1,843 research outputs found

    IMPROVING REALTIME 3-D TRACKING OF HIGH DOSE RATE RADIATION SOURCE USING A FLAT PANEL DETECTOR

    Get PDF
    Previous research 1 on this subject tracked the presumed exact path the HDR source would follow in real-time, during breast brachytherapy treatments in other to ensure accurate dose delivery and effectively confirm actual source position. As a continuation, this research has three objectives. Firstly, we will extract information from patient DICOM file which will be used to perform evaluations, then we will establish communication between our C program and the new Varex Paxscan flat panel detector (FPD). Finally, we will try to embed our C codes into a MATLAB graphical user interface (GUI) This research will attempt to improve the overall existing system in several ways including, code optimization and trying a sample simulation of the process in MATLAB guide app, to check the quality of the new design. Finally, all the algorithms will be integrated into the user-friendly GUI, such that its operation can be implemented easily. The FPD is used to obtain images resulting from the exit radiation of the HDR source, emerging from an organized matrix of markers. The images are processed using in-built functions in MATLAB to obtain projection coordinates, and marker coordinates. Each marker along with its projection constitutes a line in 3D. Using the mathematical solution for near intersection of two 3D lines, N-markers will produce N*(N-1)/2 points of intersection and their mean will produce a more precise source position. The changes in this position as well as the time interval between these changes will be used to confirm the accuracy of our treatment system using the standalone monitoring system built in this research. In the previous study the accuracy of source position detection using the FPD was found to be in sub-millimeter. This study which uses a new FPD with improved features is used to confirm that, but our focus here is improvement of the previous work, as stated earlier

    Multimodal breast imaging: Registration, visualization, and image synthesis

    Get PDF
    The benefit of registration and fusion of functional images with anatomical images is well appreciated in the advent of combined positron emission tomography and x-ray computed tomography scanners (PET/CT). This is especially true in breast cancer imaging, where modalities such as high-resolution and dynamic contrast-enhanced magnetic resonance imaging (MRI) and F-18-FDG positron emission tomography (PET) have steadily gained acceptance in addition to x-ray mammography, the primary detection tool. The increased interest in combined PET/MRI images has facilitated the demand for appropriate registration and fusion algorithms. A new approach to MRI-to-PET non-rigid breast image registration was developed and evaluated based on the location of a small number of fiducial skin markers (FSMs) visible in both modalities. The observed FSM displacement vectors between MRI and PET, distributed piecewise linearly over the breast volume, produce a deformed Finite-Element mesh that reasonably approximates non-rigid deformation of the breast tissue between the MRI and PET scans. The method does not require a biomechanical breast tissue model, and is robust and fast. The method was evaluated both qualitatively and quantitatively on patients and a deformable breast phantom. The procedure yields quality images with average target registration error (TRE) below 4 mm. The importance of appropriately jointly displaying (i.e. fusing) the registered images has often been neglected and underestimated. A combined MRI/PET image has the benefits of directly showing the spatial relationships between the two modalities, increasing the sensitivity, specificity, and accuracy of diagnosis. Additional information on morphology and on dynamic behavior of the suspicious lesion can be provided, allowing more accurate lesion localization including mapping of hyper- and hypo-metabolic regions as well as better lesion-boundary definition, improving accuracy when grading the breast cancer and assessing the need for biopsy. Eight promising fusion-for-visualization techniques were evaluated by radiologists from University Hospital, in Syracuse, NY. Preliminary results indicate that the radiologists were better able to perform a series of tasks when reading the fused PET/MRI data sets using color tables generated by a newly developed genetic algorithm, as compared to other commonly used schemes. The lack of a known ground truth hinders the development and evaluation of new algorithms for tasks such as registration and classification. A preliminary mesh-based breast phantom containing 12 distinct tissue classes along with tissue properties necessary for the simulation of dynamic positron emission tomography scans was created. The phantom contains multiple components which can be separately manipulated, utilizing geometric transformations, to represent populations or a single individual being imaged in multiple positions. This phantom will support future multimodal breast imaging work

    Effects of Compression on the Temperature Distribution of a Tissue-Mimicking Material During High-Intensity Focused Ultrasound (HIFU) Ablation

    Get PDF
    Local blood flow near a high-intensity focused ultrasound (HIFU) target has been shown to decrease ablation effectiveness and predictability, creating a barrier to clinical use for breast cancer treatment. This study investigated the effects of compression on HIFU ablation of a perfused tissue-mimicking material. Gellan gum-based phantoms, with thermal and acoustic properties similar to those of soft tissue, were ablated with a 1.13 MHz HIFU transducer while being subjected to varying levels of external compression. Phantoms were designed with an embedded 6 mm diameter vessel meant to mimic a thermally significant blood vessel near a breast tumor. The internal temperature profile was measured using T-type thin-wire thermocouples embedded in the phantom along the transverse axis. The temperature distributions on opposing lateral sides of the HIFU focal point were measured to determine the effects of compression on heating symmetry. After heating with 30 W for 30 s, the maximum discrepancy between a pair of thermocouples located 2 mm left and right of centerline, respectively, was 40 °C. This maximum discrepancy was observed at a fluid flow rate of 38 mL/min. With applied compression reducing flow to between 28 mL/min and 25 mL/min, the discrepancy between left and right thermocouples was reduced to as low as 5.7 °C. Numerical predictions revealed an agreement with experimental results in the reduction of heating asymmetry as the flow rate decreased from 40 mL/min to 20 mL/min

    Calibration and Optimization of 3D Digital Breast Tomosynthesis Guided Near Infrared Spectral Tomography

    Get PDF
    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient\u27s breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results

    COMPUTATIONAL ULTRASOUND ELASTOGRAPHY: A FEASIBILITY STUDY

    Get PDF
    Ultrasound Elastography (UE) is an emerging set of imaging modalities used to assess the biomechanical properties of soft tissues. UE has been applied to numerous clinical applications. Particularly, results from clinical trials of UE in breast lesion differentiation and staging liver fibrosis indicated that there was a lack of confidence in UE measurements or image interpretation. Confidence on UE measurements interpretation is critically important for improving the clinical utility of UE. The primary objective of my thesis is to develop a computational simulation platform based on open-source software packages including Field II, VTK, FEBio and Tetgen. The proposed virtual simulation platform can be used to simulate SE and acoustic radiation force based SWE simulations, including pSWE, SSI and ARFI. To demonstrate its usefulness, in this thesis, examples for breast cancer detections were provided. The simulated results can reproduce what has been reported in the literature. To statistically analyze the intrinsic variations of shear wave speed (SWS) in the fibrotic liver tissues, a probability density function (PDF) of the SWS distribution in conjunction with a lossless stochastic tissue model was derived using the principle of Maximum Entropy (ME). The performance of the proposed PDF was evaluated using Monte-Carlo (MC) simulated shear wave data and against three other commonly used PDFs. We theoretically demonstrated that SWS measurements follow a non-Gaussian distribution for the first time. One advantage of the proposed PDF is its physically meaningful parameters. Also, we conducted a case study of the relationship between shear wave measurements and the microstructure of fibrotic liver tissues. Three different virtual tissue models were used to represent underlying microstructures of fibrotic liver tissues. Furthermore, another innovation of this thesis is the inclusion of “biologically-relevant” fibrotic liver tissue models for simulation of shear wave elastography. To link tissue structure, composition and architecture to the ultrasound measurements directly, a “biologically relevant” tissue model was established using Systems Biology. Our initial results demonstrated that the simulated virtual liver tissues qualitatively could reproduce histological results and wave speed measurements. In conclusions, these computational tools and theoretical analysis can improve the confidence on UE image/measurements interpretation

    Validation of a Respiratory Gating System for Automated Delivery of the Deep Inspiration Breath-hold Technique

    Get PDF
    Purpose: To validate the performance of a respiratory gating system for the automated delivery of the deep inspiration breath-hold (DIBH) technique. Methods: The gating system utilized an automatic gating interface (Elekta Response) which connected a marker-based respiratory motion monitoring system to the linear accelerator control system. The gating system was characterized dosimetrically and temporally using two distinct approaches. Central-axis output and energy constancy were evaluated across 8 beam-matched linear accelerators. Additionally, a representative set of 5 treatment plans were delivered both non-gated and gated to a 2D diode array (MapCHECK). The respiratory motion monitoring system optically tracked a reflective marker that was attached to a dynamic phantom (QUASAR). The phantom was programmed to replicate a typical DIBH breathing waveform. The passing rates between these modes of operation were evaluated using gamma analysis and a percent dose difference comparison. Modular and end-to-end approaches were used to quantify system latencies. The modular components evaluated were the streaming latency of the tracking camera, sampling rate of the tracking software, signal travel time, and latency of the linear accelerator. The end-to-end approach involved measuring the displacement of a target moving at known velocities during the during the gating process. Results: Output and energy constancy were both within ± 0.5% for each beam energy and linear accelerator investigated. The average differences in passing rates between non-gated and gated modes of operation were within ± 0.4% using gamma analysis (2%, 1mm). Average passing rates between modes of operation were greater than 99% using a percent dose difference comparison (1%). The first gated segment was found to have significantly (p =.02) longer beam-on latency compared to the subsequent gated segment. End-to-end beam-on and beam-off latency for the subsequent gated segment was found to be 1.49 and 0.34 seconds, respectively, which was consistent with measured component totals. Conclusion: The gating system was able to achieve dosimetric operating characteristics that are desirable for accurate delivery of the DIBH technique. The methodology presented can be generalized to other respiratory gating systems that utilize the automatic gating interface studied in this work

    Reconstruction Algorithms for Novel Joint Imaging Techniques in PET

    Get PDF
    Positron emission tomography (PET) is an important functional in vivo imaging modality with many clinical applications. Its enormously wide range of applications has made both research and industry combine it with other imaging modalities such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). The general purpose of this work is to study two cases in PET where the goal is to perform image reconstruction jointly on two data types. The first case is the Beta-Gamma image reconstruction. Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules, and tracers, such as 11CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to low positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (Simultaneous Beta-Gamma Imager). The imager can simultaneously detect positrons (β+) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs the beta and gamma images independently to estimate the thickness component of the beta forward model, and then jointly estimates the radioactivity distribution in the object. We have validated the physics model and the reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the Structural Similarity (SSIM) index for comparing the leaf images from the Simultaneous Beta-Gamma Imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively. The second case is the virtual-pinhole PET technology, which has shown that higher resolution and contrast recovery can be gained by adding a high resolution PET insert with smaller crystals to a conventional PET scanner. Such enhancements are obtained when the insert is placed in proximity of the region of interest (ROI) and in coincidence with the conventional PET scanner. Intuitively, the insert may be positioned within the scanner\u27s axial field-of-view (FOV) and radially closer to the ROI than the scanner\u27s ring. One of the complicating factors of this design is the insert\u27s blocking the scanner\u27s lines-of-response (LORs). Such data may be compensated through attenuation and scatter correction in image reconstruction. However, a potential solution is to place the insert outside of the scanner\u27s axial FOV and to move the body to be in proximity of the insert. We call this imaging strategy the surveillance mode. As the main focus of this work, we have developed an image reconstruction framework for the surveillance mode imaging. The preliminary results show improvement in spatial resolution and contrast recovery. Any improvement in contrast recovery should result in enhancement in tumor detectability, which will be of high clinical significance

    Reconstruction Algorithms for Novel Joint Imaging Techniques in PET

    Get PDF
    Positron emission tomography (PET) is an important functional in vivo imaging modality with many clinical applications. Its enormously wide range of applications has made both research and industry combine it with other imaging modalities such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). The general purpose of this work is to study two cases in PET where the goal is to perform image reconstruction jointly on two data types. The first case is the Beta-Gamma image reconstruction. Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules, and tracers, such as 11CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to low positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (Simultaneous Beta-Gamma Imager). The imager can simultaneously detect positrons (β+) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs the beta and gamma images independently to estimate the thickness component of the beta forward model, and then jointly estimates the radioactivity distribution in the object. We have validated the physics model and the reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the Structural Similarity (SSIM) index for comparing the leaf images from the Simultaneous Beta-Gamma Imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively. The second case is the virtual-pinhole PET technology, which has shown that higher resolution and contrast recovery can be gained by adding a high resolution PET insert with smaller crystals to a conventional PET scanner. Such enhancements are obtained when the insert is placed in proximity of the region of interest (ROI) and in coincidence with the conventional PET scanner. Intuitively, the insert may be positioned within the scanner\u27s axial field-of-view (FOV) and radially closer to the ROI than the scanner\u27s ring. One of the complicating factors of this design is the insert\u27s blocking the scanner\u27s lines-of-response (LORs). Such data may be compensated through attenuation and scatter correction in image reconstruction. However, a potential solution is to place the insert outside of the scanner\u27s axial FOV and to move the body to be in proximity of the insert. We call this imaging strategy the surveillance mode. As the main focus of this work, we have developed an image reconstruction framework for the surveillance mode imaging. The preliminary results show improvement in spatial resolution and contrast recovery. Any improvement in contrast recovery should result in enhancement in tumor detectability, which will be of high clinical significance

    A brief look at model-based dose calculation principles, practicalities, and promise

    Full text link
    corecore