghimire, D. R., Simonis, I. and Wytzisk, A. (2005) 'Integration of GRID

Approaches into the Geographic Web Service Domain', FIG Working

Week and GSDI-8. Cairo, Egypt, Integration of GRID Approaches into

the Geographic Web Service Domain

Gittings, B. M., Sloan, T. M., Healey, R. G., Dowers, S. and Waugh, T. C.

(1994) 'Meeting expectations: a review of GIS performance issues', in

Mether, P. M.(ed), Geographical Information Handling - Research and

Applications. Wiley, pp. 33-45.

Glatard, T. (2008) 'A Service Oriented Architecture enabling dynamic service

grouping for optimizing distributed workflow execution', Future

Generation Computer Systems (In Press).

Glatard, T., Montagnat, J. and Pennec, X. (2006) 'Efficient services composition

for grid-enabled data-intensive applications'.International Symposium on

High Performance Distributed computing (HPDC'06). Paris, France IEEE.

Glimsdal, S., Pedersen, G. K. and Langtangen, H. P. (2004) 'An investigation of

overlapping domain decomposition methods for one-dimensional

dispersive long wave equations', Advances in Water Resources, 27, pp.

1111-1133.

References

299

Goldammer, J. G. (2006) 'Global Early Warning System for Wildland Fire', 3rd

International Conference on Early Warning. Bonn, Germany, Global

Early Warning System for Wildland Fire

Goldman, O. and Lenkov, D. (2005) XML Binary Characterization. W3C

Gong, J. and Xie, J. (2009) 'Extraction of drainage networks from large terrain

datasets using high throughput computing', Computers & Geosciences,

35, pp. 337-346.

González Cortéz, F. and Leduc, T. (2010) 'GGL: A geo-processing definition

language that enhance spatial SQL with paramaterization'.13th AGILE

International Conference on Geographic Information Science.

Guimarães, Portugal,

Gottschalk, K., Graham, S., Kreger, H. and Snell, J. (2002) 'Introduction to Web

Services Architecture', IBM Systems Journal, 41, (2).

Govindan, R., Hong, W., Madden, S., Franklin, M. J. and Shenker, S. (2002)

The Sensor Network as a Database. University of Southern California

(TR02-02-771).

Graham, S., Hull, D. and Murray, B. (2006) Web Services Base Notification 1.3

(WS-BaseNotification). Organisation for Advancement of Structured

Information Standards (OASIS) (wsn-ws_base_notification-1.3-spec-os).

Grasso, V. F. and Singh, A. (2008) 'Global Environment Alert Service',

Advances in Space Research, 41, (11), pp. 1836-1852.

Gray, J. (1981) 'The Transaction Conept: Virtues and Limitations'.7th

International Conference on Very Large Databases (VLDB). Cannes,

France,

Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A. and Heber, G. (2005)

'Scientific data management in the coming decade', ACM SIGMOD

Record, 34, (4), pp. 34-41.

Gray, J. and Patterson, D. (2003) 'A conversation with Jim Gray', ACM Queue,

1, (4), pp. 8-17.

Greenfeld, J. S. (2002) 'Matching GPS observations to locations on a digital

map'.81st Annual Meeting of the Transportation Research Board.

Washington, D. C.,

Greenwald, R., Stackowiak, R. and Stern, J. (2008) Oracle Essentials: Oracle

Database 11g. O'Reilly.

References

300

Grenon, P. and Smith, B. (2004) 'SNAP and SPAN: Towards Dynamic Spatial

Ontology', Spatial Cognition and Computation, 5, (1), pp. 69-104.

Grimshaw, A. (2003) 'Grid Services extend Web Services', SOA Web Services

Journal, 506.

Gropp, W., Lusk, E. and Skjellum, A. (1999) Using MPI: Portable Parallel

Programming with the Message-passing Interface. MIT Press.

Grossman, R. L., Gu, Y., Mambretti, J., Sabala, M., Szalay, A. and White, K.

(2010) 'An overview of the Open Science Data Cloud', 19th ACM

International Symposium on High Performance Distributed Computing.

Chicago, Illinois, An overview of the Open Science Data Cloud: ACM, pp.

377-384.

Gudgin, M., Mendelsohn, N., Nottingham, M. and Ruellan, H. (2005a) SOAP

Message Transmission Optimization Mechanism. W3C

Gudgin, M., Mendelsohn, N., Nottingham, M. and Ruellan, H. (2005b) XML-

binary Optimized Packaging. W3C

Gupta, R., Pande, S., Kleanthis, P. and Sarkar, V. (1999) 'Compilation

techniques for parallel systems', Parallel Computing, 25, pp. 1741-1783.

Han, L., Potter, S., Beckett, G., Pringle, G., Sung-Han, K., Upadhyay, R.,

Wickler, G., Berry, D., Welch, S., Usmani, A., Torero, J. and Tate, A.

(2010) 'Firegrid: An e-infrastructure for the next-generation emergency

response support', Journal of Parallel and Distributed Computing, 70,

(11), pp. 1128-1141.

Hansen, P. B. (1993) 'Model Programs for Computational Science: A

Programming Methodology for Multicomputers', Concurrency &

Computation: Practice and Experience, 5, (5), pp. 407-423.

Hart, P. E., Nilsson, N. J. and Raphael, B. (1972) 'Correction to "A Formal Basis

for the Heuristic Determination of Minimum cost Paths"', SIGART

Newsletter, 37, pp. 28-29.

Hart, Q. and Gertz, M. (2005) 'Querying streaming geospatial image data: The

GeoStreams project'.17th International Conference on Scientific and

Statistical Database Management. University of California, Santa

Barbara,

References

301

Havlik, D., Schimak, G. and Barta, R. (2008) 'Advanced Cascading Sensor

Observation Service'.International Congress on Environmental Modelling

and Software. Barcelona, Spain,

Havlik, D., Schimak, G. and Bleier, T. (2009) 'Cascading and replicating the

OGC Sensor Observation Service'.18th World IMACS/MODSIM

Congress. Cairns, Australia,

Hawick, K. A., Coddington, P. D. and James, H. A. (2003) 'Distributed

frameworks and parallel algorithms for processing large-scale

geographic data', Parallel Computing, 29, pp. 1297-1333.

Healey, R. and Desa, G. B. (1990) 'Transputer-Based Parallel Processing for

GIS Analysis: Problems and Potentialities'.Auto-Carto 9. Baltimore,

Maryland, USA,

Healey, R., Dowers, S., Gittings, B. M. and Mineter, M. J. (1998) Parallel

Processing Algorithms for GIS. Taylor & Francis.

Herring, J. R. (2006) OpenGIS Implementation Specification for Geographic

information - Simple feature access - Part 2: SQL option. Open

Geospatial Consortium Inc. (06-104r3).

Hickman, B. L., Bishop, M. P. and Rescigno, M. V. (1995) 'Advanced

Computational Methods for Spatial Information Extraction', Computers &

Geosciences, 21, (1), pp. 153-173.

Hickson, I. and Hyatt, D. (2008) HTML 5. W3C

Higgins, C. (2008) SEE-GEO. Available at: http://edina.ac.uk/projects/

seesaw/index.html (Accessed: 18/11/2008).

Higgins, C., Lee, C. A. and Sekiguchi, S. (2008) 'OGC-OGF Collaboration

Workshop Final Report', OGF-22. Cambridge, MA, USA, OGC-OGF

Collaboration Workshop Final Report.

Hingne, V., Joshi, A., Houstis, E. and Michopoulos, J. (2003) 'On the grid and

sensor networks', Grid Computing, 2003. Proceedings. Fourth

International Workshop on. On the grid and sensor networks: pp. 166-

173.

Hluchy, L., Habala, O., Tran, V., Gatial, E., Maliska, M., Simo, B. and Slizik, P.

(2005) 'Collaborative Environment For Grid-Based Flood Prediction',

Computing & Informatics, 24, pp. 1001-1022.

References

302

Hoare, C. A. R. (1978) 'Communicating sequential processes', ACM, 21 (8), pp.

666-677.

Hobona, G., Fairbairn, D. and James, P. (2007) 'Workflow Enactment of Grid-

Enabled Geospatial Web Services'.UK e-Science All Hands Meeting.

Nottingham,

Hoef, J., Peterson, E. and Theobald, D. (2006) 'Spatial Statistical Models that

Use Flow and Stream Distance', Environmental and Ecologial Statistics,

16, pp. 449-464.

Hogue, C. and Graves, D. (1994) Power Fortran Accelerator User's Guide.

Silicon Graphics Inc.

Hong-chun, Z., Hai-ying, L., Tao, J. and Ji-zian, Z. (2009) 'Research on Remote

sensing data processing strategy and application based on grid

operation', Procedia Earth and Planetary Science, 1, pp. 1180-1185.

Horiuchi, S., Negishi, K., Abe, A., Kamimura, A. and Fujinawa, Y. (2005) 'An

automatic processing system for broadcasting earthquake alarms',

Bulletin of the Seismological Society of America, 95, pp. 708-718.

Huber, W., Lädke, M. and Ogger, R. (1997) 'Extended floating car data for the

acquisition of traffic information'.4th World Congress on Intelligent

Transport Systems. Berlin, Germany,

Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P.

and Beven, K. (2006) 'An Intelligent and Adaptable Flood Monitoring and

Warning System', UK E-Science All Hands Meeting 2006.

Hummel, B. (2006) 'Map Matching for Vehicle Guidance', in Drummond, J.(ed),

Dynamic and Mobile GIS: Investigating Changes in Space and Time.

Humphrey, M., Wasson, G., Kiryakov, Y., Park, S.-M., Del Vecchio, D.,

Beekwilder, N. and Gray, J. (2005) 'Alternative Software Stacks for

OGSA-based Grids'.ACM/IEEE Supercomputing. Seattle, WA,

USA:IEEE.

Hwang, K. and Xu, Z. (1996) 'Scalable Parallel Computers for Real-Time Signal

Processing', IEEE Signal Processing Magazine, 30, (4), pp. 50-56.

Hwu, W., Ryoo, S., Sain-Zee, U., Kelm, J. H., Gelado, I., Stone, S. S., Kidd, R.

E., Baghsorkhi, S., S., Aqeel, A. M., Tsao, S. C., Navarro, N., Lumetta, S.

S., Frank, M. I. and Patel, S. J. (2007) 'Implicitly Parallel Programming

References

303

Models for Thousand-Core Microprocessors'.44th Annual Design

Automation Conference. San Diego, California, USA:ACM.

Jagadeesh, G. R., Srikanthan, T. and Zhan, X. D. (2004) 'A Map Matching

Method for GPS Based Real-Time Vehicle Location', The Journal of

Navigation, 57, pp. 429-440.

Jang, J. S. R. and Sun, C. T. (1996) Neuro-fuzzy and soft computing: a

computational approach to learning and machine intelligence. Prentice-

Hall Inc.: Upper Saddle River, NJ, USA.

Kalogeraki, V., Gunopulos, D., Sandhu, R. and Thuraisingham, B. (2008) 'QoS

Aware Dependable Distributed Stream Processing'.11th IEEE

Symposium on Object Oriented Real-Time Distributed Computing

(ISORC). Orlando, Florida, USA:IEEE.

Kanamori, H., Hauksson, E. and Heaton, T. (1997) 'Real-time seismology and

earthquake hazard mitigation', Nature: International Weekly Journal of

Science, (390), pp. 461-464.

Karonis, N., Toonen, B. and Foster, I. (2003) 'MPICH-G2: A Grid-Enabled

Implementation of the Message Passing Interface', Journal of Parallel

and Distributed Computing 63, (5), pp. 551-563.

Katz, M. J., Overmars, M. H. and Sharir, M. (1991) 'Efficient hidden surface

removal for objects with small union size', 7th International Symposium

on Computational Geometry. Efficient hidden surface removal for objects

with small union size: pp. 31-40.

Kaye, D. (2003) Loosely Coupled: The Missing Pieces of Web Services. RDS

Strategies LLC: USA.

Keller, R., Krammer, B., Mueller, M., Resch, M. and Gabriel, E. (2003) 'MPI

Development Tools and Applications for the Grid', Workshop on Grid

Application and Programming Tools: GGF8 Meetings. Seattle, WA, USA,

MPI Development Tools and Applications for the Grid.

Kerry, K. E. and Hawick, K. A. (1998) 'Kriging Interpolation on High-

Performance Computers', Lecture Notes in Computer Science, 1401, pp.

429-438.

Kidner, D. B., Rallings, P. J. and Ware, A., J. (1997) 'Parallel processing for

Terrain Analysis in GIS: Visibility as a Case Study', Geoinformatica, 1,

(2), pp. 183-207.

References

304

Kiehle, C., Greve, K. and Heier, C. (2006) 'Standarized Geoprocessing - Taking

Spatial Data Infrastructures one Step Further', 9th AGILE Conference on

Geographic Information Science. Visegrad, Hungary, Standarized

Geoprocessing - Taking Spatial Data Infrastructures one Step Further.

Kim, S., Shekhar, S. and Min, M. (2008) 'Contraflow Transportation Network

Reconfiguration for Evacuation Route Planning', IEEE Transactions on

Knowledge and Data Engineering, 20, (8).

Klopfer, M. and Kanellopoulos, I. (eds.) (2008) Orchestra: An open service

architecture for risk management. The Orchestra Consortium.

Kobialka, T., Buyya, R., Leckie, C. and Kotagiri, R. (2007) 'A Sensor Web

Middleware with Stateful Services for Heterogeneous Sensor

Networks'.3rd International Conference on Intelligent Sensors, Sensor

Networks and Information. ISSNIP 2007.

Kopetz, H. (1999) Real-Time Systems: Design Principles for Distributed

Embedded Applications. Kluwer Academic Publishers.

Kothuri, R., Godfrind, A. and Beinat, E. (2007) Pro Oracle Spatial for Oracle

Database 11g. Apress.

Koutroumpas, M. and Higgins, C. (2008) 'A Pipeline Processing Approach to

GIS'.11th AGILE International Conference on Geographic Information

Science. University of Girona, Spain,

Kraak, M. J., Sliwinski, A. and Wytzisk, A. (2005) 'What happens at 52N? An

Open source approach to education and research'.Joint Commissions

Seminar "Internet-Based Cartographic Teaching and Learning: Atlases,

Map Use and Visual Analytics. Madrid,

Krishnamurthy, S., Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,

M. J., Hellerstein, J., Wei, H., Madden, S., Raman, V., Reiss, F. and

Shah, M., A. (2003) 'TelegraphCQ: An Architectural Status Report', IEEE

Data Engineering Bulletin, 26, (1).

Krüger, A. and Kolbe, T. (2008) 'Mapping Spatial Data Infrastructures to a Grid

Environment for Optimised Processing of Large Amounts of Spatial

Data', XXXVII ISPRS Congress: Special Session: Spatial Data

Infrastructure (SDI) and Spatial Information Grid (SIG). Beijing, China,

Mapping Spatial Data Infrastructures to a Grid Environment for

Optimised Processing of Large Amounts of Spatial Data: pp. 1559.

References

305

Kruvoruchko, K. and Gribov, A. (2004) 'Geostatistical Interpolation and

Simulation with Non-Euclidean Distances'.GeoENV IV: International

Conference on Geostatistics for Environmental Applications. Neuchatel,

Switzerland:Kluwer Academic Publishers.

Kurzbach, S., Pasche, E., Lanig, S. and Zipf, A. (2009) 'Benefits of Grid

Computing for Flood Modeling In Service-Oriented Spatial Data

Infrastructures', GIS Science, 3, pp. 89-97.

Kussul, N., Shelestov, A. and Skakun, S. (2009) 'Grid and sensor web

technologies for environmental monitoring', Earth Science Informatics, 2,

pp. 37-51.

Kussul, N., Shelestov, A., Skakun, S. and Kravchenko, O. (2008) 'Data

Assimilation Technique for Flood Monitoring & Prediction', International

Journal 'Information Theories & Applications', 15, pp. 76-83.

Lahrmann, H. (2007) 'Floating Car Data for Traffic Monitoring'.i2TERN Aalborg,

Denmark,

Lämmel, L., Rieser, M. and Nagel, K. (2010) 'Large Scale Microscopic

Evacuation Simulation ', Pedestrian & Evacuation Dynamics 2008, 2, pp.

547-553.

Langran, G. (1992) Time in Geographic Information Systems. Taylor & Francis:

London, UK.

Lanig, S. and Zipf, A. (2009a) 'Interoperable processing of digital elevation

models in grid infrastructures', Earth Science Informatics, 2, pp. 107-116.

Lanig, S. and Zipf, A. (2009b) 'Towards Generalization Processes of LiDAR

Data based on Grid and OGC Web Processing Services'.Geoinformatik.

Osnabruck, Germany,

Lanthier, M., Nussbaum, D. and Jorg-Rudiger, S. (2003) 'Parallel

implementation of geometric shortest path algorithms', Parallel

Computing, 29, pp. 1443-1479.

Leavitt, N. (2010) 'Will NoSQL Databases Live Up to Their Promise?',

Computer, 43, 2, p.12-14.

Lee, C. and Hamdi, M. (1995) 'Parallel image processing of applications on a

network of workstations', Parallel Computing, 21, pp. 137-160.

Lee, C. and Percivall, G. (2008) 'Standards-Based Computing Capabilities for

Distributed Geospatial Applications', Computer, 41, (11), pp. 50-57.

References

306

Lee, W.-H., Tseng, S.-S. and Tsai, S.-H. (2009) 'A knowledge based real-time

travel time prediction system for urban network', Expert Systems with

Applications, 36, pp. 4329-4247.

Lehning, M., Dawes, N., Bavay, M., Parlange, M., Nath, S. and Zhao, F. (2009)

'Instrumenting the Earth: Next-Generation Sensor Networks and

Environmental Science', in Hey, T., Tansley, S. and Tolle, K.(eds) The

Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft

Research.

Li, B., Zhao, H. and Lv, Z. (2010) 'Parallel ISODATA Clustering of Remote

Sensing Images on MapReduce', International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery. Huangshan,

China, Parallel ISODATA Clustering of Remote Sensing Images on

MapReduce: IEEE, pp. 380-383.

Li, X., Plale, B., Vijayakumar, N., Ramachandran, R., Graves, S. and Conover,

H. (2008) 'Real-time Storm Detection and Weather Forecast Activation

through Data Mining and Events Processing', Earth Science Informatics,

1, (2), pp. 49-57.

Liang, S. H. L., Chen, S., Huang, C. Y., Li, R. Y., Chang, D. Y. C., Badger, J.

and Rezel, R. (2010) 'GeoCENS: Geospatial Cyberinfrastructure for

Environmental Sensing', GIScience 2010. Zurich, Switzerland,

GeoCENS: Geospatial Cyberinfrastructure for Environmental Sensing.

Liang, S. H. L., Croitoru, A. and Tao, C. V. (2005) 'A Distributed Geospatial

Infrastructure for Sensor Web', Computers & Geosciences, 31, (2), pp.

221-231.

Liang, S. H. L., Tao, C. V. and Croitoru, A. (2003) 'The design and prototype of

a distributed geospatial infrastructure for smart sensor webs'.6th AGILE

Conference on Geographic Information Science. Lyon, France, 24th-26th

April 2003.Presses Polytechniques et Universitaires Romandes.

Liu, C. and Meng, X. (2008) 'Determination of Routing Velocity with GPS

Floating Car Data and WebGIS-Based Instantaneous Traffic Information

Dissemination', The Journal of Navigation, 61, pp. 337-353.

Luckham, D. (2006) What's the Difference Between ESP and CEP? Available

at: http://complexevents.com/?p=103 (Accessed: 25/01/2010).

References

307

Luckham, D. and Schulte, R. (2008) Event Processing Glossary - Version 1.1.

Available at: http://www.ep-

ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid

,84/ (Accessed: 25/01/2010).

Lv, Z., Hu, Y., Zhong, H., Wu, J., Li, B. and Zhao, H. (2010) 'Parallel K-Means

Clustering of Remote Sensing Images Based on Map-Reduce', Lecture

Notes in Computer Science, 6318, pp. 162-170.

Lynch, N. and Gilbert, S. (2002) 'Brewer's conjecture and the feasibility of

consistent, available, partition-tolerant web services', ACM SIGACT

News, 33, (2), pp. 51-59.

MacDougall, E. B. (1984) 'Surface mapping with weighted averages in a

microcomputer', in Spatial Algorithms for Processing Land Data with a

Microcomputer: Lincoln Institute Monograph #84-2. Lincoln Institute of

Land Policy: Cambridge, MA, USA.

MacKenzie, M., McCabe, F., Brown, P., Metz, R. and Hamilton, B. A. (2006)

Reference Model for Service Oriented Architecture. OASIS (wd-soa-rm-

cd1).

MacLaren, J., Sakellariou, R., Krishnakumar, K. T., Garibaldi, J. and Ouelhadj,

D. (2004) 'Towards Service Level Agreement Based Scheduling on the

Grid'.Workshop on Planning and Scheduling for Web and Grid Services

(in conjunction with ICAPS-04). Whistler, BC, Canada,

Madden, S. (2002) Query Processing for Streaming Sensor Data. PhD

Qualifying Exam Proposal thesis. Computer Science Division, University

of Berkeley, California, USA.

Magillo, P. and Puppo, E. (1998) 'Algorithms for Parallel Terrain Modelling and

Visualisation', in Healey, R., Dowers, S., Gittings, B. M. and Mineter, M.

J.(eds) Parallel Processing Algorithms for GIS. Taylor & Francis: London,

UK.

Malarvizhi, N. and Uthariaraj, V. R. (2009) 'A New Mechanism for Job

Scheduling in Computational Grid Network Environments', Lecture Notes

in Computer Science, 5820, pp. 490-500.

Marchel, F., Hackney, J. and Axhausen, K. W. (2005) 'Efficient Map Matching of

Large Global Positioning System Data Sets: Tests on Speed-Monitoring

References

308

Experiment in Zurich', Transportation Research Record, 1935, pp. 93-

100.

Marco, J. and Marco, R. (2003) 'First Prototype of the CrossGrid Testbed'.1st

European AcrossGrids Conference. Santiago de Compostella, Spain,

Martinez, K., Hart, J. K. and Ong, R. (2004) 'Environmental sensor networks',

Computer, 37, (8), pp. 50-56.

Marzolla, M., Andreetto, P., Venturi, V., Ferraro, A., Memon, S., Twedell, B.,

Riedel, M., Mallmann, D., Streit, A., van de Berghe, S., Li, V., Snelling,

D., Stamou, K., Shah, Z. A. and Hedman, F. (2007) 'Open Standards-

Based Interoperability of Job Submission and Management Interfaces

across the Grid Middleware Platforms gLite and UNICORE', e-Science

and Grid Computing, IEEE International Conference on. Open

Standards-Based Interoperability of Job Submission and Management

Interfaces across the Grid Middleware Platforms gLite and UNICORE:

pp. 592-601.

Maso, J., Pomakis, K. and Julia, N. (2010) OpenGIS Web Map Tile Service

Implementation Standard. Open Geospatial Consortium Inc. (OGC 07-

057r7).

Mather, P. M. (2004) Computer Processing of Remotely-Sensed Images. John

Wiley and Sons Ltd.: Chichester, UK.

Matheus, A. and Higgins, C. (2009) 'A Shibboleth Service Provider for OGC

Web Map Services'.16th ACM Conference on Computer and

Communications Security (CCS '09). Chicago, IL, USA:ACM.

Mazzetti, P. (2010) 'Grid Enablement of OpenGeospatial Web Services: the G-

OWS Working Group'.Geophysical Research Abstracts. Vienna,

Austria:European Geosciences Union.

McBryan, O. A. (1994) 'An overview of message passing environments', Parallel

Computing, 20, (4), pp. 415-678.

McGough, A. and Colling, D. (2006) 'The GRIDCC Project: the GRIDCC

Collaboration'.First International Conference on Communication System

Software and Middleware.IEEE.

Mennis, J., Viger, R. and Tomlin, C. D. (2005) 'Cubic Map Algebra Functions for

Spatio-Temporal Analysis', Cartography and Geographic Information

Science, 32, (1), pp. 17-32.

References

309

Merrill, D. (2008a) Secure Addressing Profile 1.0. Open Grid Forum (GFD-R-

P.131).

Merrill, D. (2008b) Secure Communication Profile 1.0. Open Grid Forum (GFD-

R-P.132).

Metcalfe, S. E., Whyatt, J. D. and Derwent, R. G. (1995) 'A comparison of

model and observed network estimates of sulphur decomposition across

Great Britain for 1990 and its likely source attribution', Quarterly Journal

of the Royal Meteorological Society, 121, pp. 1387-1411.

Metropolis, N. and Ulam, S. (1949) 'The Monte Carlo Method', Journal of the

American Statistical Association, 44, (247), pp. 335-341.

Mineter, M. J. and Dowers, S. (1999) 'Parallel processing for geographical

applications: A layered approach', Journal of Geographical Systems, 1,

pp. 61-74.

Mitas, L. and Mitasova, H. (1999) 'Spatial Interpolation', in Longley, P., Good-

child, M., Maguire, D. and Rhind, D.(eds) Geographical Informations

Systems: Principles, Techniques, Management and Applications. Vol. 1

Wiley: London, pp. 481-492.

Miwa, T., Sakai, T. and Morikawa, T. (2008) 'Route Identification and Travel

Time Prediction Using Probe-Car Data', International Journal of ITS

Research, 2, (1), pp. 21-28.

Mourelatos, A. P. (1978) 'Events, processes, and states', Linguistics and

Philosophy, 2, (3).

Mower, J. E. (1996) 'Developing parallel procedures for line simplification',

International Journal of Geographical Information Science (IJGIS), 10,

(6), pp. 699-712.

Muehlen, M., Nickerson, J. and Swenson, K. (2005) 'Developing web services

choreography standards - the case of REST vs SOAP', Decision Support

Systems, 40, pp. 9 -29.

Müller, M., Bernard, L. and Brauner, J. (2010) 'Moving Code in Spatial Data

Infrastructures - Web Service Based Deployment of Geoprocessing

Algorithms', Transactions in GIS, 14, (S1), pp. 101-118.

Murty, J. (2008) Programming Amazon Web Services: S3, EC2, SQS, FPS and

SimpleDB. O'Reilly: Sebastopol, CA, USA.

References

310

Muzik, I. and Chang, C. (1993) 'Flood Simulation assisted by a GIS', HydroGIS:

Application of Geographic Information Systems in Hydrology and Water

Resources. Vienna, Austria, Flood Simulation assisted by a GIS: IAHS

Press, pp. 531 - 540.

Na, A. (2007) SensorML and TransducerML, personal communication list, S. m.

Na, A., Priest, M., Cox, S., Botts, M., Robin, A., Walkowski, A., Simonis, I.,

Echterhoff, J., Liang, S., Davidson, J. and Niedzwiadek, H. (2007)

Sensor Observation Service. Open Geospatial Consortium Inc. (OGC 06-

009r6).

Nagaratnam, N., Janson, P., Dayka, J., Nadalin, A., Siebenlist, F., Welch, V.,

Foster, I. and Tuecke, S. (2002) The security architecture for open grid

services. The Globus Project

Nagel, K. and Rickert, M. (2001) 'Parallel implementation of the TRANSIMS

micro-simulation', Parallel Computing, 27, (12), pp. 1611-1639.

Nakamura, H., Horiuchi, S., Wu, C., Yamamoto, S. and Rydelek, P. (2009)

'Evaluation of the real-time earthquake information system in Japan',

Geophysical Research Letters, 36, pp. L00B01.

Nekovee, M. (2005) 'The promise and challenges of vehicular ad hoc networks',

Workshop of Ubiquitous Computing and e-Research. Edinburgh, UK,

The promise and challenges of vehicular ad hoc networks

Nelson, M. R. (2009) 'Building an Open Cloud', Science Magazine, 324, (5935),

pp. 1656-1657.

Niblett, P. and Graham, S. (2005) 'Events and service-oriented architecture:

The OASIS Web Services Notification specification', IBM Systems

Journal, 44, (4).

Nicolescu, C. and Jonker, P. (2002) 'A data and task parallel image processing

environment', Parallel Computing, 28, pp. 945-965.

Noh, S. H. and Kim, T. J. (1998) 'A comprehensive analysis of map matching

algorithms for ITS', Hongik Journal of Science and Technology 9, pp.

303-313.

Ochieng, W. Y., Quddus, M. A. and Noland, R. B. (2004) 'Map Matching in

Complex Urban Road Networks', Revista Brasileira de Cartografia

(Brazilian Journal of Cartography), 55, (2), pp. 1-18.

References

311

Oh, S., Bulut, H., Uyar, A., Wu, W. and Fox, G. (2005) 'Optimised

Communication using the SOAP Infoset For Mobile Multimedia

Collaboration Applications'.International Symposium on Collaborative

Technologies and Systems. Saint Louis, Missouri, USA,

Oh, S. and Fox, G. (2005) 'HHFR: A new architecture for Mobile Web Services

Principles and Implementations', in Comm. Grids Technical Paper.

Openshaw, S. (2000) 'Geocomputation', in Openshaw, S. and Abrahart, R.

J.(eds) Geocomputation. Taylor & Francis: New York.

Padberg, A. and Greve, K. (2009) 'Gridification of OGC Web Services:

Challenges and Potential', GIS.Science: Die Zeitschrift fur Geoinformatik,

3, p.77-81.

Padberg, A. and Kiehle, C. (2009) 'Towards a grid-enabled SDI: Matching the

paradigms of OGC Web Services and Grid Computing', article under

review for the International Journal of Spatial Data Infrastructures

Research, Special Issue GSDI-11.

Pallickara, S. and Fox, G. (2003) 'A Distributed Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids', Middleware 2003.

Rio de Janeiro, Brazil, A Distributed Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids: pp. 41-60.

Panagiotis, P. and Vretanos, A. (2010) OpenGIS Web Feature Service 2.0

Interface Standard. Open Geospatial Consortium Inc. (OGC 09-025r1).

Peacock, C., Goode, A. and Brett, A. (2004) 'Automatic forensic face

recognition from digital images', Science & Justice, 44, (1), pp. 145-155.

Percivall, G. (2002) ISO19119 and OGC Service Architecture. NASA / Global

Science and Technology, Inc.

Percivall, G., Reed, C., Leinenweber, L., Tucker, C. and Cary, T. (2008) OGC

Reference Model. Open Geospatial Consortium Inc. (08-062r4).

Phillips, P. J., Wechsler, H., Huang, J. and Rauss, P. J. (1998) 'The FERET

database and evaluation procedure for face-recognition algorithms',

Image and Vision Computing, 16, pp. 295-306.

Pidd, M., de Silva, F. N. and Eglese, R. W. (1996) 'A simulation model for

emergency evacuation', European Journal of Operational Research, 90,

pp. 413-419.

References

312

Planas, E., Pastor, E., Presutto, F. and Tixier, J. (2008) 'Results of the MITRA

project: Monitoring and intervention for the transportation of dangerous

goods', Journal of Hazardous Materials, 2008, (152), pp. 516-526.

Plaza, A., Benediktsson, J. A., Boardman, J. W., J., B., Bruzzone, L., Camps-

Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A.,

Marconcini, M., Tilton, J. C. and Trianni, G. (2009) 'Recent advances in

techniques for hyperspectral image processing', Remote Sensing of

Environment, 113, pp. 5110-5122.

Portele, C. (2007) OpenGIS Geography Markup Language (GML) Encoding

Standard version 3.2.1. Open Geospatial Consortium Inc. (07-036).

Prescod, P. (2002) Second Generation Web Services. Available at:

http://www.xml.com/lpt/a/915 (Accessed: 27/4/2008).

Pritchett, D. (2008) 'BASE: An ACID Alternative', Queue, 6, (3).

Quinn, M. (1994) Parallel Computing: Theory and Practice. New York, NY,

USA.

Racine, P. (2010) 'Introducing PostGIS WKT Raster: Seamless Raster/Vector

Operations in a Spatial Database', FOSS4G. Barcelona, Spain,

Introducing PostGIS WKT Raster: Seamless Raster/Vector Operations in

a Spatial Database.

Reichardt, M. (2005) Sensor Web Enablement: An OGC White Paper. Open

Geospatial Consortium (OGC 07-165).

Rejaie, A. and Shinozuka, M. (2004) 'Reconnaissance of Golcuk 1999

earthquake damage using satellites', Journal of Aerospace Engineering,

17, (1), pp. 20-25.

Reuter, A. and Haerder, T. (1983) 'Principles of Transaction-Oriented Database

Recovery', Computing Surveys, 15 (4), pp. 287-317.

Richards, A. (2006) The Codeplay Sieve C++ Parallel Programming System.

Rueda-Velasquez, C. A. (2007) Geospatial Image Stream Processing: Models,

Techniques and Applications in Remote Sensing Change Detection. PhD

thesis. University of California, Davis.

Rueda, C., Gertz, M., Ludascher, B. and Hamann, B. (2006) 'An extensible

infrastructure for processing distributed geospatial data streams', 18th

International Confererence on Scientific and Statistical Database

References

313

Management (SSDBM). An extensible infrastructure for processing

distributed geospatial data streams: pp. 285-290.

Samet, H. (1984) 'The Quadtree and related hierarchical data structures', ACM

Computing Surveys (CSUR), 16, (2), pp. 187-260.

Samofalov, V. V. and Konovalov, A. V. (1996) 'Technology of debugging

programs for computers with mass parallelism', Mathematical modeling

of physical processes, (4), pp. 52-56.

Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M. and Pelegri-

Llopart, E. (2003) Fast Web Services. Available at:

http://java.sun.com/developer/technicalArticles/WebServices/fastWS

(Accessed: 3/8/2009).

Sano, K., Kobayashi, Y. and Nakamura, T. (2004) 'Differential coding scheme

for efficient parallel image composition on a PC cluster system', Parallel

Computing, 30, pp. 285-299.

Sawyer, M. (1998) 'The Software Environment and Standardisation Initiatives',

in Healey, R., Dowers, S., Gittings, B. M. and Mineter, M. J.(eds)

Parallel Processing algorithms for GIS. Taylor & Francis: London.

Schad, J. (2010) 'Flying Yellow Elephant: Predictable and Efficient MapReduce

in the Cloud'.VLDB 2010: 36th International Conference on Very Large

Databases, PhD workshop. Singapore,

Schaeffer, B. (2008) 'Towards a Transactional Web Processing Service (WPS-

T)'.GI Days. Munster, Germany,

Schäfer, R. P., Thiessenhusen, K. U. and Wagner, P. (2002) 'A Traffic

Information System by Means of Real-time Floating-car Data'.ITS World

Congress. Chicago, USA,

Scharl, A. and Tochtermann, K. (2007) The GeoSpatial Web: How

Geobrowsers, social software and the web 2.0 are shaping the network

society. Springer: London, UK.

Schrijver, A. (2005) 'On the history of combinatorial optimisation (till 1960)', in

Aardal, K., Nemhauser, G. L. and Weismantel, R.(eds) Discrete

Optimization. Vol. 12.

Schut, P. (2007) OpenGIS Web Processing Service version 1.0.0. Open

Geospatial Consortium (OGC 05-007r7).

References

314

Schwiegelshohn, U., Badia, R. M., Bubak, M., Danelutto, M., Dustdar, S.,

Gagliardi, F., Geiger, A., Hluchy, L., Kranzmuller, D., Laure, E., Priol, T.,

Reinefeld, A., Resch, M., Reuter, A., Rienhoff, O., Ruter, T., Sloot, P.,

Talia, D., Ullmann, K., Yahyapour, R. and Voigt, v. G. (2010)

'Perspectives on Grid computing', Future Generation Computer Systems,

26, pp. 1104-1115.

Scribner, K. and Stiver, M. (2000) Understanding SOAP: The Authorative

Solution. SAMS: New York.

Seinstra, F. J., Koelma, D. and Geusebroek, J. M. (2002) 'A software

architecture for user transparent parallel image processing', Parallel

Computing, 28, pp. 967-993.

Shapiro, M. and Miller, E. (1999) 'Managing Databases with Binary Large

Objects', 16th IEEE Mass Storage Systems Symposium. San Diego,

California, Managing Databases with Binary Large Objects: pp. 185-193.

Shi, Y., Shortridge, A. and Bartholic, J. (2002) 'Grid Computing for Real Time

Distributed Collaborative Geoprocessing', Geospatial Theory, Processing

and Applications (ISPRS Technical Commission IV Symposium). Grid

Computing for Real Time Distributed Collaborative Geoprocessing:

ISPRS, pp. 197-208.

Shields, P. (2006) 'Electronic Networks, Enhanced State Surveillance and the

Ironies of Control', Journal of Creative Communications, 1, (1), pp. 19.

Shu, Y., Zhang, J. and Zhou, X. (2006) 'A Grid-Enabled Architecture for

Geospatial Data Sharing', Services Computing, 2006. APSCC '06. IEEE

Asia-Pacific Conference on. A Grid-Enabled Architecture for Geospatial

Data Sharing: pp. 369-375.

Silva, L. E. and Buyya, R. (1999) 'Parallel Programming Models and

Paradigms', in Buyya, R.(ed), High Performance Cluster Computing:

Programming and Applications. Vol. 2 Prentice Hall: NJ, USA, pp. 4-27.

Simonis, I. (2006) OGC Sensor Alert Service Candidate Implementation

Specification. Open Geospatial Consortium Inc. (06-028r3).

Simonis, I., Dibner, P. C., Walkowski, A., Robin, A., Lansing, J., Greenwood, J.,

Echterhoff, J., Davidson, J., Priest, M., Botts, M. and Cox, S. (2007)

OpenGIS Sensor Planning Service Implementation Specification. Open

Geospatial Consortium Inc. (07-014r3).

References

315

Skillicorn, D. (2002) 'The Case for Datacentric Grids'.International Parallel and

Distributed Processing Symposium (IPDPS). Fort Lauderdale, Florida,

USA,

Snelling, D., Merrill, D. and Savva, A. (2008) OGSA Basic Security Profile 2.0.

Open Grid Forum (GFD-R-P.138).

soKNOS (2010) Service-orientierte ArchiteKturen zur Unterstutzung von

Netzwerken im Rahmen Oeffentlicher Sicherheit (Service-oriented

Architectures Supporting Networks of Public Security). Available at:

http://www.soknos.de (Accessed: September 2010).

Solheim, A., Bhasin, R., De Blasio, F. V., Blikra, L. H., Boyle, S., Braathen, A.,

Dehls, J., Elverhoi, A., AEtzelmuller, B., Glimsdal, S., Harbitz, C.,

Heyerdahl, H., Hoydal, O. A., Iwe, H., Karlsrud, K., Lacasse, S.,

Lecomte, I., Lindholm, C., Longva, O., Lovholt, F., Nadim, F., Nordal, S.,

Romstad, B., Roed, J. K. and Strout, J. M. (2005) 'International Centre

for Geohazards (ICG): Assessment, prevention and mitigation of

geohazards', Norwegian Journal of Geology, 85, (1 + 2), pp. 45 - 62.

Sonnet, J. and Savage, C. (2003) OWS 1.2 SOAP Experiment Report.

OpenGIS Consortium Inc (OGC 03-014).

Sorokine, A., Daniel, J. and Liu, C. (2005) 'Parallel visualization for GIS

applications'.GeoComputation 2005. Ann Arbor, MI, USA,

Southworth, F. (1991) Regional Evacuation Modelling: A state of the art review.

Centre for Transportation Analysis: Oak Ridge National Laboratory, USA

Stasch, C., Broring, A. and Walkowski, A. (2008) 'Providing Mobile Sensor Data

in a Standardized Way - The SOSmobile Web Service Interface'.11th

AGILE International Conference on Geographic Information Science.

Girona, Spain,

Stolze, K. (2003) 'SQL/MM Spatial: The Standard to Manage Spatial Data in

Relational Database Systems'.10th BTW (Business, Web and

Technology) Leipzig, Germany,

Stonebraker, M. (1986) 'The Case for Shared Nothing', Database Engineering,

9, (1).

Stonebraker, M., Abadi, D. J., DeWitt, D., Madden, S., Paulson, E., Pavlo, A.

and Rasin, A. (2010) 'MapReduce and Parallel DBMSs: Friends or Foes',

Communications of the ACM, 53, (1), pp. 64 - 71.

References

316

Sun, Q., Chi, T., Wang, X. and Zhong, D. (2005) 'Design of Middleware based

Grid GIS', IEEE International Geoscience and Remote Sensing

Symposium IGARSS. Seoul, S. Korea, Design of Middleware based Grid

GIS: IEEE, pp. 4.

Szalay, A. and Blakeley, J. A. (2009) 'Gray's Law: Database-centric computing

in science', in Hey, T., Tansley, S. and Tolle, K.(eds) The Fourth

Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M. and Stonebraker, M.

(2003) 'Load Shedding in a Data Stream Manager'.29th International

Conference on Very Large Databases (VLDB'03). Berlin,

Germany:Morgan Kaufmann.

Tehranian, S., Zhao, Y., Harvey, T., Swaroop, A. and Mckenzie, K. (2006) 'A

robust framework for real-time distributed processing of satellite data',

Journal of Parallel and Distributed Computing, 66, pp. 403-418.

Tham, C. and Buyya, R. (2005) SensorGrid: Integrating Sensor Networks and

Grid Computing. Melbourne, Australia: Grid Computing and Distributed

Systems Laboratory, University of Melbourne

Tiampo, K. F., Rundle, J. B., McGinnis, S. A. and Klein, W. (2002) 'Pattern

dynamics and forecast methods in seismically active regions', Pure

Applied Geophysics, 159, pp. 2429-2467.

Tisato, F. and de Paoli, F. (1995) 'On the Duality between Event-Driven and

Time Driven Models'.13th IFAC DCCS. Toulouse, France,

Tomlin, C. D. (1991) 'Cartographic Modelling', in Geographic Information

Systems: Principles and Applications. Longman Scientific and Technical:

Essex, UK., pp. 361-74.

Torp, K. and Lahrmann, H. (2005) 'Floating car data for traffic monitoring', 5th

European Congress and exhibition of intelligent transport systems and

services. Hannover, Germany, Floating car data for traffic monitoring.

Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A. and Evans, D. L. (2004)

'Satellite remote sensing of earthquake, volcano, flood, landslide and

coastal inundation hazards', ISPRS Journal of Photogrammetry and

Remote Sensing, 59, (4), pp. 185-198.

References

317

Trewin, S. M. (1998) 'High-Level Support for Parallel Programming', in Healey,

R., Dowers, S., Gittings, B. M. and Mineter, M. J.(eds) Parallel

Processing Algorithms for GIS. Taylor & Francis.

Tu, Y., Liu, S., Prabhakar, S. and Yao, B. (2006) 'Load Shedding in Stream

Databases: A Control-Based Approach'.32nd International Conference

on Very Large Databases. Seoul, Korea:ACM.

Uslander, T. (2009) Specification of the Sensor Service Architecture

(SensorSA). Open Geospatial Consortium Inc. (OGC 09-132r1).

Vallecillo, A. (2001) 'RM-ODP: The ISO Reference Model for Open Distributed

Processing', DINTEL Edition on Software Engineering, 3, pp. 66-99.

Vambenepe, W., Graham, S. and Niblett, P. (2006) Web Services Topics 1.3.

OASIS (wsn-ws_topics-1.3-spec-os).

van Engelen, R. (2003) 'Pushing the SOAP envelope with Web services for

scientific computing'.International Conference on Web Services (ICWS).

Las Vegas, USA,

van Lint, J. W. C. (2004) Reliable Travel Time Prediction for Freeways, Bridging

Artificial Neural Networks and Traffic Flow Theory. Ph.D. thesis. Delft

University of Technology.

Vaquero, L. M., Rodero-Merino, L., Caceres, J. and Lindner, M. (2008) 'A break

in the clouds: towards a cloud definition', ACM SIGCOMM Computer

Communication Review, 39, (1), pp. 50-55.

Vowles, G. (2007) Geospatial Digital Rights Management Reference Model

(GeoDRM RM). Open Geospatial Consortium Inc. (06-004r4).

W3C (1999) Introduction to WSDL. Available at: http://www.w3c.org (Accessed:

27/11/2007).

Wagner, D. F. and Scott, M. S. (1995) 'Improving the Performance of Raster

GIS: A comparison of Approaches to Parallelization of Cost Volume

Algorithms'.AutoCarto Charlotte, North Carolina, USA:American Society

for Photogrammetry and Remote Sensing.

Wang, C. A. and Tsin, Y. H. (1987) 'An O(log n) time parallel algorithm for

triangulating a set of points in the place', Information Processing Letters,

25, pp. 55-60.

Wang, J. and Gong, H. (2009) A Load-On-Demand Approach to Handling Large

Networks in the Oracle Spatial Network Data Model. Oracle Corporation

References

318

Wang, L., Tao, J., Kunze, M., Kramer, D., Karl, W. and Castellanos, A. C.

(2008a) 'Scientific Cloud Computing: Early Definition and Experience',

10th IEEE International Conference on High Performance Computing

and Communications. Dalian, China, Scientific Cloud Computing: Early

Definition and Experience: IEEE, pp. 825-830.

Wang, S. and Armstrong, M. P. (2003) 'A quadtree approach to domain

decomposition for spatial interpolation in Grid computing environments',

Parallel Computing, 29, (10), pp. 1481-1504.

Wang, S. and Armstrong, M. P. (2009) 'A theoretical approach to the use of

cyberinfrastructure in geographical analysis', International Journal of

Geographical Information Science (IJGIS), 23, (2), pp. 169-193.

Wang, X. and Kockelman, K. M. (2009) 'Forecasting Network Data: Spatial

Interpolation of Traffic Counts Using Texas Data', Transportation

Research Record: Journal of the Transportation Research Board, 2105,

pp. 100-108.

Wang, Y., Beullens, P., Liu, H., Brown, D., Thornton, T. and Proud, R. (2008b)

'A Practical Intelligent Navigation System based on Travel Speed

Prediction'.11th International IEEE Conference on Intelligent

Transportation Systems. Beijing, China, 12-15 October 2008.IEEE.

Werder, S. and Krüger, A. (2009) 'Parallelizing Geospatial tasks in Grid

Computing', GIS Science: Die Zeitschrift fur Geoinformatik, 3, pp. 71.

White, C. E., Bernstein, D. and Kornhauser, A. L. (2000) 'Some map matching

algorithms for personal navigation assistants', Transportation Research

Part C, 8, pp. 91-108.

Whiteside, A. (2005) OpenGIS Web Services Architecture Description. Open

Geospatial Consortium Inc. (05-042r2).

Whiteside, A. and Greenwood, J. (2010) OGC Web Service Common Standard.

Open Geospatial Consortium Inc. (06-121-r9).

Wilkinson, B. and Allen, M. (1999) Parallel Programming: Techniques and

Applications using Networked Workstations & Parallel Computers.

Prentice Hall: Upper Saddle River, New Jersey, USA.

Williams, M., Cornford, D., Bastin, L., Jones, R. and Parker, S. (2009)

'Automatic processing, quality assurance and serving of real-time

weather data over lightweight protocols'.StatGIS 2009. Milos, Greece,

References

319

Wilson, G. (1995) Parallel Programming for Scientists and Engineers. MIT

Press: Cambridge, MA, USA.

Woolf, A. and Shaon, A. (2009a) 'An approach to encapsulation of Grid

Processing within an OGC Web Processing Service', GIS.Science: Die

Zeitschrift fur Geoinformatik 3, p.82-88.

Woolf, A. and Shaon, A. (2009b) Web Processing Service Change Request –

method for controlling asynchronous process. Available at:

(https://portal.opengeospatial.org/files/?artifact_id=34550 (Accessed:

07/12/2009).

Woolf, A. and Shaon, A. (2009c) Web Processing Service Change Request –

methods for controlling, and checking the status of asynchronous

process. Available at:

https://portal.opengeospatial.org/files/?artifact_id=35070 (Accessed:

07/12/2009).

Worboys, M. and Duckham, M. (eds.) (2004) GIS: A Computing Perspective.

CRC Press.

Wu, X., Carceroni, R., Fang, H., Zelinka, S. and Kirmse, A. (2007) 'Automatic

alignment of large-scale aerial rasters to road-maps'.15th annual ACM

international symposium on Advances in geographic information

systems.

Xing, J., Wu, C., Tao, M., Wu, L. and Zhang, H. (2004) 'Flexible Advance

Reservation for Grid Computing', Lecture Notes in Computer Science,

3251, pp. 241-248.

Xiong, D. and Marble, D. F. (1996) 'Strategies for real-time spatial analysis

using massively parallel SIMD computers: an application to urban traffic

flow analysis', International Journal of Geographical Information Science

(IJGIS), 10, (6), pp. 769-789.

Xue, Y., Wang, Y., Wang, J., Luo, Y., Hu, Y., Zhong, S., Tang, J., Cai, G. and

Guan, Y. (2005) 'High Throughput computing for Spatial Information

Processing (HIT-SIP) System on Grid Platform', in Advances in Grid

Computing EGC 2005. Springer Berlin / Heidelberg, pp. 40-49.

Yagoubi, B. and Slimani, Y. (2007) 'Task Load Balancing Strategy for Grid

Computing', Journal of Computer Science, 3, (3), pp. 186-194.

References

320

Yang, H., Dasdan, A., Hsiao, R.-L. and Stott Parker, D. (2007) 'Map-reduce-

merge: simplified relational data processing on large clusters'.2007 ACM

SIGMOD International Conference on Management of Data. Beijing,

China:ACM.

Yang, J., Kang, S. and Chon, K. (2005) 'The map matching algorithm of gps

data with relatively long polling time intervals', Journal of the Eastern

Asia Society for Transportation Studies, 6, pp. 2561-2573.

Zerger, A. and Smith, D. I. (2003) 'Impediments to using GIS for real-time

disaster decision support', Computers, Environment and Urban Systems,

27, pp. 123-141.

Zhao, C., Zhao, Y., Meng, L. and Deng, S. (2005) 'The Key Techologic Issues

of Parallel Spatial Database Management System for Parallel

GIS'.XXXVI ISPRS International Symposium on Spatio-temporal

Modeling, Spatial Reasoning, Analysis, Data Mining and Data Fusion.

Peking University, China:ISPRS.

Zhou, G., Esaki, T., Mitani, Y., Xie, M. and Mori, J. (2003) 'Spatial probabilistic

modeling of slope failure using an integrated GIS Monte Carlo simulation

approach', Engineering Geology, 68, (3-4), pp. 373-386.

Zhou, X., Abel, D. J. and Truffet, D. (1998) 'Data Partitioning for Parallel Spatial

Join Processing', Geoinformatica, 2, (2), pp. 175-204.

Zhu, H., Liu, H., Jiang, T. and Zhang, J. (2009) 'Research on remote sensing

data processing strategy and application based on grid operation',

Procedia Earth and Planetary Science, 1, pp. 1180-1185.

THE END

