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Abstract 

Ultrasound Elastography (UE) is an emerging set of imaging modalities used to 

assess the biomechanical properties of soft tissues. UE has been applied to numerous 

clinical applications. Particularly, results from clinical trials of UE in breast lesion 

differentiation and staging liver fibrosis indicated that there was a lack of confidence in UE 

measurements or image interpretation. Confidence on UE measurements interpretation is 

critically important for improving the clinical utility of UE. The primary objective of my 

thesis is to develop a computational simulation platform based on open-source software 

packages including Field II, VTK, FEBio and Tetgen. The proposed virtual simulation 

platform can be used to simulate SE and acoustic radiation force based SWE simulations, 

including pSWE, SSI and ARFI. 

To demonstrate its usefulness, in this thesis, examples for breast cancer detections 

were provided. The simulated results can reproduce what has been reported in the literature. 

To statistically analyze the intrinsic variations of shear wave speed (SWS) in the 

fibrotic liver tissues, a probability density function (PDF) of the SWS distribution in 

conjunction with a lossless stochastic tissue model was derived using the principle of 

Maximum Entropy (ME). The performance of the proposed PDF was evaluated using 

Monte-Carlo (MC) simulated shear wave data and against three other commonly used 

PDFs. We theoretically demonstrated that SWS measurements follow a non-Gaussian 

distribution for the first time. One advantage of the proposed PDF is its physically 

meaningful parameters. Also, we conducted a case study of the relationship between shear 
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wave measurements and the microstructure of fibrotic liver tissues. Three different virtual 

tissue models were used to represent underlying microstructures of fibrotic liver tissues. 

Furthermore, another innovation of this thesis is the inclusion of “biologically-

relevant” fibrotic liver tissue models for simulation of shear wave elastography. To link 

tissue structure, composition and architecture to the ultrasound measurements directly, a 

“biologically relevant” tissue model was established using Systems Biology. Our initial 

results demonstrated that the simulated virtual liver tissues qualitatively could reproduce 

histological results and wave speed measurements. 

In conclusions, these computational tools and theoretical analysis can improve the 

confidence on UE image/measurements interpretation. 
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Chapter 1. Introduction 

1.1 Background of Ultrasound Elastography 

Ultrasound Elastography (UE) is an emerging set of imaging modalities used to 

assess the biomechanical properties of soft tissues. UE can be used to measure strain, 

relaxation time constants, Young’s modulus and shear wave speed (SWS). To the World 

Federation of Ultrasound in Medicine and Biology (WFUMB) [1], UE includes both strain 

elastography (SE) and shear wave elastography (SWE). The former is to measure quasi-

static tissue response, while the latter is to measure SWS from dynamic responses of the 

tissue being imaged (e.g. propagation of shear wave fronts). SE [2] is a method for 

measuring the tissue deformation generated by applying pressure with an ultrasound 

transducer on the body surface. Then, the deformation can be measured (see Fig. 1.1a). 

The hard region strains less than the surrounding soft region. Acoustic radiation force-

based elastography [3] mainly includes two modalities: (1) monitoring the tissue response 

within the radiation force region of excitation (ROE) and generating images of relative 

differences in tissue stiffness (e.g. Acoustic Radiation Force Impulse [ARFI] imaging); and 

(2) monitoring SWS in the region outside ROE to quantify tissue stiffness (e.g. point shear 

wave elastography [pSWE], supersonic shear imaging [SSI]). In ARFI [2], the acoustic 

radiation force can create a localized displacement of a few microns along the ultrasound 

axial direction, which decays in a few milliseconds. The hard region is displaced less than 

the surrounding soft region (see Fig. 1.1b). In pSWE and SSI [2], the focused acoustic 

beam is used to generate shear waves through an acoustic radiation force impulse. Then, 

the ultrasonic imaging is used to monitor the resulting shear wave propagation away from 
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the radiation force pushing location. The shear wave in the hard region propagates faster 

than that in the soft region (see Fig. 1.1c). 

 

Figure 1.1 (a) Strain elastography (SE) is established by calculating the deformations 

caused by the ultrasound transducer. (b) The acoustic radiation force can be used to 

deform the tissue at the focus. In the displacement profile, the peak displacement and 

relaxation time can be used to obtain information about the tissue properties. (c) The 

acoustic radiation force is successively projected to different depths to create supersonic 

source. Then, the plane shear wave can be generated and propagate through the tissue 

[4]. 

 

1.2 Applications and Existing Problems 

UE can be used for the investigation of many disease conditions in human organs, 

as disease conditions may alter underlying tissue properties. For example, UE can be used 

for detection and diagnosis of breast, liver, thyroid and prostate cancers [5]. To show the 

capability and the limitations of UE, two examples (i.e. breast cancer and liver disease) are 

demonstrated below. 

1.2.1 Breast Cancer Detection 

Breast cancer is known as the second leading cause of death in the female 

population. The American Cancer Society's (ACS) estimates that there are about 246,660 
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new cases of invasive breast cancer among women in the United States in 2016 [6]. A 

recent comprehensive report by the ACS also confirmed that, in general, early detection is 

the key for decreased mortality [7]. Annual mammographic screening is often used for 

early detection of breast cancer, reducing mortality and morbidity, particularly in patients 

with tumors in fatty breast tissue [8]. However, the sensitivity and specificity are not ideal 

for mammography as described in the literature [9]. Breast biopsy remains the gold 

standard for definitive diagnosis of suspicious breast lesions. However, it is painful, 

exposes the patient to a risk of infection [10].  

The conventional B-mode ultrasound has emerged as a useful and cost-effective 

modality in the workup of patients with suspected breast masses. Its traditional role has 

been for differentiating between solid and cystic masses and guiding biopsy procedures. 

However, the uncertainties in the conventional B-mode ultrasound have led to a high rate 

of biopsy procedures being performed [10]. Recently, ultrasound-based quasi-static 

elastography [11-13] (UQE) has been successfully applied to non-invasive differentiation 

of breast lesions [12, 14]. However, the success of UQE is mixed. In a recent meta-analysis 

[15] of 22 clinical studies (up to Feb. 2011; 4713 lesions in 4,266 patients), sensitivity and 

specificity of the quasi-static elastography [11-13] greatly varied from 40% to 95%, as 

compared to biopsy results. In recent years, acoustic radiation force-based elastography 

[16] has been successfully applied to non-invasive differentiation of breast lesions. The 

data in a recent meta-analysis [17] (33 clinical studies; up to Nov. 2014; 5838 lesions in 

5397 patients) clearly showed that both ARFI imaging and SSI have excellent sensitivity 

and specificity (85% ~ 90%) in terms of breast lesion characterization. Because of those 
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successes, acoustic radiation force-based elastography (i.e. ARFI, pSWE, and SSI) is 

increasingly being employed to characterize breast masses in conjunction with the standard 

B-mode ultrasound. However, there are still concerns about uncertainties in acoustic 

radiation force-based elastography measurements. These biases were experimentally 

investigated [18]. In tissue mimicking materials, Zhao et al. [18] found that “SWS 

measurements can be transducer, depth, and lateral tracking range dependent”. Another 

recent tissue-mimicking phantom study concluded that there was a statistically significant 

difference in the SWS estimation among systems and with depth into the same tissue-

mimicking phantom [19]. The above-referred study was authored by the Quantitative 

Imaging Biomarker Alliance, a research consortium under the Radiological Society of 

North America. 

In short, early results demonstrated that there is a lack of confidence in image 

details of UE in the clinical community. 

1.2.2 Liver Disease Staging 

Liver fibrosis refers to a clinical condition where excessive connective tissue builds 

up in the liver [20].  Early stage liver fibrosis most often goes completely unnoticed, 

whereas late stage liver fibrosis (i.e. cirrhosis) are often fatal. The severe consequences of 

the progression of liver fibrosis, the common occurrence of liver fibrosis in the adult 

population (1-2%), the lack of reliable methods to screen patients at high risk, and the 

benefit to clinical outcomes from early detection, combine to motivate the continued search 

for a non-invasive method which would clinically assess the stages of liver fibrosis [21]. It 

is worth noting that laboratory blood tests are not ready to serve as a screening tool to 
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differentiate at least four liver states: fatty liver, normal liver, fibrotic liver and mixed 

fatty/fibrotic liver [22-25]. Measuring SWS using ultrasound-based shear wave 

elastography [26-28] (SWE) or transient elastography [29] (TE), has emerged as a potential 

clinical metric for staging liver fibrosis [30]. This is because fibrotic liver tissues are 

progressively hardened and the local tissue “stiffness” is often correlated to liver fibrosis 

stages. In the framework of ultrasound SWE, an acoustic pulse is first transmitted to 

produce shear waves (SW), which propagate laterally from the direction of the acoustic 

pushing pulse, whereas TE uses an external mechanical vibrator to induce shear waves. 

Then, the shear waves can be tracked with a regular ultrasound transducer to estimate SWS, 

which is related to the tissue shear modulus [2]. Initial clinical successes of SWE and TE 

for staging liver fibrosis have been well documented [31]. The apparent potential for SWE 

and TE has resulted in several major vendors (e.g., General Electric, Siemens, Supersonic 

Imagine, Echosens, etc.) releasing commercially available packages that utilize ultrasound 

to measure SWS. 

However, some potential problems of SWE and TE have been identified while 

being used for staging liver fibrosis. A study of SWE [32] found that the rate of unreliable 

results was high (up to 17%). Results were determined as “unreliable” by the authors [32] 

if one of the following three conditions met: (1) there were fewer than 10 valid shots, (2) 

an interquartile range (IQR) among all results was greater than 30% and (3) a success rate 

was less than 60%. Another study [33] reported that there was a 10% unsuccessful rate 

when TE was used to measure liver stiffness in children younger than 6. Other results also 
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showed that SWE may not be able to differentiate fibrosis from significant steatosis [34, 

35]. Furthermore, SWS measurements could also be system-dependent [36].  

In short, it is our belief that those early results indicated that more work is needed 

to gain confidence in clinical interpretations of SWE results. 

1.3 Current Situation for Imaging Testing 

The confidence for UE measurements or image interpretation can be gained through 

rigorous imaging tests with complex, heterogeneous but known media. Rigorous imaging 

tests are often done using human trials, tissue-mimicking phantoms or numerical tissue 

models, yet each testing modality has current limitations. 

Human trials always associate with increasingly high costs [37]. The tissue-

mimicking phantoms were uniform and relatively isotropic, which are too simple to reflect 

the realities of complex tissue, while developments of realistic tissue-mimicking breast 

phantoms that can resemble the complexity of human organs and tissue properties 

remain as a significant challenge [38-40]. Also, these tissue-mimicking phantoms 

reported in the literature were still too simple. Madsen et al. [38] produced a set of five 

tissue-mimicking phantoms with cylindrical inclusions to assess long-term stability of 

geometry and elastic properties and assessing the accuracy of determination of elastic 

properties. Hobson et al. [39] developed two anthropomorphic uterine phantoms with 

sphere inclusion to assess and compare of strain imaging systems adapted for use with 

saline-infused sonohysterography (SIS). Carvalho et al. [40] proposed a phantom made of 

a mixture of water, agar, glycerin and graphite and PVC powders to mimic breast lesion 

with irregular edges.   
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The documented numerical tissue models (Table 1.1) were still simple and didn’t 

reflect the inherently multi-scale properties of biological tissues (i.e. large scale landmark 

anatomy and small scale random structures). Azar et al. [41] and Samani et al. [42] 

independently proposed MR-based biomechanical models to predict breast tissue 

deformation. An image-based breast model/phantom was created in conjunction with 

computed tomography data, as proposed by Hsu et al. [43]. These three models only 

included land mark geometries (e.g. skin, fibro-glandular tissue and fat). They didn’t 

include small randomly distributed structures (e.g. Cooper’s ligaments, milk ducts), which 

can increase realism and heterogeneity of the numerical model. Numerical tissue models 

are also used to test new algorithms in UE applications. Palmeri et al. [44] used a 3D finite 

element model with the uniform background to test the lateral time to peak (TTP) algorithm 

for SWS estimation. Park [45] designed a simple 3D numerical model embedded with a 

sphere (tumor) to evaluate shear modulus reconstruction algorithm. Mo et al. [46] proposed 

a 2D numerical model to analyze the bias of SWE measurements in thin layer tissue. 

However, these models were too simple to challenge these algorithms, since the realistic 

soft tissue is more complex than a cube embedded with a sphere or cylinder model. That is 

why many UE algorithms performed well and show great promise in the numerical model 

study but fail to live up to expectations during clinical trials. 

Table 1.1. A meta-analysis of making numerical tissue models documented in literature. 

Authors Numerical Model Purpose 

Azar et al. [41], 

2001 

MR-based numerical breast 

model, uniform model 

Predict breast tissue 

deformation 
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Samani et al. [47], 

2001 

MR-based numerical breast 

model, including skin, 

adipose, and fibro-glandular 

Predict breast tissue 

deformation 

Kallel et al. [48], 

2001 

3D finite element model, a 

cube embedded with a 

uniform cylindrical 

inclusion 

Study contrast transfer 

efficiency 

Palmeri et al. [44], 

2008 

3D finite element model 

with uniform background 

Test the lateral time to peak 

(TTP) algorithm 

Wang et al. [49], 

2008 

3D finite element model 

with uniform background 

Study the effects of viscosity 

on SWE applications 

Palmeri et al. [50], 

2010 

3D finite element model, a 

cube embedded with a 

sphere 

Quantify the impact of shear 

wavelength and kernel size 

on SWS estimation 

Lee et al. [51], 

2012 

3D finite element model, a 

cube with a stiffer 

cylindrical inclusion 

Study shear wave 

propagation through a 

viscoelastic medium 

Christina et al. [43], 

2013 

CT-based numerical breast 

model, including fat, 

glandular, and skin 

Generate a suite of realistic 

computerized breast models 

from limited number of 

human subjects 

Caenen et al. [52], 

2015 

3D finite element model 

with uniform background 

Study the shear wave physics 

in bounded viscoelastic 

medium under different 

material properties and 

acoustic force  

Park et al. [53], 

2016 

2D finite element breast 

tissue model, a rectangular 

consisting of a circular 

tumor 

Study the elastic modulus 

contrast of the tumor to the 

surrounding tissue under 

different pressure in SWE 

Mo et al. [46], 

2016 

2D finite element model of 

a thin-plate 

Analyze the bias of SWE 

measurements in thin layer 

samples 

Park [45], 

2016 

3D finite element model 

with a spherical inclusion 

Study the feasibility of shear 

modulus reconstruction using 

3D algebraic Helmholtz 

inversion (AHI) equation in 

heterogeneous media 

Lipman et al. [54], 

2016 

3D finite element model 

with a spherical inclusion 

Evaluate the improvement in 

SWS estimation using 

multidimensional directional 

filter in the presence of 

reflection artifacts 
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Zhao et al. [55], 

2017 

2D asymmetric finite 

element model 

Evaluate the significance of 

the viscoelasticity in 

diagnosing early-stage liver 

fibrosis with transient 

elastography 

 

1.4 Objectives and Contributions 

To improve the confidence in UE measurements or image interpretation for breast 

lesion differentiation and staging liver fibrosis, the primary objective of my thesis is to 

develop a computational simulation platform based on open-source software packages, 

including Field II (ultrasound simulator) [56], VTK (geometrical visualization and 

processing) [57], FEBio (finite element FE analysis) [58] and Tetgen (mesh generator) 

[59]. The proposed computational simulation platform can be integrated with complex, 

heterogeneity numerical tissue models, reflecting multi-scale properties of soft tissues.  

To show the usefulness of the proposed simulation platform, UE applications of the 

detection of breast cancer were implemented. Both SE and SWE were simulated. 

To statistically analyze the intrinsic variations of SWS in the liver fibrotic tissue, a 

probability density function (PDF) of the SWS distribution in stochastic tissue model was 

derived. The performance of the derived PDF was evaluated using Monte-Carlo (MC) 

simulated shear wave data against three other commonly used PDFs.  

Furthermore, to relate the UE measurements to the “biologically relevant” tissue 

structure, composition and architecture, a virtual liver tissue with/without steatosis was 

created using Systems Biology method [60]. 
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The rest of this dissertation is organized as follow: Chapter 2 describes the virtual 

breast UQE simulation platform. To show the capability of the proposed simulation 

platform, nonlinear and time-dependent strain imaging were simulated. Chapter 3 describes 

the virtual breast SWE simulation platform, which was extended from UQE simulation 

platform. To show the capability of the proposed simulation platform, pSWE, SSI and 

ARFI were simulated. Chapter 4 derives a PDF of the SWS distribution in conjunction with 

a lossless stochastic tissue model using the principle of maximum entropy (ME). The 

performance of the derived PDF was evaluated using Monte-Carlo (MC) simulated shear 

wave data and against three other commonly used PDFs. Chapter 5 conducted a case study 

to relate shear wave measurements to the microstructure of fibrotic liver tissues. Chapter 6 

depicts a Systems Biology method, which can relate the UE measurements to the 

“biologically relevant” structures of the liver fibrosis tissue with/without steatosis. This 

chapter will establish the feasibility of using systems biology to construct biologically 

relevant tissue models linking tissue structure, composition and architecture to the 

ultrasound measurements directly. Chapter 7 concludes this dissertation and outlines some 

prospective future work. 

The immediate impact of my dissertation is to build a computational framework for 

simulating image formation process of UE (i.e. SE and SWE), which can be used to 1) 

assess the confidence of quasi-static elastography measurements including strain, modulus 

and viscoelastic relaxation constant and 2) broaden the basic understanding of shear wave 

propagation in heterogeneous media. Also, my doctoral research is highly innovative: 1) 

the simulated ultrasound elastography images can be compared and validated by a complex 



11  

but known media; 2) It is the first time that “biologically relevant” tissue models are used 

in ultrasound elastography simulations, and 3) it is also the first time that a probability-

based assessment of SWS has been applied to SWE.  
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Chapter 2. Virtual Simulation Platform for Quasi-static 

Breast Ultrasound Elastography1 

Quasi-static Ultrasound Elastography (QUE) is being used to augment in vivo 

characterization of breast lesions. Results from early clinical trials indicated that there was 

a lack of confidence in image interpretation. Such confidence can only be gained through 

rigorous imaging tests using complex, heterogeneous but known media. The objective of 

this chapter is to build a virtual breast QUE simulation platform in the public domain that 

can be used for rigorous imaging tests.  

2.1 Workflow of The Proposed Simulation Platform 

The use of the proposed virtual ultrasound simulation platform involves multiple 

components: 1) geometry creation, 2) mesh generation, 3) acoustic simulation and 4) 

biomechanical deformation. An illustrative example (Fig. 2.1) is provided below to 

demonstrate the specific steps. During the process, the starting point was an image-based 

geometrical model of the breast including different internal components (Section A). This 

geometrical model was based on “average” anatomy and represented by three-dimensional 

(3D) surface triangles. To simulate signals for ultrasound-based QUE applications, both 

pre- and post-deformed ultrasound echo signals were needed. Therefore, in addition to the 

un-deformed virtual breast model/phantom, a deformed breast model/phantom was also 

created. A simulated freehand scanning ultrasound transducer was used to deform this 

virtual breast model/phantom. This deforming process involved in finite element 

                                                           
1 The material contained in this chapter was previously published in Medical physics, 

2015 Sep;42(9):5453-66. Refer Appendix F for granted permission to be republished. 
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simulations (i.e. FEBio [61]) and therefore was naturally split into mesh generation 

(Section B) and biomechanical simulations (Section D). Both undeformed and deformed 

virtual breast models/phantoms had to interact with an ultrasound simulator (i.e. Field II 

[62]) to generate simulated ultrasound echo signals.  

The proposed virtual simulation platform leveraged existing open-source packages 

including Field II [62] (acoustic simulator), FEBio [61] (finite element simulator for 

biomechanics), VTK [63] (data visualization and processing) and Tetgen (mesh generator) 

[59]. The integration of these open source packages was based on a simple message-

passing scheme for the ease of use. Details of each step of this multiple-step process are 

provided below.   

 

Figure 2.1. A graphic illustration of the workflow of the proposed virtual ultrasound 

simulation platform. The geometry of a pre- deformation breast model (a) was first created 
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based on MR imaging data and, then meshed to tetrahedrons (c).  In the following step, the 

meshed breast model/phantom was re-sampled to a rectilinear grid (d). Then acoustic 

parameters were assigned to the rectilinear grid for an acoustic simulator [sub-figure (e); 

Field II]. Based on a biomechanical finite element (FE) simulation (FEBio), the pre-

deformation breast model/phantom can be warped to create a post-deformation breast 

model/phantom through interpolations. Finally, the pre- (f) and post-deformation (g) B-

mode images were obtained. The blue boxes in (d) and (e) represent re-sampled the 

volumes of interest. Tetrahedrons (c) were converted into voxels (d) in a regular lattice 

grid.   

 

A. Geometry Creation 

 Through image segmentation, landmark geometries such as the skin layer and fibro-

glandular layer were created using magnetic resonance imaging (MRI) data from a female 

cadaver in the Visible Human Project [64]. The in-plane resolution of these MR images 

was 0.33 x 0.33 mm with a 0.6 mm slice thickness. All MRI images were imported into a 

commercially-available ScanIP package (Simpleware Inc., Exeter, United Kingdom) [65] 

to perform intensity-based image segmentation to obtain the skin surface and the fibro-

glandular layer (Fig. 2.2a). Other computer-aided design software (e.g. Solidworks, 

Dassault Systems Inc., France) or image segmentation software (e.g. Open-source Vascular 

Modeling Toolkit[66]) can also be used to create complex geometries. To show flexibility 

of the proposed virtual ultrasound simulation platform, an alternate way for geometry 

creation and subsequent acoustic simulations (following the same procedures as described 

in Fig. 2.1) can be found in Appendix A for the sake of completeness.  

Small randomly distributed tissue structures such as milk ducts and Cooper’s 

ligaments were added to increase the complexity and realism of the virtual breast phantom. 

In the Visible Human Project, MRI data were generated using torso coils and therefore 
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have limited resolution. However, it would be difficult to fully resolve milk ducts and 

Cooper’s ligaments even when breast array coils were used. Similar to the study by Mahr 

[67], Cooper’s ligaments (blue color in Fig. 2.3) were modeled as clusters of fibers 

embedded into the subcutaneous fat region toward the skin layer. The breast ducts (green 

color in Fig. 2.3) were randomly generated by a collection of bifurcated tubes and mainly 

confined within the fibro-glandular region. Sizes of milk duct (diameter 1.9 ± 0.6 mm; see 

Fig. 2.2b) and Cooper’s ligament (diameter 3-4 mm) were based on ultrasound 

measurement in the literature [68]. Furthermore, intra-glandular fat (purple color in Fig. 

2.3a) is modeled as small adipose compartments (elongated random ellipsoids) within the 

fibro-glandular region, consistent with observations from B-mode ultrasound data. 

Those above-mentioned random structures were mathematically defined by their 

boundaries using 3D triangulated surfaces. They may belong to more than one anatomical 

region. Boolean operations [69] (i.e. vtkBooleanOperationPolyDataFilter) were used to 

alter existing boundaries to accommodate that. Similar Boolean operations were used when 

the embedded breast tumor (yellow colored object in Fig. 2.3a-d) may infiltrate out of the 

fibro-glandular tissue region (Fig. 2.3b), grow out of breast ducts (Fig. 2.3c) and disrupt 

Cooper's ligaments (Fig. 2.3d). 

Python scripts derived from Visualization Toolkit [63] (VTK, Kitware Inc., NY, 

USA) were used to create above-mentioned small structures. Interested readers are referred 

to Appendix B for algorithmic details.   
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Figure 2.2. A collection of images related to the virtual breast model: (a) fibro-glandular 

tissue geometry segmented from MRI data; and (b) a geometry of milk ducts created using 

VTK [63].  

 

 

Figure 2.3. (a) An illustration of image-based breast phantom creation. Major anatomical 

regions are derived from 3D MR data, while other lower scale structures (e.g. Cooper's 

ligament, intra-glandular fat and milk ducts) that are significant to breast mechanics are 

randomly distributed structures generated by in-house software. Realism can be enhanced 

through geometrical Boolean operations: for example, (b) tumor invasion (out of the 

fibro-glandular region) to the subcutaneous fat, (c) tumor growth out of/from breast milk 

ducts, and (d) tumor disruption of Cooper's Ligament. In (a), the volume between the skin 

and fibro-glandular region is mainly occupied by breast fat. Intra-Fat denotes small 

adipose compartments within the fibro-glandular region. Of note, for visualization 

purpose, the number of random structures was intentionally reduced.  

 

B. Mesh Generation  
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Once a geometric breast model (i.e. multiple [3D] complex triangulated surfaces) 

is obtained, an open source mesh generator Tetgen [59] (version 1.4.2; WIAS, Berlin, 

Germany) was used to generate high quality tetrahedral meshes as shown in Fig. 2.3b. 

Overall dimensions of the (irregularly shaped) breast model are approximately 62mm × 

68mm × 41mm, resulting in a volume size of 62600 mm3. Tetgen uses constrained 

Delaunay Triangulation to partition any enclosed 3D geometry/space into tetrahedrons. 

Furthermore, the 3D enclosed breast model/phantom was also automatically divided into 

6 different tissue types as shown in Table B1 in Appendix B and illustrated in Fig. 2.3. 

Two meshes were created. The fine and coarse meshes resulted in approximately 3.5 and 

2.0 million finite (computing tetrahedral) elements, respectively.  

C. Acoustic Simulation 

In this study, our simulation platform has been integrated to Field II [62], a popular 

medical ultrasound simulator. In order to use the Field II [62] simulator, the meshed breast 

model/phantom was first re-sampled to a rectilinear (1-mm×1-mm×1-mm) grid, as shown 

in Fig. 2.1d. Then, multiple randomly positioned point scatterers were placed in each 1-

mm×1-mm×1-mm grid to ensure that there would be a sufficient number of point scatterers 

within a resolution cell. The original unstructured mesh was used to determine whether or 

not a point scatterer should belong to a material type. That resulted in approximately 10 

scatterers/mm3. The number of scatterers per resolution cell was varied from 10 

scatterers/mm3 to 50 scatterers/mm3. By doing so, we verified that results of acoustic and 

QUE simulations were not sensitive to the proposed conversion method.   
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Acoustic reflective coefficients were assigned to each point scatterer. It is worth 

noting that each point scatterer inherited one of six material types (see Mesh Generation 

Section). The reflective coefficients  of 6 material types required by Field II were 

empirically chosen to show B-mode contrast, based on acoustic impedance data available 

in the literature[70]. A linear array ultrasound transducer was simulated and its relevant 

parameters are listed in Table 2.1 below. Perfect matching layers around the boundaries 

were automatically added by FIELD II to avoid undesirable wave reflections at the 

boundaries. Acoustic attenuation was not simulated.  

Table 2.1. Parameters of the linear array ultrasound transducer used by Field II 

Parameter  Field II 

Sampling frequency (MHz)  100 

Center frequency (MHz)  6 

Bandwidth (%)  50 

Element width (mm)  1.5 

Element height (mm)  5 

Spacing between elements 

(mm) 
 0 

Focal depth (mm)  15 

Number of active elements  64 

Number of scan lines  256 

 

D. Biomechanical Simulation 

In order to simulate tissue deformation  in QUE, an open source finite element (FE) 

package, Finite Elements for Biomechanics [61] (FEBio, University of Utah, UT, USA), 

was integrated into the proposed virtual ultrasound simulation platform. Using an in-house 

Python script, the tetrahedral mesh from Section C was imported into the FEBio [61] 

(version 1.8). Mesh sensitivity for finite element modeling was performed for two above-
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mentioned meshes (i.e. 2.2 and 3.5 million elements). The resultant displacements between 

those two meshes differed less than 10-3 mm for all locations investigated up to 15% of 

deformation.  Therefore, the coarse mesh was used for all subsequent finite element 

simulations. The average element size of this coarse mesh was about 0.03-mm3.   

Two different QUE applications were simulated using the FEBio software as 

follows.  

D.1. Nonlinear QUE [71, 72] via Strain Imaging under Large Deformation 

As shown in Fig. 2.1e, a simulated ultrasound transducer was first put in contact 

with the skin and then used to push the breast tissue downward in the FE simulation. This 

boundary condition was to mimic freehand scanning in a clinical setting. More specifically, 

a small contact area on the [simulated] skin surface (approximately 4 cm × 1.5 cm) was 

selected. A range of deformation (up to 15% compression) was applied downward onto the 

selected contract surface. In this application, all 6 materials were assumed to be hyper 

elastic and follow the Veronda–Westmann model [73]. Displacements were calculated for 

every 1% increment of deformation.   

D.2. Time-dependent QUE via Strain Imaging 

In order to simulate strain/displacement creep under freehand scanning, a small 

compressive force of 1 Newton was applied within 1 second and the quasi-static 

compression was held for additional 14 seconds to calculate displacement creep using the 

FEBio software. The 1 Newton force was uniformly applied onto the transducer contact 

area (approximately 4 cm × 1.5 cm). In this application, all 6 materials were assumed to be 
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a solid mixture [61] of hyper-elasticity (i.e. Veronda–Westmann model [73]) and quasi-

linear viscoelasticity (i.e. Kevin-Vigot Model [74]).   

After the completion of above-mentioned FEBio simulations, a series of three 

transformations were applied to the FE-mesh and displacements in a sequence. The first 

transformation was a coordinate rotation of the FE-mesh and related displacements. The 

dominant motion/compression direction and the width direction of the simulated transducer 

were first set as the axial and lateral directions, respectively (i.e. Y and X axes in the Field 

II, respectively) for subsequent acoustic simulations. Then, a coordinate rotation was 

performed to map the FE-mesh coordinates to the acoustic simulation coordinates. The 

second transformation was simply a translation. By doing so, we made sure the center of 

the transducer was located at (0,0,0) as required by Field II. This third transformation 

simply subtracted absolute displacements of the (transducer) contact surface from the 

already transformed FE-simulated displacements. After three transformations, all resultant 

displacements and coordinates were relative to the (transducer) contact surface. 

Consequently, this sequence of transformed displacement fields and coordinates could be 

readily used for acoustic simulations, as described in Section C above. Acoustic reflective 

indices were re-assigned to account for the mechanical deformation. More detailed 

information related to elastic and viscoelastic mechanical parameters using in both above-

mentioned applications can be found in Appendix B.  

E. Running Simulations and Data Analysis 

During the acoustic Field II simulation, 256 lines were used to cover the entire field 

of view (approximately 36 mm). A high-performance computing (HPC) cluster was used 
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(http://superior.research.mtu.edu/). One beam line took approximately 10 minutes under 

MATLAB (Version 2013b, Mathworks Inc. MA, USA; 4 CPUs [Intel Xeon E2560; 

2.8GHz] and 16GB of memory).  All other data preparation, analyses, and visualization 

were done by a high-end workstation (Dell Precision R5600, Dell Inc., Austin, TX with 64 

GB memory). 

E.1. Speckle Tracking and Strain Estimation 

Once a pair of pre- and post-deformation radio-frequency (RF) echo frames were 

obtained (Section C), a modified block matching algorithm (MBMA) [75] was used to 

obtain axial and lateral displacements within a region of interest (ROI). The tracking kernel 

size is approximately 1.5mm (lateral) × 0.6mm (axial). More details of this method can be 

found in a previous publication [75]. In this study, we estimated local strains using a least-

square method [76] using a linear regression window of 1.6 mm.  

E.2. Estimation of Motion Tracking Accuracy 

       Normalized cross correlation (NCC) between a pair of pre-deformation and motion-

compensated post-deformation RF echo fields [77] was chosen to estimate motion tracking 

accuracy. Motion compensation here is referring to a process in which ultrasonically 

estimated displacements between the pre- and post-deformation ultrasound echo data were 

applied onto the post-deformation ultrasound data so that the post-deformation ultrasound 

data were warped back onto the coordinates of the pre-deformation echo data. In other 

words, the process of motion compensation was used to register two RF echo fields with 

apparent deformation. A higher NCC value between the two registered echo fields implies 

that the apparent deformation has been more accurately tracked.  
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E.3. Estimation of Retardation Time 

From time series of RF echo frames simulated during the simulation of viscoelastic 

strain imaging, a series of K strain images were first estimated as described above. Then, 

a time-resolved strain curve for each and every pixel was obtained as shown in Fig. 2.4. 

Each time-resolved strain curve was fitted into a first-order discrete Kelvin-Voigt (K-V) 

rheological model [78] using the Optimization Toolbox in MATLAB (Mathworks Inc., 

MA, USA). The formula of strain creep under the K-V model was below:  

휀(𝑡) = 휀0 + 휀1 [1 − 𝑒𝑥𝑝 (−𝑡
𝑇1

⁄ )] (2.1) 

where Ɛ0 is the instantaneous elastic strain that occurs immediately after 

compression, Ɛ1 is the amplitude of the exponential creep curve. In Eqn. (1), the constant 

T1 is the retardation time of the curve characterizing the delay in the full strain response, 

as illustrated in Fig. 2.4.  

 

Figure 2.4. A schematic illustration of viscoelastic parameter estimation. A compressive 

force was applied within 1 second (i.e. t0 = 1 second) at the beginning. Then, the 

compression was held until t1 (i.e. t1 = 15 seconds). Given K estimated strain images for 

the entire process. In this study, K is 15, denoting 1 second per strain image. The red 

curve in the bottom plot is a representative time-resolved strain curve. The retardation 



23  

time of the time-resolved strain curve was used to estimate the retardation time based on 

the K-V strain creep model.   

 

2.2 Simulated B-mode Images Based On Complex Patterns In Heterogeneous Media 

Three volumes of interest were selected from the un-deformed breast phantom (Fig. 

2.1a) to perform acoustic simulations. Those three volumes were intended to show: 1) 

inclusion of a hypoechoic breast lesion 2) a complex “grape-like” structure of milk-ducts 

and 3) a complex layered structure of Cooper’s ligaments embedded in the subcutaneous 

fat layer. All corresponding reflection coefficient and B-mode images are shown in Figs 

2.5-2.7. Only center slices of the simulated reflection coefficient fields are shown.  

In Figs. 2.5a-b, a hypoechoic lesion was surrounded by a thin (approximately 0.5 

mm thick) hyper-echoic layer that is a simulated layer of lesion encapsulation. In Figs. 

2.6a-b, a dark “grape-like” structure was clearly visible and embedded within the simulated 

fibro-glandular tissue region. In Figs. 2.7a-b, a complex layered structure mimicking 

Cooper’s ligaments can be seen.  

 

Figure 2.5. A simulated hypoechoic breast lesion: (a) acoustic reflection coefficient image 

and (b) a simulated B-mode image by Field II. In (a), 1-5 denote lesion, fibro-glandular 

tissue, breast fat, Cooper’s ligaments and milk ducts, respectively. 
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Figure 2.6. A simulated milk-duct structure embedded into the fibro-glandular layer: (a) 

acoustic reflection coefficient image and (b) a simulated B-mode image by Field II. In (a), 

1-4 denote breast fat, fibro-glandular tissue, milk ducts, and lobe, respectively. 

 

Figure 2.7. A simulated Cooper’s ligament structure: (a) acoustic reflection coefficient 

image and (b) a simulated B-mode image by Field II. In (a), 1-4 denote lesion, fibro-

glandular tissue, breast fat, cooper’s ligaments and breast fat, respectively.  

 

2.3. QUE Applications 

The first example was to show breast lesions with complex shapes and 

compositions can be readily integrated into the proposed virtual simulation platform.  In 

the second example, a recent advance in nonlinear QUE was simulated using strain 

imaging, while the viscoelasticity assessment of breast tissues was demonstrated in the 

third example below.    
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Example 1: Simulations of Complex Breast Lesions 

Four breast phantoms were created; each contained a simulated breast lesion as 

shown in Figs.  2.8a, 2.9a, 2.10a and 2.11a, respectively. Hereafter, we will refer them as 

to Lesion 1-4 phantoms, respectively. The first two breast lesions had relatively simple 

(spherical) shapes and were designed to simulate benign breast tumors. Particularly, the 

first breast lesion (Fig. 2.8a) was a simulated solid tumor, whereas the second breast lesion 

(Fig. 2.9a) was originated from a milk duct, resulting in a solid lesion where milk ducts 

were embedded (see the red colored ducts in Fig. 2.9a). This simulated lesion might be 

similar to an early stage ductal carcinoma in situ (DCIS). The last two breast lesions had 

more complex shape and were designed to mimic breast cancers. The third one was “star”-

shaped and contained several protrusions mimicking cancer invasion. In the last one, a 

simulated necrotic region (see the red colored zone in Fig. 2.11a) was generated with a 

simulated breast lesion with a complex shape.       

Simulation results of those 4 breast phantoms are shown in Figs. 2.8-2.11. All 

results were obtained using a 2% compression from the undeformed geometry. The 

corresponding acoustic reflective coefficients are displayed in Fig. 2.8b–2.11b, 

respectively for those 4 phantoms. Of note, Figs. 2.8b-2.11b illustrate the center slice of 

those 4 reflective coefficient fields, respectively. The resultant B-mode images are shown 

in Fig. 2.8c-2.11c, respectively. The FE-simulated axial displacements induced by the 2% 

compression are shown in Figs. 2.8d-2.11d, respectively. The ultrasonically-estimated 

axial displacements are shown in Figs. 2.8e-2.11e, respectively. All estimated axial 
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(parallel to the acoustic beam direction) strain images can be seen in Figs. 2.8f-2.11f, 

respectively.  

 

Figure 2.8. Results from the Lesion 1 phantom: (a) geometry, (b) reflection coefficient 

image, (c) B-mode image simulated by Field II where the white rectangle depicts a region 

of interest (ROI), (d) FE-simulated axial displacement in ROI, (e) ultrasonically estimated 

axial displacement image and (f) estimated axial strain image based on (e). The 

displacement color bars are in millimeters. In (b), 1-4 denote lesion, fibro-glandular tissue, 

cooper’s ligaments and breast fat, respectively.  

 

 

Figure 2.9. Results from the Lesion 2 phantom: (a) geometry, (b) reflection coefficient 

image, (c) B-mode image simulated by Field II where the white rectangle depict a region 

of interest (ROI), (d) FE-simulated axial displacement in ROI, (e) ultrasonically estimated 

axial displacement image and (f) estimated axial strain image based on (e). The 

displacement color bars are in millimeters. In (a), the red colored object is a cluster of milk 

ducts (see arrow). In (b), 1-4 denote lesion, fibro-glandular tissue, cooper’s ligaments and 

breast fat, respectively.  
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Figure 2.10. Results from the Lesion 3 phantom: (a) geometry, (b) reflection coefficient 

image, (c) B-mode image simulated by Field II where the white rectangle depict a region 

of interest (ROI), (d) FE-simulated axial displacement in ROI, (e) ultrasonically estimated 

axial displacement image and (f) estimated axial strain image based on (e). The 

displacement color bars are in millimeters. In (b), 1-4 denote lesion, fibro-glandular tissue, 

cooper’s ligaments and breast fat, respectively. 

  

 

Figure 2.11. Results from the Lesion 1 phantom: (a) geometry, (b) reflection coefficient 

image, (c) B-mode image simulated by Field II where the white rectangle depict a region 

of interest (ROI), (d) FE-simulated axial displacement in ROI, (e) ultrasonically estimated 

axial displacement image and (f) estimated axial strain image based on (e). The 

displacement color bars are in millimeters. In (a), the red-color region is a simulated 

necrotic zone inside the simulated cancer. In (b), 1-4 denote lesion, fibro-glandular tissue, 

cooper’s ligaments and breast fat, respectively.  In (a) and (f), arrows point to the simulated 

necrotic zone. 

 

All 4 simulated breast lesions were clearly visible in respective B-mode and strain 

images. Their overall sizes and shapes were visually consistent with all phantom designs. 
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Particularly, the (soft) necrotic region in the Lesion 4 phantom was also seen on the 

corresponding strain and B-mode images. However, the small cluster of (soft) milk ducts 

was not shown in both the strain and B-mode images.  

Estimate NCC values from a range of deformation (0% - 6%) for Lesion 1 phantom 

were compared with clinically scanned in vivo data and data from a simple tissue-

mimicking phantom, as reported by Jiang et al. [77] As shown in Fig. 2.12 below, the 

calculated NCC values from simulated Lesion 1 phantom were lower than NCC values 

obtained from the tissue-mimicking phantom but were higher than NCC values obtained 

from clinically-scanned in vivo data [77]. Results from other three phantoms were 

comparable.   

 

Figure 2.12. A plot of estimated NCC values between the pre- and post-deformation RF 

echo fields under a range of deformation (0-5% compression). Data of the tissue-

mimicking phantom and the in vivo breast fibroadenoma were replicated from a previous 

publication [77].   

 

Example 2: Nonlinear QUE via Strain Imaging 
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Figure 2.13. (a) Stress-strain data of the components in breast tissue. In (b) and (c) are B-

mode (left) and three incremental strain images for lesions. The regions of interest (ROI) 

for strain contrast analysis are shown in the strain image in (b) and (c). The lesion ROI is 

in the middle, the background ROIs are placed near the corner to diminish the influence of 

the stress concentration. The area of lesion ROI is equal to the area of background ROIs. 

The incremental strain contrast is the ratio of strain in background ROIs and lesion ROI.  

 

QUE simulations were performed for Lesion 1 and Lesion 3 phantoms up to 20% 

of deformation. Stress-strain curves used for the FE-simulations are shown in Fig. 2.13a. 

Detailed hyperelastic parameters associated with those curves can be found in Appendix 

B (see Table B1). B-mode and incremental (~2% frame-averaged) axial strain images at 
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varying preload of the Lesion 1 and Lesion 3 phantoms are shown in Figs. 2.13b and 2.13c, 

respectively. The values appearing above each strain image indicate the accumulated 

(preloading) axial strains. In the Lesion 1 phantom, at low preload, the simulated breast 

tumor is stiffer (darker) than the background glandular tissue. At modest (~10%) preload, 

the simulated tumor loses visibility with the increase of the pre-load level.  In the Lesion 3 

phantom, the visibility of the simulated cancer in strain images remains stable as the 

increase of pre-loading. Strain contrast values were defined as the ratio between averaged 

background strain and averaged inclusion strain from equal areas. Calculated contrast 

values were also shown in Figs. 2.13b and 2.13c, and were consistent with the visual 

perception.  

Example 3: Time-dependent QUE via Strain Imaging  

In this example, the Lesion 1 phantom (Fig 2.8a) was simulated using two different 

pre-determined values for retardation time. The retardation time for these two cases was 

estimated using the method described before (Section E in the Methods). From Figs. 2.14a 

and 2.14b, the distinction between the assessed retardation-time is clearly visible.  

 

Figure 2.14 Images showing the assessed retardation time for the Lesion 1 phantom: (a) 

B-mode image and (b) the estimated T1 image. In (b), the pre-determined T1 = 4 seconds 

for the Lesion 1 while the averaged T1 from the Lesion 1 was 3.5 second. The unit for the 

color bar in (b) is second.     
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2.4 Discussion 

Like many new diagnostic imaging systems, tissue-mimicking phantom 

development for QUE has aided in testing prototype QUE systems. However, we found 

that many QUE algorithms perform well and show great promise in phantom experiments 

but fail to live up to expectations during clinical trials.  This is largely because the 

underlying motion in tissue-mimicking phantom experiments is too simple and uniform 

whereas that found in in vivo tissue motion during clinical trials is significantly more 

challenging. An NCC value between a pair of pre-deformation and motion-compensated 

post-deformation RF echo fields [77] has been used to assess motion tracking accuracy. 

Estimated NCC values may also be used as a metric indicating the challenging level of 

motion tracking. Consequently, numerical breast phantoms presented in this paper resulted 

in echo data that have challenged our motion tracking algorithm [75] more as compared to 

a physical tissue-mimicking phantom. However, this is only our first attempt. More 

features such as sliding and shearing [79] between tissue interfaces and acoustic attenuation 

can be further incorporated into the proposed simulation platform to challenge motion 

tracking algorithms. It is our goal to further develop the virtual platform so that the 

proposed platform can be used to perform virtual QUE clinical trials in a cost-effective 

manner. With the availability of those simulated known but complex QUE data, this 

platform could also be used as a training tool for clinicians to improve their confidence on 

image interpretation. The platform is still evolving and adding simulation capabilities for 

shear wave elastography [16] is our priority, though this development is far from being 

trivial. For instance, in order to reliably simulate the shear wave propagation in 
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heterogeneous media, additional wave-absorption conditions and numerical stabilization 

schemes may need to be implemented to FEBio [61]. Those features are not currently 

available in FEBio [61].  We intend to make all relevant computer code and ultrasound 

data freely available to the research community upon request. In the next stages, our goal 

is to make all source code freely available through Github. Thanks to the open science 

nature of this simulation platform, the sophistication of the proposed virtual breast phantom 

can be considerably enhanced once more anatomical features are incorporated and more 

research groups become involved with this work.  

The small cluster of milk ducts could not be seen in both B-mode and strain images, 

largely due to its small size (approximately 2-mm diameter). The beam profile of the 

simulated transducer suggested that the axial and lateral beam widths were 0.8 mm and 2.1 

mm at full width and half maximum (FWHM), respectively.  It is also interesting to note 

that the estimated values of retardation time slightly deviated from the pre-determined 

values, though the image contrast was obvious (see Fig. 2.15).  This is largely since our 

method used to estimate the T1 is not optimized.       

2.5 Conclusion 

In summary, a virtual ultrasound simulation platform mainly based on open-source 

software has been initially implemented and tested in this study.  Our preliminary results 

suggest that this virtual ultrasound simulation platform can be used to perform both 

acoustic and QUE simulations. One significant contribution of this work is the fact that, to 

our knowledge, advanced QEU simulations of this kind (i.e. realistic geometries and, tissue 

composition and properties) have not been reported elsewhere. Furthermore, two advanced 
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QEU applications, namely nonlinear [71, 72] and time-dependent [78] strain imaging, were 

used as showcase examples to demonstrate capabilities of the proposed system. Thus, 

another intellectual contribution is that the proposed software innovation enables imaging 

physicists/scientists to rigorously compare image pixels with underlying soft tissue 

properties (also known as “ground truth”) using simulated ultrasound data emulating in 

vivo breast anatomy. Such comparisons are highly desirable and critically important for 

new applications such as nonlinear [71, 72] and time-dependent [78] strain imaging.  
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Chapter 3. Virtual Simulation Platform for Acoustic 

Radiation Force-based Breast Elastography2 

3.1 Workflow of Virtual Simulation Platform for Acoustic Radiation Force-based UE 

As shown in Fig. 3.1, the proposed software platform for acoustic radiation force-

based UE involves several key (open-source or free) software packages in multiple steps. 

FIELD II [80] is an ultrasound simulator that was used to (1) calculate distributions of 

acoustic pressure and (2) generate ultrasound echo signals given a weakly scattering 

medium. Using the acoustic pressures as boundary conditions, FEBio [81], an open-source 

finite element solver for biomechanics, was employed to obtain local tissue deformation. 

Once a series of pre- and post-deformation ultrasound echo data were obtained, speckle 

tracking [82] was performed to estimate tissue deformation and subsequently assess tissue 

elasticity, dependent on the modality being simulated. Image formation procedures in 

pSWE, ARFI and SSI are well documented in the literature [2].    

 

Figure 3.1. A graphic illustration of the proposed virtual simulation platform for acoustic 

radiation force-based UE.  

 

A. Calculation of Acoustic Radiation Force 

                                                           
2 The material contained in this chapter was previously published in Physics in Medicine 

and Biology, 2017 Feb;62(5):1949-1969. Refer Appendix G for granted permission to be 

republished. 
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Using a high-frequency (5-10MHz) linear array transducer, distributions of 

acoustic pressure were simulated using FIELD II [80]. An example of FIELD II simulated 

acoustic pressure field obtained using a 10 MHz linear array transducer was shown in Fig. 

3.2. Ultrasound parameters of a 5 MHz and a 10 MHz linear array probes were the same 

as ones used by Palmeri and Nightingale [16] and Zhao et al. (Zhao et al., 2011), 

respectively, Those ultrasound simulation parameters are listed in Table 3.1. For 

subsequent FEA simulations to obtain local tissue deformation, the only acoustic pressure 

within the beam width (full width at half maximum) was used to deform subsequent finite 

element models, as suggested by Palmeri et al. [44]. Normalized acoustic pressures were 

first projected onto FEA Models and then their amplitudes were scaled to achieve peak 

displacements of 15 micrometers [44] in the proximity of the simulated acoustic pushing 

pulse.  

 

Figure 3.2. A plot of an acoustic intensity field produced by FIELD II. Only the center 

slice is displayed. The focal region (see the white rectangle; approximately 1 mm × 1 

mm × 1 mm cube in 3D) is projected onto the numerical breast models to excite SW 

propagation or displace adjacent tissues. The color bar represents normalized values 

from 0 to 1. 
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Table 3.1. A list of system parameters of a (simulated) linear array ultrasound transducer 

used for pushing and tracking beams. These parameters were adopted from two published 

papers [18, 50]. Both linear array transducers were used for FIELD II simulations. 

System Parameters  
Values based on  

[18]  

Values based on  

[50] 

Excitation Frequency (MHz) 5 10 

Tracking Frequency (MHz) 5 10 

Sampling Frequency (MHz) 50 50 

Bandwidth (%) 50 50 

Element Width (mm) 0.2 0.1 

Element Height (mm) 5 5 

Spacing Between Elements (mm) 0 0 

Number of Active Elements 32, 64, 96 64 

Tracking pulse repetition frequency 

(kHz) 
4 10 

Lateral beam spacing (mm) 0.1 0.1 

 

B. Numerical Phantom Generation 

Three different numerical breast models of increasing complexity (i.e. a simple 

uniform medium [Model 1], a uniform medium with an (8-mm diameter) spherical 

inclusion [Model 2] and a complex breast model derived from magnetic resonance imaging 

data [Model 3]) were used in this study, as shown in Fig. 3.3. Model 1 and Model 2 were 

built to replicate tissue-mimicking phantoms reported in the literature [18, 44, 83]. Details 

of the complex breast model (i.e. Model 3) can be found in our previous publication [84]. 

To improve numerical accuracy for simulations of SW propagation, all numerical models 
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in this study were meshed by Tetgen [59] with quadratic tetrahedrons (i.e. 10 node 

tetrahedrons). Of note, the selection of quadratic tetrahedral (finite) elements comes with 

higher computing expenses but offers improved accuracy as compared to linear 

tetrahedrons (i.e. 4 node tetrahedrons). Mesh sensitivity was tested using two computing 

grids: 1.1 million and 0.5 million (quadratic) tetrahedrons. The displacement differences 

are less 10-3 micrometers between the coarse and fine meshes.  Therefore, the coarse mesh 

was used for subsequent biomedical simulation. 

In the coarse mesh, adaptive meshing [59] was used and the average element size 

near the inclusion and the pushing beam was on the order of 0.01 mm3. Such a fine (mesh) 

density allowed accurate simulations of mechanical responses induced by the acoustic 

radiation forces. 

 

Figure 3.3. Three numerical breast models of increasing complexity: (a) a uniform 

medium (40 mm × 40 mm × 40 mm, approximately 0.5 million finite elements), (b) a 

uniform medium (60 mm × 60 mm × 60 mm) with a spherical inclusion (8 mm diameter; 

approximately 0.5 million finite elements), and (c) a complex breast model (62 mm × 

68 mm × 41 mm). In Model 3, the irregular lesion has a diameter of approximately 5 

mm and the final mesh size is 2.0 million quadratic tetrahedrons. The first and second 

rows are 3D geometries and center slices, respectively.  
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C. Biomechanical Simulation 

To simulate tissue deformation induced by the acoustic radiation force/pressure 

(see Fig. 3.2).  FEBio [81], an open source FEA package, was used to perform 

biomechanical simulations. Given the small deformation (on the order of 1-15 

micrometers) induced by the acoustic radiation forces [2, 85], all materials used were 

assumed to be isotropic and linearly elastic as a first approximation. In FEBio, the Neo-

Hookean model [86] closely approximates linearly elastic media under the small 

deformation. Material properties of Models 1-3 are listed in Table 3.2. Particularly, 

material properties of Models 1 and 2 were selected to match published tissue-mimicking 

phantom experiments [18, 44, 83] for subsequent comparisons, while material properties 

of Model 3 were chosen to reflect the fact that the elastic contrast between a breast lesion 

and its background is approximately 8-11 [87, 88] at small strains (e.g. 1-5%). The mass 

density of all materials used in this study was set to 1.0 g/cm3. In all models, dimensions 

of those three models were large enough so that shear wave reflections from exterior edges 

were avoided since “non-reflective” boundary condition has not been implemented in 

FEBio. More detailed descriptions related to pSWE, SSI and ARFI are briefly summarized 

below.  

Table 3.2. Mechanical properties of the three numerical breast models. Young’s modulus 

values were extracted from three publications [18, 44, 83] and all materials were assumed 

to be nearly incompressible.  

  

Young’s 

modulus 

(kPa) 

Poisson’s 

Ratio 
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Model 1 

[44] 
Background 4.76 0.499 

Model 1 

[44] 
Background 4.61 0.499 

Model 2 

 [83] 

Background 15 0.499 

Inclusion 60 0.499 

Model 3 

[87, 88] 

Breast fat 10 0.499 

Cooper’s ligament 75 0.499 

Milk duct 10 0.499 

Lesion 150 0.499 

Skin 400 0.499 

Fibro-glandular tissue 15 0.499 

 

(1) Point Shear Wave Elastography (pSWE) 

 

Figure 3.4. A graphic illustration of the simulation setting for virtual pSWE in Model 1. 

B-mode image simulated using FIELD II is displayed in (a) and (b). In (a), simulated 

acoustic radiation forces were projected onto the red dot region. The green arrow is the 

SW propagation direction. The horizontal red dashed lines represent the depth (1 mm) 

over which shear wave reconstructions were performed for pSWE. Repeating (a) along 

the axial depth direction, a two-dimensional (2D) SWS image within the white rectangle 

can be obtained for a large region of interest (ROI) as shown in (b). 
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Acoustic radiation force fields were projected onto Model 1 through cubic spline 

interpolations in MATLAB (Mathworks Inc., MA, USA), as shown in Fig. 3.4 (red dot 

region). The acoustic pulse was used to excite the tissue (see the red dots in Fig. 3.4a-b) 

for 1 millisecond [44] while the entire (temporal) length of the dynamic FEA simulation 

was 8 milliseconds. The normalized acoustic pulse (see Fig. 3.1) was scaled so that the 

peak displacement at the focal point was around 15 𝜇𝑚 [16]. The time-resolved 

displacement field between two horizontal red dashed lines (a 1 mm spacing) in Fig. 3.4a 

was stored and subsequently analyzed to estimate SWS values. To obtain a SWS map in 

two-dimension (2D), this process was repeated for different depths (every 1 mm; see Fig. 

3.4b).  

(2) Supersonic Shear Imaging (SSI) 

 

Figure 3.5. A graphic illustration of the virtual SSI setting for two models: (a) Model 2 

and (b) Model 3. Two FIELD II simulated B-mode images were displayed to illustrate 

compositions of Models 2 and 3, respectively. To generate supersonic sources, acoustic 

radiation forces were projected onto a series of excitation locations with a pre-

determined time delay in a sequence. Red dots in each plot indicate those supersonic 

sources used to generate the SSI image. The red arrows denote the sweeping (i.e. delayed 

excitation in a sequence) direction of acoustic radiation forces, while green arrows 

indicate the SW propagation direction. The white rectangle is the region of interest 

(ROI). 
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To approximate plane SW propagation in SSI, impulse acoustic radiation forces 

whose pulse length was 100 microseconds swept down along the axial depth direction 

(spaced 1 mm apart) successively [85]. The time delay between the above-mentioned 

sequential acoustic pushing was 10 microseconds to ensure the sweeping speed moved 

faster than the SW propagation speed [85]. Then, a set of time-resolved displacement fields 

in the region of interest (ROI) was acquired.  FIELD II ultrasound simulations were 

performed to simulate ultrasound data acquisition with a frame rate of 10 KHz. The 

sweeping depth ranges were 15 mm (15 locations) and 10 mm (10 locations) for Models 2 

and 3, respectively.  

(3) Acoustic Radiation Force Impulse (ARFI) imaging 

 

Figure 3.6. A graphic illustration of the setting of virtual ARFI imaging for two models 

overlaid with FIELD II simulated B-mode images: (a) Model 2 and (b) Model 3. 

Spatially localized acoustic pushes were applied onto respective ROIs sequentially (20 

mm × 15 mm and 10 mm × 9 mm for Models 2 and 3, respectively). Each red dot 

indicates one pushing location used for the virtual ARFI imaging. The number of red 

dots used was solely for the illustration purpose.  

 

Virtual ARFI simulations were performed in conjunction with Models 2 and 3. In 

virtual ARFI imaging, acoustic radiation forces with an acoustic pulse length of 100 

microseconds were simulated to interrogate multiple spatial locations (spaced 1 mm apart 
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in each direction) sequentially, as shown in Fig. 3.6. Each acoustic excitation was followed 

by 2 milliseconds of simulated tracking beams to observe the time-resolved tissue 

responses within the region of excitation [89]. This sequence was repeated over ROIs of 

20 mm × 15 mm and 10 mm × 9 mm for Models 2 and 3, respectively. Time-resolved 

displacement fields were stored and were used in conjunction with FIELD II for the 

subsequent ultrasound simulations. 

D. Ultrasound Simulations Using FIELD II 

All ultrasound simulations were performed by FIELD II [80]. Procedures were the 

same as described in our previous paper [84] and were briefly summarized below. 

Randomly positioned point scatterers were placed in Models 1-3 to ensure Rayleigh 

scattering. The scatterer density was 30 scatterers/mm3. Acoustic reflective coefficients 

were assigned to each point scatterer. The corresponding data were chosen based on the 

literature [90]. Perfect matching layers around the boundaries were automatically added by 

FIELD II to avoid undesirable wave reflections at the boundaries. Acoustic attenuation was 

not simulated. During FIELD II simulations, around 150 lines were used to cover the entire 

field of view, resulting in a beam spacing of 0.12 mm for all simulated ultrasound data. 

E. Data Analysis 

A high-performance computing cluster was used. One beam line took 

approximately 1 minute under MATLAB (Version 2013b, Mathworks Inc. MA, USA; 4 

CPUs [Intel Xeon E2560; 2.8GHz] and 16GB of memory).   

(1) Speckle Tracking and Displacement Estimation 
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Once a pair of pre- and post-deformation radio-frequency echo frames were 

obtained using the above-mentioned FIELD II simulation, a modified block matching 

algorithm [82] was used to obtain axial and lateral displacements within a region of interest 

(ROI). The tracking kernel size was approximately 1.5mm (lateral) × 0.6mm (axial). More 

details of this method can be found in a previous publication [82]. 

(2) Shear Wave Speed (SWS) Estimation 

In this study, the time-of-flight (TOF) approach [44, 91] was used to estimate SWS 

in the region of interest (ROI). TOF-based methods employ a priori assumptions, including 

local homogeneity, and a known direction of propagation, such that the arrival time at 

adjacent positions can be used to determine the shear wave speed [16]. In this study, the 

middle point of the shear wave front was identified as a more reliable feature to estimate 

the shear wave arrival time at fixed lateral positions. The acoustic simulation data were up-

sampled to 50 kHz (from 10 kHz) before being processed by the time-of-flight method 

[44]. To improve reconstruction results of the virtual SSI, a directional filter [83] was 

employed to remove off-axis wave interferences among ultrasonically-tracked 

displacement data, prior to the application of the above-mentioned TOF method. 

(3) Evaluation of Elastic Contrast on Elastographic Images  

Elastic contrast (EC) [92] was chosen to compare results among different methods 

(i.e. pSWE, SSI, ARFI, and SE). The elastic contrast (EC) is defined as follows, 

𝐸𝐶 =
𝐼𝑡

𝐼𝑏
 (3.1) 
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where 𝐼 denotes the mean values of intensity on the elastogram of interest, and subscripts 𝑏 

and 𝑡 represent the background and target, respectively. Two different methods for ROI 

selection were used as shown in Fig. 3.7a-b. In Fig. 3.7, the middle rectangular or circular 

ROI within the target (delineated by the contour in orange in Fig. 3.7a) was used to calculate 

the mean intensity of the target (𝐼𝑡), while small squares (Fig. 3.7a) or the large shaded blue 

ring (Fig. 3.7b) were used to calculate the mean intensity of the background (𝐼𝑏). The area 

of the target ROI is equal to its counterpart in the background. The “true” elastic contrast 

between the target and the background of the numerical phantom was calculated based on 

shear modulus values used in FEA simulations.  

 

Figure 3.7. Illustrations of the process for the calculation of EC using an example strain 

elastogram. Two ROI selection methods (a)-(b) were used. The rectangles or circles 

depict respective ROIs in the background and the target.  The target was delineated by 

the manually-segmented contour in orange color in both plots. 

 

(4) Study of Biases in pSWE  

In order to show the SWS measurements were dependent on the aperture size, focal 

depth and lateral tracking ranges, numerical simulations using a 5MHz linear array 

transducer were performed based on experimental data reported by Zhao et al. [18] All 
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ultrasound simulation parameters can be found in Table 3.1 above. Particularly, the 

simulated pushing beam was focused on 20 mm and 40 mm depths, respectively; In each 

focal depth, three different aperture sizes (i.e.  32, 64 and 96 active elements) were 

simulated. All simulations were performed in a numerical phantom as described in Table 

3.2 above.  

How the lateral tracking range affects the SWS measurements was also 

investigated? When the simulated acoustic pushing beam was focused at the depth of 20 

mm using three different active aperture sizes, the SWS values were estimated in two 

lateral tracking ranges: 1-6 mm (hereafter referred as to the near tracking range) and 8 – 13 

mm (hereafter referred as to the far tracking range) from the focus of the pushing beam.   

3.2 Virtual pSWE 

Results from the proposed virtual pSWE obtained from Model 1 were shown in 

Figs. 3.8 and 3.9, respectively. In Fig. 3.8, displacement data along different (temporal) 

phases have been displayed to visualize the SW propagation (see Figures 8b-d). In Fig. 

3.8e, the estimated SWS along a lateral (perpendicular to the SW propagation direction) 

line was 1.31 ± 0.04 m/s. The relative difference between the known SWS (1.26 m/s) and 

the estimated SWS (1.31 m/s) was approximately 4.0%. The known SWS was estimated 

by √𝐺 𝜌⁄  based on its predetermined material properties (see Table 3.2), where G and 𝜌 

are shear modulus and the mass density, respectively.  
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Figure 3.8. The SWS along lateral direction estimated from Model 1 by using pSWE: 

(a) a simulated B-model image, simulated displacement images at (b) 1 millisecond, (c) 

3 milliseconds and (d) 6 milliseconds after the pushing pulse started, and (e) a plot of 

estimated SWS. In (e), the blue solid curve represents the estimated SWS, while the red 

dashed line represents the known SWS for a comparison purpose. The color bar is the 

acoustic radiation force-induced displacement in micrometer.  

 

In Fig. 3.9, two-dimensional (2D) SWS image from Model 1 was generated by 

repeating the process as illustrated in Fig. 3.8b at different axial depths. The SW front 

arrival time and the estimated SWS images were shown in Figure 9b-c, respectively. In 

Fig. 3.9c, the estimated SWS was 1.32 ± 0.14 m/s, similar to what was reported in the 

literature 1.3 ± 0.44 m/s [50]. Qualitatively, the displacement time-to-peak (TTP) image 

(Fig. 3.9b) estimated from simulated time-resolved displacement curves was comparable 

to the one (Fig. 3.9d) experimentally obtained.    
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Figure 3.9. Two-dimensional (2D) SWS image estimated from Model 1 by using pSWE: 

(a) a simulated B-model image, (b) SW wave front arrival time within the rectangular 

ROI (10 mm × 6.5 mm) and (c) estimated SWS within the same ROI (10 mm × 6.5 

mm). (d) and (e) are experimental results available in the literature [44]. The unit of color 

bars in (b), (d) is in millisecond, while the unit of the color bars is m/s. TTP stands for 

time-to-peak. 

 

3.3 Biases in Virtual pSWE 

Estimated SWS values using wave data simulated by the virtual pSWE at two 

different depths are shown in Fig. 3.10. At each depth, three different transmit aperture 

sizes were simulated. Simulation results clearly exhibited that the SWS measurements may 

be dependent on the aperture size and focal depth, thereby resulting in biases in SWS 

measurements. Our simulation results (see Fig. 3.10a) are similar to those experimentally 

measured (see mean values in Fig. 3.10b) under the same condition. The differences 

between our simulation results and experimental results (Fig. 3.10a vs. mean values in Fig. 

3.10b) were small (around 0.02 m/s or 1.5%).  
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Figure 3.10. Plots of SWS measured at two focal depths (i.e. 20 mm and 40 mm): (a) 

simulation results by the virtual pSWE and (b) experimental results by Zhao et al. At 

each depth, 3 different (transmit) aperture sizes (32, 64, and 96 elements) were used for 

the simulated push beam transmission. The experimental results were obtained from the 

original publication by Zhao et al. [18] Error bars in (b) represent one standard deviation.   

  

 

Figure 3.11. Plots of SWS measured at the near and far lateral tracking regions: (a) 

simulation results by the virtual pSWE and (b) experimental results by Zhao et al. The 

push beam was focused at 20 mm and 3 different (transmit) aperture sizes (32, 64, and 

96 elements) were used for the simulated push beam transmission. The experimental 

results were obtained from the original publication by Zhao et al. [18] Error bars in (b) 

represent one standard deviation. 

 

How the estimated SWS values were affected by the lateral tracking ranges are 

shown in Fig. 3.11. Both the simulation and experimental results showed that the estimated 

SWS values were higher in the near (lateral) tracking range than those estimated in the far 

(lateral) tracking range. Again, the differences between our simulation results and 
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experimental results (Fig. 3.11a vs. mean values in Fig. 3.11b) were small (around 0.02 

m/s or 1.5%). 

3.4. Virtual SSI  

Virtual SSI was performed for Models 2 and 3. Results are summarized in Figs. 

3.12-3.13. “Mach cone-shaped” plane shear waves [85] were observed in both models. Our 

results also confirmed that the angle of the plane shear wave was proportional to the ratio 

between the SWS and the speed of the moving supersonic source as suggested in the 

literature [85]. Visually, the SW propagation both in Models 2 and 3 was progressively 

distorted by heterogeneities (Fig. 3.12b) and such distortions had been accelerated after 

the SW wave fronts passed through respective harder inclusion (see Figs. 3.12c and 3.13c). 

It is worth noting that the modulus ratio between the background and the inclusion was 

higher for Model 3 (1:10), as compared to that in Model 2 (1:4). That explains why the 

(shear) wave interference patterns in Model 3 were clearly noticeable and visually more 

consistent with the shapes of the inclusion (see Fig. 3.13c). 

Figs. 3.12d and 3.13d show the estimated SWS values as images in Models 2 and 

3, respectively. We found that, due to tissue heterogeneities in Models 2 and 3, estimated 

SWS values from the background were less uniform and the relative variances of estimated 

SWS from the background increased to 4% (Figure 2.26d) and 12.5% (Figure 2.27d) for 

Models 2 and 3, respectively. Now referring to the inclusion in Model 2, the average 

estimated SWS was 4.05 m/s and therefore it was underestimated by 9.4% as compared to 

the known SWS of 4.47 m/s. Similarly, the respective known SWS values were also 

estimated by √𝐺 𝜌⁄  based on its predetermined material properties of Models 2 and 3 (see 
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Table 2), where G and 𝜌 are shear modulus and the mass density, respectively. 

Qualitatively, the inclusion shape in Figure 2.26d was similar to the shape experimentally 

obtained (see Figure 2.26e) in a tissue-mimicking phantom [83]. 

In Model 3, the mismatch between the fibro-glandular background and the 

simulated breast lesion was greater (1:10) and the tissue composition was more complex 

(Fig. 3.13a). Therefore, the reconstructed shape of the inclusion in Model 3 slightly 

deviated away from the known size and shape. Notably, there is a slight divot artifact in 

the reconstructed SWS image as shown in Fig. 3.13d. The same divot was also reported in 

the literature [83]. Although boundaries of the simulated breast lesion are not well 

visualized due to the presence of the “divot” artifact, a stiff region in the center of the SWS 

image well correlated with the simulated breast lesion can be clearly observed. The result 

shown in Fig. 3.13d is qualitatively similar to what were reported by others [50]. 

 

Figure 3.12. Results of virtual SSI for Model 2: (a) a simulated B-model image, 

simulated displacement images at (b) 3 milliseconds and (c) 5 milliseconds after the first 

pushing pulse started, (d) an image of estimated shear modulus (in kPa) and (e) an image 

of experimentally estimated shear modulus (in kPa) image in a tissue-mimicking 

phantom [83]. White arrows in (d) and (e) point to the reconstructed inclusion. The color 
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bars in (b) and (c) are in micrometers. (b) and (c) represent the acoustic radiation force-

induced displacements at t = 3 and 5 milliseconds.  

 

 

Figure 3.13. Results of virtual SSI for Model 3: (a) simulated impedance (left) and B-

model (right) images, simulated displacement images at (b) 1 milliseconds and (c) 2.6 

milliseconds after the first pushing pulse started, and (d) an image of estimated SWS. 

White arrows in (d) point to the reconstructed breast lesion using estimated SWS values. 

The color bars in (b) and (c) are in micrometer; (b) and (c) show the acoustic radiation 

force-induced displacements. The color bar in (d) represents the SWS in m/s.  

 

3.5. Virtual ARFI Imaging 

For visualization purposes, both peak displacement and (displacement) time-to-

peak (TTP) images were normalized between 0 and 1. Normalized ARFI peak-

displacement and (displacement) TTP images were simulated in Model 2 and Model 3, as 

shown in Figs. 3.14 and 3.15. Albeit slight differences, the respective inclusion (lesion) 

size appeared in the ARFI image was visually the same as what was observed in the 

respective B-mode image. Clearly, hard inclusions were displaced less than their 

surroundings. Furthermore, it took less time for hard inclusions to reach their peak 
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displacements (see Figs. 3.14c and 3.15c). Estimated ARFI parameters — peak 

displacement and (displacement) TTP were relatively uniform and their relative variances 

were approximately 10% (Figs. 3.14b-c and 3.15b-c). 

 

Figure 3.14. Results of virtual ARFI for Model 2: (a) a simulated B-model image, (b) 

simulated normalized peak displacement image and (c) simulated normalized 

(displacement) TTP image. The color bars are unit-less. 

 

 

Figure 3.15. Results of virtual ARFI for Model 3: (a) a simulated B-model image, (b) 

simulated normalized peak displacement image and (c) simulated normalized 

(displacement) TTP image. The color bars are unit-less.  

 

3.6.  Elastic Contrast (EC) Evaluation 

In Models 2 and 3, elastic contrast (EC) values (Eqn. 1) were estimated for three 

virtual imaging modalities using Methods A and B (see Fig. 3.7): SSI, ARFI, and SE. 

Results are listed below in Table 3.3. Overall, SSI shows the largest elastic contrast as 

compared with the other two qualitative methods — SE and ARFI images. 
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Table 3.3. Tabulated results of elastic contrast (EC) values calculated from three virtual 

elastography methods. The SSI measurements were converted to elastic shear modulus 

values using√𝐺 𝜌⁄ , where G and 𝜌 are shear modulus and the mass density, respectively. 

The underlying elastic contrast values were calculated based on data shown in Table 2.    

 
Model 2 Model 3 

Method A Method B Method A Method B 

Underlying EC 4 4 10 10 

SE  2.32 2.12 1.92 1.72 

SSI 3.53 3.23 3.35 3.19 

ARFI peak-displacement 2.78 2.67 2.88 2.63 

ARFI (displacement) TTP  3.22 3.15 3.20 2.91 

 

3.7 Discussion 

The proposed system leveraged other open-source/freeware packages, namely 

VTK, Tetgen [59], FEBio [81] and Field II [80]. All four software packages have been 

validated and widely used in biomedical research. Capitalizing on successes of these four 

existing packages, we demonstrated that a virtual acoustic radiation force-based 

elastography simulation platform can be implemented. The proposed acoustic radiation 

force-based elastography simulation platform is an extension of our previous work on 

virtual quasi-static SE simulation platform [84].   

Simulated results by the proposed virtual elastography system in this feasibility 

study were quantitatively and qualitatively compared to tissue-mimicking and numerical 

phantom experiments reported in the literature [50, 85, 89].  Overall, we found that our 

virtual elastographic results were consistent with those published experimental results [50, 

85, 89] as briefly summarized below. In the uniform numerical phantom (Model 1), the 
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SWS speed estimated from virtual ultrasound simulations was essentially the same as the 

SWS speed experimentally measured (1.32±0.14 m/s vs. 1.3±0.44 m/s).  However, both 

our virtual simulated and experimentally measured SWS values were slightly higher than 

the theoretical SWS (1.26 m/s as calculated by√𝐺 𝜌⁄ ). Visually, the simulated distribution 

of (displacement) TTP was also comparable to what was experimentally measured (Fig. 9b 

vs. Fig. 9d). Work by Zhao et al. [18] demonstrated in tissue-mimicking materials that the 

SWS measurements were dependent on the focal depth, aperture size and lateral tracking 

range. Using the virtual pSWE, our simulation results in Model 1 (Fig. 3.10 and 3.11) could 

quantitatively reproduce those results by Zhao et al. In the simple inclusion phantom 

(Model 2), shear modulus values within the hard inclusion estimated by the proposed 

virtual SSI, on average, were approximately 10% lower than what were experimentally 

reported by Deffieux et al. [83] through visual inspections (see Fig. 10d vs. Fig. 10e), and 

were 17% lower than the underlying shear modulus value (see Table 3.2). Palmeri also 

reported [50] a similar finding. They found that such an underestimation increased as the 

stiffness values between inclusion and background further differed.  The proposed virtual 

SSI confirmed their finding. We recognize that more rigorous validations and 

developments are still needed to ensure soundness of the proposed virtual elastography 

system. 
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Figure 3.16. Two virtual SWS images comparing effects (a) without and (b) with the 

directional filter being applied. Results were based on Model 3 under the same condition 

by which all images in Figure 13 were obtained. The color bars represent the SWS in 

m/s. 

 

The outcome of virtual SSI may also be dependent on signal processing techniques 

used to estimate SWS. One example is shown in Fig. 3.16 to exhibit the SWS 

reconstruction results with and without the directional filter. Fig. 3.16 demonstrated that 

quantitative differences may be introduced by different data processing strategies. 

Particularly, in the complex breast model (Model 3), when the directional filter [83] was 

not applied, the SWS image was quite noisy and the “divot artifact” in the estimated SW 

images was fairly pronounced (see Fig. 3.16a). After the directional filter had been applied, 

the SWS image became smoother though the “divot artifact” was slightly visible. The 

“divot artifact” was largely caused by changes in the SW morphology due to reflections at 

the stiff-to-soft and soft-to-stiff interface as the shear wave propagates through the 

boundary [50].  Evidently, SW distortions caused by tissue heterogeneities were clearly 

observed in our results (Fig. 3.13d).  

As reported by Quantitative Imaging Biomarker Alliance [19], there were 

statistically significant differences among tissue-mimicking phantom results when 
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different SWE systems were used.  Those quantitative differences could partially be 

attributed to the fact that different SWE systems could have used different ultrasound 

system parameters and data/signal processing strategies. Preliminary results (Figures 10 

and 11) showed that the proposed virtual elastography system can reproduce system-

dependent SWS measurements. Consequently, the proposed system might be used to 

further investigate how (ultrasound) system parameters may affect SWS measurements. 

Since public releasing of those ultrasound system parameters and data/signal processing 

strategies by vendors is not feasible, performing virtual elastography simulations in 

heterogeneous, complex but known (viscoelastic) media may enable us to advance 

understanding of elastographic measurements in complex media, thereby aiding in the 

interpretation of clinical SSI results. Furthermore, this is an open-source development so 

that this process can be transparently done.  Source codes of this virtual simulation platform 

will be made available from Github (https://github.com/jjiang-mtu/virtual-breast-project).  

In this study, virtual breast tissues including tumors were assumed to be linearly 

elastic solids as a first approximation. Our preliminary results (see Table 3.3) suggested 

that three different modalities (SE, SSI, and ARFI) provided different image contrast 

values in Models 2 and 3. Particularly, results in Table 3 suggested that SSI offers the 

highest elastic contrast values as compared to SE and ARFI. This observation is consistent 

with the tissue-mimicking phantom results reported by Palmeri and Nightingale [16] and 

Peng et al. [93]. In the future, viscoelastic tissue properties will be included in this virtual 

elastography platform. Once the viscoelasticity is included, the proposed virtual system 

https://github.com/jjiang-mtu/virtual-breast-project
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could also be applied to further investigate elastographic contrast and image resolution in 

heterogeneous and complex media.   

Tests in ultrasound elastography are often done using human trials and tissue-

mimicking phantoms. Human trials often associate with increasingly high costs [37], while 

developments of realistic tissue-mimicking breast phantoms that can resemble the 

complexity of human organs and tissue properties remain as a significant challenge 

[38, 39]. In this study, we suggest that the proposed virtual ultrasound elastography 

simulation platform could be used as an alternative. Given more developments and 

validations, the proposed platform can enable imaging physicists/scientists to perform 

nearly all ultrasound elastography simulations using a single gateway. This is important 

because performing advanced ultrasound elastography simulations requires not only 

interdisciplinary knowledge in acoustic physics, FEA, tissue mechanics, computer-aided 

design and image/signal analysis but also a substantial effort to fill gaps among multiple 

(commercial or free) software tools. This single gateway software platform could 

potentially lift this burden away from image physicists/scientists given further 

developments. Consequently, research efforts can be more steered toward improving our 

understanding of ultrasound elastography using complex, heterogeneous but known media 

that emulating in vivo breast anatomy.  It is our vision that rigorous imaging tests of this 

kind can be conducted with transparency due to their open-source nature. The proposed 

system can also be used to accelerate development of new elastographic methods by using 

the concept of virtual prototyping.  
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Furthermore, Zhao et al. [18] have also advocated an option to correct system 

parameter-dependent SWS measurements using computer simulations. The proposed 

virtual simulation platform seems a good tool for this. A correction table generated through 

the proposed virtual simulation platform involving realistic anatomy and material 

properties can be used to compensate for biases due to (ultrasound) system parameter-

dependency. 

3.8 Conclusion 

A virtual simulation platform for acoustic radiation force-based breast elastography 

was extended from an ultrasound quasi-static breast elastography simulation platform 

described in chapter 2. The proposed virtual breast elastography system in this chapter 

inherited four key components from chapter 2: an ultrasound simulator (Field II), a mesh 

generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing 

package (VTK). Using a simple message passing mechanism, functionalities have now 

been extended to acoustic radiation force-based elastography simulations. To show the 

ability of the proposed simulation platform, acoustic radiation force Impulse (ARFI) 

imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) were 

simulated. Our initial results were consistent with our expectations and what have been 

reported in the literature. The proposed (open-source) simulation platform can serve as a 

single gateway to perform many elastographic simulations in a transparent manner, thereby 

promoting collaborative developments.  
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Chapter 4. Statistical analysis of SWE measurements in 

random two-phase media3 

SWE is increasingly being used to noninvasively stage liver fibrosis by measuring 

shear wave speed (SWS). Chapter 4 is to quantitatively investigate intrinsic variations 

among SWS measurements obtained from heterogeneous media such as fibrotic livers. 

This chapter demonstrated that the intrinsic variations in the SWS measurements, in 

general, follow a non-Gaussian distribution and are related to heterogeneous nature of the 

medium being measured. The non-Gaussian distribution was derived by the principle of 

Maximum Entropy (ME). Also, the performance of the derived distribution was evaluated 

using Monte-Carlo (MC) simulated shear wave data and against three other commonly 

used distribution. 

4.1 Derivation of Probability Density Function (PDF) 

Consider an elastic (lossless) heterogeneous medium, which consists of multiple 

isotropic non-overlapping phases with elastic bulk moduli (𝐾𝑖), shear moduli (𝐺𝑖), mass 

density values (𝜌𝑖) and the volume fractions of each phase (𝑐𝑖; ∑ 𝑐𝑖 = 1). The subscripts 𝑖 

denotes phase index, respectively. For simplicity, the multi-phase medium can be 

effectively treated as isotropic and macroscopically homogeneous. Therefore, this medium 

which can be characterized by effective bulk modulus (𝐾), effective shear modulus (𝐺) and 

effective mass density(𝜌). Consequently, given a medium, K and G are two unknown 

random variables. Among most biological soft tissues, variations in mass density are small 

                                                           
3 The material contained was previously published in Physics in Medicine and Biology, 

2017 Jan;62(3):1149–1171. Refer Appendix G for granted permission to be republished. 
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as compared to those in the shear modulus [90]. We treat the effective mass density 𝜌 as a 

constant to simplify the derivation. 

Formally, we now assume that an arbitrary multi-phase medium can be specified 

by a set of physical properties 𝐽 = (𝐾𝑖, 𝐺𝑖 , 𝜌𝑖 , 𝑐𝑖). Given the multi-phase medium whose 

properties can be specified by the set 𝐽, under the framework of effective medium theory, 

the macroscopic SWS of the medium (𝑉𝑠) can be related to the effective shear modulus G 

by [94, 95],  

𝑉𝑠 =  √
𝐺

𝜌
   (4.1) 

where 𝜌 is the effective mass density. Eqn. (4.1) is only valid with low-frequency shear 

wave propagation in elastic (lossless) media.  

In information theory, Jaynes’ information entropy (𝐻) [96] of the effective shear 

modulus G is given below,   

𝐻 =  − ∫ 𝑝(𝐺)
+∞

−∞
𝑙𝑛

𝑝(𝐺)

𝑚(𝐺)
𝑑𝐺  (4.2) 

where 𝑚(𝐺) can be used to represent a prior information and 𝑝(𝐺) is a (histogram) 

distribution of G. Based on the principle of ME, the Jaynes’ entropy H reaches its 

maximum if 𝑝(𝐺) reflects the data distribution in the best possible way, given the prior 

information 𝑚(𝐺). Consequently, maximization of H leads to an optimized 𝑝(𝐺) that best 

describes the given data G . In Eqn. (4.2),  𝑚(𝐺) has been set to 1, meaning that no prior 

information regarding the distribution of G is available to us.   

To ensure that the optimized 𝑝(𝐺) is a good fit of the given data G, the 
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maximization of H should be constrained by the statistical moments of the data G as 

follows,    

∫ 𝑝(𝐺)
+∞

−∞
𝑑𝐺 = 1  (4.3) 

∫ 𝑝(𝐺)
+∞

−∞
𝐺𝑑𝐺 = 𝐺𝐸  (4.4) 

∫ 𝑝(𝐺)
+∞

−∞
(𝐺 − 𝐺𝐸)2𝑑𝐺 = 𝐺𝐷  (4.5) 

where 𝐺𝐸 and 𝐺𝐷 are mean and variance of the effective shear modulus G. It is important 

to note that G is a random variable and, now 𝑝(𝐺) becomes the PDF of the given effective 

modulus data G. A Lagrange multiplier method [97] was used to maximize 𝐻 in 

conjunction with Eqn. (4.1). This process yields an analytical expression of PDF of the 

macroscopic SWS (𝑉𝑠), 

𝑝(𝑉𝑠) =  
1

√2𝜋𝐺𝐷
𝑒

−(𝑉𝑠
2𝜌−𝐺𝐸)2

2𝐺𝐷 2𝜌𝑉𝑠  (4.6) 

A complete derivation of Eqn. (4.6) is provided in Appendix C. 

4.2 Model Evaluation 

The derived PDF, 𝑝(𝑉𝑠), was compared with three commonly used PDF functions 

(Section B.1) to demonstrate its fitness to simulated SWS data. As an integral part of this 

evaluation process, statistical model selection criteria (Section B.2) will be used as 

quantitative metrics to determine the performance. 

4.2.1 Commonly-Used PDFs  
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Three commonly-used PDFs [98] (i.e. Gaussian distribution, log-normal 

distribution and generalized Gaussian distribution) were selected to compare with the 

theoretically-derived PDF (i.e. Eqn. (4.6)). The PDF of Gaussian distribution (GAD) can 

be written as follows, 

𝑝𝐺𝐴𝐷(𝑉𝑠) =
1

𝜎√2𝜋
𝑒

−
(𝑉𝑠−𝜇)2

2𝜎2   (4.7) 

where  𝜇 and 𝜎 are the mean and standard deviation of SWS, respectively. 

The PDFs of log-normal distribution (LND) and generalized Gaussian distribution (GGD) 

are expressed as follows, respectively, 

𝑝𝐿𝑁𝐷(𝑉𝑠) =
1

𝑉𝑠𝜎√2𝜋
𝑒

−
(𝑙𝑛𝑉𝑠−𝜇)2

2𝜎2   (4.8) 

𝑝𝐺𝐺𝐷(𝑉𝑠) =
𝛽

2𝛼𝛤(1/𝛽)
𝑒−(|𝑉𝑠−𝜇|/𝛼)𝛽

 (4.9) 

Similarly, in Eqn. (4.8), 𝜇 and 𝜎 are the mean and standard deviation of ln (𝑉𝑠), 

where 𝑙𝑛( ) is a natural logarithm function, while 𝜇 is the mean of 𝑉𝑠 in Eqn. (4.9).  In 

Eqn. (4.9), 𝛽 is estimated by using a Newton-Raphson iterative procedure [99]. Once 𝛽 is 

obtained, 𝛼 can be evaluated as (
𝛽

𝑁
∑ |𝑉𝑠𝑖 − 𝜇|𝛽𝑁

𝑖=1 )
1

𝛽, where 𝑁 is the number of samples. 

4.2.2 Statistical Model Selection Criteria 

Two commonly used model-comparison criteria, namely the Akaike Information 

Criterion (AIC) [100] and the Bayesian Information Criterion (BIC) [101], were used to 

evaluate the relative quantity and fitness of the four statistical PDFs (i.e. Eqns. 4.6-4.9). 
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Let 𝐿 = ∏ 𝑝(𝑉𝑠𝑖)
𝑛
𝑖=1  be the likelihood function of any of those four statistical PDFs 

(𝑝(𝑉𝑠𝑖)) and k be the number of estimated parameters in the PDF. Then the AIC and the 

BIC of a given distribution can be, respectively, presented as follows,   

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑘  (4.10) 

𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑘 ∙ ln(𝑛)  (4.11) 

In general, when choosing from several models under consideration, the one with 

the lowest AIC and BIC is preferred in terms of data fitness.  

4.3 Overall Workflow of Numerical Experiments  

Data obtained from MC-simulated SW were generated to evaluate the derived PDF 

(see Eqn. (4.6)). As shown in Fig. 4.1, the corresponding MC simulations involve two 

steps. In the first step, one cycle of a low-frequency (i.e. 50 Hz, 100 Hz and 150 Hz) plane 

[shear] wave excitation was prescribed and subsequently, SW was induced. Excitations 

with a single fixed frequency are similar to ones used in TE. The chosen excitation 

frequency falls in the range of a typical SW frequency excited in a clinical setting: between 

50 Hz and 200 Hz [1]. SW propagation was simulated by using K-Wave, an open-source 

wave simulator [102].  Details of K-Wave simulations including boundary conditions can 

be found in subsection E and Appendix D below. In the second step, a direction filter [103] 

was first applied to simulated particle velocity data. Then, a lateral time-to-peak (TTP) 

algorithm [44] was adopted to calculate SWS along the wave propagation direction at 

different depths based on “filtered” particle velocity data. The temporal sampling 

frequency of the recorded signals was approximately 100 kHz [44]. 
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Figure 4.1. A workflow involving in the simulation of SW propagation through a 

stochastic two-phase medium using the K-Wave simulator: (a) a plot showing simulated 

SW that propagates through the medium downward and, (b) a histogram of estimated SWS 

values along the SW propagation direction, along with four fitted PDFs.  

 

4.4 Two-phase Fibrotic Liver Tissue Model 

The proposed two-phase stochastic tissue model was designated to mimic 

histological characteristics of liver fibrosis from two important aspects: (1) the amount of 

fibrosis and (2) architectural changes due to fibrosis [104]. This was done under the 

framework of METAVIR classification [105]. A schematic illustration of the proposed 

stochastic tissue model can be seen in Fig. 4.2a, where hepatocytes were arranged in 

lobules and each lobule was modeled as a hexagon. Each edge of those hexagons was 

approximately 1 mm [106]. Each septum, forming an edge of a lobule, was connected by 

portal triads. In the early stages of liver fibrosis (i.e. METAVIR scores F1 and F2), liver 

injuries occur and inflammatory cells migrate across endothelium of portal vessels. This 

process will initiate depositions of collagen. Thus, in the early stages, collagen will be 
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deposited around portal tracts with extensions into adjacent peri-portal regions along septa, 

as shown in Figs. 4.3b-c and those collagen depositions look like isolated islands (See 

Figs. 4.3b-c). As the liver fibrosis progresses (i.e. METAVIR scores F3 and F4), 

inflammatory cells migrating across the endothelium of hepatic sinusoids can gain direct 

access to the liver parenchyma, thereby causing lobular inflammation. Consequently, 

fibrous expansions of most portal areas cause portal-to-portal bridging or portal-to-central 

bridging [107], as shown in Figs. 4.3d-e. In other words, at the late stages of the liver 

fibrosis, deposited collagen “islands” (see Figures 3(b)-(c)) have been connected by septa 

and the overall architectural appearance looks more like a complex web (see Fig. 4.3e). 

Overall, the proposed stochastic tissue model captures both the increasing presence of 

collagen content and spatial characteristics of collagen depositions, as shown in Figs. 4.3b-

e.  

An in-house MATLAB script (Mathworks Inc., MA, USA) was used to create 

tissue compositions that represent different fibrosis stages, given a volume fraction of 

collagen content. The selected volume fractions of collagen content were adopted based on 

measured values of collagen proportional area (CPA), as shown in Table 4.1 [108].  All 

necessary parameters needed for the simulations of SW propagation were based on data 

available in the literature. More specifically, shear moduli of the background (i.e. normal 

liver parenchyma) and the fibrotic inclusions (i.e. collagen) were set to 3.24 kPa (SWS = 

1.8 m/s) [109]   and 400 kPa (SWS = 20 m/s) [110, 111], respectively. The mass density 

of the background and the fibrotic inclusions were set to be 1000 kg/m3 and 1200 kg/m3 

[90], respectively. The compressional sound speed of the background and the fibrotic 
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inclusions were set to be 1540 m/s and 2000 m/s [90], respectively. 

 

Figure 4.2. (a) a 2D illustration of liver anatomy; (b) Stage F1 with 8% collagenous tissue; 

(c) Stage F2 with 8% collagenous tissue; (d) Stage F3 with 10% collagenous tissues; and 

(e) Stage F4 with 25% collagenous tissues. In (b)-(e), the red is normal liver tissue and the 

blue is collagenous connective tissue. Illustrations of fibrosis from F1 to F4 were based on 

the METAVIR classifications [105]. 

 

Table 4.1 Collagen proportional area (CPA) for 4 different liver fibrosis stages (F1-F4). 

Data were taken from reference [108]. 

METAVI

R 

stage 

F0 F1 F2 F3 F4 

CPA 
2.2~ 

9.67% 

1.8~ 

15.97% 

2.26~ 

16.68% 

4.96~ 

20.73% 

7.8~ 

32.67% 

 

In order to assess sizes of those inclusions with complex shapes (see Fig. 4.3(b)-

(e)), correlation lengths were calculated based on two-point correlation function [112]. 
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Mathematically, a two-point correlation function 𝑆(𝑟1, 𝑟2 ) between two arbitrary points p1 

and p2, is defined as follows,  

𝑆(𝑝1, 𝑝2 ) =< 𝐼(𝑝1)𝐼(𝑝2) >  (4.12) 

where angular brackets denote an ensemble average and 𝐼(𝑝) is defined as 

𝐼(𝑝) = {
1, 𝑖𝑓 𝑝 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4.13) 

Equation (4.12) represents a probability of finding two points p1 and p2 in the same 

phase separated by a distance 𝑟. Consequently, the correlation length is defined as the 

distance by which the correlation drops to a stable plateau. 

4.5 Performing 2D SW Simulations 

A uniform 90 mm (along the wave propagation direction) × 22 mm computing 

domain was used to generate MC simulated SW propagation data, as shown in Fig. 4.3. A 

20 mm × 20 mm central rectilinear region of interest (ROI) containing either 10% or 30% 

inclusions was embedded into the computing domain. The grid spacing within the entire 

computing domain was uniform and the pixel/grid size was 0.1-mm × 0.1-mm. Mesh 

sensitivity tests were performed to verify that results were not sensitive to the chosen grid 

size. Compression and SW velocity parameters (i.e. compressional sound speed, shear 

wave speed, and mass density) were assigned to each pixel in the rectilinear [computing] 

grid. In addition to material properties presented in subsection D of the Materials and 

Methods Section above, other key simulation details can be found in Table 4.2. One cycle 

of low-frequency (i.e. 50Hz, 100Hz, and 150Hz) transient (up–down) vibration (see the 

green vertical line in Fig. 4.4) was prescribed to generate SW that propagates laterally (see 
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the arrow in Fig. 4.4) for each realization. The particle motion (also known as the SW 

polarization direction) followed the up-down direction (Fig. 4.4) and was perpendicular to 

the SW propagation direction. The simulation duration was approximately 0.01 second to 

allow the induced SW to propagate through the entire ROI. Details and a brief justification 

of this computing domain model including boundary conditions can be found in Appendix 

D.  

Table 4.2 Simulation details of the stochastic tissue model using K-Wave. The correlation 

length was quantified using two-point correlation function [112]. 

CPA 

Number of 

Realizations 

(for each stage) 

Stage (correlation length) 

(unit: mm) 

Number of SWS 

measurements  

(for each stage) 

10% 5 F1 (0.5), F2 (0.6) 11,000 

30% 5 F3 (1.1), F4 (1.3) 11,000 

 

 

Figure 4.3. An illustration of computing domain used for all K-Wave simulations. A (20 

mm × 20mm) region of interest (ROI) containing either 10% or 30% inclusions was 

embedded into a large (90 mm × 22 mm) uniform background. The green vertical line 

indicates the location of initial mechanical vibration, while the green arrow represents 

the SW propagation direction.  

 

4.6 Assessment of SWS Distributions 



69  

To reduce memory usage in the calculations, only 49 × 48 (n ×q) time-resolved 

SWS curves obtained within the ROI (see Figure 4) were stored. In other words, we only 

stored simulated SW data from a coarsened uniform rectilinear grid whose grid spacing 

was 0.4 × 0.4-mm, as shown in Fig. 4.4. The SWS at an arbitrary location (m,p) will be 

estimated by detecting the time-delay (∆𝑡) between two time-resolved particle velocity 

curves located at (m,p) and (1,p), respectively, using a correlation-based method  [44]. This 

process resulted in 2256 (48 × 47) SWS values for each simulated field. More specifically, 

SWS values were estimated at different width positions for each depth. Then, a 2D map of 

SWS values in the field of view can be obtained. PDF parameters were estimated by fitting 

simulated SWS data to respective equations (see Eqn. (4.6) - (4.9)). Only SWS data ranged 

from 5% to 95% quantiles were used. 

In addition to analyses of all 11,000 SWS data together (see Table 4.2), we also 

randomly selected 100 data points from all 11,000 data points in order to mimic “clinical” 

SWS data.  This process was repeated 100 times to generate 100 realizations of simulated 

“clinical” SWS data for each fibrosis stage.  

 

Figure 4.4. A schematic illustration of SWS estimation. The black arrows in the left figure 

represent the SW propagation direction. The time-resolved particle velocity curves were 

recorded for n × q locations (red dots in the left figure). Each red dot represents a time-
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resolved particle velocity curve in this illustration. The process of correlation-based shear 

wave speed estimation is shown in the right flowchart. 

 

4.7 Performance of The Derived PDF 

 

Figure 4.5. Histogram distributions of all M-C simulated SWS data from two different 

volume fractions (10% and 30%). Simulation details were summarized in Table 2. 

Skewness was calculated for each histogram.  

 

When histograms obtained from all 11,000 data points were examined, we found 

that the overall distribution was unsymmetrical as shown in Fig. 4.5. The skewness [113] 

was calculated. We found that consistent skewness values were obtained. In all six cases, 
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the skewness was positive, denoting the SWS data were skewed toward the right. Of note, 

the skewness of any perfectly symmetric distribution (e.g. Gaussian distribution) is zero. 

Representative simulated ‘clinical’ SWS data (i.e. 100 data points) are displayed in 

Fig. 4.6 as histograms. Relative AIC and BIC values were calculated from those simulated 

‘clinical’ SWS data and their results were listed in Table 4.3. Relative AIC and BIC values 

were obtained by normalizing absolute AIC or BIC values (see Eqns. 10-11) obtained from 

other three PDF models by the respective AIC or BIC value from the derived PDF. Data in 

Table 4.3 indicated that the overall performance of the derived PDF performed is better 

than other three PDFs, though the relative differences of AIC and BIC among these four 

PDFs were small (< 3%). Results shown in Table 4.3 were consistent with the visual 

perception shown in Fig. 4.6. 

Using simulated “clinical” SWS data, parameters estimated by the derived PDF, 

GAD and LND were converted to means and standard deviations of the underlying shear 

modulus values. Comparative results are shown in Table 4.4. When the excitation 

frequency was 50 Hz, all four PDFs essentially gave the similar mean values of the fitted 

shear moduli. When the excitation frequency increased to 150 Hz, the discrepancies 

becomes more noticeable. Particularly, at the 150 Hz and with 30% inclusions, mean values 

between the proposed PDF and the GAD differed by approximately 24%. The difference 

between the proposed PDF and the LND increased to roughly 46% under the same 

condition. Results in Table 4.4 also suggested that standard deviations estimated using the 

proposed PDF were considerably lower than those obtained by GAD and LND for all cases 

investigated.  
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Figure 4.6. Representative histogram distributions of M-C simulated “clinical” SWS 

data from two different volume fractions (10% and 30%). Each histogram was generated 

using 100 data points and simulation details were summarized in Table 2. Four PDFs 

were overlaid with the histogram on each plot. 

 

Table 4.3 Tabulated results about relative AIC and BIC values using 100 realizations of 

simulated ‘clinical’ data. Relative AIC and BIC values were obtained by normalizing 

absolute AIC or BIC values obtained from other three pdf models by the respective AIC or 

BIC value from the derived PDF. 
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  AIC BIC 

Inclusion 

Volume 

Fraction 

 

10% 30% 10% 30% 

LND 

50Hz 

-0.99 1.01 -0.99 1.01 

GGD -0.99 1.02 -0.99 1.02 

GAD -1 1.01 -1 1.01 

Derived PDF -1 1 -1 1 

LND 

100Hz 

-0.97 1.02 -0.97 1.02 

GGD -1 1.01 -1 1.01 

GAD -0.99 1 -0.99 1 

Derived PDF -1 1 -1 1 

LND 

150Hz 

-0.97 1.03 -0.97 1.03 

GGD -0.99 1.01 -0.99 1.01 

GAD -0.99 1 -0.99 1 

Derived PDF -1 1 -1 1 

 

Table 4.4 Tabulated means and standard deviations (STD) of underlying shear modulus 

values using simulated “clinical” SWS data. Those parameters were estimated based on 

fitted four PDFs: the derived PDF, GAD, LND, and GGD, in two random media containing 

10% and 30% inclusions, respectively. Of note, the standard deviation (STD) cannot be 

directly estimated using GGD (see Eqn. (4.9)).   

 50Hz 100Hz 150Hz 

 
Mean 

(kPa) 

STD 

(kPa) 

Mean 

(kPa) 

STD 

(kPa) 

Mean 

(kPa) 

STD 

(kPa) 

10% 

Derived 

PDF 
4.13 0.1 4.15 0.09 4.41 0.78 

GAD 4.29 0.35 4.37 0.28 4.70 0.89 

LND 4.27 0.61 5.32 0.56 5.30 1.21 

GGD 4.28 N/A 4.29 N/A 4.84 N/A 

30% 

Derived 

PDF 
7.88 2.40 8.35 5.54 8.81 6.71 

GAD 7.52 2.44 9.28 5.58 10.93 8.57 

LND 8.13 2.42 11.31 6.73 12.92 8.59 
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GGD 7.92 N/A 8.46 N/A 9.01 N/A 

 

We also found that, overall, the fluctuation of SWS decreased in all heterogeneous 

media as the traveling distance increased. In order to demonstrate that, we replot SWS 

values obtained from the excitation frequency of 150 Hz along the SW propagation 

direction in Fig. 4.7 below as an example. 
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Figure 4.7.  Plots of SWS values along shear wave propagation direction (excitation 

frequency of 150 Hz) based on all simulated SWS data. The green lines in (a) and (b) 

indicate respective mean values obtained through fitting of the derived PDF.  

 

 

Figure 4.8. Plots of mean values of SWS along the shear wave propagation direction 

under two different volume fraction of inclusions (i.e. 10%, 30%). Each plot illustrates 

results obtained from three different SW frequencies (50Hz, 100Hz, and 150Hz). The 

black arrows represent the stabilization distance. 

 

These results in Fig. 4.7 suggest that the SWS became stable (low variance and 

convergence to the mean SWS) after the SW travels a short distance. In the wave physics 

literature, the term “short” often referred to the fact the distances are on the same order as 

respective wavelengths. We assumed that the stabilization is achieved once the absolute 

difference between the instantaneous mean SWS (over multiple realizations) along SW 

propagation direction and the mean SWS through fitting the proposed PDF is less than 0.1 

m/s. The traveling distance by which the wave stabilization is achieved is defined as the 

stabilization distance. As shown in Fig. 4.8, the required stabilization distance increased 

from 8 mm to 14 mm with the increase of heterogeneity from 10% of inclusions to 30% of 

inclusions. Also, the stabilization distance is not correlated to the excitation frequency, as 
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shown in Fig. 4.8 below.  

4.8 Discussion 

One contribution of this work is that we found that the simulated SWS values in 

heterogeneous media have un-symmetric distributions (see Fig. 4.6). At the same time, 

through the principle of ME, the derived PDF (see Eqn. (6)) has an asymmetric form. 

Overall, the proposed PDF performed the best among all four PDFs (see Tables 4.3 and 

4.4). It is also worth noting that the performance of GGD was close to that of the derived 

PDF. However, GGD has a complex form (i.e. Gamma function and three parameters; see 

in Eqn. (9)) and two parameters of GGD have no physical meanings. Consequently, the 

proposed PDF is advantageous in terms of both its solid theoretical basis and physically 

meaningful parameters. Certainly, this observation needs to be further investigated using 

in vivo biological data.   

Results in Table 4.4 also indicated that different mean values of shear moduli, as 

well as different standard deviations, were obtained when different PDFs were used to fit 

the same data. The difference in terms of the mean shear modulus could be as high as 24% 

between the derived PDF and the Gaussian for the models that contain 30% inclusions and 

were excited by 150 Hz perturbations. It was also found that such discrepancies increased 

as the percentage of fibrosis increased from 10% to 30%, as shown in Table 4.4. This 

observation may have potential clinical implications. Because better thresholds/cut-off 

values can perhaps be determined for staging liver fibrosis if a better statistical PDF model 

can be adopted. As of now, the Gaussian Distribution PDF has been implicitly used [114, 

115]. Moreover, two parameters (i.e. 𝐺𝐸 and 𝐺𝐷) of the derived PDF are the mean and 
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variance of the underlying shear modulus of the stochastic medium. Certainly, more work 

is needed to demonstrate the proposed PDF is indeed advantageous.   

The stochastic liver tissue model consisted of two components: normal liver tissues 

and (micro-packet of) fibrotic liver tissues. In the literature, normal liver shear modulus 

was measured to be 3.7-7.0 kPa in men and 3.3-6.8 kPa in women, respectively [109]. In 

this study, the normal liver shear modulus was set to be around 4 kPa (SWS: 1.8 m/s) and 

the shear modulus value of fibrotic liver tissues was elevated to 400 kPa (SWS: 20 m/s). 

Because, to our knowledge, there is no mechanical testing data available for fibrotic 

(collagenous) liver tissues at the spatial scale of 100 micrometers, the (micro-packet) of 

fibrotic tissues was chosen to be close to the shear modulus values of arterial tissues [110]. 

We have varied the shear modulus values of the fibrotic tissues from 900 kPa (SWS: 30 

m/s) to 2.5 MPa (SWS: 50 m/s) and findings were not sensitive to the choice of the shear 

modulus values of the fibrotic tissues.   

To obtain the M-C simulated SWS distribution, pointwise estimations of SWS were 

performed for each realization. The processing kernel length was 0.4 mm. To verify the 

kernel length sensitivity for the simulated SWS distribution, our results were reprocessed 

using a processing kernel length of 1.2 mm. We found that the means of SWS remained to 

be the same but the variances of SWS were typically reduced by approximately 5%.  

Our results shown in Figs. 4.8 and 4.9 also suggested that wave fronts with a plane 

wave propagating in a lossless (elastic) medium may be stabilized after certain stabilization 

distances, dependent on the nature of the heterogeneous random media. This finding is 

consistent with a proof in the literature of applied mathematics [116]. Intuitively, the 
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relationship between the variations in SWS and the presence of inhomogeneity can be 

explained as follows. It is easy to see that the presence of inclusions leads to some 

distortions of wave fronts, resulting in variations among local SWS values. The degree of 

wave distortion is likely proportional to how heavily inclusions are presented along the 

wave propagation pathway. That is why variations in SWS were greater in more 

heterogeneous media. 

Since the derivation of the PDF ignored the viscosity of soft tissue [117]. Thus, the 

derived PDF is valid when the SW propagates within lossless (elastic) media. In the future 

work, the viscosity-dependent dispersion will be considered. If verified in biological 

tissues, this observation may help us to determine optimal locations from which the SWS 

should be tracked by balancing the stabilization of wave fronts and attenuation of SW 

amplitudes. Furthermore, the stabilization distance was not proportional to the excitation 

frequency (Fig. 4.9). We stipulate that this observation is reasonable because the elastic 

wave scattering is within the Rayleigh Regime, given the wavelength (shear wave 

frequency: 50Hz, 100Hz, and 150Hz). It is worth noting that estimated mean values of 

SWS (Table 4.4) under three excitation frequencies slightly differed (approximately 2-

4%), largely due to elastic wave scattering. 

It is worth noting that 100 data points were selected to balance the need of 

approximating the number of data points collected from a single patient in a clinical setting 

and stability of curving fitting using Eqns. (4.6-4.9). We verified that the relative difference 

of the estimated parameters using AIC, BIC were within 2% when we varied the number 

of data points from 100 to 200. In a similar note, the grid size of the computing domain 
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(see Fig. 4.4) was set to 0.1 mm. This choice was a balance of tradeoffs between the 

computational cost and the modeling realism. If the grid size would be further reduced the 

computational cost (mainly memory requirements and computational time) would increase 

exponentially. If a too large value of the grid size would have been chosen, the computer 

model may not be able to represent architectural changes at the tissue level (see Fig. 4.3). 

There are limitations of the current study. First, in this preliminary study, we used 

a 2D tissue model along with 2D SW simulations to verify the proposed PDF, which is not 

limited to 2D based on the derivation (see Appendix D). In 2D SW simulations, 

complicated wave propagation phenomena such as mode conversion and wave splitting in 

heterogeneous and perhaps locally anisotropic media cannot be realistically mimicked. Of 

note, 2D SW simulations have been selected because computational demands of 3D SW 

simulations in K-Wave are prohibitively high given our computational resources. Second, 

as explained before in the Section Materials and Methods, the current setting of SW 

simulations is close to TE or Magnetic Resonance Imaging-based SWE. Acoustic radiation 

force-induced SWE has more complex SW wave fronts.  In the future, 3D M-C simulations 

of acoustic radiation force-induced SWE will be repeated for further verifications. We are 

in the process of extending an advanced ultrasound simulation platform [84] for SWE 

simulations. Third, also due to the limitation of computational resources, we selected a 

small computing domain (an approximately 90 mm × 22 mm) containing a 20 mm × 20 

mm ROI. The dimension perpendicular to the SW propagation direction is on the order of 

SW wavelength investigated. Because of the periodic boundary (see Appendix D), this 

setting is different than SW waveguides.  In SW waveguides, the outward SW motion is 
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often highly constrained. We also varied the size of the ROI to investigate whether the 

SWS is sensitive to the size of the ROI (see Figure 4). Under the same conditions, outcomes 

between three different domain sizes (i.e. 10 mm × 10 mm, 20 mm × 20 mm and 30 mm 

× 30 mm) differed within 5%. Some small differences are expected given the nature of M-

C simulations.  

In this work, we describe options chosen and provide justifications for our choices. 

Overall, the study design is appropriate for the first feasibility study, despite limitations. 

Future work includes 3D SW simulations with a 3D stochastic tissue model and 

applications of the proposed PDF to biological data.   

4.9 Conclusion  

In summary, a PDF of the SWS distribution in multi-phase stochastic media was 

derived by the principle of ME. Given preliminary results presented in this study, this 

derived PDF can perform well for fitting SWS measurements data. Also, the parameters 

involved in the derived PDF can be related to the mechanical properties of the medium 

being imaged. This new method does seem to add value and could represent a feasible path 

to the study uncertainties in SWE due to tissue heterogeneity.  This initial feasibility study 

is encouraging and we believe that the method warrants further studies. 
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Chapter 5. Influence of Tissue Microstructures on 

Shear Wave Speed Measurements in Transient 

Elastography4 

5.1 2D Random Two-phase Models of Fibrotic Liver Tissues 

Because liver fibrosis without steatosis results in depositions of stiff collagenous 

scar tissues embedded in the normal liver parenchyma [118], fibrotic liver tissues can be 

simplified as a two-phase medium consisting of two components – normal background and 

collagenous depositions as a first approximation. Without the loss of generality, we 

regarded the connected collagenous fibers as the inclusions with an area fraction of 𝛼. 

However, these collagen depositions could be arbitrarily distributed. 

Three two-phase models were investigated to show how spatial characteristics of 

these inclusions can influence (group) SWS measurements in TE. As shown in Fig. 5.1, 

the first model (Model 1) was designated to mimic histological characteristics of fibrosis 

under the METAVIR classification [105]. In the early stages of liver fibrosis (i.e. 

METAVIR scores F1 and F2; CPA = 10%), liver injuries occur and collagen is deposited 

around portal tracts. Those collagen depositions look like isolated islands (See the top left 

plot in Fig. 5.1). As the liver fibrosis progresses (i.e. METAVIR scores F3 or F4; CPA = 

30%), fibrous expansions of most portal areas cause portal-to-portal bridging or portal-to-

central bridging [107], as shown in the top right plot in Fig. 5.1.  

As also shown in Fig. 5.1, the second and third models are mathematical models. 

Particularly, Model 2 is a statistics-based model [119]. A spatial Gaussian random field 

                                                           
4 The material contained was submitted to Ultrasound Imaging, 2017. 
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was first generated for local tissue shear moduli. Then, a cut-off threshold of the tissue 

shear modulus values was used to convert the spatial Gaussian random field to a binary 

(two-phase) random medium. The reconstruction process was done using a nonlinear 

transformation [119] that ensures respective correlation lengths of those initial spatial 

Gaussian random fields were retained in all resulting random (two-phase) medium. In 

Model 3, rectangular inclusions with a pre-determined size were added to the background 

until the needed area fraction ratio 𝛼 would be reached. 

 

Figure 5.1. Realizations of random two-phase fibrotic liver tissues at the different 

collagen proportionate area (CPA): Model 1 (first row), Model 2 (second row) and 

Model 3 (third row). The first and second columns represent two different CPAs: 10% 

and 30%, respectively. In all plots, blue and red colors represent collagenous 

(connective) tissues and normal liver tissues, respectively.  
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Figure 5.2. An illustration of the process of simulated “cross-linking”: (a) the original 

model from Figure 1 and (b) a micro-mechanical model after applying the Gaussian 

smoothing. In (b), the color bar represents SWS in m/s. 

 

In order to match SWS values of simulated liver tissues with METAVIR scores 

[105] for early and late stages of liver fibrosis as reported in the clinical literature [120-

122], an image processing technique mimicking elevated cross-linking [123] was used. 

Basically, after applying the smoothing kernel, the virtual tissues adjacent to collagenous 

depositions were hardened as shown in Fig. 5.2b. In the Gaussian smoothing model, we 

reduced two parameters (i.e. kernel radius and standard deviation of Gaussian distribution) 

to one by setting the (spatial) kernel size to 2𝜎, where 𝜎 is the standard deviation of the 

Gaussian smoothing kernel. 2𝜎 approximately covers 95% of the data arrange. Thus, the 

only parameter for the Gaussian smoothing kernel was its (spatial) kernel size. The kernel 

sizes were set to be 0.2 mm for both CPAs of 10% and 30%. 

5.2 Numerical Simulations 

As shown in Fig. 5.3, elastic shear wave propagation was simulated by K-Wave 

[124], which is a spectral finite difference solver of the elastic wave equation. The overall 

dimensions of computing domain are 90 mm (along the shear wave propagation direction; 
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see the arrow in Fig. 5.3) × 22 mm. There are a 20 mm × 20 mm central rectilinear region 

of interest (ROI) containing the two-phase models of fibrotic liver tissues after the 

simulated “cross-linking” process; the rest of the computing domain is uniform. 

 

Figure 5.3. An illustration of computing domain used for K-Wave simulation. A (20 mm 

× 20 mm) region of interest (ROI) containing the two-phase models of fibrotic liver 

tissues was embedded into a larger (90 mm × 22 mm) uniform background. The green 

vertical line indicates the location of initial mechanical vibration, while the green arrow 

represents the shear wave propagation direction. The initial excitations are vertical to the 

wave propagation direction.  

 

One transient cycle of the plane shear wave excitations at one of the following nine 

frequencies: 50 Hz – 400 Hz with an increment of 50 Hz, was applied to the left edge of 

the ROI (see the green line in Fig. 5.3) to initiate the shear wave propagation. One cycle of 

transient plane shear wave excitation including the frequency range (50 – 400 Hz) was 

selected to mimic TE [31]. Periodic (also known as mirroring) boundary conditions have 

been applied to four edges (i.e. Lines 1-4 in Fig. 5.3). The mirroring boundary condition 

will ensure that time-resolved velocity and stress between any pair of corresponding sites 

around edges of the computing domain (e.g. P1 and P2 [Lines 1 and 3], P3 and P4 [Lines 

1 and 3], P5 and P6 [Lines 2 and 4]). All computing grid points located at four edges were 

paired and the mirroring boundary was enforced among all identified pairs. Since the 



85  

mirroring boundary condition doesn’t constrain motion along any edges of the model (see 

Fig. 5.3), our computing domain should not be considered as a model of waveguide. A 

more formal description of the simulation setting can be found in a prior publication (i.e. 

Appendix B of [125]).  

The required mechanical properties used in K-WAVE simulations were adopted 

from the literature [90, 109, 110, 126] and are summarized in Table 5.1. Normal liver shear 

modulus was set to be around 3.24 kPa (equivalent to the SWS of 1.8 m/s) [109]. The shear 

modulus value of fibrotic liver tissues was set to 400 kPa (equivalent to SWS of 20 m/s) 

[110]. The grid spacing within the entire computing domain was uniform and the pixel/grid 

size was 0.1-mm × 0.1-mm. This selected grid size resulted in at least 20 points per 

wavelength and should adequately resolve the shear wave propagation. Mesh sensitivity 

tests were performed to verify that results were not sensitive to the chosen grid size. 

Compression and SW velocity parameters (i.e. compressional sound speed, shear wave 

speed, and mass density) were assigned to every pixel in the rectilinear computing grid. 

Table 5.1 Mechanical properties of the two-phase models of fibrotic liver tissues used in 

the K-WAVE simulations. SWS and SOS denote shear wave speed and speed of sound, 

respectively. 

 
Normal Liver 

Tissue 
Fibrotic Tissue 

SWS (m/s) 1.8 20 

SOS (m/s) 1540 1800 

 Mass Density (kg/m3) 1000 1100 

 

5.3 Data Analysis 
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Once the simulated SW velocity data were obtained, a direction filter [103] was 

applied to the simulated wave data to remove wave interferences. Then, a lateral time-to-

peak (TTP) algorithm [44] was adopted to estimate SWS along the shear wave propagation 

direction (see the arrow in Fig. 5.3). More specially, we fitted identified local peaks (y-

axis) with respect to their lateral locations (x-axis) to a line and the slope became the 

propagating SWS. The lateral kernel length was 1.2 mm. Key simulation details can be 

found in Table 5.2. 

Table 5.2 Simulation details of the K-Wave simulation. The correlation length was 

quantified using two-point correlation function [112]. The two-point correlation length was 

used to characterize the approximate size of inclusions on an average sense.  

 CPA 
Excitation 

Frequency (Hz) 

Number of 

Realizations 

for Each 

Excitation 

Frequency 

Correlation 

Length 

Number of 

SWS 

Measurements 

for Each 

Excitation 

Frequency 

Model 

1 

10% 50, 100, 150, 200 5 0.6 mm 11,000 

30% 50, 100, 150, 200 5 1.5 mm 11,000 

Model 

2 

10% 50, 100, 150, 200 5 0.6 mm 11,000 

30% 50, 100, 150, 200 5 1.5 mm 11,000 

Model 

3 

10% 50, 100, 150, 200 5 0.6 mm 11,000 

30% 50, 100, 150, 200 5 1.5 mm 11,000 

 

Instead of analyses of all 11,000 SWS data together (see Table 5.2), we randomly 

selected 100 data points from all 11,000 data points to mimic “clinical” SWS data. This 

process was repeated 100 times to generate 100 realizations of simulated “clinical” SWS 

data for each “parameter setting”  [125]. One “parameter setting” is defined as a unique 
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combination of the model (Models 1-3), CPA (10% and 30%) and excitation frequency (50 

– 400 Hz). Then, the mean and standard derivation of the SWS distribution were estimated 

by fitting data in each “parameter setting” into a probability density function (PDF) derived 

from the Maximum Entropy Theorem [125], 

𝑝𝑀𝐸𝑇(𝑉𝑠) =  
1

√2𝜋𝐺𝐷
𝑒

−(𝑉𝑠
2𝜌−𝐺𝐸)2

2𝐺𝐷 2𝜌𝑉𝑠  (5.1) 

where 𝐺𝐸 and 𝐺𝐷 are mean and variance of the effective shear modulus G, respectively. In 

Eqn. (1), 𝜌 is the mass density.  

To estimate frequency-dependent SWS dispersion, the estimated group SWS data 

were first plotted as a function of frequencies between 50-400 Hz. Then, the dispersion 

slope (𝑑𝑉𝑠
/𝑑𝑓) was estimated by a linear regression. 

5.4 Simulation Results 

Means and standard deviations of the underlying shear modulus values fitted into 

Eqn. (1) are shown in Fig. 5.4-5.6 as a function of frequency for Models 1-3, respectively. 

In Fig. 5.4-5.6, we found that the group SWS estimates were dependent on frequencies 

regardless of the underlying microstructure model. Furthermore, there was increasing SWS 

dispersion with the increase of CPAs. Taking Model 1 as an example, the dispersion slope 

𝑑𝑉𝑠
/𝑑𝑓 increased from 0.81 m/s/kHz to 2.19 m/s/kHz when increasing CPA from 10% to 

30%. It is also noticed that different underlying microstructure distributions could result in 

varying degree of shear wave dispersion. For instance, the largest differences between 

estimated dispersion slopes (𝑑𝑉𝑠
/𝑑𝑓)  were between Model 1 and Model 3. Quantitatively, 

those differences were 31% and 63% for 10% CPA and 30% CPA, respectively. 



88  

Quantitative comparisons of these estimated dispersion slopes are summarized in Table 

5.3 below. 

 

Figure 5.4. Plots showing mean SWS (m/s) as a function of the excitation frequencies 

in Model 1. Two different CPAs: (a) 10% and (b) 30% were used. Error bars represent 

one standard deviation (m/s).   

 

 

Figure 5.5. Plots showing mean SWS (m/s) as a function of the excitation frequencies 

in Model 2. Two different CPAs: (a) 10% and (b) 30% were used. Error bars represent 

one standard deviation (m/s).   
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Figure 5.6. Plots showing mean SWS (m/s) as a function of the excitation frequencies 

in Model 3. Two different CPAs: (a) 10% and (b) 30% were used. Error bars represent 

one standard deviation (m/s). 
 

Table 5.3 A summary of fitted 𝑑𝑉𝑠
/𝑑𝑓 from three tissue models. 10% and 30% of CPAs 

were considered in the K-WAVE simulations. The R2 is a metric of measuring goodness 

of fit for 𝑑𝑉𝑠
/𝑑𝑓.  

 10% 30% 

 
𝑑𝑉𝑠

/𝑑𝑓 

(m/s/kHz) 
𝑅2 

𝑑𝑉𝑠
/𝑑𝑓 

(m/s/kHz) 
𝑅2 

Model 1 0.81 0.88 2.19 0.91 

Model 2 0.72 0.95 1.24 0.87 

Model 3 0.56 0.94 0.81 0.93 
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Figure 5.7 Clustered box plots obtained from mean group SWS values for three tissue 

models.  The top and bottom of the boxes indicate 75 and 25 percentiles, respectively. 

The line through the middle of each box represents the median. The error bars show the 

minimum and maximum values.  

 

 

Recall that there were 48 combinations given different tissue models (Models 1-3), 

excitation frequencies (50Hz – 400Hz, increment 50Hz) and CPAs (10% and 30%). In each 
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combination, there were 100 sets of simulated “clinical” group SWS data; each set contained 

100 simulated group SWS measurements. In each set, 100 simulated group SWS 

measurements were fitted to the derived PDF (see Eqn. 1) to obtain the mean group SWS for 

the data set. Box plots of the mean values of the group SWS (y-axis) are shown in Fig. 5.7a-h 

for excitation frequencies (100, 200, 300 and 400 Hz).  It is easy to see that, under the same 

excitation frequency and the CPA, the mean group SWS values were different among Models 

1-3. Overall, based on the Wilcoxon rank sum tests, these differences shown in Fig. 5.7a-h 

were all statistically significant (p < 0.001). 

5.5 Discussion 

Results in Figs. 5.4-5.6 also indicated that different mean/median values of shear 

moduli were obtained when three different microstructure fibrotic liver models were used 

to perform the shear wave simulations. Such differences were significant. Taking the 30% 

CPA and the excitation frequency of 200 Hz as an example, the median values of the mean 

group SWS values were around 4.6 m/s, 3.5 m/s and 2.6 m/s for Model 1, Model 2 and Model 

3, respectively. The relative difference was as high as 43% between the Model 1 and Model 

3. In the clinical literature [120-122], group SWS values were on average about 3 m/s and 

4.5 m/s for METAVIR classifications F2 and F4 tissues, respectively. Consequently, 

results obtained from Model 1 (see Fig. 5.7) were most consistent with those clinical data 

[120-122].  However, if the emulated “cross-linking” effect had not been implemented, the 

group SWS values of Model 1 (Fig. 5.8) would have remained approximately 3 m/s for a 

30% CPA.  

As also shown in Fig. 5.8, the group SWS increased in Model 1 when the shear 
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moduli of those collagen depositions had been varied between 50-400 kPa. The 

combination of emulated “cross-linking” and setting collagen depositions to 400 kPa made 

the group SWS elevated to approximately 4.2 m/s for the CPA of 30%. This number seems 

consistent with those reported in the clinical literature for late stages of liver fibrosis [120-

122].   

It is also worth noting that, even with the emulated “cross-linking” effect, Models 

2 and 3 yielded significantly lower group SWS values (see Fig. 5.7) as compared to data 

reported in the clinical literature.  Intuitively, the histology-based Model 1 containing 

collagen depositions around liver septa and therefore, the emulated “cross-linking” by a 

Gaussian Smoothing kernel was most effective. In the current study, the emulated “cross-

linking” was assumed to be isotropic as a first approximation, given a paucity of 

experimental data on this topic.  

 

Figure 5.8. A plot showing changes in estimated group SWS value with respect to the 

stiffness changes of collagenous dispositions. Error bars denote a standard deviation.   

 

Interestingly, the work by Nightingale et al. [127] showed that the phase velocity 

slope with respect to the excitation frequency increases from 2.92m/s/kHz for one 
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(METAVIR classifications) F1 human case to 4.05-m/s/kHz for an F3 (METAVIR 

classifications) human case. Our results shown in Table 5.3 suggested that, in Model 1, the 

group SWS change with respect to the excitation frequency was approximately 2.19-

m/s/kHz in simulated data when the CPA was 30%. The CPAs of 10% and 30% correlate 

to early (METAVIR classifications F1-F2) and late (METAVIR classifications F3-F4) 

stages of liver fibrosis, respectively [108]. Because we used a single frequency excitation, 

we were unable to calculate the dispersion slopes following the same method used by 

Nightingale et al. [127]. Nevertheless, the shear wave dispersion from the elastic (shear) 

wave scattering appeared to be significant and thus should be further investigated in tissue-

mimicking materials and biological tissues. Perhaps, a notable contribution offered by our 

study is to increase the awareness of elastic shear wave scattering and its potential impact 

on the frequency-dependent shear wave dispersion.  In this study, elastic wave scattering 

is within the Rayleigh Regime.     

Current experimental and clinical studies [127-130] implicitly assumed that the 

source of frequency-dependent shear wave dispersion stemmed from the viscosity by the 

adoption of the well-known Vigot model. Given the nature of biological tissues, the 

viscosity is likely a source of wave dispersion and this study should not be interpreted as a 

challenge to previous studies [127-130]. Instead, we are interested in understanding 

whether elastic scattering in heterogeneous lossless media could be a source of frequency-

dependent shear wave dispersion.  

To obtain simulated SWS distributions, the linear regression kernel length was 1.2 

mm. To verify the sensitivity of the kernel length, our results were reprocessed using a 
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smaller kernel length of 0.4 mm. We found that the means of SWS remained to be the same 

but the variances of SWS were increased by approximately 5-8%.  

There are limitations of the current study. First, we used a 2D tissue model along 

with 2D SW simulations. It is important to note that, in 2D SW simulations, complicated 

wave propagation phenomena such as mode conversion and wave splitting in 

heterogeneous and perhaps locally anisotropic media cannot be realistically mimicked. Of 

note, 2D SW simulations have been selected because computational demands of 3D SW 

simulations in K-Wave are prohibitively high given our computational resources. Second, 

as explained before in Section 2, the current setting of SW simulations is close to TE or 

Magnetic Resonance Elastography. Acoustic radiation force-induced SWE has more 

complex SW wave fronts and will induce (tissue) excitations with broader frequency 

components.  Work is needed to extend observations reported in this study to acoustic 

radiation force-induced SWE [1]. Third, we were unable to combine both elastic scattering 

and viscosity-related dispersion together in this study because, in the open-source K-

WAVE, frequency-dependent SWS has not been implemented for the individual material 

phases in a composite. The frequency-dependent absorption in K-WAVE was tested 

though data were not reported to keep this study concise. Our initial testing showed that 

attenuation of shear wave amplitude had neglectable impacts on our simulation results if 

the (shear) wavefronts were trackable.  

In the future work, we will further investigate combined effects of elastic scattering 

and viscosity for acoustic radiation force-induced SWE in an open-source ultrasound 

elastography simulation platform [84, 131].  
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5.6 Conclusions 

In summary, a PDF of the SWS distribution in multi-phase stochastic media was 

derived by the principle of ME. Given preliminary results presented in this chapter, this 

derived PDF can perform well for fitting SWS measurements data. Also, the parameters 

involved in the derived PDF can be related to the mechanical properties of the medium 

being imaged. This new method does seem to add value and could represent a feasible path 

to the study uncertainties in SWE due to tissue heterogeneity.  This initial feasibility study 

is encouraging and we believe that the method warrants further studies. Also, we found 

underlying microstructures affected the estimated group SWS as much as 44%. Intuitively, 

the histology-based Model 1 containing collagen depositions around liver septa and 

therefore, the emulated “cross-linking” by a Gaussian Smoothing kernel was most 

effective. Consequently, results obtained from Model 1 were most consistent with those 

clinical data. It is important to note that the frequency-dependent shear wave dispersion 

investigated in this chapter is different as compared to the data available in the literature. 

In this chapter, we focused on elastic scattering as a potential source of shear wave 

dispersion. It is easy to see that the presence of inclusions led to some distortions of wave 

fronts, impacting measurements in the nominal group SWS. This new finding may 

motivate further studies examining how elastic scattering may contribute to frequency-

dependent shear wave dispersion in biological tissue. 
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Chapter 6. A Two-dimensional (2D) Systems Biology-

based Micromechanical Liver Tissue Model: A 

Simulation Study with Implications for Ultrasound 

Elastography of Liver Fibrosis5 

Continuum tissue models are often used to simulate or analyze mechanical 

properties of tissues being imaged by ultrasound elastography (UE). However, those 

continuum models may not be biologically realistic. Chapter 6 here was to establish the 

feasibility of using systems biology to construct biologically relevant tissue models linking 

tissue structure, composition and architecture to the ultrasound measurements directly. In 

this feasibility, the first application was designated to model fibrotic liver tissues. 

As shown in Fig. 6.1, interactions between the SB based virtual liver tissue model 

and simulations of compression and shear wave propagation involve several major steps. 

All steps, along with the use of two open-source simulation platforms, namely a wave 

simulator (K-WAVE [124]) and an agent-based knowledge simulator (SPARK [132]), are 

briefly presented below. 

 

Figure 6.1. Schematic illustrations of the workflow: (a) Systems biology [SB] 

simulation, (b) virtual liver tissue generated from SB simulation, (c) mechanical model 

of the virtual liver tissue and (d) wave simulations by K-WAVE. The wave propagates 

from left to right in (d). In (a), different color represents different agents whose acronyms 

                                                           
5 The material contained in this chapter will be submitted to Ultrasound in Medicine and 

Biology, 2017. 



97  

can be in Figure 2, while red, blue and yellow represent normal liver tissue, fibrosis, and 

fat, respectively. In (c), the color bar denotes SWS in m/s. 

 

6.1. Virtual Liver Tissue Model 

We treated the fibrotic liver tissue as a three-phase random medium where the 

normal liver parenchyma and the deposits of excessive connective collagen tissues and 

lipids are the background and inclusions, respectively. Architectural features of those three 

components were simulated using SB. To do so, we expanded and modified an existing 

agent-based SB model of liver fibrosis originally developed by others [60] in SPARK. 

Signaling pathways for liver fibrosis, liver steatosis, and interactions between the liver 

fibrosis and steatosis are shown in Fig. 6.2. We first describe simulations of liver fibrosis 

and steatosis as two independent processes and then outline their interactions on knowledge 

available [133]. More details can be found in Appendix E.  

Toxicity based liver fibrosis, due to the injection of carbon tetrachloride (CCL4), 

was induced through four parallel schemes (Fig. 6.2). In the first scheme, liver injuries 

induced by CCL4 transform normal hepatocytes into dead agents. In the second scheme, 

once Kupffer cells sense dead hepatocytes, they immediately phagocytize and activate the 

production of TNF-α (a canonical pro-inflammatory cytokine) and TGF-β1 (a canonical 

anti-inflammatory cytokine). In the third scheme, assuming inadequate clearance of dead 

hepatocytes occurs, damage-associated molecular pattern (DAMP) molecules such as 

HMGB1 starts to accumulate. Certainly, the presence of HMGB1 would subsequently 

recruit and convert more monocytes to active Kupffer cells. In the fourth scheme, agents 

such as active portal fibroblasts and HSCs transform to myofibroblast agents when they 
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detect TNF-α. Similarly, when the system detects TGF-β1, myofibroblast agents start to 

proliferate and deposit collagen to existing ECM structure. Of note, in all four above-

mentioned schemes, interactions among them were probabilistic.  

 

Figure 5.2. A diagram showing signaling pathways related to liver fibrosis and steatosis 

induced by CCL4 insults induced liver fibrosis and lipid accumulation, respectively.  

 

Now referring to the simulation of liver steatosis, we adopted a theoretical model 

developed by Schleicher et al. [134]. More specifically, the active scheme (hereafter 

referred as to the fifth scheme) [134] is that the storage of triacylglycerol (TAG) within 

hepatocytes leads to cell enlargement, thereby reducing the sinusoids radius and impairing 

hepatic microcirculation. Because of the compromised microcirculation, oxygen supplies 

will be reduced and, consequently, lipid oxidation will be further impaired. Eventually, 

lipid accumulation will occur in the liver (Fig. 6.2). Currently, the dynamic interactions 

between the liver steatosis and fibrosis are complex and not fully understood. Based on 

work by Diehl et al. [135], we assumed that the presence of lipid droplets up-regulate TNF-

𝛼. As a multi-functional cytokine, TNF-𝛼 is actively involving in energy metabolism, 

especially lipid homeostasis. This interaction is also illustrated in Fig. 6.2. 
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6.2. Virtual Tissue Model for Simulations of Ultrasound Compressional/Shear Waves  

6.2.1 Creation of Computing Grid 

The SB-based simulations resulted in random three-phase media (Fig. 6.1b). Since 

K-WAVE [124] solves wave equations based on a K-space finite difference scheme, a 

“homogenization/averaging” scheme (Fig. 6.3a-b) [136] was used to convert microscopic 

compositions of tissues (e.g. cellular components) to represent a discrete finite difference 

grid (Fig. 6.3b) whose grid size ranged from 50 to 100 micrometers. The 100-micrometer 

grid spacing (> 100 grid points per wavelength) was used for simulations of ultrasound 

transient elastography (TE) [31] while the compression wave simulations at 2 MHz were 

performed using a grid size of 50-micrometers (i.e. approximately 15 grid points per 

wavelength). 

To mimic an assumed cross-linking process [123] in fibrotic liver tissues, a 

Gaussian smoothing kernel was applied onto the initial discretized computing grid (Fig. 

6.3b). After applying the smoothing kernel, the virtual tissues were hardened as shown in 

Fig. 6.3c. In the Gaussian smoothing model, we reduced two parameters (i.e. kernel radius 

and standard deviation of Gaussian distribution) to one by setting the (spatial) kernel size 

to 2𝜎, where 𝜎 is the standard deviation of the Gaussian smoothing kernel. 2𝜎 

approximately covers 95% of the data arrange. Thus, the only parameter for the Gaussian 

smoothing kernel was its (spatial) kernel size. It is also important to note that, in the three-

phase model, we stipulated that the Gaussian smoothing kernel does not interfere with the 
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presence of fatty tissues because histological evidences suggested that fibrosis typically 

spans around adipocytes [137]. 

 

Figure 6.3. An illustration of the process of “Homogenization”: (a) the original model 

generated by SPARK, (b) a converted model by “averaging” from (a) and (c) a micro-

mechanical model after applying the Gaussian smoothing. In (c), the color bar represents 

SWS in m/s. 

 

6.2.2 Virtual Wave Simulations  

 

Figure 6.4. An illustration of computing domain used for all K-Wave simulations. A (20 

mm × 20 mm) region of interest (ROI) containing simulated virtual liver tissues was 

embedded into a larger (90 mm × 22 mm) uniform background. The green vertical line 

indicates the location of initial mechanical vibration, while the green arrow represents 

the wave propagation direction. For shear and compression wave propagations, the initial 

excitations are vertical and parallel to the wave propagation direction, respectively.  
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A uniform 90 mm (along the wave propagation direction) × 22 mm computing 

domain was used to generate wave speed data, as shown in Fig. 6.4. A 20 mm × 20 mm 

central rectilinear region of interest (ROI) containing the proposed virtual liver tissues (Fig. 

6.3c) was embedded into the computing domain. The wave propagation was performed by 

K-WAVE.   

For each model, one transient cycle of plane shear or compressional wave excitation 

at 100 Hz or 2 MHz, was applied to a set of locations close to the left edge of the ROI (see 

the green line in Fig. 6.4) to initiate the shear/compressional wave propagation. Both 

frequencies are consistent with those used in a clinical setting [1, 138]. Particularly, one 

cycle of transient plane shear wave excitation is close to TE [31]. Periodic boundary 

conditions have been appropriately configured to avoid reflection on the boundaries. 

Details of the simulation setting can be found in our previous paper [139]. Simulation 

parameters (Table 6.1) were adopted from the literature [90, 109, 110, 126]. 

Table 6.1 A list of properties of the virtual liver tissues used in the K-WAVE simulations  

 
Normal Liver 

Tissue 
Fibrotic Tissue Fatty Lipid 

SWS (m/s) 1.8 20 1.3 

SOS (m/s) 1540 1800 1450 

Mass Density (kg/m3) 1000 1100 1000 

 

As shown in Table 6.1, normal liver shear modulus was set to be around 3.24 kPa 

(equivalent to the SWS of 1.8 m/s) [109]. The shear modulus of the fatty tissues in Table 

6.1 was similar to those of abdominal fat [126]. The shear modulus value of fibrotic liver 

tissues was elevated to be around 400 kPa (equivalent to SWS of 20 m/s) [110]. Because, 
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to our knowledge, there is no mechanical testing data available for fibrotic (collagenous) 

liver tissues at the spatial scale of 50-100 micrometers, the micro-packet of fibrotic tissues 

was chosen to be close to the shear modulus values of arterial tissues.  

6.2.3 Compositions of Virtual Fibrotic Livers 

The METAVIR scores clinically [105] classify the liver tissue into five stages: F0 

– F4. F0 denotes normal liver tissues, and F1-F4 represent levels of liver fibrosis.  Stages 

F1 and F2 were considered as early stages of liver fibrosis, and stages F3 and F4 were 

regarded as the late stages of liver fibrosis.  

The collagen proportionate area (CPA) ratios are typically reported in conjunction 

with METAVIR classifications. Because detailed statistical analyses of CPA ratios were 

not available, we assumed that the CPA ratio follows a Gaussian distribution and 

subsequently derived its mean and standard deviation based on available data [108, 140] 

for each fibrosis stage, as shown in Table 6.2.  

Table 6.2 Derived CPA values for 4 METAVIR stages (F1 to F4). 

METAVIR 

stage 
F1 F2 F3 F4 

 Mean STD Mean STD Mean STD Mean STD 

CPA (%) 4 1.7 9 5.5 13 7 19 10 

 

The area fraction of each component and two-point correlation length (CL) were 

calculated from all microscopic tissue distributions (Fig. 6.3c and d). Specifically, the two-

point CL was based on the two-point correlation function [141] used for the 

characterization of multiphase materials. Basically, the CL of r represents a distance from 
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which the probability of finding two points in the same (material) phase separated by a 

distance 𝑟 drops to a stable but low plateau (e.g. 0.2).  

As shown in Table 6.3, to simulate one (METAVIR) fibrosis stage, three different 

CPA ratios were first used, and then simulation results were reweighted when the final 

simulation results were calculated. The weighting (see Table 6.3) was to ensure that the 

weighted CPA distribution under the fibrosis stage followed the assumed Gaussian 

distribution as shown in Table 6.2. Hence, 9 different realizations were used for each 

simulated liver fibrosis stage. Especially, each realization can generate 2160 data points of 

wave speed (i.e. SWS and SOS). Each CPA can generate 6480 (2160 × 3) data points. 

Then, we randomly select data points from each CPA based on weights shown in Table 

6.3 to generate the final data points. To show how the presence of liver steatosis can affect 

the ultrasound measurements, moderate simulated liver steatosis (i.e. a fat area fraction of 

50% [133]) was simultaneously simulated along with liver fibrosis following the signaling 

pathways described in Fig. 6.2, if necessary.   

Table 6.3 A list of simulation configurations used in K-WAVE simulations. The weights 

listed were calculated so that the weighted CPA distribution of each fibrosis stage followed 

its respective Gaussian distribution (Table 6.2). 

METAVIR 

stage 

CPA 

(%) 

CL 

(mm) 
Realizations 

Total  

Data Points 
Weight 

F1 

3 0.6 3 6480 50.0% 

5 0.9 3 6480 40.0% 

8 0.9 3 6480 10.0% 

F2 

3 0.6 3 6480 18.4% 

10 1.2 3 6480 52.2% 

13 1.3 3 6480 29.4% 

F3 
3 0.6 3 6480 19.2% 

13 1.3 3 6480 53.9% 
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21 1.4 3 6480 26.9% 

F4 

14 1.3 3 6480 33.3% 

19 1.3 3 6480 38.1% 

27 1.5 3 6480 28.6% 

 

6.3. Validations Using Available Clinical Data 

The clinical SWS data (Table 6.4) were converted from the clinically-measured 

liver stiffness values reported in the literature using Eqn. (5.1): 

𝑉𝑠 =  √
𝐺

𝜌
  (6.1) 

where 𝑉𝑠, 𝐺  and 𝜌 are SWS, shear modulus and, mass density, respectively.  

Because of the raw SWS data from 3 peer-reviewed, (see Table 5.4) studies were 

not available, computer-synthesized SWS data derived from those three studies were 

generated as follows. Random SWS velocity data for each study were first generated by 

assuming that the SWS measurements in each study followed a Gaussian distribution. 

Then, synthesized SWS data from three studies were assembled such that the contribution 

of each clinical study was proportional to the number of patients available for the study. 

For instance, there were 2808 “computer-synthesized” SWS measurements for F1; among 

them, 151, 2435 and 222 were from Studies 1 to 3, respectively. 

Table 6.4 Liver stiffness (Mean ± one standard deviation) summarized from 3 published 

studies (hereafter referred as to Studies 1 to 3). 

 Estimated Liver Stiffness (kPa) (METAVIR stage) No. of 

Patient  F0 F1 F2 F3 F4 

Study 

1 
- 6.77±1.72 9.98±3.99 15.8±7.73 22.09±10.09 

 

70 
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 [120]  

Study 

2 

[122] 
4.26±0.55 5.51±1.5 7.52±1.75 10.44±3.48 33.32±15.81 1138 

Study 

3 

[121] 

- 5.8±1.8 11.3±6.8 11.8±6 23.4±16.5 103 

 

The clinical SOS data (Table 6.5) were obtained from a study by Boozari et al. 

[138] Boozari et al. used a commercial scanner (Zonare Medical Systems, Inc, Mountain 

View, CA, USA) equipped with a curvilinear array transducer (C5–2).  

Table 6.5 SOS measurements reported in fibrotic livers [138]. 

METAVIR stage F0-F3 F4 

SOS (m/s) 1575±21 1594±18 

 

6.4. Parameters Involving in Systems Biology Simulations  

The above-mentioned SB simulations using SPARK consist of multiple sequential 

steps. In each step, all chemical and biological agents are updated. Major parameters are 

listed in Table 6.6 and those parameters can be largely divided into two categories: (1) 

parameters related to life cycle and (2) parameters defining mobility. More specifically, 

the life cycle was defined as the life span of chemical and biological agents and its unit was 

the simulation step. The mobility of biological and chemical agents was slightly different. 

The mobility of a biological agent denoted a distance traveled by the agent between two 

adjacent simulation steps and its unit was mm/step. The mobility of a chemical agent was 

a surrogate of the diffusion rate. Our rectilinear simulation domain was conventionally 
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divided into squares. When a square was completely filled (100%) with a chemical agent 

A at the ith simulation step, the mobility (or the diffusion rate) of A was the percentage 

occupancy of the agent A in the square’s eight (8) immediate neighbors at the (i+1)th 

simulation step. Major parameters shown in Table 6.6 were inputs to the SB simulations, 

while collagen and lipid depositions were outputs.   

Table 6.6. A list of selected parameters varied for sensitivity analysis of SB simulations 

using the stepwise regression method.  

Parameter (unit) Value Range 

CCL4 Diffusion Rate (/step) 
50% - 90% with an increment of 

5% 

HMGB1 Diffusion Rate (/step) 
10% - 70% with an increment of 

5% 

TNF-𝛼 Diffusion Rate (/step) 
10% - 50% with an increment of 

5% 

TGF-𝛽1 Diffusion Rate (/step) 
10% - 50% with an increment of 

5% 

Fat Diffusion Rate (/step) 
10% - 50% with an increment of 

5% 

Fat Inhibit Probability 
10% - 50% with an increment of 

5% 

Stellate Move Speed (mm/step) 
0.1 – 0.5 with an increment of 

0.05 

Hepatocyte Move Speed (mm/step) 
0.1 – 0.5 with an increment of 

0.05 

Macrophage Move Speed (mm/step) 
0.1 – 0.5 with an increment of 

0.05 

Hepatocyte Life Cycle (step) 10 – 90 with an increment of 10 

  

 Stepwise regression [142] was used to determine influences of input parameters. 

Particularly, the stepwisefit function in Matlab (Mathworks, MA USA) added or removed 

relevant input parameters (see Table 6.6) based on their statistical significance in a multi-

linear regression fashion. A p-value of 0.05 was considered as statistically significant. Since 
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the proposed SB simulations were stochastic in nature, for each combination of parameters 

used in the above-mentioned stepwise regression process, 5 realizations were performed 

and averaged outputs were reported in the Results Section.  

6.5. A Summary of Cases Simulated 

To test the performance of the proposed virtual liver tissue model, nine (9) different 

cases were simulated as summarized in Table 6.7.  

Table 6.7. A summary of simulation conditions. 

Case 

No. 

Purpose of Simulations  
Simulation Conditions 

1 

Qualitative Comparisons 

to Histological 

Characteristics 

Severe fibrosis without cirrhosis; simulation 

steps = 200; CPA = 16%; 

2 
Severe cirrhosis; simulation steps = 400; CPA = 

25%; 

3 

Fatty lipid accumulation in the centrilobular 

region; simulation steps = 430; CPA = 31%; Fat 

= 24%; 

4 
Distributed fat throughout the acinus; 

simulation steps = 80; CPA = 13%; Fat = 36%; 

5 Parameters Analysis of 

Systems Biology 

Simulations 

Collagen deposition; simulation steps = 200; 

Other parameters listed in Table 6; 

6 
Lipid deposition; simulation steps = 200; Other 

parameters are given in Table 6; 

7 

Effects of Fat Content and 

Gaussian Kernel Size  

Fibrosis without steatosis at four different CPAs 

(13%, 15%, 21% and 26%) in combinations 

with different Gaussian kernel sizes; Other 

parameters are given in Table 3; 

8 

Fibrosis with steatosis (50%) at two different 

CPAs (21% and 26%) with different Gaussian 

kernel sizes; Other parameters are given in 

Table 3;  

9 

 

Comparisons to SWS and 

SOS Measurements 

Fibrotic tissues (F1-F4) without steatosis; Other 

details are listed in Table 3; F1 with a Gaussian 

kernel sizes were 0.1 mm, 0.2 mm, 0.2 mm and 

0.4 mm for F1-F4, respectively.   
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6.6. Data Analysis   

A lateral time-to-peak (TTP) algorithm [44] was adopted to estimate wave speeds 

(i.e. both SWS and SOS) along the respective wave propagation directions. The processing 

kernel length was 0.4 mm. To verify the kernel length sensitivity for the simulated wave 

speed, our results were reprocessed using a processing kernel length of 1.2 mm. We found 

that the means of wave speed remained to be the same but the variances were typically 

reduced by approximately 5%. Then, a direction filter [103] was applied to the simulated 

wave data to remove some wave interferences. Finally, the simulated shear/compressional 

wave speed data can be obtained. More details regarding the calculation of wave speed 

using simulated data can be found in our prior work [139]. 

6.7. Qualitative Comparisons to Histological Characteristics (Cases 1-4) 

Fig. 6.5a (Case 1) shows an example of severe fibrosis without cirrhosis. The 

histology slide showing growing fibrosis along the septa (see the top image in Fig. 6.5a) 

was obtained from a rat experiment, in which intraperitoneal administration of CCl4 lasted 

for 8 weeks [143]. Fig. 6.5b (Case 2) depicts an example of severe cirrhosis (F4) in a 

human subject [144].  

Figs. 6.6a (Case 3) and 6.6b (Case 4) show the fat accumulation in the centrilobular 

region and distributed fatty lipids throughout the acinus, respectively. Particularly, Case 3 

had histologic features of liver fibrosis in non-alcoholic steatohepatitis (NASH) and the 

relevant histological slide (see the top image in Fig. 6.6a) demonstrates that macrovesicular 

steatosis and fibrosis were near the central vein of the hepatic lobule [145]. Case 4 (see the 

histological slide in Fig. 6.6b) contained classic histologic findings in the alcoholic liver 
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disease, in which diffuse macrovesicular steatosis was associated with perisinusoidal 

fibrosis and lobular necroinflammatory activity  [146]. Overall, histological features 

visualized from SB-simulated liver fibrosis with/without steatosis were qualitatively 

similar to those displayed in actual histological slides. 

 

Figure 6.5. Examples showing comparisons between histology and simulated virtual 

liver tissues without steatosis: (a) Severe fibrosis without cirrhosis (Case 1; equivalent 

to F3) [143] and (b) Severe cirrhosis (Case 2; equivalent to F4) [144]. Histology slides 

and SB-simulated liver tissues are listed in the first and second rows, respectively. The 

trichrome stain was used.  

 

 

Figure 6.6. Examples showing comparisons between histology and SB-simulated liver 

tissues with steatosis: (a) Fatty lipid accumulation in the centrilobular region (Case 3) 
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[145] and (b) Distributed fat throughout the acinus (Case 4) [146]. Histology slides and 

SB-simulated liver tissues are listed in the first and second rows, respectively. The 

trichrome stain was used. In (a), the green arrow represents the centrilobular region. In 

(b), the green ellipse represents acinus.   

 

6.8. Parameters Analysis Using Stepwise Regression (Cases 5-6) 

Recall that the collagen and lipid contents were statistically analyzed by the 

stepwise regression method [142]. Two general scenarios were considered: (1) the collagen 

(Table 6.8) and lipid (Table 6.9) depositions were studied independently; (2) the dynamics 

between the liver fibrosis and steatosis was investigated together (Table 6.10) though the 

output of interest was still the collagen content (see Table 6.10), given the fact our primary 

focus is on fibrotic liver tissues.  

As summarized in Table 6.8, if only the liver fibrosis was simulated through SB 

simulations (Fig. 6.2), only the p-values of CCL4 and HMGB1 diffusion rate were below 

0.05. This observation indicates that only these two agents, CCL4 and HMGB1, affected 

the collagen deposition in a statistically significant manner. Similarly, results in Table 6.9 

indicate that the p-values of fat diffusion rate and fat inhibit probability were below 0.05, 

meaning that these two parameters can significantly influence the fat deposition. How the 

diffusion rates of CCL4 and HMGB1 quantitatively influenced the CPA is displayed in Fig. 

6.7a (Case 5), while the influences of the diffusion rate of fat and the death probability of 

lipid cells to the fat deposition are depicted in Fig. 6.7b (Case 6).   
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Figure 6.7. Plots of (a) the collagen deposition with the respect of the CCL4 diffusion 

rate and the HMGB1 diffusion rate (Case 5) and (b) the lipid deposition with the respect 

of the death probability of lipid cells and fat diffusion rate (Case 6). 

 

Table 6.8. P-values of parameters used during the SB simulations of the progression of 

liver fibrosis without steatosis. P-values were obtained by the stepwise regression. 

Inputs Output p-value 

CCL4 Diffusion Rate 

Collagen Deposition 

1.7266e-10 

HMGB1 Diffusion Rate 1.7266e-10 

TNF-𝛼 Diffusion Rate 0.6298 

TGF-𝛽1 Diffusion Rate 0.7836 

Stellate Move Speed 0.9816 

Hepatocyte Move Speed 0.9894 

Hepatocyte Life Cycle 0.6489 

 

When the simulations of liver fibrosis and steatosis were combined, we found that the 

collagen deposition process was almost independently associated with the liver steatosis, 

as indicated by the p-values in Table 6.10.  

Table 6.9. P-values of parameters used during the SB simulations of the progression of 

liver steatosis. P-values were obtained by the stepwise regression. 

Inputs Output p-value 

Fat Diffusion Rate 

Lipid Deposition 

1.6322e-10 

Fat Inhibit Probability 1.6328e-10 

TNF-𝛼 Diffusion Rate 0.7851 
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TGF-𝛽1 Diffusion Rate 0.8131 

Macrophage Move Speed 0.9382 

HMGB1-𝛽 Diffusion Rate 0.8463 

 

Table 6.10. P-values of parameters used during the SB simulations of the progression of 

combined liver fibrosis and steatosis. P-values were obtained by the stepwise regression. 

Inputs Output p-value 

CCL4 Diffusion Rate 

Collagen Deposition 

1.6573e-10 

HMGB1-𝛽 Diffusion Rate 1.6587e-10 

TNF-𝛼 Diffusion Rate 0.7185 

TGF-𝛽1 Diffusion Rate 0.8327 

Stellate Move Speed 0.8894 

Hepatocyte Move Speed 0.9869 

Hepatocyte Life Cycle 0.7489 

Macrophage Move Speed 0.9576 

Fat Diffusion Rate 0.8465 

Fat Inhibit Probability 0.6486 

 

6.9. Comparisons to Wave Speed Measurements (Cases 7-9) 

 

Figure 6.8. Plots showing SWS values influenced by (a) the Gaussian kernel size and 

(b) the presence of simulated lipid accumulation. In (a), the CPA values were 13%, 15%, 

21% and 26% for F1-F4, respectively (Case 7). In (b), roughly 50% fatty lipid 

accumulation was simulated both for F3 (CPA of 21%) and F4 (CPA of 26%) stages 

(case 8). In (a) and (b), the error bar represents one standard deviation.  
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Fig. 6.8a (Case 7) shows that, with the increase of CPA, the estimated SWS value 

increased. It is worth noting that, without the simulation of collagen cross-linking, the 

estimated SWS could only be elevated to approximately 4.5 m/s, even when the CPA 

reached 50%. To match the elevated SWS values from stage F1 (approximately 2.5 m/s) 

to F4 (approximately 6 m/s) reported in the literature [120-122], we found that the kernel 

sizes of 0.1 mm, 0.2 mm, 0.2 mm and 0.4 mm were most appropriate for F1 to F4, 

respectively. Consequently, we fixed those kernel sizes for subsequent wave simulations.  

Interestingly, SWS values did not differ significantly in simulated fibrotic tissues (F3 and 

F4) in the presence of significant (50%) steatosis, as shown in Fig. 6.8b (Case 8). Simulated 

representative micromechanical models (Case 8) are displayed in Fig. 6.9 and their related 

parameters are summarized in Table 6.11.  
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Figure 6.9. Four representative realizations of fibrotic liver tissues (i.e. F1-F4) with 

steatosis. Images in the (a) first and (b) second columns represent simulated histological 

characteristics and corresponding SWS distributions, respectively. Overall, the red, 

yellow and blue represent normal tissue, fat, and fibrosis, respectively, except that the 

white color in column (b) indicates the fat content for better visualization. In column (b), 

the color bar indicates SWS (m/s).    

 

Table 6.11 A list of resultant tissue compositions of simulated fibrotic liver tissues 

illustrated in Figures 9a-b. 

 Fibrosis (%) Fat (%) 
Normal Tissue 

(%) 

Kernel Size 

(mm) 

F1 7.8 50.0 42.2 0.1 
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F2 9.6 50.0 40.4 0.2 

F3 23.3 50.0 26.7 0.2 

F4 34.5 50.0 15.5 0.4 

 

Results simulated under the Case 9 are displayed in Fig. 6.10. In Fig. 6.10a, we 

found that the estimated SWS values from K-WAVE simulations increased with the 

advance of liver fibrosis from F1–F4. Also, the virtual SWS estimates from the K-WAVE 

simulated data largely overlapped with data available in 3 peer-reviewed studies [120-122]. 

In Fig. 6.10b, the probability density functions (PDFs) of the virtual SWS estimates are 

displayed together with PDFs generated from the computer-synthesized clinical data 

(subsection 3 of the Materials Section).  Four PDFs of virtual SWS data were in good 

agreement with PDFs of “computer-synthesized” clinical SWS data. The overlaps among 

4 pairs of PFDs all exceeded 90%. In Fig. 6.10c, the estimated SOS values also largely 

overlapped the range of the SOS values clinically measured.  
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Figure 6.10. Plots comparing virtual simulation data with clinically measured data for 

Case 9: (a) SWS values, (b) PDFs of SWS distributions, and (c) SOS values. In (a) and 

(c), the error bar represents one standard deviation.  

 

6.10 Discussion 

One of our contributions is the inclusion of liver steatosis in systems biology-based 

simulations. The simulation of CCL4 induced liver injuries was inherited from the work of 

Dutta-Moscato et al. and they have already compared their work to the histological results 

in a rat model [60]. In this study, we further extended the comparison to the combination 

of liver steatosis and fibrosis using human pathology. Our preliminary results (Figs. 6.5 

and 6.6) indicated that the systems biology-simulated collagen and fat depositions were 

qualitatively similar to histological characteristics. This is mainly due to the fact that the 

CCL4 model resembles the histology of human liver fibrosis well [147]. More quantitative 

comparisons to human pathology under various conditions are needed to further validate 

the proposed signaling pathways (see Fig. 6.2).  

Another contribution is to use the proposed virtual tissue model for ultrasound-

based tissue characterization. To our knowledge, this is the first biology-based 

micromechanical model designed for ultrasound tissue characterization. Although the 

virtual liver tissue model is simplistic, the preliminary results are encouraging. Our results 

suggested that the results from the K-WAVE simulations were able to reproduce SWS and 

SOS measurements reported in the literature (Figs. 6.10a-c). It is interesting to note that, 

in order to match SWS values reported in the clinical literature, the Gaussian kernel size 

had to be increased from 0.1 mm for F1 to 0.4 mm for F4. Physically, this is an indication 
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of increasing collagen cross-linking with the progression of liver fibrosis. This finding 

seemed consistent with the biology literature [148, 149]. Furthermore, results shown in 

Fig. 6.8b were consistent with a clinical study where SWE may fail to detect fibrosis in 

significant steatosis background [34]. 

Results in Table 6.10 indicated that the interactions between the simulated liver 

fibrosis and steatosis were not strong. This observation is actually comparable to findings 

reported in the clinical literature [150]. However, more work is needed because the 

interactions between the liver fibrosis and the steatosis are complicated and currently not 

fully understood. For instance, the effects of TNF-α on lipid metabolism alone have at least 

5 different pathways [151]. Our future plan is to implement more knowledge-based rules 

related to liver fibrosis and lipid metabolism into the proposed framework in order to 

further explore this line of research.    

Overall, the proposed research has expanded the paradigm of virtual imaging 

simulation [84, 152]. Currently, virtual imaging simulations utilize computer-aided 

engineering software (i.e. geometry modeling and numerical modeling of image physics) 

to evaluate novel imaging methods without making a physical/hardware prototype. By the 

inclusion of the systems biology, it is possible that we can continuously simulate imaging 

of pathological changes due to clinical interventions. In the future, applications could 

include the investigation of the feasibility of monitoring of drug treatment of liver fibrosis 

or chemotherapy of breast cancers.   

There are limitations. First, the virtual tissue model was purely elastic as the first 

approximation. Liver tissues are indeed viscoelastic and therefore, SWS and SOS 
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measurements may be frequency-dependent [129]. Second, rigorous validations using an 

animal model will enable us to tune rules related to the systems biology simulations and 

conversions to mechanical properties. Now the feasibility has been successfully tested and 

both limitations will be addressed in a follow-up study.  

6.11 Conclusion 

In this study, we proposed a systems biology-inspired approach directly linking the 

tissue microstructures, compositions and architectures of fibrotic livers to related 

ultrasound measurements such as SWS and SOS. We demonstrated that those virtual 

fibrotic liver tissues can reflect spatial characteristics of relevant histology. Their 

mechanical characteristics and wave measurements were in good agreement with data 

reported in the literature.  
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Chapter 7. Summary and Future Work 

7.1 Summary 

To improve the confidence in UE measurements or image interpretation for breast 

lesion differentiation and staging liver fibrosis, my thesis developed a computational 

simulation platform integrating open-source software packages with novel complex 

numerical tissue models to better to simulate SE and acoustic radiation force-based SWE 

within the heterogeneous tissue.  

The proposed simulation platform is innovative. It is the first time that complex, 

heterogeneous but known tissue media was adapted into an advanced UE simulation 

platform. The gaps among the open-source software packages were filled, which can act 

like a pipeline. To show the capability and innovation of the proposed simulation platform, 

a complex numerical breast model was built in chapter 2. Then, clinical ultrasound 

techniques for breast cancer differentiation were tested on the proposed breast model: 

chapter 2 (i.e. strain elastography) and chapter 3 (i.e. shear wave elastography). 

To improve the understanding of staging liver fibrotic tissue in UE, intrinsic 

variations of SWS in the liver fibrotic tissue were statistically analyzed using a stochastic 

tissue model in chapter 4. Also, group SWS dispersion caused by elastic scattering was 

analyzed in chapter 5. It is the first time that a probability-based assessment of SWS was 

applied to SWE data analysis. The theoretical analysis methods described in chapters 4 and 

5 can be extended to the SWS data obtained from the proposed simulation platform. 
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Finally, a “biologically relevant” liver tissue model was built in chapter 6, using a 

System Biology method, to relate UE measurements to the underlying structures of the 

liver fibrosis tissue with/without steatosis. Compared with the simple tissue-mimicking 

models and numerical models used in the elastography literature, it is the first time that 

“biologically relevant” soft tissue models were used in UE simulations. This method 

described in chapter 6 can be extended to the proposed simulation platform to increase the 

multi-scale property of the complex numerical model. 

7.2 Future Work 

In the future, clinical applications of staging liver fibrotic tissue will be simulated 

by the proposed computational platform. To increase the reality and heterogeneity of the 

numerical liver tissue model, System Biology methods will be used to generate additional 

“biologically relevant” small structures in the model. The SWS data simulated from the 

proposed simulation platform will be analyzed statistically.  
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Appendix A: Geometry Creation 

A description of the creation of randomly distributed structures is provided below 

for the sake of completeness. These steps were implemented in VTK using standard C++ 

language. Python scripts derived from Vascular Modeling ToolKit (VMTK) [153] were 

used to call C++ programs to execute. The detailed procedures related to creating milk 

ducts including lobes are shown below as a three-step process. 

Step 1: Creation of random milk duct 

Starting from two random points (i.e. the first line segment of a random curve) 

within the fibro-glandular region, subsequent points were generated by adding more line 

segments to continue this random curve.  Subsequent directions of this curve were 

determined by a random vector. This random vector largely followed the direction of the 

two most recent points on the curve, with a small added fraction (e.g. 20%) of randomness. 

All points were tested to ensure the curve had been constrained within the fibro-glandular 

region.  

If a pre-determined length of the random tube was reached or the random curve had 

to leave the fibro-glandular region, the process of generating random points would stop. 

The random curve was the skeleton for the simulated milk duct. The diameter of the tube 

can spatially vary as specified by the user.  Finally, a milk duct structure was linked 

together smoothly by VTK using vtkTubeFilter. An example of the simulated milk duct is 

given in Fig. A1-(a) below.  
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Figure A1. An example of generating random milk duct and lobe structure using VTK: 

(a) A milk duct represented by a random tube; (b) a lobe structure represented by a cluster 

of overlapping spheres; (c) one milk duct connected with a lobe; and (d) several 

simulated branches of milk ducts and lobes.   

 

Step 2: Creation of simulated lobes 

A simulated lobe was represented by a cluster of overlapping random spheres as 

shown in Fig. A1b. Typically, a simulated lobe consisted of 3-5 random spheres and 

occupied 4-9 mm3 in space.  Of note, overlapping random spheres were stitched together 

using Union Operations under VTK.  

Step 3: Integration of branches 

Two random points on the random curve (as described in Step 1) could be selected 

as the starting point to create bi-furcated milk duct structures. Once those two new starting 

points were selected, the process of generating one new milk duct was the same as what 

described in Step 1. The new branch of the milk duct was connected to the previously 

generated milk duct through the same Union operation under VTK. Similarly, all simulated 

lobes were connected to milk ducts through the same Union operation (see Fig. A1c).  

Finally, all these branches were linked together to create a tree-like structure to represent 

milk duct and lobe structure (see Fig. A1d).  
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Creation of the small adipose compartments (elongated random ellipsoids) within 

the fibro-glandular region was similar to what was described in Step 2 for the generation 

of simulated breast lobes, except that the small fat compartments were represented as a 

small cluster of random ellipsoids. Similarly, generating Cooper’s ligaments was similar 

to what was described in Step 1 above.  
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Appendix B: Tissue Mechanical Models Used for QUE 

Simulations 

For FE-simulations of QUE, a hyper-elasticity model, Veronda-Westmann (V-W) 

model [73], was adopted.  In the V-W model, the strain energy function is given as follows,  

𝑊 = 𝐶1[𝑒(𝐶2(𝐼1−3)) − 1] −
𝐶1𝐶2

2
(𝐼2 − 3) + 𝑈(𝐽) 

(B1) 

where 𝐶1 and 𝐶2 are, respectively, the first and second Veronda-Westmann coefficients,  𝐼1 

and 𝐼2 are, respectively, the first and second invariant of the right Cauchy-Green tensor. 

Incompressibility requires the volumetric strain function U(J) = 0.   

Uniaxial stress-strain curves of glandular tissue, fat, skin, fibroadenoma and 

invasive ductal carcinoma were fit to the V-W model. Those stress-strain curves were 

derived based on previously published results. [154-156] To our knowledge stress-strain 

curve of Cooper’s ligament is not available in the literature. Material properties of the 

Cooper’s ligament were derived from other ligament data in the literature.  

Table B1. Parameters associated with the V-W model   

Tissue Type 𝐶1 (kPa) 𝐶2 

Fat 3 5 

Fibro-glandular 

tissue 
4 6.5 

Cooper’s 

ligament 
25 7 

Milk duct 3 2 

Skin 300 5 

Benign lesion 30 7 
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Malignant lesion 32 40 

 

In the time-dependent QUE application, viscoelasticity of soft tissues was taken 

into consideration by a quasi-linear viscoelastic material model[74] implemented in 

FEBio[61]. In the quasi-linear viscoelastic model, a relaxation function G(t) is used[157] 

as follows, 

𝐺(𝑡) = 1 + ∑ 𝛾𝑖exp (−𝑡
𝜏𝑖

⁄ )

𝑁

𝑖=1

 (B2) 

where 𝜏𝑖 are one value representing relaxation time, and 𝛾𝑖 is one coefficient. In this study, 

N was set to 1 and Eqn. (B2) became the classic Kevin-Voigt model. Viscoelastic 

parameters used in the time-dependent QUE application are shown in Table B2 below.  

Table B2. Viscoelastic coefficients and relaxation times used in the FEA simulations 

Component 
Viscoelastic coefficient 

(𝛾1) 

Relaxation 

time of Case 1  

(𝜏𝟏) Unit: 

second 

Relaxation 

time of Case 2  

(𝜏𝟏) Unit: 

second 

Fat 0.95 1 1 

Fibro-glandular 

tissue 
0.95 1.2 

3 

Cooper’s 

ligament 
0.95 1.5 

1.5 

Milk duct 0.95 1 1 

Skin 0.95 1 1 

Lesion 0.95 4 1 
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Appendix C: Derivation of PDF for SWS Distribution 

in Random Multiphase Media 

Let’s consider an elastic heterogeneous medium, which consists of multiple 

isotropic phases with elastic bulk modulus (𝐾𝑖), shear modulus (𝐺𝑖), mass density (𝜌𝑖), and 

the volume concentration (𝑐𝑖, ∑ 𝑐𝑖 = 1), respectively. The subscript 𝑖 denotes those phase 

indices, respectively. For simplicity, the multi-phase medium is treated as effectively 

isotropic and macroscopically homogeneous, which is characterized by effective bulk 

modulus (𝐾), effective shear modulus (𝐺) and effective density (𝜌, 𝜌 =  ∑  𝜌𝑖𝑐𝑖) [158]. 

Without the loss of generality, a set of physical properties 𝐽 = (𝐾𝑖, 𝐺𝑖, 𝜌𝑖 , 𝑐𝑖) is defined for 

this random multi-phase medium. In this derivation, both K and G are random variables. 

The macroscopic SWS (𝑉𝑠) of this elastic random medium can be related to the effective 

shear modulus 𝐺 by [94], 

𝑉𝑠 =  √
𝐺

𝜌
  (C1) 

where 𝜌 is effective density. 

Recall that both G and 𝑉𝑠 are random variables. We define 𝐹(𝑉𝑠) as a cumulative 

distribution function (CDF) of 𝑉𝑠. By definition, 𝐹(𝑉𝑠) can be written as follows [159],    

𝐹(𝑉𝑠) = 𝐹{𝑣 ≥  𝑉𝑠}  =  𝐹 {√
𝐺

𝜌
≥  𝑉𝑠} =  𝐹{𝐺 ≥  𝜌 ∙ 𝑉𝑠

2} =  ∫ 𝑝(𝐺)𝑑𝐺
𝜌∙𝑉𝑠

2

0
  (C2) 

where 𝑝(𝐺) is the probability density function (PDF) of effective shear modulus 𝐺.  Hence, 

the PDF of 𝑉𝑠 can be written as,   

𝑝(𝑉𝑠) =  
𝜕𝐹(𝑉𝑠)

𝜕𝑣
=  

𝜕 ∫ 𝑝(𝐺)𝑑𝐺
𝜌∙𝑉𝑠

2

0

𝜕𝑣
=  𝑝(𝜌 ∙ 𝑉𝑠

2) ∙ 2𝜌𝑉𝑠   (C3) 

Now we can establish a link between 𝑝(𝑉𝑠) and 𝑝(𝐺) as follows, 
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𝑝(𝑉𝑠) = 𝑝(𝐺)2𝑉𝑠𝜌   (C4) 

The Jaynes’ principle of maximum entropy states that the information entropy (𝐻) 

is given by [96], 

𝐻 =  − ∫ 𝑝(𝐺)
+∞

−∞
𝑙𝑛

𝑝(𝐺)

𝑚(𝐺)
𝑑𝐺   (C5) 

where 𝑚(𝐺) is an initial distribution of data and is typically assigned according to a prior 

understanding of data G. The Jaynes’ entropy H can reach maximum if 𝑝(𝐺) can reflect 

the data distribution in the best possible way. Consequently, maximization of H leads to an 

optimized 𝑝(𝐺) that best describes the given data G . 

𝑚(𝐺) was assigned to be a uniform distribution in the current study so that no bias 

was injected. Consequently, Eqn. (C5) is equivalent to the classical Shannon’s entropy 

given by 

𝐻 =  − ∫ 𝑝(𝐺)
+∞

−∞
𝑙𝑛𝑝(𝐺)𝑑𝐺   (C6) 

Now we maximize 𝐻 that are subjected to three constraints, i.e. the zeroth, first and 

second order moments as follows,   

∫ 𝑝(𝐺)
+∞

−∞
𝑑𝐺 = 1   (C7-a) 

∫ 𝑝(𝐺)
+∞

−∞
𝐺𝑑𝐺 = 𝐺𝐸 and (C7-b) 

∫ 𝑝(𝐺)
+∞

−∞
(𝐺 − 𝐺𝐸)2𝑑𝐺 = 𝐺𝐷  (C7-c) 

To maximize H, the class Lagrange Multiplier method [97] was used and the 

Lagrange function was constructed as follows, 

𝐿(𝑝, 𝜆)=− ∫ 𝑝(𝐺)
+∞

−∞
𝑙𝑛𝑝(𝐺)𝑑𝐺+𝜆0(

 ∫ 𝑝(𝐺)
+∞

−∞
𝑑𝐺 −

(C8) 
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1)+𝜆1(∫ 𝑝(𝐺)
+∞

−∞
𝐺𝑑𝐺 − 𝐺𝐸) 

+𝜆2(∫ 𝑝(𝐺)
+∞

−∞
(𝐺 − 𝐺𝐸)2𝑑𝐺 − 𝐺𝐷)                                                                                                           

where 𝜆0,  𝜆1 and 𝜆2 are Lagrange multipliers.  

L(p,λ) reaches the maximum when 
𝜕𝐿(𝑝,𝐿)

𝜕𝑝(𝐺)
= 0. The derivative of 𝐿(𝑝, 𝜆) with respect to 

𝑝(𝐺) can be expressed as [160, 161],  

𝜕𝐿(𝑝,𝐿)

𝜕𝑝(𝐺)
= −𝑙𝑛𝑝(𝐺) + 𝜆0 + 𝜆1 + 𝜆2(𝐺 − 𝐺𝐸)2  (C9) 

Solving Eqn. (A9), we have  

𝑝(𝐺) =  𝑒𝜆0+ 𝜆1𝐺+ 𝜆2(𝐺−𝐺𝐸)2
  (C10) 

Substituting Eqn. (C10) into Eqn. (C7-a), we obtain following equations 

∫ 𝑒𝜆0+ 𝜆1𝐺+ 𝜆2(𝐺−𝐺𝐸)2+∞

−∞
𝑑𝐺 = 1   (C11-a) 

which provides    

𝑒𝜆0√
𝜋

−𝜆2
∫ 𝑒𝜆1𝐺𝑓(𝐺)

+∞

−∞
𝑑𝐺 = 1  (C11-b) 

where 𝑓(𝐺) is the Gaussian distribution with mean 𝐺𝐸 and variance 𝜎2 with 𝜎 = √
−1

2𝜆2
 

According to the moment-generating function of a Gaussian random variable, Eqn. 

(C11-b) can be rewritten as follows, 

𝑒𝜆0√
𝜋

−𝜆2
𝑒𝐺𝐸𝜆1+

𝜎2𝜆1
2

2 = 1  (C12) 

Similarly, replacing 𝑝(𝐺) in Eqn. (C7-b) with Eqn. (C10), we can also obtain 

following equation 

∫ 𝑒𝜆0+ 𝜆1𝐺+ 𝜆2(𝐺−𝐺𝐸)2+∞

−∞
𝐺𝑑𝐺 = 𝐺𝐸  (C13-a) 
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Some algebra shows that Eqn. (C13-a) becomes  

𝑒
𝜆0+𝜆2𝐺𝐸

2−𝜆2(𝐺𝐸−
𝜆1

2𝜆2
)

2

√2𝜋𝜎𝐸(𝐺) = 𝐺𝐸 
(C13-b) 

where 𝐸(𝐺) = 𝐺𝐸 −
𝜆1

2𝜆2
. By using Eqn. (C13-b) over Eqn. (C12), we can obtain 

𝑒
𝜆0+𝜆2𝐺𝐸

2−𝜆2(𝐺𝐸−
𝜆1

2𝜆2
)

2

√2𝜋𝜎𝐸(𝐺)

𝑒𝜆0√
𝜋

−𝜆2
𝑒𝐺𝐸𝜆1+

𝜎2𝜆1
2

2

=
𝐺𝐸

1
 (C14-a) 

By simplifying Eqn. (C14-a), we obtain 

𝐺𝐸 −
𝜆1

2𝜆2
= 𝐺𝐸, which gives  

𝜆1 = 0  (C14-b) 

By plugging 𝜆1 = 0 into Eqn. (C11-b), we obtain 𝜆0 = 𝑙𝑛√
𝜆2

−𝜋
. 

Replacing 𝑝(𝐺) in Eqn. (C7-c) with Eqn. (C10), we obtain following equations, 

𝑒𝜆0 ∫ 𝜔2𝑒𝜆2𝜔2
𝑑𝜔 = 𝐺𝐷

+∞

−∞
, 𝜔 = 𝐺 − 𝐺𝐸  (C15-a) 

which shows that 𝜆2 =
−1

2𝐺𝐷
  

Thus, Eqn. (C10) becomes a form of the Gaussian distribution given by 

𝑝(𝐺) =  
1

√2𝜋𝐺𝐷
𝑒

−(𝐺−𝐺𝐸)2

2𝐺𝐷    (C16) 

where  𝜆0 = 𝑙𝑛
1

√2𝜋𝐺𝐷
, 𝜆1 = 0, 𝑎𝑛𝑑 𝜆2 =

−1

2𝐺𝐷
.  

Now, we can substitute Eqn. (C1) and (C13) into Eqn. (C4). The final form of the 

PDF of the SWS 𝑝(𝑉𝑠) is given as follows,  

𝑝(𝑉𝑠) =  
1

√2𝜋𝐺𝐷
𝑒

−(𝑉𝑠
2𝜌−𝐺𝐸)

2

2𝐺𝐷 2𝜌𝑉𝑠  (C17) 
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Appendix D: A Brief Description of K-Wave 

Simulations 

The elastic shear wave propagation was simulated using an open-source wave 

simulator K-Wave [162]. In a simple form, the elastic wave propagation in an isotropic 

linearly elastic medium is governed by two coupled first-order partial differential equations 

(PDEs) [162]:   

𝜕𝜎𝑖𝑗

𝜕𝑡
= 𝜆𝛿𝑖𝑗

𝜕𝑣𝑘

𝜕𝑥𝑘
+ 𝜇 (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) 

(D1) 

𝜕𝑣𝑖

𝜕𝑡
=

1

𝜌0

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 

(D2) 

where 𝑣, x, 𝜎, 𝑡 and 𝜌0, 𝛿𝑖𝑗 are the particle velocity, the coordinate system, stress tensor, 

time, mass density and Kronecker delta, respectively. In Eqn. (D1), 𝜆 and 𝜇 are the Lame 

parameters. All subscripts follow Einstein notation in this Appendix.  

In this study, Eqns. (D1-D2) were numerically solved by Fourier pseudo-spectral 

method [163, 164] in K-WAVE on a 2D rectilinear grid [0, 𝐿𝑥]×[0, 𝐿𝑦]. A graphical 

illustration of the computing domain is given in Figure B1. A transient elastography-like 

excitation was applied onto a vertical line 𝑥1 = 𝐿𝑥𝑒 (see Figure B1) as an interior boundary 

condition, 

𝜎2(𝐿𝑥𝑒 , 𝑥2, 𝑡) = {
𝑘𝑠𝑖𝑛2𝜋𝑓𝑡, 0 ≤ 𝑥2 ≤ 𝐿𝑦, 0 ≤ 𝑡 ≤

1

𝑓

0, 0 ≤ 𝑥2 ≤ 𝐿𝑦, 𝑡 ≥
1

𝑓

  (D3) 

where f is the excitation frequency, k is an arbitrary constant and t is the time. Basically, 

this interior boundary states that one cycle of a perturbation (𝜎2) is prescribed near the ROI 

to induce plane shear wave propagating along the 𝑥1 direction.  
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The well-known Dirichlet periodic boundary condition was applied onto four 

exterior edges (see Lines 1-4 in Fig. D1) to create a “mirroring” structure around all four 

edges. Loosely speaking, under this periodic boundary condition, the SW wave-front can 

re-appear at Line 4 when the SW wave-front passed Line 2. Mathematically, this exterior 

periodic boundary condition can be written as follows:  

𝜎𝑖𝑗(0, 𝑥2, 𝑡) = 𝜎𝑖𝑗(𝐿𝑥, 𝑥2, 𝑡), 0 ≤ 𝑥2 ≤ 𝐿𝑦  (D4) 

𝜎𝑖𝑗(𝑥1, 0, 𝑡) = 𝜎(𝑥1, 𝐿𝑦, 𝑡), 0 ≤ 𝑥1 ≤ 𝐿𝑥  (D5) 

𝑣𝑖(0, 𝑥2, 𝑡) = 𝑣𝑖(𝐿𝑥, 𝑥2, 𝑡), 0 ≤ 𝑥2 ≤ 𝐿𝑦 (D6) 

𝑣𝑖(𝑥1, 0, 𝑡) = 𝑣𝑖(𝑥1, 𝐿𝑦, 𝑡), 0 ≤ 𝑥1 ≤ 𝐿𝑥 (D7) 

 

Figure D1. A graphical illustration of the boundary conditions defined for K-Wave 

plane SW simulation presented in the Materials and Methods Section. The computing 

area is defined on a rectilinear grid [0, 𝐿𝑥]×[0, 𝐿𝑦]. The green arrow indicates the SW 

propagation direction. 

 

In this study, the above-mentioned periodic boundary condition was used, as 

opposed to the perfectly matched layer (PML) for two reasons. First, the PML boundary 

condition resulted in apparent constraints (i.e. absorption) around the top and bottom 

boundaries (particularly, Lines 1 and 3 in Figure D1). That would be a violation of the 

plane shear wave assumption. Second, the absorption of the PML in K-WAVE was mainly 
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designed for high-frequency compression waves (in MHz) and therefore, was not well 

fitted for low-frequency (50-200 Hz) SW in terms of its effect of wave absorption. 
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Appendix E: A Description of Systems Biology 

Simulations 

As shown in Fig. E1, a brief step-by-step description of the proposed systems 

biology (SB) simulations using SPARK is provided below for the sake of completeness. 

The relevant codes can be downloaded from Github (https://github.com/jjiang-mtu).    

 
Figure E1. A flowchart illustrating the execution of systems biology simulations.  

 

1. Initialization 

At the beginning, agents, system variables, and simulation space were set to initial 

values as suggested from the literature (see the source codes). At the initialization step (Fig. 

E2a), hepatocytes were arranged in lobules and each lobule was modeled as a hexagon. In 

the current setting, each edge of those hexagons was approximately 1 mm based on 

pathology [106];  each septum, forming an edge of a lobule, was connected by portal triads. 

Major anatomical features included rules (i.e. five major schemes described in the 
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Materials Section) and parameters related to chemical and biological agents were also 

initialized in this step. 

 
Figure E2. Schematic illustrations of the systems biology-based tissue model: (a) Initial 

setup; (b) Stage F1 with 7.8% collagenous tissue; (c) Stage F2 with 9.6% collagenous 

tissue; (d) Stage F3 with 23.3% collagenous tissues; and (e) Stage F4 with 34.5% 

collagenous tissues. In (a)-(e), the red is normal liver tissue and the blue is collagenous 

connective tissue. F1 to F4 were referred as to the METAVIR classifications [105]. 

 

2. Execution of Systems Biology Simulations 

To simplify the description, we first assumed the liver fibrosis would be simulated 

alone. Based on the first four major schemes described in Fig. 5.2, liver injuries triggered 

depositions of collagen after the CCL4 had started to diffuse through the simulation space. 

Consequently, in the early stages, the collagen was deposited around portal tracts with 

extensions into adjacent peri-portal regions along septa, as shown in Fig. E2b-c and those 

collagen depositions looked like isolated islands (Fig. E2b-c). As the liver fibrosis 

progressed deaths of hepatocytes and activation of fibroblast gradually took place across 
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the simulation space (i.e. a term defined in SPARK) and, fibrous expansions of most portal 

areas caused portal-to-portal bridging or portal-to-central bridging (Zalata, 2011), as shown 

in Fig. E2d-e. In short, at the late stages of the liver fibrosis, deposited collagen “islands” 

(see Fig. E2b-c) were connected by septa and the overall architectural appearance looked 

more like a complex web (see Fig. E2e). Overall, the proposed SB simulation resulted in 

a stochastic tissue model capturing both the increasing presence of collagen content and 

spatial characteristics of collagen depositions, as shown in Fig. E2b-e.  

If the simulations of liver fibrosis and steatosis were executed together, in addition 

to the depositions of collagen content, lipids were simultaneously accumulated and the 

deposition of lipids was relatively distributed over the entire simulation space. Two 

examples are provided in Fig. E3. In Fig. E3a, the collagen was deposited around portal 

tracts at the beginning stage. The liver cells were filled with multiple lipid droplets. The 

hepatocytes look like small fat vacuoles. In the late stage (Fig. E3b), the size of the 

vacuoles increases and distributed over the entire space [165].     

 
Figure E3. Histological characteristics of combined liver steatosis and fibrosis simulated 

by SPARK. The red, yellow and blue colors represent normal tissue, fat, and fibrosis, 

respectively. In (a), the CPA and the fat fractions were 7.8% and 22%, respectively, 

while in (b), the CPA and fat fraction were 23.3% and 50%, respectively. 
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Appendix F: Copyright Permission of Content in 

Chapter 2 

Content in Chapter 2 is reprinted from the following paper. A copy of the granted 

permission for reproduction is shown below. 

1. Y. Wang, E. Helminen, and J. F. Jiang, "Building a virtual simulation platform 

for quasistatic breast ultrasound elastography using open source software: A preliminary 

investigation," Medical Physics, vol. 42, pp. 5453-5466, Sep 2015. 
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Appendix G: Copyright Permission of Content in 

Chapter 3 and 4 

Content in Chapter 3 and 4 are reprinted from the following papers. A copy of the 

granted permission for reproduction is shown below. 

1. Y. Wang, B. Peng, and J. Jiang, "Building an open-source simulation platform 

of acoustic radiation force-based breast elastography," Phys Med Biol, vol. 62, pp. 1949-

1968, Mar 07 2017. 

2. Y. Wang, M. Wang, and J. J. Jiang, "An Analysis of Intrinsic Variations of Low-

frequency Shear Wave Speed in A Stochastic Tissue Model: The First Application for 

Staging Liver Fibrosis," Physics in Medicine and Biology, 2016. 
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