2,586 research outputs found

    A biomechanical model of the face including muscles for the prediction of deformations during speech production

    Full text link
    A 3D biomechanical finite element model of the face is presented. Muscles are represented by piece-wise uniaxial tension cable elements linking the insertion points. Such insertion points are specific entities differing from nodes of the finite element mesh, which makes possible to change either the mesh or the muscle implementation totally independently of each other. Lip/teeth and upper lip/lower lip contacts are also modeled. Simulations of smiling and of an Orbicularis Oris activation are presented and interpreted. The importance of a proper account of contacts and of an accurate anatomical description is show

    Improvements on a simple muscle-based 3D face for realistic facial expressions

    Get PDF
    Facial expressions play an important role in face-to-face communication. With the development of personal computers capable of rendering high quality graphics, computer facial animation has produced more and more realistic facial expressions to enrich human-computer communication. In this paper, we present a simple muscle-based 3D face model that can produce realistic facial expressions in real time. We extend Waters' (1987) muscle model to generate bulges and wrinkles and to improve the combination of multiple muscle actions. In addition, we present techniques to reduce the computation burden on the muscle mode

    Face

    Get PDF
    The face is probably the part of the body, which most distinguishes us as individuals. It plays a very important role in many functions, such as speech, mastication, and expression of emotion. In the face, there is a tight coupling between different complex structures, such as skin, fat, muscle, and bone. Biomechanically driven models of the face provide an opportunity to gain insight into how these different facial components interact. The benefits of this insight are manifold, including improved maxillofacial surgical planning, better understanding of speech mechanics, and more realistic facial animations. This chapter provides an overview of facial anatomy followed by a review of previous computational models of the face. These models include facial tissue constitutive relationships, facial muscle models, and finite element models. We also detail our efforts to develop novel general and subject-specific models. We present key results from simulations that highlight the realism of the face models

    Physically-based forehead animation including wrinkles

    Get PDF
    Physically-based animation techniques enable more realistic and accurate animation to be created. We present a fully physically-based approach for efficiently producing realistic-looking animations of facial movement, including animation of expressive wrinkles. This involves simulation of detailed voxel-based models using a graphics processing unit-based total Lagrangian explicit dynamic finite element solver with an anatomical muscle contraction model, and advanced boundary conditions that can model the sliding of soft tissue over the skull. The flexibility of our approach enables detailed animations of gross and fine-scale soft-tissue movement to be easily produced with different muscle structures and material parameters, for example, to animate different aged skins. Although we focus on the forehead, our approach can be used to animate any multi-layered soft body

    A finite element model of the face including an orthotropic skin model under in vivo tension

    Get PDF
    Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the face is proposed in which the skin is represented by an orthotropic hyperelastic constitutive model. The in vivo tension inherent in skin is also represented in the model. The model was tested by simulating several facial expressions by activating appropriate orofacial and jaw muscles. Previous experiments calculated the change in orientation of the long axis of elliptical wounds on patients’ faces for wide opening of the mouth and an open-mouth smile (both 30 degrees). These results were compared with the average change of maximum principal stress direction in the skin calculated in the face model for wide opening of the mouth (18o) and an openmouth smile (25 degrees). The displacements of landmarks on the face for four facial expressions were compared with experimental measurements in the literature. The corner of the mouth in the model experienced the largest displacement for each facial expression (11–14 mm). The simulated landmark displacements were within a standard deviation of the measured displacements. Increasing the skin stiffness and skin tension generally resulted in a reduction in landmark displacements upon facial expression

    Biomechanical understanding of blow-out fractures: A finite element study

    Get PDF
    Blow-out fractures are one of the most common fractures in maxillofacial trauma. Two mechanisms are thought to cause these fractures, the buckling mechanism and hydraulic mechanism. This study aims to compare between the two mechanisms in terms of intensity and extension using the finite elements method. Three-dimensional model was generated using computed tomography data of young male patient. Virtual loads were applied on the infra-orbital rim and the eyeball separately. Von Mises stress and equivalent elastic strain were examined in each simulation. The simulation predicted fractures on the infra-orbital rim and orbital floor when simulating the buckling mechanism, and on the orbital floor and mesial wall when simulating the hydraulic mechanism. Biomechanical studies are essential in understanding maxillofacial fractures mechanisms. Our results ascertained and confirmed what is seen clinically and explained the two mechanisms of blow-out fractures

    A physically based trunk soft tissue modeling for scoliosis surgery planning systems

    Get PDF
    One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.IRSC / CIH
    • …
    corecore