38,237 research outputs found

    Smart Grid Testbed using SCADA Software and Xbee Wireless Communication

    Get PDF
    This paper presents the development of Smart Grid testbed using SCADA software and Xbee wireless communication. The proposed testbed combines both the software simulation and the hardware simulation. The Winlog SCADA software is employed to implement the algorithm in the Smart Grid system. To communicate between nodes and the Smart Grid Center, the Xbee wireless communication is employed. The testbed is useful to test and verify the developed algorithms in the Smart Grid system. By using the hardware testbed, the more realistic simulation could be performed. While by using the software testbed, the complex model and algorithm could be implemented easily. The experimental results show that the proposed testbed works properly in simulating the continuous supply algorithm implemented in the Smart Grid system

    Smart detectors for Monte Carlo radiative transfer

    Full text link
    Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon packages. Several types of smart detectors, each corresponding to a different smoothing kernel, are presented. We show that smart detectors, while preserving the same effective resolution, reduce the noise in the surface brightness distributions compared to the classical detectors. The most efficient smart detector realizes a noise reduction of about 10%, which corresponds to a reduction of the required number of photon packages (i.e. a reduction of the simulation run time) of 20%. As the practical implementation of the smart detectors is straightforward and the additional computational cost is completely negligible, we recommend the use of smart detectors in Monte Carlo radiative transfer simulations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Tools for modelling and simulating the Smart Grid

    Get PDF
    The Smart Grid (SG) is a Cyber-Physical System (CPS) considered a critical infrastructure divided into cyber (software) and physical (hardware) counterparts that complement each other. It is responsible for timely power provision wrapped by Information and Communication Technologies (ICT) for handling bi-directional energy flows in electric power grids. Enacting control and performance over the massive infrastructure of the SG requires convenient analysis methods. Modelling and simulation (M&S) is a performance evaluation technique used to study virtually any system by testing designs and artificially creating 'what-if' scenarios for system reasoning and advanced analysis. M&S avoids stressing the actual physical infrastructure and systems in production by addressing the problem in a purely computational perspective. Present work compiles a non-exhaustive list of tools for M&S of interest when tackling SG capabilities. Our contribution is to delineate available options for modellers when considering power systems in combination with ICT. We also show the auxiliary tools and details of most relevant solutions pointing out major features and combinations over the years
    corecore