58 research outputs found

    Cross-level sensor network simulation with COOJA

    Get PDF
    Simulators for wireless sensor networks are a valuable tool for system development. However, current simulators can only simulate a single level of a system at once. This makes system development and evolution difficult since developers cannot use the same simulator for both high-level algorithm development and low-level development such as device-driver implementations. We propose cross-level simulation, a novel type of wireless sensor network simulation that enables holistic simultaneous simulation at different levels. We present an implementation of such a simulator, COOJA, a simulator for the Contiki sensor node operating system. COOJA allows for simultaneous simulation at the network level, the operating system level, and the machine code instruction set level. With COOJA, we show the feasibility of the cross-level simulation approach

    Methodology to Evaluate WSN Simulators: Focusing on Energy Consumption Awareness

    Get PDF
    ISBN: 978-1-925953-09-1International audienceNowadays, there exists a large number of available network simulators, that differ in their design, goals, and characteristics. Users who have to decide which simulator is the most appropriate for their particular requirements, are today lost, faced with a panoply of disparate and diverse simulators. Hence, it is obvious the need for establishing guidelines that support users in the tasks of selecting and customizing a simulator to suit their preferences and needs. In previous works, we proposed a generic and novel methodological approach to evaluate network simulators, considering a set of qualitative and quantitative criteria. However, it lacks criteria related to Wireless Sensor Networks (WSN). Thus, the aim of this work is three fold: (i) extend the previous proposed methodology to include the evaluation of WSN simulators, such as energy consumption modelling and scalability; (ii) elaborate a study of the state of the art of WSN simulators, with the intention of identifying the most used and cited in scientific articles; and (iii) demonstrate the suitability of our novel methodology by evaluating and comparing three of the most cited simulators. Our novel methodology provides researchers with an evaluation tool that can be used to describe and compare WSN simulators in order to select the most appropriate one for a given scenario

    A CASE STUDY OF VARIOUS WIRELESS NETWORK SIMULATION TOOLS

    Get PDF
    4G is the fastest developing system in the history of mobile communication networks. Network connectivity is paramount for all kinds of big enterprises.  4G not only provides super-fast connectivity to millions of users, but can also act as an enterprise network connectivity enabler and it has inherent advantages such as higher bandwidth, low latency, higher spectrum efficiency along with backward compatibility and future proofing. The design of the 4G based Long Term Evolution physical network provides the required flexibility for optimization during the development phase. In this paper LTE Network related supporting simulation tools is presented to demonstrate the need of Hardware co-simulation of the LTE system. After the feasibility analysis, the importance of the model is to be ported Field Programmable Gate Array platform is examined in survey in detail with the supporting inferences along with the comparison of different wireless network simulators suitable for LTE

    IMPLEMENTATION AND OPTIMIZATION OF RWP MOBILITY MODEL IN WSNS UNDER TOSSIM SIMULATOR

    Get PDF
    Mobility has always represented a complicated phenomenon in the network routing process. This complexity is mainly facilitated in the way that ensures reliable connections for efficient orientation of data. Many years ago, different studies were initiated basing on routing protocols dedicated to static environments in order to adapt them to the mobile environment. In the present work, we have a different vision of mobility that has many advantages due to its 'mobile' principle. Indeed, instead of searching to prevent mobility and testing for example to immobilize momentarily a mobile environment to provide routing task, we will exploit this mobility to improve routing. Based on that, we carried out a set of works to achieve this objective. For our first contribution, we found that the best way to make use of this mobility is to follow a mobility model. Many models have been proposed in the literature and employed as a data source in most studies. After a careful study, we focused on the Random Waypoint mobility model (RWP) in order to ensure routing in wireless networks. Our contribution involves a Random Waypoint model (in its basic version) that was achieved on the TOSSIM simulator, and it was considered as a platform for our second (and main) contribution, in which we suggested an approach based RWP where network nodes can collaborate and work together basing on our recommended algorithm. Such an approach offers many advantages to ensure routing in a dynamic environment. Finally, our contributions comprise innovative ideas for suggesting other solutions that will improve them

    Simulation, modelling and packet sniffing facilities for IoT: A systematic analysis

    Get PDF
    Man and Machine in terms of heterogeneous devices and sensors collaborate giving birth to the Internet of Things, Internet of future. Within a short span of time 30billions intelligent devices in form of smart applications will get connected making it difficult to test and debug in terms of time and cost.Simulators play vital role in verifying application and providing security before actually deploying it in real environment.Due to constraint environment in terms of memory, computation, and energy this review paper under a single umbrella will throw insight on comprehensive and in-depth analysis keeping in mind various barriers, critical design characteristics along with the comparison of candidate simulator and packet sniffing tool. Post simulated analysis play vital role in deciding behavior of data and helping research community to satisfy quality of service parameters.This review makes it feasible to make an appropriate choice for simulators and network analyzer tool easy fulfilling needs and making IoT a realit

    Reducing energy consumption in mobile ad-hoc sensor networks

    Get PDF
    PhD ThesisRecent rapid development of wireless communication technologies and portable mobile devices such as tablets, smartphones and wireless sensors bring the best out of mobile computing, particularly Mobile Ad-hoc Sensor Networks (MASNETs). MASNETs are types of Mobile Ad-hoc Networks (MANETs) that are designed to consider energy in mind because they have severe resource constraints due to their lack of processing power, limited memory, and bandwidth as in Wireless Sensor Networks (WSNs). Hence, they have the characteristics, requirements, and limitations of both MANETs and WSNs. There are many potential applications of MASNETs such as a real-time target tracking and an ocean temperature monitoring. In these applications, mobility is the fundamental characteristic of the sensor nodes, and it poses many challenges to the routing algorithm. One of the greatest challenge is to provide a routing algorithm that is capable of dynamically changing its topology in the mobile environment with minimal consumption of energy. In MASNETs, the main reason of the topology change is because of the movement of mobile sensor nodes and not the node failure due to energy depletion. Since these sensor nodes are limited in power supply and have low radio frequency coverage, they easily lose their connection with neighbours, and face diffi culties in updating their routing tables. The switching process from one coverage area to another consumes more energy. This network must be able to adaptively alter the routing paths to minimize the effects of variable wireless link quality, topological changes, and transmission power levels on energy consumption of the network. Hence, nodes prefer to use as little transmission power as necessary and transmit control packets as infrequently as possible in energy constrained MASNETs. Therefore, in this thesis we propose a new dynamic energy-aware routing algorithm based on the trans- mission power control (TPC). This method effectively decreases the average percentage of packet loss and reduces the average total energy consumption which indirectly pro- long the network lifetime of MASNETs. To validate the proposed protocol, we ran the simulation on the Avrora simulator and varied speed, density, and route update interval of mobile nodes. Finally, the performance of the proposed routing algorithm was measured and compared against the basic Ad-hoc On-demand Distance Vector (AODV) routing algorithm in MASNETs.The Ministry of Education of Malaysia: The Universiti Malaysia Sarawak

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    A Radio Link Quality Model and Simulation Framework for Improving the Design of Embedded Wireless Systems

    Get PDF
    Despite the increasing application of embedded wireless systems, developers face numerous challenges during the design phase of the application life cycle. One of the critical challenges is ensuring performance reliability with respect to radio link quality. Specifically, embedded links experience exaggerated link quality variation, which results in undesirable wireless performance characteristics. Unfortunately, the resulting post-deployment behaviors often necessitate network redeployment. Another challenge is recovering from faults that commonly occur in embedded wireless systems, including node failure and state corruption. Self-stabilizing algorithms can provide recovery in the presence of such faults. These algorithms guarantee the eventual satisfaction of a given state legitimacy predicate regardless of the initial state of the network. Their practical behavior is often different from theoretical analyses. Unfortunately, there is little tool support for facilitating the experimental analysis of self-stabilizing systems. We present two contributions to support the design phase of embedded wireless system development. First, we provide two empirical models that predict radio-link quality within specific deployment environments. These models predict link performance as a function of inter-node distance and radio power level. The models are culled from extensive experimentation in open grass field and dense forest environments using all radio power levels and covering up to the maximum distances reachable by the radio. Second, we provide a simulation framework for simulating self-stabilizing algorithms. The framework provides three feature extensions: (i) fault injection to study algorithm behavior under various fault scenarios, (ii) automated detection of non-stabilizing behavior; and (iii) integration of the link quality models described above. Our contributions aim at avoiding problems that could result in the need for network redeployment
    corecore