7,686 research outputs found

    Thematic Issue on the Hydrological Effects of the Vegetation-Soil Complex

    Get PDF
    Peer reviewedPublisher PD

    A compendium of Technologies, Practices, Services and Policies for Scaling Climate Smart Agriculture in Odisha (India)

    Get PDF
    Stakeholders engaged in agricultural research for development (AR4D) are increasingly tackling risks associated with climate change in smallholder systems. Accordingly, development and scaling of climate-smart agriculture (CSA) are one of the priorities for all the organizations, departments and ministries associated with the farm sector. Having a ‘one-stop-shop’ compiled in the format of a compendium for CSA technologies, practices and services would therefore serve a guide for all the stakeholders for scaling CSA in smallholder systems. Bringing out a Compendium on Climate-Smart Agriculture (CSA) for Odisha, India was therefore thought of during the workshop on ‘Scaling Climate-Smart Agriculture in Odisha’ organized at Bhubaneswar on 18-19 July 2018 by International Rice Research Institute (IRRI) in collaboration with Department of Agriculture (DoA) & Farmers’ Empowerment, Indian Council of Agricultural Research-National Rice Research Institute (ICAR-NRRI), Orissa University of Agriculture and Technology (OUAT) & International Maize and Wheat Improvement Center (CIMMYT) under the aegis of CGIAR Research program on Climate Change, Agriculture and Food Security (CCAFS). The main objectives to bring forth this compendium are: to argue the case for agriculture policies and practices that are climate-smart; to raise awareness of what can be done to make agriculture policies and practices climatesmart; and to provide practical guidance and recommendations that are well referenced and, wherever possible, based on lessons learned from practical action. CSA programmes are unlikely to be effective unless their implementation is supported by sound policies and institutions. It is therefore important to enhance institutional capacities in order to implement and replicate CSA strategies. Institutions are vital to agricultural development as well as the realisation of resilient livelihoods.They are not only a tool for farmers and decision-makers, but are also the main conduit through which CSA practices can be scaled up and sustained. The focus in this compendium is on CSA and it’s relevant aspects, i.e., (i) technologies and practices, (ii) services, (iii) technology targeting, (iv) business models, (v) capacity building, and (vi) policies. The approaches and tools available in the compendium span from face-to-face technicianfarmer dialogues to more structured exchanges of online and offline e-learning. In every scenario it is clear that tailoring to local expectations and needs is key. In particular, the voice of farmers is essential to be captured as they are the key actors to promote sustainable agriculture, and their issues need to be prioritized. CSA practices are expected to sustainably increase productivity and resilience (adaptation), reduce Greenhouse Gases (mitigation), and enhance achievement of national food security along with sustainable development goals. CSA is widely expected to contribute towards achieving these objectives and enhance climate change adaptation. CSA practices have to be included in State’s Climate Policy as a priority intervention as the state steps up efforts to tackle climate change. Furthermore, emphasis shoud be laid on CSA training for a sustainable mode to enhance CSA adoption in the state hence the relevance of developing this document. The adaption of climate related knowledge, technologies and practices to local conditions, promoting joint learning by farmers, researchers, rural advisor and widely disseminating CSA practices, is critical. This compendium brings together a collection of experiences from different stakeholders with background of agricultural extension and rural advisory services in supporting CSA. The contributions are not intended to be state-of-the art academic articles but thought and discussion pieces of work in progress. The compendium itself is a ‘living‘ document which is intended to be revised periodically

    Thematic issue on evolutionary algorithms in water resources

    Get PDF
    Special Issue on Evolutionary Algorithms.H.R. Maier, Z. Kapelan, J. Kasprzyk, L.S. Matot

    Integrating trait-based empirical and modeling research to improve ecological restoration

    Get PDF
    A global ecological restoration agenda has led to ambitious programs in environmental policy to mitigate declines in biodiversity and ecosystem services. Current restoration programs can incompletely return desired ecosystem service levels, while resilience of restored ecosystems to future threats is unknown. It is therefore essential to advance understanding and better utilize knowledge from ecological literature in restoration approaches. We identified an incomplete linkage between global change ecology, ecosystem function research, and restoration ecology. This gap impedes a full understanding of the interactive effects of changing environmental factors on the long-term provision of ecosystem functions and a quantification of trade-offs and synergies among multiple services. Approaches that account for the effects of multiple changing factors on the composition of plant traits and their direct and indirect impact on the provision of ecosystem functions and services can close this gap. However, studies on this multilayered relationship are currently missing. We therefore propose an integrated restoration agenda complementing trait-based empirical studies with simulation modeling. We introduce an ongoing case study to demonstrate how this framework could allow systematic assessment of the impacts of interacting environmental factors on long-term service provisioning. Our proposed agenda will benefit restoration programs by suggesting plant species compositions with specific traits that maximize the supply of multiple ecosystem services in the long term. Once the suggested compositions have been implemented in actual restoration projects, these assemblages should be monitored to assess whether they are resilient as well as to improve model parameterization. Additionally, the integration of empirical and simulation modeling research can improve global outcomes by raising the awareness of which restoration goals can be achieved, due to the quantification of trade-offs and synergies among ecosystem services under a wide range of environmental conditions

    Climate Change Adaptation and Mitigation Strategies already in practice based on the 1st River Basin Management Plans of the EU Member States

    Get PDF
    The decision whether or not to include climate change (CC) issues into the 1st River Basin Management Plans (RBMP) was depending on the availability of information and on the urgency of the CC related problems involved for each country. Most countries included a chapter to the 1st RBMP do describe the observed CC and its impacts to water resources management and carried out the Âżclimate checkingÂż of their programs of measures but the results were reported with a very different level of detail. The distinction of specific CC measures from the complex of measures dealing with floods, droughts and water quality protection, was rather arbitrary. In the Annex of present report the measures are categorized according to the original reports and, hence, some measures which are qualified as CC measures by one country may be not mentioned by other countries which did not consider the linkage to CC strong enough. Some of the measures in the Annex were not directly listed as measures in the management plans, but were picked out from the text discussing the tackling of climate impact. In present analysis, special attention was paid to adaptation measures addressing climate impact on ecosystems. This topic was rather scarcely presented in nine of the 18 RBMPs analysed. As the measures are translated from different languages, the wording does not pretend the full authenticity of the original text and for more detail it is suggested to consult the original plans in national languages. The present report is of relevance to the 7th EU Framework Programme, Theme 6 (Environment including Climate Change) project REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121), to JRC Thematic Area 3 (Sustainable management of natural resources) foci on CC, to the European Clearing House mechanism on CC, and to the EC Blueprint on Water.JRC.DDG.H.5-Rural, water and ecosystem resource

    Food security, farming, and climate change to 2050: Scenarios, results, policy options

    Get PDF
    As the global population grows and incomes in poor countries rise, so too, will the demand for food, placing additional pressure on sustainable food production. Climate change adds a further challenge, as changes in temperature and precipitation threaten agricultural productivity and the capacity to feed the world's population. This study assesses how serious the danger to food security might be and suggests some steps policymakers can take to remedy the situation.global food security, Climate change, Food prices, Agricultural productivity,
    • 

    corecore