636 research outputs found

    An Offset Cancelation Technique for Latch Type Sense Amplifiers

    Get PDF
    An offset compensation technique for a latch type sense amplifier is proposed in this paper. The proposed scheme is based on the recalibration of the charging/discharging current of the critical nodes which are affected by the device mismatches. The circuit has been designed in a 65 nm CMOS technology with 1.2 V core transistors. The auto-calibration procedure is fully digital. Simulation results are given verifying the operation for sampling a 5 Gb/s signal dissipating only 360 uW

    Dynamic element matching techniques for data converters

    Full text link
    Analog to digital converter (ADC) circuit component errors create nonuniform quantization code widths and create harmonic distortion in an ADC\u27s output. In this dissertation, two techniques for estimating an ADC\u27s output spectrum from the ADC\u27s transfer function are determined. These methods are compared to a symmetric power function and asymmetric power function approximations. Standard ADC performance metrics, such as SDR, SNDR, SNR, and SFDR, are also determined as a function of the ADC\u27s transfer function approximations. New dynamic element matching (DEM) flash ADCs are developed. An analysis of these DEM flash ADCs is developed and shows that these DEM algorithms improve an ADC\u27s performance. The analysis is also used to analyze several existing DEM ADC architectures; Digital to analog converter (DAC) circuit component errors create nonuniform quantization code widths and create harmonic distortion in a DAC\u27s output. In this dissertation, an exact relationship between a DAC\u27s integral nonlinearity (INL) and its output spectrum is determined. Using this relationship, standard DAC performance metrics, such as SDR, SNDR, SNR, and SFDR, are calculated from the DAC\u27s transfer function. Furthermore, an iterative method is developed which determines an arbitrary DAC\u27s transfer function from observed output magnitude spectra. An analysis of DEM techniques for DACs, including the determination of several suitable metrics by which DEM techniques can be compared, is derived. The performance of a given DEM technique is related to standard DAC performance metrics, such as SDR, SNDR, and SFDR. Conditions under which DEM techniques can guarantee zero average INL and render the distortion due to mismatched components as white noise are developed. Several DEM circuits proposed in the literature are shown to be equivalent and have hardware efficient implementations based on multistage interconnection networks. Example DEM circuit topologies and their hardware efficient VLSI implementations are also presented

    Development of a 6-bit 15.625 MHz CMOS two-step flash analog-to-digital converter for a low dead time sub-nanosecond time measurement system

    Get PDF
    The development of a 6-bit 15.625 MHz CMOS two-step analog-to-digital converter (ADC) is presented. The ADC was developed for use in a low dead time, high-performance, sub-nanosecond time-to-digital converter (TDC). The TDC is part of a new custom CMOS application specific integrated circuit (ASIC) that will be incorporated in the next generation of front-end electronics for high-performance positron emission tomography imaging. The ADC is based upon a two-step flash architecture that reduces the comparator count by a factor-of-two when compared to a traditional flash ADC architecture and thus a significant reduction in area, power dissipation, and input capacitance of the converter is achieved. The converter contains time-interleaved auto-zeroed CMOS comparators. These comparators utilize offset correction in both the preamplifier and the subsequent regenerative latch stage to guarantee good integral and differential non-linearity performance of the converter over extreme process conditions. Also, digital error correction was employed to overcome most of the major metastability problems inherent in flash converters and to guarantee a completely monotonic transfer function. Corrected comparator offset measurements reveal that the CMOS comparator design maintains a worse case input-referred offset of less than 1 mV at conversion rates up to 8 MHz and less than a 2 mV offset at conversion rates as high as 16 MHz while dissipating less than 2.6 mW. Extensive laboratory measurements indicate that the ADC achieves differential and integral non-linearity performance of less than ±1/2 LSB with a 20 mV/LSB resolution. The ADC dissipates 90 mW from a single 5 V supply and occupies a die area of 1.97 mm x 1.13 mm in 0.8 μm CMOS technology

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd

    A low offset dynamic comparator with morphing amplifier

    Get PDF
    Dynamic comparators are popular structures used in analog circuits such as RFID tags, ADC, memory modules, etc. Compared with traditional open-loop amplifiers that can be used as a comparator, well-designed dynamic comparators are usually faster and more power-efficient, but dynamic CMPs also have some problems. Device mismatch-induced offset voltages is a major challenge when designing dynamic comparators because device mismatch is a random variable that is non-predictable during the design stage. There are many popular dynamic CMP structures; one of them is the Lewis-Gray dynamic comparator [1]. Many authors have introduced alternative dynamic comparator structures which they claim are less affected by device mismatch than the Lewis-Gray circuit but few present a comprehensive and reasonable comparison method. In those papers, different modifications are implemented in order to minimize device mismatch offset, one popular way is to add an amplifier stage before the dynamic comparator. The input signals are amplified in the first amplifier stage before going into the second dynamic comparator stage. Since the outputs of the first stage have a larger difference comparing with the inputs, the offset requirement for the dynamic comparator is loosened. However, the offset still has room for improvement. In this work, a low offset dynamic comparator with morphing amplifier is proposed. It doesn’t have two independent stages. Instead, the amp is inherently integrated into a dynamic comparator, and it yields better offset performance. Moreover, a new fair and comprehensive offset comparison method is also introduced

    Low power dynamic comparator design

    Get PDF
    In many applications there is a growing demand for the development of low voltage and low power circuits and systems. Low power consumption is of great interest because it increases the battery lifetime. One of the main building blocks in many applications is the analogue-to-digital converter (ADC) which serves as an interface between the analogue world and the digital processing unit. In all these designs the comparator of the ADC, which is one the most power hungry blocks, is always on. In order to reduce the power consumption of the ADC it is possible to turn the comparator off when the decision is made and the comparator is not needed until the next clock cycle. This work provides a comprehensive review about a variety of comparator designs - in terms of performance, power and delay. The initial part of the work was working with static comparators architectures with different pre-amplifier modifications .Later part deals with two dynamic comparator architectures. The main components of such comparators are the preamplifier and latch circuit. Preamplifier is used for removing the kickback noise and the dc offset voltage while the latch is required for the comparison. The proposed architectures operate on three phases which are non-overlapping and dissipate 7ìW power when operated on a single 1V supply voltage. The latch is basically a back to back connected inverter circuit which inactivated only during the second phase

    Techniques of Energy-Efficient VLSI Chip Design for High-Performance Computing

    Get PDF
    How to implement quality computing with the limited power budget is the key factor to move very large scale integration (VLSI) chip design forward. This work introduces various techniques of low power VLSI design used for state of art computing. From the viewpoint of power supply, conventional in-chip voltage regulators based on analog blocks bring the large overhead of both power and area to computational chips. Motivated by this, a digital based switchable pin method to dynamically regulate power at low circuit cost has been proposed to make computing to be executed with a stable voltage supply. For one of the widely used and time consuming arithmetic units, multiplier, its operation in logarithmic domain shows an advantageous performance compared to that in binary domain considering computation latency, power and area. However, the introduced conversion error reduces the reliability of the following computation (e.g. multiplication and division.). In this work, a fast calibration method suppressing the conversion error and its VLSI implementation are proposed. The proposed logarithmic converter can be supplied by dc power to achieve fast conversion and clocked power to reduce the power dissipated during conversion. Going out of traditional computation methods and widely used static logic, neuron-like cell is also studied in this work. Using multiple input floating gate (MIFG) metal-oxide semiconductor field-effect transistor (MOSFET) based logic, a 32-bit, 16-operation arithmetic logic unit (ALU) with zipped decoding and a feedback loop is designed. The proposed ALU can reduce the switching power and has a strong driven-in capability due to coupling capacitors compared to static logic based ALU. Besides, recent neural computations bring serious challenges to digital VLSI implementation due to overload matrix multiplications and non-linear functions. An analog VLSI design which is compatible to external digital environment is proposed for the network of long short-term memory (LSTM). The entire analog based network computes much faster and has higher energy efficiency than the digital one
    corecore