207 research outputs found

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201

    A Logical Approach to Efficient Max-SAT solving

    Get PDF
    Weighted Max-SAT is the optimization version of SAT and many important problems can be naturally encoded as such. Solving weighted Max-SAT is an important problem from both a theoretical and a practical point of view. In recent years, there has been considerable interest in finding efficient solving techniques. Most of this work focus on the computation of good quality lower bounds to be used within a branch and bound DPLL-like algorithm. Most often, these lower bounds are described in a procedural way. Because of that, it is difficult to realize the {\em logic} that is behind. In this paper we introduce an original framework for Max-SAT that stresses the parallelism with classical SAT. Then, we extend the two basic SAT solving techniques: {\em search} and {\em inference}. We show that many algorithmic {\em tricks} used in state-of-the-art Max-SAT solvers are easily expressable in {\em logic} terms with our framework in a unified manner. Besides, we introduce an original search algorithm that performs a restricted amount of {\em weighted resolution} at each visited node. We empirically compare our algorithm with a variety of solving alternatives on several benchmarks. Our experiments, which constitute to the best of our knowledge the most comprehensive Max-sat evaluation ever reported, show that our algorithm is generally orders of magnitude faster than any competitor

    Classical simulation complexity of extended Clifford circuits

    Full text link
    Clifford gates are a winsome class of quantum operations combining mathematical elegance with physical significance. The Gottesman-Knill theorem asserts that Clifford computations can be classically efficiently simulated but this is true only in a suitably restricted setting. Here we consider Clifford computations with a variety of additional ingredients: (a) strong vs. weak simulation, (b) inputs being computational basis states vs. general product states, (c) adaptive vs. non-adaptive choices of gates for circuits involving intermediate measurements, (d) single line outputs vs. multi-line outputs. We consider the classical simulation complexity of all combinations of these ingredients and show that many are not classically efficiently simulatable (subject to common complexity assumptions such as P not equal to NP). Our results reveal a surprising proximity of classical to quantum computing power viz. a class of classically simulatable quantum circuits which yields universal quantum computation if extended by a purely classical additional ingredient that does not extend the class of quantum processes occurring.Comment: 17 pages, 1 figur

    GPU Enabled Automated Reasoning

    Get PDF

    Even Shorter Proofs Without New Variables

    Get PDF

    Clause Redundancy and Preprocessing in Maximum Satisfiability

    Get PDF
    The study of clause redundancy in Boolean satisfiability (SAT) has proven significant in various terms, from fundamental insights into preprocessing and inprocessing to the development of practical proof checkers and new types of strong proof systems. We study liftings of the recently-proposed notion of propagation redundancy-based on a semantic implication relationship between formulas-in the context of maximum satisfiability (MaxSAT), where of interest are reasoning techniques that preserve optimal cost (in contrast to preserving satisfiability in the realm of SAT). We establish that the strongest MaxSAT-lifting of propagation redundancy allows for changing in a controlled way the set of minimal correction sets in MaxSAT. This ability is key in succinctly expressing MaxSAT reasoning techniques and allows for obtaining correctness proofs in a uniform way for MaxSAT reasoning techniques very generally. Bridging theory to practice, we also provide a new MaxSAT preprocessor incorporating such extended techniques, and show through experiments its wide applicability in improving the performance of modern MaxSAT solvers.Peer reviewe

    Even shorter proofs without new variables

    Full text link
    Proof formats for SAT solvers have diversified over the last decade, enabling new features such as extended resolution-like capabilities, very general extension-free rules, inclusion of proof hints, and pseudo-boolean reasoning. Interference-based methods have been proven effective, and some theoretical work has been undertaken to better explain their limits and semantics. In this work, we combine the subsumption redundancy notion from (Buss, Thapen 2019) and the overwrite logic framework from (Rebola-Pardo, Suda 2018). Natural generalizations then become apparent, enabling even shorter proofs of the pigeonhole principle (compared to those from (Heule, Kiesl, Biere 2017)) and smaller unsatisfiable core generation.Comment: 21 page
    • …
    corecore