321 research outputs found

    Towards Viable Large Scale Heterogeneous Wireless Networks

    Get PDF
    We explore radio resource allocation and management issues related to a large-scale heterogeneous (hetnet) wireless system made up of several Radio Access Technologies (RATs) that collectively provide a unified wireless network to a diverse set of users through co-ordination managed by a centralized Global Resource Controller (GRC). We incorporate 3G cellular technologies HSPA and EVDO, 4G cellular technologies WiMAX and LTE, and WLAN technology Wi-Fi as the RATs in our hetnet wireless system. We assume that the user devices are either multi-modal or have one or more reconfigurable radios which makes it possible for each device to use any available RAT at any given time subject to resource-sharing agreements. For such a hetnet system where resource allocation is coordinated at a global level, characterizing the network performance in terms of various conflicting network efficiency objectives that takes costs associated with a network re-association operation into account largely remains an open problem. Also, all the studies to-date that try to characterize the network performance of a hetnet system do not account for RAT-specific implementation details and the management overhead associated with setting up a centralized control. We study the radio resource allocation problem and the implementation/management overhead issues associated with a hetnet system in two research phases. In the first phase, we develop cost models associated with network re-association in terms of increased power consumption and communication downtime taking into account various user device assumptions. Using these cost models in our problem formulations, the first phase focuses on resource allocation strategies where we use a high-level system modeling approach to study the achievable performance in terms of conflicting network efficiency measures of spectral efficiency, overall power consumption, and instantaneous and long-term fairness for each user in the hetnet system. Our main result from this phase of study suggests that the gain in spectral efficiency due to multi-access network diversity results in a tremendous increase in overall power consumption due to frequent re-associations required by user devices. We then develop a utility function-based optimization algorithm to characterize and achieve a desired tradeoff in terms of all four network efficiency measures of spectral efficiency, overall power consumption and instantaneous and long-term fairness. We show an increase in a multi-attribute system utility measure of up to 56.7% for our algorithm compared to other widely studied resource allocation algorithms including max-sum rate, proportional fairness, max-min fairness and min power. The second phase of our research study focuses on practical implementation issues including the overhead required to implement a centralized GRC solution in a hetnet system. Through detailed protocol level simulations performed in ns-2, we show an increase in spectral efficiency of up to 99% and an increase in instantaneous fairness of up to 28.5% for two sort-based user device-to-Access Point (AP)/Base Station (BS) association algorithms implemented at the GRC that aim to maximize system spectral efficiency and instantaneous fairness performance metrics respectively compared to a distributed solution where each user makes his/her own association decision. The efficiency increase for each respective attribute again results in a tremendous increase in power consumption of up to 650% and 794% for each respective algorithm implemented at the GRC compared to a distributed solution because of frequent re-associations

    A novel queue-aware wireless link adaptation mechanism and its fixed-point analytical model

    Get PDF
    A point-to-point (PTP) wireless link is studied that carries long-lived TCP flows and is controlled with active queue management (AQM). A cross-layer queue-aware adaptive modulation and coding (AMC)-based link adaptation (LA) mechanism is proposed for this wireless link to improve the TCP-level throughput relative to the case where AMC decisions are made based solely on the physical layer (PHY) parameters. The proposed simple-to-implement LA mechanism involves the use of an aggressive modulation and coding scheme (MCS) with high spectral efficiency and high block error rates when the queue occupancy exceeds a certain threshold, but otherwise a relatively conservative MCS with lower spectral efficiency and lower block error rates. A fixed-point analytical model is proposed to obtain the aggregate TCP throughput attained at this wireless link and the model is validated by ns-3 simulations. Numerical experimentation with the proposed analytical model applied to an IEEE 802.16-based wireless link demonstrates the effectiveness of the proposed queue-aware LA (QAWLA) mechanism in a wide variety of scenarios including cases where the channel information is imperfect. The impact of the choice of the queue occupancy threshold of QAWLA is extensively studied with respect to the choice of AQM parameters in order to provide engineering guidelines for the provisioning of the wireless link. © 2015, Ozturk and Akar

    Medium access control and network planning in wireless networks

    Get PDF
    Wireless Local Area Networks (WLANs) and Wireless Metropolitan Area Networks (WMANs) are two of the main technologies in wireless data networks. WLANs have a short range and aim at providing connectivity to end users. On the other hand, WMANs have a long range and aim at serving as a backbone network and also at serving end users. In this dissertation, we consider the problem of Medium Access Control (MAC) in WLANs and the placement of Relay Stations (RSs) in WMANs. We propose a MAC scheme for WLANs in which stations contend by using jams on the channel. We present analytic and simulation results to find the optimal parameters of the scheme and measure its performance. Our scheme has a low collision rate and delay and a high throughput and fairness performance. Secondly, we present a MAC scheme for the latest generation of WLANs which have very high data rates. In this scheme, we divide the stations into groups and only one station from each group contends to the channel. We also use frame aggregation to reduce the overhead. We present analytic and simulation results which show that our scheme provides a small collision rate and, hence, achieves a high throughput. The results also show that our scheme provides a delay performance that is suitable for real-time applications and also has a high level of fairness. Finally, we consider the problem of placing Relay Stations (RSs) in WMANs. We consider the Worldwide Interoperability for Microwave Access (WIMAX) technology. The RSs are used to increase the capacity of the network and to extend its range. We present an optimization formulation that places RSs in the WiMAX network to serve a number of customers with a pre-defined bit rate. Our solution also provides fault-tolerance by allowing one RS to fail at a given time so that the performance to the users remains at a predictable level. The goal of our solution is to meet the demands of the users, provide fault-tolerance and minimize the number of RSs used

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Quality of service and resource management in IP and wireless networks

    Get PDF
    A common theme in the publications included in this thesis is the quality of service and resource management in IP and wireless networks. This thesis presents novel algorithms and implementations for admission control in IP and IEEE 802.16e networks, active queue management in EGPRS, WCDMA, and IEEE 802.16e networks, and scheduling in IEEE 802.16e networks. The performance of different algorithms and mechanisms is compared with the prior art through extensive ns-2 simulations. We show that similar active queue management mechanisms, such as TTLRED, can be successfully used to reduce the downlink delay (and in some cases even improve the TCP goodput) in different bottlenecks of IP, EGPRS, WCDMA, and IEEE 802.16e access networks. Moreover, almost identical connection admission control algorithms can be applied both in IP access networks and at IEEE 802.16e base stations. In the former case, one just has to first gather the link load information from the IP routers. We also note that DiffServ can be used to avoid costly overprovisioning of the backhaul in IEEE 802.16e networks. We present a simple mapping between IEEE 802.16e data delivery services and DiffServ traffic classes, and we propose that IEEE 802.16e base stations should take the backhaul traffic load into account in their admission control decisions. Moreover, different IEEE 802.16e base station scheduling algorithms and uplink channel access mechanisms are studied. In the former study, we show that proportional fair scheduling offers superior spectral efficiency when compared to deficit round-robin, though in some cases at the cost of increased delay. Additionally, we introduce a variant of deficit round-robin (WDRR), where the quantum value depends on the modulation and coding scheme. We also show that there are several ways to implement ertPS in an efficient manner, so that during the silence periods of a VoIP call no uplink slots are granted. The problem here, however, is how to implement the resumption after the silence period while introducing as little delay as possible

    Improving TCP behaviour to non-invasively share spectrum with safety messages in VANET

    Get PDF
    There is a broad range of technologies available for wireless communications for moving vehicles, such as Worldwide Interoperability for Microwave Access (WiMax), 3G, Dedicated Short Range Communication (DSRC)/ Wireless Access for Vehicular Environment (WAVE) and Mobile Broadband Wireless Access (MBWA). These technologies are needed to support delay-sensitive safety related applications such as collision avoidance and emergency breaking. Among them, the IEEE802.11p standard (aka DSRC/WAVE), a Wi-Fi based medium RF range technology, is considered to be one of the best suited draft architectures for time-sensitive safety applications. In addition to safety applications, however, services of non-safety nature like electronic toll tax collection, infotainment and traffic control are also becoming important these days. To support delay-insensitive infotainment applications, the DSRC protocol suite also provides facilities to use Internet Protocols. The DSRC architecture actually consists of WAVE Short Messaging Protocol (WSMP) specifically formulated for realtime safety applications as well as the conventional transport layer protocols TCP/UDP for non-safety purposes. But the layer four protocol TCP was originally designed for reliable data delivery only over wired networks, and so the performance quality was not guaranteed for the wireless medium, especially in the highly unstable network topology engendered by fast moving vehicles. The vehicular wireless medium is inherently unreliable because of intermittent disconnections caused by moving vehicles, and in addition, it suffers from multi-path and fading phenomena (and a host of others) that greatly degrade the network performance. One of the TCP problems in the context of vehicular wireless network is that it interprets transmission errors as symptomatic of an incipient congestion situation and as a result, reduces the throughput deliberately by frequently invoking slow-start congestion control algorithms. Despite the availability of many congestion control mechanisms to address this problem, the conventional TCP continues to suffer from poor performance when deployed in the Vehicular Ad-hoc Network (VANET) environment. Moreover, the way non-safety applications, when pressed into service, will treat the existing delay-sensitive safety messaging applications and the way these two types of applications interact between them are not (well) understood, and therefore, in order for them to coexist, the implication and repercussion need to be examined closely. This is especially important as IEEE 802.11p standards are not designed keeping in view the issues TCP raises in relation to safety messages. This dissertation addresses the issues arising out of this situation and in particular confronts the congestion challenges thrown up in the context of heterogenous communication in VANET environment by proposing an innovative solution with two optimized congestion control algorithms. Extensive simulation studies conducted by the author shows that both these algorithms have improved TCP performance in terms of metrics like Packet Delivery Fraction (PDF), Packet Loss and End-to-End Delay (E2ED), and at the same time they encourage the non-safety TCP application to behave unobtrusively and cooperatively to a large extent with DSRC’s safety applications. The first algorithm, called vScalable-TCP – a modification of the existing TCPScalable variant – introduces a reliable transport protocol suitable for DSRC. In the proposed approach, whenever packets are discarded excessively due to congestion, the slow-start mechanism is purposely suppressed temporarily to avoid further congestion and packet loss. The crucial idea here is how to adjust and regulate the behaviour of vScalable-TCP in a way that the existing safety message flows are least disturbed. The simulation results confirm that the new vScalable-TCP provides better performance for real-time safety applications than TCP-Reno and other TCP variants considered in this thesis in terms of standard performance metrics. The second algorithm, named vLP-TCP – a modification of the existing TCP-LP variant – is designed to test and demonstrate that the strategy developed for vScalable-TCP is also compatible with another congestion control mechanism and achieves the same purpose. This expectation is borne out well by the simulation results. The same slow-start congestion management strategy has been employed but with only a few amendments. This modified algorithm also improves substantially the performance of basic safety management applications. The present work thus clearly confirms that both vScalable-TCP and vLP-TCP algorithms – the prefix ‘v’ to the names standing for ‘vehicular’ – outperform the existing unadorned TCP-Scalable and TCP-LP algorithms, in terms of standard performance metrics, while at the same time behaving in a friendly manner, by way of sharing bandwidth non-intrusively with DSRC safety applications. This paves the way for the smooth and harmonious coexistence of these two broad, clearly incompatible or complementary categories of applications – viz. time-sensitive safety applications and delay-tolerant infotainment applications – by narrowing down their apparent impedance or behavioural mismatch, when they are coerced to go hand in hand in a DSRC environment
    corecore