10,869 research outputs found

    Exploring the Venus global super-rotation using a comprehensive General Circulation Model

    Full text link
    The atmospheric circulation in Venus is well known to exhibit strong super-rotation. However, the atmospheric mechanisms responsible for the formation of this super-rotation are still not fully understood. In this work, we developed a new Venus general circulation model to study the most likely mechanisms driving the atmosphere to the current observed circulation. Our model includes a new radiative transfer, convection and suitably adapted boundary layer schemes and a dynamical core that takes into account the dependence of the heat capacity at constant pressure with temperature. The new Venus model is able to simulate a super-rotation phenomenon in the cloud region quantitatively similar to the one observed. The mechanisms maintaining the strong winds in the cloud region were found in the model results to be a combination of zonal mean circulation, thermal tides and transient waves. In this process, the semi-diurnal tide excited in the upper clouds has a key contribution in transporting axial angular momentum mainly from the upper atmosphere towards the cloud region. The magnitude of the super-rotation in the cloud region is sensitive to various radiative parameters such as the amount of solar radiative energy absorbed by the surface, which controls the static stability near the surface. In this work, we also discuss the main difficulties in representing the flow below the cloud base in Venus atmospheric models. Our new radiative scheme is more suitable for 3D Venus climate models than those used in previous work due to its easy adaptability to different atmospheric conditions. This flexibility of the model was crucial to explore the uncertainties in the lower atmospheric conditions and may also be used in the future to explore, for example, dynamical-radiative-microphysical feedbacks.Comment: Accepted for publication in Planet. Space Sc

    Synoptic reorganization of atmospheric flow during the Last Glacial Maximum

    Get PDF
    A coupled global atmosphere–ocean model of intermediate complexity is used to study the influence of glacial boundary conditions on the atmospheric circulation during the Last Glacial Maximum in a systematical manner. A web of atmospheric interactions is disentangled, which involves changes in the meridional temperature gradient and an associated modulation of the atmospheric baroclinicity. This in turn drives anomalous transient eddy momentum fluxes that feed back onto the zonal mean circulation. Moreover, the modified transient activity (weakened in the North Pacific and strengthened in the North Atlantic) leads to a meridional reorganization of the atmospheric heat transport, thereby feeding back onto the meridional temperature structure. Furthermore, positive barotropic conversion and baroclinic production rates over the Laurentide ice sheets and the far eastern North Pacific have the tendency to decelerate the westerlies, thereby feeding back to the stationary wave changes triggered by orographic forcing

    Simulation of Thick Accretion Disks with Standing Shocks by Smoothed Particle Hydrodynamics

    Full text link
    We present results of numerical simulation of inviscid thick accretion disks and wind flows around black holes. We use Smoothed Particle Hydrodynamics (SPH) technique for this purpose. Formation of thick disks are found to be preceded by shock waves travelling away from the centrifugal barrier. For a large range of the parameter space, the travelling shock settles at a distance close to the location obtained by a one-and-a-half dimensional model of inviscid accretion disks. Occasionally, it is observed that accretion processes are aided by the formation of oblique shock waves, particularly in the initial transient phase. The post-shock region (where infall velocity suddenly becomes very small) resembles that of the usual model of thick accretion disk discussed in the literature, though they have considerable turbulence. The flow subsequently becomes supersonic before falling into the black hole. In a large number of cases which we simulate, we find the formation of strong winds which are hot and subsonic when originated from the disk surface very close to the black hole but become supersonic within a few tens of the Schwarzschild radius of the blackhole. In the case of accretion of high angular momentum flow, very little amount of matter is accreted directly onto the black hole. Most of the matter is, however, first squeezed to a small volume close to the black hole, and subsequently expands and is expelled as a strong wind. It is quite possible that this expulsion of matter and the formation of cosmic radio jets is aided by the shock heating in the inner parts of the accretion disks.Comment: LaTeX, 16 pages, Astrophysical Journal (in press

    Time-dependent Radiation-driven Winds

    Full text link
    We study temporal variability of radiation-driven winds using one-dimensional, time-dependent simulations and an extension of the classic theory of line-driven winds developed by Castor Abbott & Klein. We drive the wind with a sinusoidally varying radiation field and find that after a relaxation time, determined by the propagation time for waves to move out of the acceleration zone of the wind, the solution settles into a periodic state. Winds driven at frequencies much higher than the dynamical frequency behave like stationary winds with time averaged radiation flux, whereas winds driven at much lower frequencies oscillate between the high and low flux stationary states. Most interestingly, we find a resonance frequency near the dynamical frequency that results in velocity being enhanced or suppressed by a factor comparable to the amplitude of the flux variation. Whether the velocity is enhanced or suppressed depends on the relative phase between the radiation and the dynamical variables. These results suggest that a time-varying radiation source can induce density and velocity perturbations in the acceleration zones of line-driven winds

    21 Layer troposphere-stratosphere climate model

    Get PDF
    The global climate model is extended through the stratosphere by increasing the vertical resolution and raising the rigid model top to the 0.01 mb (75 km) level. The inclusion of a realistic stratosphere is necessary for the investigation of the climate effects of stratospheric perturbations, such as changes of ozone, aerosols or solar ultraviolet irradiance, as well as for studying the effect on the stratosphere of tropospheric climate changes. The observed temperature and wind patterns throughout the troposphere and stratosphere are simulated. In addition to the excess planetary wave amplitude in the upper stratosphere, other model deficiences include the Northern Hemisphere lower stratospheric temperatures being 5 to 10 C too cold in winter at high latitudes and the temperature at 50 to 60 km altitude near the equator are too cold. Methods of correcting these deficiencies are discussed

    Response of the Asian Summer Monsoons to a High-latitude Thermal Forcing: Mechanisms and Nonlinearities

    Get PDF
    This study investigates mechanisms and nonlinearities in the response of the Asian Summer Monsoons (ASM) to high-latitude thermal forcings of different amplitudes. Using a suite of runs carried out with an intermediate-complexity atmospheric general circulation model, we find that the imposed forcings produce a strong precipitation response over the eastern ASM but a rather weak response over the southern ASM. The forcing also causes a precipitation dipole with wet conditions over the eastern Tibetan Plateau (TP) and dry conditions over the Bay of Bengal (BoB) and southeast Asia. A moderate increase of precipitation along the southern margin of the TP is also produced. Simulations designed to isolate the causal mechanisms show that thermodynamic interactions involving the tropical surface oceans are far less important than the water-vapour feedback for the transmission of information from the high-latitudes to the ASM. Additionally, we assess the nonlinearity of the ASM precipitation response to the forcing amplitude using a novel application of the empirical orthogonal function method. The response can be decomposed in two overlapping patterns. The first pattern represents a precipitation dipole with wet conditions over the eastern TP and dry conditions over BoB, which linearly increases with forcing amplitude becoming quasi-stationary for large forcing amplitudes (i.e. amplitudes leading to Arctic temperature anomalies larger than 10 degrees C). The second pattern is associated with increased precipitation over the southeastern TP and is nonlinearly dependent on forcing, being most important for intermediate forcing amplitudes (i.e. amplitudes leading to Arctic temperature anomalies between 5 and 10 degrees C)

    Jet Formation from Rotating Magnetized Objects

    Get PDF
    Jet formation is connected most probably with matter acceleration from the vicinity of rotating magnetized bodies. It is usually related to the mass outflows and ejection from accretion disks around black holes. Problem of jet collimation is discussed. Collapse of a rotating magnetized body during star formation or supernovae explosion may lead to a jet-like mass ejection for certain angular velocity and magnetic field distributions at the beginning of the collapse. Jet formation during magnetorotational explosion is discussed basing on the numerical simulation of collapse of magnetized bodied with quasi-dipole field.Comment: Will be published in the proc. of 20th Texas Symposium, Austin, Texas 7 pages, 7 picture
    corecore