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Abstract
Proof formats for SAT solvers have diversified over the last decade, enabling new features such
as extended resolution-like capabilities, very general extension-free rules, inclusion of proof hints,
and pseudo-boolean reasoning. Interference-based methods have been proven effective, and some
theoretical work has been undertaken to better explain their limits and semantics. In this work, we
combine the subsumption redundancy notion from [9] and the overwrite logic framework from [42].
Natural generalizations then become apparent, enabling even shorter proofs of the pigeonhole
principle (compared to those from [27]) and smaller unsatisfiable core generation.
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1 Introduction

The impressive recent improvements in SAT solving have come coupled with the need to
ascertain their results. While satisfiability results are straightforward to check, unsatisfiab-
ility results require massive proofs, sometimes petabytes in size [28, 24]. The search for
proof systems that enable both easy proof generation and smaller proofs has yield many
achievements [17, 15, 53, 27, 41, 3, 9, 16, 4].

Modern proof systems rely on redundancy properties presenting a phenomenon known as
interference [31, 23, 42]. Whereas traditional proof systems derive clauses that are implied
by the premises, interference-based proof systems merely require introduced clauses to be
consistent with them. Interference proofs preserve the existence of a model throughout the
proof, rather than models themselves. A somewhat counterintuitive semantics thus arises:
introducing a clause in an interference-based proof system does not only depend on the
presence of some clauses, but also on the absence of some other clauses [39, 42].

The most general interference-based proof system in the literature is known as DSR [9].
While its predecesor DPR had success in generating short proofs of the pigeonhole formula
without introducing new variables [27], DSR did not seem to succeeded in improving this
result, despite being intuitively well-suited for it.

In this work, we analyze the semantics of DSR proofs extending previous work on DPR
proofs [42]. We find similar results to that article; in particular, satisfiability-preserving DSR
proofs can be reinterpreted as more traditional, DAG-shaped, model-preserving proofs over
an extension of propositional logic with a mutation operator. Crucially, these DAG-shaped
proofs remove the whole-formula dependence interference is characterized by, enabling an
easier analysis of the necessary conditions for satisfiability-preservation.
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This analysis hints at a generalization we call weak substition redundancy (WSR ["wIz@~]),
which allows shorter, more understandable, easier to generate, faster to check proofs. We
demonstrate this by giving an even shorter proof of the pigeonhole formula. We also provide a
couple of examples where smaller unsatisfiable cores can be generated during proof checking,
and fewer lemmas are required during proof generation.

Interference-based proofs

Much of proof generation and checking is still done in the same way as a couple decades
ago, by logging the sequence of learnt clauses in CDCL checkers, sometimes together with
antecedents, and checking those clauses for simple entailment criteria such as reverse unit
propagation (RUP) [17, 54]. Other parts of the proof are generated using more advanced
deduction techniques; even their infrequent use can dramatically decrease the size of generated
proofs [20, 53, 32, 26], overcoming not only technical limitations in proof generation, but
also theoretical bounds [18, 51, 52]. Clause deletion information is also recorded in the proof,
which is needed to reduce memory footprint in checking [21].

Much research has been invested on finding ever more powerful proof rules [31, 27, 9]
that allow to succintly express inprocessing techniques such as Gaussian elimination [48,
47, 38, 10, 16] or symmetry breaking [1, 2, 22]. These proof rules are collectively called
interference-based rules, since their derivation depends on the whole formula rather than just
on the presence of some specific clauses [31, 23, 39, 42]. One of the most general interference
techniques is substitution redundancy (SR), which allows a version of reasoning without loss
of generality [9]; this technique has been recently lifted to pseudo-Boolean reasoning with
impressive results [16].

Substitution redundancy and the pigeonhole problem

A previous version of SR, called propagation redundancy (PR) [27], was successful in achieving
short proofs of the pigeonhole problem, known for having exponential proofs in resolution [18]
and polynomial yet cumbersome proofs in extended resolution [11]. The proof from [27] can
be understood in terms of reasoning without loss of generality [42]: it assumes that a given
pigeon is in a given pigeonhole, for otherwise we could swap pigeons around.

PR does not have a method to swap the values of variables; rather, it can only conditionally
set them to true or false. Hence, linearly many reasoning steps are needed to just to achieve
the swap. SR, on the other hand, allows variable swaps, so one could expect that the clause
expressing the result of this swap would satisfy the SR property. Surprisingly, it does not; in
fact, the clause fails to satisfy a requirement that in its PR version was almost trivial.

Interference and logical dependency

Interference-based proofs do not have a “dependence” or “procedence” structure: since the
ability to introduce a clause is contingent on the whole formula, no notion of “antecedents”
exists for SR and its predecessors. This becomes a problem when computing unsatisfiable
cores and trimmed proofs [37]; it also has the potential to harm the performance of proof
checkers, since some techniques that allow skipping unnecessary steps during proof checking
are based on logical dependence [19].

This also relates to an issue arising when generating proof fragments for inprocessing
techniques. Sometimes, a clause C cannot be introduced as SR because some lemmas are
needed; the proof generator might know these lemmas and how to derive them. However,
because interference depends on the whole formula, introducing the lemmas before C can
further constrain the requirements for C to be introduced, demanding yet more lemmas.
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Contributions

Previous work showed that the semantics of PR can be expressed in terms of overwrite
logic [42]. Overwrite logic extends propositional logic with an overwrite operator. Within
overwrite logic, DPR proofs can be regarded as DAG-shaped, model-preserving proofs; PR
introduction can then be shown to behave as reasoning without loss of generality.

In Section 3 we provide an extension to the overwrite logic framework, called mutation
logic, which elucidates the semantics of DSR proofs. In particular, model-preserving proofs
within mutation logic mimicking satisfiability-preserving DSR proofs can be extracted, as
shown in Section 3.1. This allows a clearer understanding of the SR redundancy rule, which
in turn makes some improvements over SR apparent.

By introducing minor modifications to the definition of SR, in Section 4 we obtain a new,
more powerful redundancy rule called weak substitution redundancy (WSR). WSR proofs are
more succint than DSR proofs, which we demonstrate by providing a shorter proof of the
pigeonhole problem using only O(n2) clause introductions in Section 5.1.

Furthermore, WSR enables finer-grained ways to reason about dependency in interference-
based proofs. This can yield shorter proof checking runtimes and smaller trimmed proofs
and unsatisfiability cores when SR clauses are used (Section 5.2), as well as easier proof
generation techniques by providing clearer separation for interference lemmas (Section 5.3).

2 Preliminaries

Given a literal l, we denote its complement as l. We denote clauses by juxtaposing its literals
within square brackets, i.e. we denote the clause l1 ∨ l2 ∨ l3 as [l1l2l3]. We similarly denote
conjunctions of literals, called cubes, as juxtaposed literals within angle brackets, e.g. ⟨l1l2l3⟩.
Crucially, we only consider clauses and cubes that do not contain complementary literals,
as most SAT solvers and proof checkers already make that assumption. Equivalently, we
disallow tautological clauses and unsatisfiable cubes. We also define complementation for
clauses and cubes, i.e. [l1 . . . ln] =

〈
l1 . . . ln

〉
and ⟨l1 . . . ln⟩ =

[
l1 . . . ln

]
. SAT solving typically

operates over formulas in conjunctive normal form (CNF), which are conjunctions of clauses.
Here we regard CNF formulas as finite sets of clauses.

An atom is either a literal, or one of the symbols ⊤ or ⊥ representing the propositional
constants true and false. Complementation is extended to atoms with ⊤ = ⊥ and ⊥ = ⊤.
We can then define the usual propositional semantics as follows. A model I is a total map
from atoms to {⊤,⊥} such that I(⊤) = ⊤ and I(l) = I(l) for all atoms l.

We say that I satisfies a literal l (written I |= l) whenever I(l) = ⊤. This definition is
recursively extended in the usual way to clauses (disjunctively), cubes and CNF formulas
(conjunctively). Similarly, we use the typical notions of entailment (denoted |=), logical
equivalence (≡) and satisfiability. We also say that a logical expression φ satisfiability-entails
another expression ψ (denoted φ |=sat ψ) whenever, if φ is satisfiable, then ψ is satisfiable
too. Similarly, φ is satisfiability-equivalent to ψ (denoted φ ≡sat ψ) whenever φ and ψ are
either both satisfiable or both unsatisfiable (i.e. φ |=sat ψ and ψ |=sat φ).

An atomic substitution σ is a total map from atoms to atoms satisfying the following
constraints:

(i) σ(⊤) = ⊤.
(ii) σ(l) = σ(l) for all atoms l.
(iii) σ(l) ̸= l only for finitely many atoms l.

SAT 2023
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This definition is essentially equivalent to the substitutions from [9]. The form presented
here makes it easier to compose atomic substitutions with other atomic substitutions, i.e.
(σ ◦ τ)(l) = σ(τ(l)), and with models, i.e. (I ◦ σ)(l) = I(σ(l)); the latter is a model that
satisfies a given logical expression φ iff I satisfies the expression resulting from applying the
substitution σ to φ.

Note that atomic substitutions have a finite representation: only finitely many literals are
mapped to atoms other than themselves, and giving the mapping for one polarity fixes the
mapping for the other polarity. Hence, one can represent a substitution as a set of mappings
{x1 7→ l1, . . . , xn 7→ ln} where the xi are pairwise distinct variables, the li are atoms, and
any variable other than the xi is mapped to itself.

Our restriction that clauses must be non-tautological is somewhat at odds with the
concept of substitutions. An atomic substitution σ trivializes a clause C if either:
(a) there is a literal l ∈ C with σ(l) = ⊤.
(b) there are two literals l, k ∈ C with σ(l) = σ(k).
Applying σ to C yields a tautology whenever σ trivializes C, and a (non-tautological) clause
otherwise. Then we can define the reduct of a clause C or a CNF formula F by an atomic
substitution σ as:

C
∣∣
σ

= [σ(l) | l ∈ C and σ(l) ̸= ⊥] , if σ does not trivialize C
F

∣∣
σ

=
{
C

∣∣
σ

| C ∈ F and σ does not trivialize C
}

▶ Lemma 1. Let C be a clause, F be a CNF formula, and σ be an atomic substitution. The
following then hold:

(i) σ trivializes C if and only if I ◦ σ |= C for all models I.
(ii) If σ does not trivialize C, then I ◦ σ |= C if and only if I |= C

∣∣
σ

for all models I.
(iii) I ◦ σ |= F if and only if I |= F

∣∣
σ

for all models I.

Proof. Let us first show (ii). First, observe that I satisfies C
∣∣
σ

if and only if I satisfies σ(l)
for some literal l ∈ C. But this is equivalent to (I ◦ σ)(l) = ⊤ for some l ∈ C, which is
precisely I ◦ σ |= C.

We now show (i). The “only if” implication is straightforward from the definition of a
trivializing substitution. For the “if” implication, we show that if σ does not trivialize C,
then I ◦ σ falsifies C for some model I. Claim (ii) gives out that any model I falsifying C

∣∣
σ
,

which exists because it is a (non-tautological) clause, has this property.
Claim (iii) then follows easily from claims (i) and (ii). ◀

Note that, for atomic substitutions that only map variables to the constants ⊤ or ⊥, there
exists a correspondence with cubes. In particular, given variables x1, . . . , xn, y1, . . . , ym, the
cube Q is bijectively associated to the atomic substitution Q⋆ where:

Q = ⟨x1 . . . xn y1 . . . ym⟩ Q⋆ = {x1 7→ ⊤, . . . , xn 7→ ⊤, y1 7→ ⊥, . . . , ym 7→ ⊥}

2.1 Interference-based redundancy notions
Throughout the last decade, several redundancy notions collectively called interference-based
rules have appeared in the literature [31, 27, 23, 9]. Originating from clause elimination
techniques [29, 30, 33], interference can be also used to introduce clauses in the formula;
unlike more classical techniques, though, these clauses do not need to be implied by the
formula, but rather consistent with it. Specifically, given a CNF formula F , introducing a
clause C through interference requires that F ≡sat F ∪ {C}.
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An

An−1 En

. . .
A2

A1 E2

A0 E1

E0

res

res

res

sub

Figure 1 General form of a subsumption-merge chain [39, 43] deriving the clause An from
premises E0, . . . , En. sub represents the subsumption rule, so it requires E0 ⊆ A0. res represents
the resolution rule, which can be applied if there is a literal li ∈ Ai−1 with li ∈ Ei; in this case,
Ai = Ai−1 \ {li} ∨ Ei \ {li}. Subsumption-merge chains additionally require that the res inferences
are actually self-subsuming [14], i.e. Ei \ {li} ⊆ Ai−1. Under these conditions, the clause An is a
RUP clause over any CNF formula containing E0, . . . , En. Conversely, any RUP clause over F can
be derived as An through a subsumption-merge chain from some clauses E0, . . . , En ∈ F . In fact,
the Ei are the reason clauses used during unit propagation in a RUP check in reverse ordering (up
to a topologically-compatible reordering) [15, 39].

Many interference-based rules are based on a criterion for entailment called reverse unit
propagation (RUP) [17]. A clause C is called a RUP clause over a CNF formula F whenever
unit propagation applied to F using the assumption literals C yields a conflict; under these
circumstances, it can be shown that F |= C.

RUP clauses can be characterized in terms of resolution proofs. In particular, a clause
C is a RUP clause over F if and only if C can be derived from F through a derivation of
a particular form, called a subsumption-merge chain [39]. These are derivations as shown
in Figure 1, starting with a subsumption inference and followed by a number of resolution
merges, also known as self-subsuming resolutions [14]. The specifics of subsumption-merge
chains in relation to RUPs are not quite relevant for our discussion; we direct the interested
reader to [39, 43]. For us, it suffices to know that checking whether C is a RUP clause over
F is essentially the same as finding the subsumption-merge chain that derives C from F [54].

Building on RUP clauses, many redundancy notions can be defined. The most relevant for
our discussion are, in increasing generality order, resolution-asymmetric tautologies (RATs),
propagation redundancies (PRs) and substitution-redundancies (SRs):

▶ Definition 2. Let C be a clause and F be a CNF formula.
(i) We say C is a RAT clause [31] over F upon a literal l whenever l ∈ C and, for every

clause D ∈ F with l ∈ D, the expression C ∨ D \ {l} is either a tautology or a RUP
clause over F .

(ii) We say C is a PR clause [27] over F upon a cube Q whenever Q |= C (i.e. Q ∩ C ̸= ∅)
and each clause in F

∣∣
Q⋆ is a RUP clause over F

∣∣
C

⋆ .
(iii) We say C is a SR clause [9] over F upon an atomic substitution σ whenever σ trivializes

C and each clause in F
∣∣
σ

is a RUP clause over F
∣∣
C

⋆ .

For a given witness (i.e. the literal l, the cube Q or the substitution σ), checking whether
a clause C is a RAT/PR/SR clause over F upon the corresponding witness is polynomial
over the size of F . In particular, this check takes at most one RUP check for each clause [9];
and RUP checking is quadratic on the size of F [15]. Finding the right witness is nevertheless
NP-complete [27]. These redundancy notions satisfy the general condition for interference:

SAT 2023
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▶ Theorem 3. Let C be a clause and F be a CNF formula, and assume either of the
following:
(a) C is a RAT clause over F upon a literal l [31].
(b) C is a PR clause over F upon some cube Q [27].
(c) C is an SR clause over F upon some atomic substitution σ [9].
Then, F ≡sat F ∪ {C}.

In this paper we will mostly focus on substitution redundancy, which is the most general
of them. However, we will use an equivalent definition, as per [9, Lemma 5]: instead of the
condition that each clause in F

∣∣
σ

is a RUP clause over F
∣∣
C

⋆ , we require that, for each clause
D ∈ F , either σ trivializes D, or C |= D

∣∣
σ
, or the clause C ∨D

∣∣
σ

is a RUP clause over F .

2.2 Proof systems for SAT solving

RUP clauses provided the first effective solution to the problem of certifying an unsatisfiability
result from a SAT solver. In particular, learnt clauses in a CDCL SAT solver [45] are RUP
clauses [17, 15], so checking that each clause in the list of learnt clauses is a RUP clause over
the previously derived formula amounts to certifying that the last clause in the list is entailed
by the solved formula. If that clause is the empty clause, the list constitutes a refutation.

However, the proof complexity of RUP proofs is rather poor: there exist many simple
problems whose refutations in resolution-based proof systems, such as RUP, are exponential
on the size of the refuted formula [18, 51, 52]. In fact, this problem extends to (purely)
CDCL SAT solvers, on which these results impose a performance upper bound [40, 5].

To alleviate the impact of these results, some inprocessing techniques were developed,
including reencoding of cardinality constraints [6, 35], Gaussian elimination over Z2 [48, 47]
and symmetry breaking [1, 2]. Unfortunately, the aforementioned limitations still apply to
the generated refutation, so emitting a RUP proof would still take exponential time.

Allowing interference-based reasoning in the proof led to a vast number of proof formats [20,
53, 27, 13, 12, 34, 49, 9, 4] and proof generation techniques [46, 36, 22, 38, 10, 8, 16, 7]. The
proof complexity of these systems is equivalent to that of extended resolution [50, 44, 32, 26],
for which no exponential lower bounds are known.

Unlike more traditional, DAG-shaped proofs, interference-based proofs take the form of a
list of clause introductions and deletions. Starting with the input CNF formula F , clause
introductions of the form i: C add a clause C to F , whereas clause deletions of the form
d: C remove C from F . At each point in the proof there is an accumulated formula where
all the previous instructions in the proof have been applied.

Just as DAG-shaped proofs like resolution maintain a soundness invariant (i.e. each
model satisfying the premises of the proof also satisfies the conclusion), interference-based
proofs are satisfiability-preserving [39]: at any point in an interference-based proof of F , the
accumulated formula G satisfies F |=sat G. This is guaranteed by imposing some conditions
on clause introductions; clause deletions do not have any requirements, because deleting a
clause is always satisfiability-preserving.

Different proof systems then arise from different conditions on clause introductions.
Delete Resolution Asymmetric Tautology (DRAT) requires them to be either RUP clauses
or RAT clauses over the accumulated formula [20, 53], and similarly for Delete Propagation
Redundancy (DPR) [27] and Delete Substitution Redundancy (DSR) [9]. Note that, in the
case of introducing a RAT/PR/SR clause (as opposed to a RUP clause), the witness ω must
be specified; in this case we denote it as i: C, ω.
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2.3 Overwrite logic
Interference-based proofs represent a structural and semantic departure from traditional
proof systems. This is due to the non-monotonic properties of SR: an SR clause over F
upon σ is not necessarily an SR clause over a formula containing F . [31, 39].

The consequences of non-monotonicity are far-reaching. Interference-based proofs can-
not be freely composed as, for example, resolution proofs can [25]: the correctness of a
clause introduction depends, in principle, on the whole formula, which motivated the name
“interference” as opposed to “inference” [23].

DPR proofs can be seen as model-preserving, tree-shaped, monotonic proofs over a more
general logic, known as overwrite logic [42]. There, a model I can be conditionally overwritten
with an overwrite rule of the form (Q := T ), where Q and T are cubes. Then, the model
I ◦ (Q := T ) is defined as I ◦ Q⋆ if I |= T , or as I otherwise. That is, if T is satisfied,
then the minimal assignment satisfying Q is overwritten on I. Instead of clauses, overwrite
logic deals with overwrite clauses, represented as ∇ε1 . . . εn. C, where C is a clause and
the εi = (Qi := Ti) are overwrite rules. Such an overwrite clause is satisfied by a model I
whenever I ◦ ε1 ◦ · · · ◦ εn |= C.

This framework accurately expresses the reasoning performed by PR introduction [42]:

▶ Theorem 4. Let C be a PR clause over a CNF formula F upon a cube Q. Then, the
implication F |= ∇(Q := C). (F ∪ {C}) holds.

This result means that non-monotonic, satisfiability-preserving reasoning using PR clauses
can be turned into monotonic, model-preserving reasoning in overwrite logic. [42] further
introduces a traditional, DAG-shaped proof system over overwrite clauses that mimics PR
proofs, hence suggesting that the whole-formula dependence featured by interference-based
proof systems can, to some extent, be curbed.

3 Mutation semantics for DSR proofs

The overwrite logic presented in Section 2.3 was designed to formalize the semantics of DPR
proofs. In particular, models are overwritten with cubes, which act as witnesses for PR
clause introductions. In order to extend this framework to DSR proofs, the role of cubes
must now be fulfilled by atomic substitutions. Here we introduce mutation logic, which is a
straightforward extension of overwrite logic.

In its most general form, a mutation rule is an expression (σ := τ), where σ is an atomic
substitution and τ is any logical expression that can be evaluated under a model. We call τ
the trigger of the rule, and σ its effect. Mutation rules themselves are not logical expressions
and they cannot be satisfied or falsified. They are instead intended to codify the idea “if the
trigger τ is satisfied, then apply the effect substitution σ”. We thus define the application of
a mutation rule (σ := τ) to a model I as:

I ◦ (σ := τ) =
{
I ◦ σ if I |= τ

I if I ̸|= τ

As with overwrite logic, the main difference with propositional logic is the inclusion
of a mutation operator ∇. As in [42], one can recursively define mutation formulas as
either propositional formulas, or expressions of the form ∇(σ := τ). φ where σ is an atomic
substitution and φ, τ are mutation formulas. The semantics of the mutation operator are
given by I |= ∇(σ := τ). φ whenever I◦(σ := τ) |= φ. In other words: evaluating ∇(σ := τ). φ
corresponds to evaluating a formula φ′ obtained from φ by applying the effect σ to φ only if
the trigger τ is satisfied.

SAT 2023
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This framework is very general, but just as discussed in [42], nothing meaningful is lost
by introducing some strong restrictions. For the purpose of this paper, we will only consider
cubic mutation rules of the form (σ := Q) where Q is a propositional cube. The logical
expressions we will use are of three kinds, where we use ∇ε⃗. φ to denote a nested mutation
∇ε1. . . .∇εn. φ with cubic mutations εi:

Mutation clauses of the form ∇ε⃗. C where C is a propositional clause.
Mutation CNF formulas (MCNF), which are finite sets of mutation clauses. The semantics
of MCNF formulas are conjunctive, i.e. they are satisfied if every mutation clause in them
is satisfied.
Uniformly mutation CNF formulas (UMCNF) of the form ∇ε⃗. F where F is a propositional
CNF formula. ∇ distributes over the propositional connectives, e.g. ∇ε⃗. (φ1 ∧ φ2) ≡
(∇ε⃗. φ1) ∧ (∇ε⃗. φ2). Hence, UMCNF can be embedded in the fragment of the MCNF
formulas that contain clauses with the same mutation prefix.

Similarly to how overwrite logic allows the expression of PR clauses as model-preserving
inferences under an overwrite [42], SR clauses become consequences under a mutation.

▶ Theorem 5. Let F be a CNF formula and C be an SR clause over F upon an atomic
mutation σ. Then, F |= ∇(σ := C). (F ∪ {C}).

Proof. Let I be any model with I |= F . Our goal is to show that the model I ′ = I ◦ (σ := C)
satisfies F ∪ {C}. If I |= C holds, then I ′ = I, which satisfies both F and C.

Let us now show the case with I ̸|= C, where we have I ′ = I ◦ σ. First observe that, since
C is an SR clause upon σ, the clause C is trivialized by σ. Lemma 1 then shows I ′ |= C.
Now, consider any clause D ∈ F . By the definition of SR clauses, either σ trivializes D, or
C |= D

∣∣
σ
, or the clause C ∨D

∣∣
σ

is a RUP clause over F .
As above, the first case implies I ′ |= D. For the second and third cases, it suffices to

show I |= D
∣∣
σ
, since Lemma 1 then proves I ′ |= D. For the second case, this follows from

I |= C. For the third case, it follows from I |= F and I ̸|= C. We have thus shown that
I ′ |= F ∪ {C} as we wanted. ◀

As for PR clauses in [42], one can read Theorem 5 as claiming that SR clause introduction
(and in general, interference-based reasoning) performs reasoning without loss of generality.
In particular: C can be assumed in F because, were it not to hold in a given model of F , a
transformation, namely the one given by σ, could be applied to the variables such that F is
still satisfied after the transformation, and C becomes satisfied too.

3.1 DSR proofs as model-preserving proofs
The entailment in Theorem 5 raises the question whether SR proofs can be equivalently
expressed as model-preserving, DAG-shaped proofs over the corresponding mutated clauses.
Following [42], we can define a proof system as shown in Figure 2.

▶ Theorem 6. The inference rules in Figure 2 are sound, i.e. any model satisfying the
premises of each rule satisfies its conclusion as well.

Proof. The proofs for res and sub are straightforward, since the ∇ operator preserves
implications.

For ∇taut, consider any model I, and let I ′ = I ◦ ε⃗ ◦ (σ := C). If I ◦ ε⃗ |= C, then
I ′ = I ◦ ε⃗, which satisfies C. Otherwise, I ′ = I ◦ ε⃗ ◦ σ, and since σ trivializes C we have
I ′ |= C.
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res
∇ε⃗. C \ {l} ∨ D \

{
l
}∇ε⃗. C ∇ε⃗. D

sub
∇ε⃗. D

∇ε⃗. C
where C ⊆ D

∇taut
∇ε⃗. ∇(σ := C). C

where σ trivializes C

∇intro
∇ε⃗. ∇(σ := Q). C

∇ε⃗. C ⋆∇ε⃗. Q ∨ C
∣∣
σ where ⋆ is only needed if Q ̸|= C

∣∣
σ

∇elim
∇ε⃗. C

∣∣
σ

∇ε⃗. ∇(σ := Q). C ∇ε⃗. ∇(σ := Q). C
∣∣
σ where σ does not trivialize C

Figure 2 A proof system over mutation clauses.

Let us now show ∇elim correct. Consider any model I satisfying the premises, and call
I ′ = I ◦ ε⃗ ◦ (σ := C), so that I ′ |= C and I ′ |= C

∣∣
σ
. If I ◦ ε⃗ |= Q, then I ′ = I ◦ ε⃗ ◦ σ satisfies

C; then I ◦ ε⃗ satisfies C
∣∣
σ

by Lemma 1. Otherwise, I ′ = I ◦ ε⃗ satisfies C
∣∣
σ
.

Finally, for ∇intro, let I be any model satisfying the premises, and I ′ = I ◦ ε⃗ ◦ (σ := Q).
If I ◦ ε⃗ satisfies Q then either it also satisfies Q ∨ C

∣∣
σ

or Q |= C
∣∣
σ
. Either way, we can

conclude I ◦ ε⃗ |= C
∣∣
σ
, and since in this case we have I ′ = I ◦ ε⃗ ◦ σ, Lemma 1 implies that

I ′ |= C. The other case is I ◦ ε⃗ ̸|= Q, and in this case I ′ = I ◦ ε⃗, which satisfies C. ◀

Upon closer inspection of the proof of Theorem 5, the relation between the SR property
and satisfiability-preservation becomes clearer. When each clause D ∈ F is required that
either σ trivializes D, or C |= D

∣∣
σ
, or the clause C ∨ D

∣∣
σ

is a RUP clause over F , these
conditions enable deriving ∇(σ := C). D through rules ∇taut or ∇intro hold: the left-hand
premise in ∇intro just means that C has been derived earlier in the SR proof, while the
right-hand premise ensures that C ∨D

∣∣
σ

can be derived (e.g. as a RUP clause).
On the other hand, ∇taut guarantees that ∇(σ := C). C can be derived, since the

definition of SR clauses forces C to be trivialized by σ. Given that ∇ distributes over ∧,
these conditions are proving F |= ∇(σ := C). F .

Similar to [42], a translation of a DSR proof into a mutation logic proof then works as
follows. At each step in the DSR proof, we consider the list of rules (σi := Ci) corresponding
to each SR clause Ci introduced upon σi earlier in the proof; this list is potentially empty,
e.g. at the start of the proof. Let us denote this list by ε⃗. Then, at that point, all clauses
D in the accumulated CNF formula have been derived as mutation clauses ∇ε⃗. D in the
translation. The translation then proceeds as follows:
1. Deletions in the DSR proof are not translated.
2. A RUP clause C can be derived through a subsumption-merge chain [39]; rules res and

sub can express a similar derivation of the mutation version of C.
3. For an SR clause C over a CNF formula F upon an atomic substitution σ, we must derive

mutation clauses D∇ = ∇ε⃗.∇(σ := C). D for each clause D ∈ F ∪ {C}.
a. When σ trivializes D, the mutation clause D∇ can be derived as an axiom through

∇taut. Note that this case includes the case D = C as well; this detail will become
relevant in Section 4.1.

b. When C |= D
∣∣
σ
, the mutation clause D∇ can be infered from ∇ε⃗. D through ∇intro.

We know this premise has been previously derived because D ∈ F .
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c. When C ∨ D
∣∣
σ

is a RUP clause over F , a subsumption-merge chain deriving that
clause with premises in F exists [15, 39]. Replacing clauses D′ with mutation clauses
∇ε⃗. D′, resolution inferences with ∇res and subsumption inferences with ∇sub in
that proof then yields a derivation of ∇ε⃗. C ∨D

∣∣
σ

from previously derived mutation
clauses. Finally, the rule ∇intro derives D∇.

4. At the end of the proof, the empty clause [ ] is derived in the SR clause, and the translation
has derived the mutated clause ∇ε. [ ]. The identity [ ] = [ ]

∣∣
σ

for all substitutions σ
ensures that ∇elim can be iteratively applied to eliminate all mutation operators, so
that [ ] is derived in the translation as well.

4 Extending DSR proofs

Understanding DSR proofs as mutation logic proofs opens the door to finer-grained reasoning
about interference-based proofs. Crucially, one of the main issues with interference-based
proofs is that deriving a clause involves reasoning over the whole currently derived formula.
In particular, interference-based proofs can be highly non-monotonic: deleting a clause in
the current formula can enable new SR introductions; and conversely, introducing a clause
can disable previously available SR introductions.

This is, at first sight, at odds with the translation described in Section 3.1: the proofs we
obtain there are model-preserving, DAG-shaped proofs with clear dependencies with other
derived clauses. What can be derived in a subproof is never affected by independent proof
sub-DAGs, so clause introduction never disables SR introductions. Deletions are even more
intriguing, since they do not even exist in the mutation logic framework (just as there is no
notion of deletion in a resolution proof DAG).

Another noticeable feature is how differently an SR clause C over F is treated in the
definition compared to the clauses D ∈ F . Even if at first sight it might look reasonable to
consider different conditions on the premises and on the conclusion, the translation from
Section 3.1 uses the same set of inference rules to derive both C∇ and D∇.

4.1 Weak substitution redundancy
In the translation, the conditions of the definition are used to guarantee that C∇ can be
derived through a ∇taut inference. However, we have three rules that can derive this
mutated clause, and the three are involved in deriving D∇ for each D ∈ F . We can thus relax
the conditions over C by demanding just the same as for each D: either σ must trivialize C,
or C |= C

∣∣
σ
, or the clause C ∨ C

∣∣
σ

must be a RUP clause over F .
Furthermore, there is nothing in the translation forcing us to derive D∇ for each and all

clauses D ∈ F . Rather, we must only do so for those clauses that the proof uses later on.
However, even if we do not need D after the SR introduction, we still can use D for the RUP
checks of other clauses in F . Note that this is not quite the same as deleting D before the
SR introduction: doing so could make the RUP checks of other clauses in F fail.

These two details suggest an extension of substitution redundancy, which we call weak
substitution redundancy (WSR).

▶ Definition 7. A clause C is a WSR clause over a CNF formula F upon an atomic
substitution σ modulo a subformula ∆ ⊆ F whenever, for each clause D ∈ (F \ ∆) ∪ {C},
either of the following holds:
(a) σ trivializes D.
(b) C |= D

∣∣
σ
.

(c) C ∨D
∣∣
σ

is a RUP clause over F .
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▶ Theorem 8. Let C be a WSR clause over a CNF formula F upon an atomic substitution
σ modulo a subformula ∆ ⊆ F . Then, F |= ∇(σ := C). ((F \ ∆) ∪ {C}) holds. In particular,
if F is satisfiable, then so is (F \ ∆) ∪ {C}.

Proof. Similar to the proof of Theorem 5. The main difference is that F |= ∇(σ := C). C
must now be shown using the same reasoning as F |= ∇(σ := C). D for D ∈ F . ◀

The complexity of checking a WSR clause introduction is similar to that of a PR/SR
check. On the one hand, one extra RUP check might be needed if C ∨C

∣∣
σ

is not a tautology;
on the other hand, one RUP check is spared for each clause in ∆.

A minor benefit of WSR clauses is that, while not every RUP is a RAT, PR or SR clause,
every RUP clause is a WSR clause upon the identity atomic substitution. The reason for
this is that the condition that the atomic substitution σ must trivialize [ ] always fails. This
allows reasoning about WSR proofs without the need for case discussion.

▶ Corollary 9. Let C be clause and F be a CNF formula. Then, C is a RUP clause over F
if and only if C is a WSR clause over F upon the identity atomic substitution modulo ∅.

This, together with the embedded notion of deletions as ∆, enables the definition of a
proof system with only one rule w: C, σ \ ∆. This rule introduces clause C and deletes
clauses in ∆, and is correct whenever C is a WSR clause over F upon σ modulo ∆. We call
this proof system the WSR proof system.

5 Applications of WSR proofs

So far, we have not yet shown any benefit of WSR over SR (or that they are not equivalent,
for that matter). In this section, we demonstrate techniques using WSR proofs that are
unavailable in previously existing interference-based proof systems.

5.1 A shorter proof of the pigeonhole problem
One of the first propositional problems that was found to only have exponential resolution
proofs was the pigeonhole problem [18]. While polynomial proofs in the extended resolution
system had already been known for a decade [11], these proofs needed to introduce fresh
variables to support definitions. However, the seminal work on PR clauses presented a shorter
DPR proof that did not use extra variables, using O(n3) instructions [27].

In [42] an analysis of this proof from the overwrite logic perspective was presented; let us
briefly reproduce it here. The pigeonhole problem encodes the unsatisfiable problem “find an
assignment of n pigeons to n− 1 pigeonholes such that no two pigeons share the same hole”.
We consider variables pij encoding “pigeon i is in hole j”. Let us define the following clauses:

Hin = [pij | 1 ≤ j < n] for n > 0 and 1 ≤ i ≤ n

Pijk = [pik pjk] for 1 ≤ i < j and 1 ≤ k

Lijn =
[
pi(n−1) pnj

]
for n > 1, 1 ≤ i < n and 1 ≤ j < n− 1

Rin =
[
pi(n−1)

]
for n > 1 and i < n

Briefly, Hin says that pigeon i stays in some hole 1 ≤ j < n; Pijk prevents that pigeons i
and j both occupy hole k; Lijn can be read as “if the pigeon i is in the last hole, then hole j
does not contain the last pigeon”; and finally Rin prevents that pigeon i is in the last hole.
The pigeonhole problem for n pigeons is then encoded by

Πn = {Hin | 1 ≤ i ≤ n} ∪ {Pijk | 1 ≤ i < j ≤ n and 1 ≤ k < n}
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Intuitively, a refutation of Πn proceeds by noting that, without loss of generality, each pigeon
i < n is not in hole n− 1; were this not the case, one can swap pigeon i with pigeon n (which
is not in hole n because that would violate Pin(n−1)). Then, pigeons 1, . . . , (n− 1) and holes
1, . . . , (n − 2) are in the conditions of the pigeonhole problem Πn−1. This process can be
iterated until Π1 is reached, which is trivially unsatisfiable.

The proof from [27] follows this reasoning, but a single PR clause is not expressive enough
to encode swaps: the only mutations that it can handle are setting variables to true or false.
Thus, the proof first derives clauses Lijn for 1 ≤ i < n and 1 ≤ j < n− 1 as PR clauses with
the cube Qijn =

〈
pi(n−1) pnjpijpn(n−1)

〉
. This encodes the following reasoning: without loss

of generality, if the pigeon i is in the last hole, then hole j does not contain the last pigeon;
were this not the case, ensure that pigeon i is not in the last hole but in the hole j instead,
and that the last pigeon is not in hole j but in the last hole instead. Once the clauses Lijn

have been derived for each 1 ≤ i < n, the clause Rin ensuring that pigeon i is not in the last
hole can be derived as a RUP clause.

When considered together, the mutations Q⋆
ijn for 1 ≤ j < n − 1 express the atomic

substitution that swaps pigeons i and n, that is:

σin = {pij 7→ pnj , pnj 7→ pij | 1 ≤ j < n} for 1 ≤ i < n

DSR can handle this kind of mutation. Let us write a DSR derivation of Πn−1 from Πn

(where we are omitting some trailing deletions for simplicity):

(i: R1n, σ1n), . . . , (i: R(n−1)n, σ(n−1)n), (i: H1(n−1)), . . . , (i: H(n−1)(n−1))

Clauses Hi(n−1) can be introduced as RUP clauses, since they result from resolution on
Hin and Rin. Furthermore, one would hope for the Rin clauses to be SR clauses over the
preceding formula upon σin. Let us check this. For each clause D in the preceding formula
F , we need to check that either of the following holds:
(a) D is trivialized by σin

(b)
〈
pi(n−1)

〉
|= D

∣∣
σin

(c) the clause D∇ =
[
pi(n−1)

]
∨D

∣∣
σin

is a RUP clause over F .
Checking case by case one can see that the reduct D

∣∣
σin

is always another clause in F , so
D∇ is either a tautology or can be derived by subsumption from F (which implies it is a
RUP clause).

The clause Rin, nevertheless, is not an SR clause over F upon σin, because it is not
trivialized by σin. Observe, however, that

C∇ = C ∨ C
∣∣
σin

=
[
pi(n−1) pn(n−1)

]
= Pin(n−1) ∈ F

In particular, C∇ it is a RUP clause over F . Hence, Rin is in fact a WSR clause over F upon
σin modulo ∅. Hence, we can define the WSR derivation πn of Π1 from Πn given in Figure 3
for n > 1. The derivation πn has O(n2) instructions, and is in fact a refutation, since [] ∈ Π1.

5.2 Smaller cores and shorter checking runtime
SAT solvers generate proofs which often introduce clauses uninvolved in the derivation of a
contradiction. This is practically unavoidable because of how solvers generate proofs: solvers
mostly just log every learnt clause [17], and at that point the solver does not know what
learnt clauses will be useful.

State-of-the-art proof checkers thus validate the proof backwards [19, 53]. Starting from
the empty clause at the end of the proof, the checker finds out what clauses are needed
to derive each clause as a RUP clause. Required clauses are then marked; as the checker
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Figure 3 A WSR refutation πn of the pigeonhole problem Πn for n ≥ 1 containing only O(n2)
instructions. Here, π1 is the empty list and id represents the identity atomic substitution.

w: R1n, σ1n \ ∅
w: R2n, σ2n \ ∅

...
w: R(n−1)n, σ(n−1)n \ ∅
w: H1(n−1), id \ {R1n}
w: H2(n−1), id \ {R2n}

...
w: H(n−1)(n−1), id \ ({R1n} ∪ (Πn \ Πn−1))
πn−1

proceeds backwards, unmarked clauses are skipped. If one were to visualize a RUP proof as
a DAG, this amounts to only checking the connected component that actually derives the
empty clause while disregarding all other connected components in the DAG.

Backwards checking has three interesting consequences. First, it vastly improves checking
runtime: not only are checks for unmarked clauses skipped, but also their premises are
skipped as well (unless they are used to derive another marked clause). Second, a shorter,
trimmed proof can be extracted as a by-product of checking. Finally, by the time the checker
reaches the start of the proof, the marked clauses in the input formula form a (not necessarily
minimal) unsatisfiable core.

Backwards checking in interference-based proofs

Interference-based proofs do not have DAG-like dependencies as RUP proofs have. Let us
formalize the problem of backwards checking in this situation. We assume that the checker
keeps track of a CNF formula F and marked clauses M ⊆ F as it proceeds backwards
through the proof. When a RAT/PR/SR introduction i: C, ω is reached with C ∈ M , the
checker removes C from both the formula F and the marked clauses M and validates the
corresponding RAT/PR/SR introduction. The goal then is to find some (preferably small)
subformula M ′ with M ⊆ M ′ ⊆ F such that C is a RAT/PR/SR clause upon ω over M ′;
this will be the new set of marked clauses.

In the best case scenario, C satisfies the corresponding redundancy property over M , so
the checker can move on with M ′ = M . There is only one way the redundancy property
might not hold over M : when one of the RUP checks from Definition 2 fails over M (but still
succeeds over F ), the premises of the induced subsumption-merge chain must become marked;
let us (conspicuously) call this set of newly marked clauses ∆. The problem we are tackling
is whether clauses in ∆ really need their own RUP check as mandated by Definition 2.

For RAT, it turns out, they do not: one can show that, for a witness literal l in a RAT
check, the clauses in ∆ never contain l, so they never trigger further RUP checks. Such a
convenient coincidence does not hold for PR or SR, though. In order to establish that C is a
PR/SR clause upon some M ′, the clauses in ∆ must undergo their own RUP check, which
might add new clauses to ∆, and so on until fixpoint.

This is nevertheless wasteful. By the time the first ∆ has been computed, introducing C
can already be claimed to be satisfiability-preserving, just not as a PR/SR: the conditions
above prove that C is a WSR clause upon ω over M ∪ ∆ modulo ∆. This means that a
proof checker (even one that only checks PR/SR) can simply set M ′ = M ∪ ∆ and continue
checking the rest of the proof.

SAT 2023



22:14 Even Shorter Proofs Without New Variables

To the best of our knowledge, existing checkers do not deal with this situation in an
optimal way, e.g. the reference DPR checker dpr-trim resorts instead to the fixpoint method1.
Note that the fixpoint method always produces a larger M ′ than the WSR-based method,
with associated longer runtimes, larger unsatisfiability cores and longer trimmed proofs.

Even if for (uncertified) checking WSR only seems relevant at a theoretical level, state-
of-the-art proof checkers emit trimmed, annotated proofs that can be further checked with
a verified tool [12, 49]. The formats these annotated proofs use, such as LRAT or LPR,
are based on RAT/PR, and so the fixpoint method is needed if an annotated proof must
be emitted in one of these formats. Either way, the need for the fixpoint method could be
removed by emitting WSR-based annotated proofs.

▶ Example 10. Let us define three CNF formulas. The formula M contains clauses:

[a c x] [a u v x] [c u v x] [a x y z] [a c x y] [a b u]
[c u] [u y z]

[
a b c

]
[c x z]• [c xz]• [c x y]• [a b u v x]•

The formula ∆ contains:

[b u x]
[
b t v x y

] [
b t v x z

]
[t v y z]

[
t v y z

]
Finally, Γ =

{[
b x u y z

]}
. Let us assume that a proof checker is checking a DSR refutation

of the unsafistiable formula F = M ∪ ∆ ∪ Γ backwards. It eventually reaches the first
instruction, an SR clause introduction for C = [xu] upon the atomic substitution σ =
{x 7→ ⊤, a 7→ ⊤, v 7→ ⊥, t 7→ ⊤}. At this point, the clauses in M (in addition to C) have
been marked for checking; since this is the first instruction, the marked clauses after checking
C for SR are an unsatisfiable core of F . One can check that σ trivializes C, and that all
clauses in M except for the ones highlighted with • satisfy the conditions in Definition 2
using propagation clauses exclusively from M . For the highlighted clauses, propagating with
clauses from M ∪ ∆ does suffice to satisfy Definition 2.

As we learnt in Section 4, we can now stop checking: C is a WSR clause over the formula
M ∪ ∆ modulo ∆; the newly marked clauses (which form the generated unsatisfiable core)
are thus M ∪ ∆. Current checkers will nevertheless not stop here, since SR is more restrictive
than WSR. In particular, they check the newly marked clauses ∆ for the conditions in
Definition 2 as well. As it turns out, C is not even an SR clause over M ∪ ∆, but only over
F : for the RUP check for C ∨

[
t v y z

] ∣∣
σ

to succeed, the clause in Γ is needed too. That
clause becomes subsequently marked, and a further check is performed for it. This check
finally succeeds, reaching a fixpoint.

This example shows that SR marks strictly more clauses than WSR, which translates
into larger generated unsatisfiable cores and trimmed proofs, as well as a longer checking
runtime since the extra marked clauses will be themselves checked.

5.3 Interference-free interference lemmas
The differences between SR and WSR presented in Section 5.2 can too be exploited during
proof generation. While the largest share of a proof generated by a state-of-the-art SAT solver
consists of learnt clauses introduced as RUP clauses as well as clause deletions, inprocessing
techniques also contribute to the proof. Typically, an inprocessing technique performs some

1 See https://github.com/marijnheule/dpr-trim/blob/
83eb40b9028100aca63a419eb6d08b45acf517ad/dpr-trim.c, line 660.

https://github.com/marijnheule/dpr-trim/blob/83eb40b9028100aca63a419eb6d08b45acf517ad/dpr-trim.c
https://github.com/marijnheule/dpr-trim/blob/83eb40b9028100aca63a419eb6d08b45acf517ad/dpr-trim.c
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reasoning and then a (to some extent) hardcoded proof fragment of the results is generated.
No proof search is performed; rather, the specialized reasoning performed by the inprocessing
technique is translated into the target proof system by a method that has previously been
proven correct (on paper, not in silico).

Interference-based proof systems are notable for their ability to generate succint proof
fragments for many inprocessing techniques and non-CDCL methods, including parity
reasoning [38, 16], symmetry breaking [22] and BDD-based reasoning [7]. Devising these
proofs is complex for several reasons; among them is that, in an interference-based proof
system, introduced lemmas may need further lemmas for satisfy Definition 2.

Let us assume we want to generate a proof fragment deriving a clause C as an SR clause
from F upon some atomic substitution σ. The clause C has been obtained through some
inprocessing technique, and we know that all the clauses D∇ = C ∨ D

∣∣
σ

for D ∈ F are
implied by C because of some property of the inprocessing technique. However, we might find
that some of the D∇ are not RUPs over F ; after all, RUP is just a criterion for entailment.
We can derive some additional clauses (i.e. lemmas) L1, . . . , Ln from F such that D∇ is a
RUP over F ∪ L1, . . . , Ln, but now the definition of SR clauses demands that the Li

∇ are
RUP clauses as well, which might need additional clauses and so on.

This is, in essence, the proof generation version of the proof checking situation from
Section 5.2. Just as we did there, with WSR we can completely bypass the need to prove
that the Li

∇ are RUP clauses: C is already a WSR clause over F ∪
{
L1, . . . , Ln

}
upon σ

modulo
{
L1, . . . , Ln

}
. In other words, WSR allows introducing interference lemmas that

need not be taken into account for RUP checks.

▶ Example 11. Let us consider the CNF formula F containing clauses:

[a b x y] [a b x y z] [a b x z] [a u v] [c u v]
[
a c b y

]
[a c b y][

c b y z
] [

c b x y z
] [

c b x z
]

[u v] [u v] [u v]

We want to derive the clause C = [x]. Unfortunately, C is not a RUP clause over F , so we
try to introduce it as an SR clause upon the atomic substitution σ = {x 7→ ⊤, y 7→ z, z 7→ y}.
This almost works: all the conditions in Definition 2 hold, except for C∨

[
b c x z

] ∣∣
σ

=
[
b c x y

]
not being a RUP clause over F . We can derive some RUP lemmas from F , for example
L1 = [a y v] and then L2 = [a y]; the clause

[
b c x y

]
is indeed a RUP clause over F ∪ {L1, L2}.

Here is where WSR and SR show their differences again. Under WSR, we can already
introduce C in F , because the paragraph above implies that C is a WSR clause over
F ∪ {L1, L2} upon σ modulo {L1, L2}. This is not the case for SR, though: because the
clause C ∨ L2

∣∣
σ

= [a x z] is not a RUP clause over F ∪ {L1, L2}, the clause C is not SR over
F upon σ. We would need to find additional lemmas to make it so, which might then need
further lemmas themselves.

6 Conclusion

We have presented a generalization of the SR redundancy notion, called weak substitution
redundancy (WSR). This extension is straightforward once the semantics of interference have
been understood, which we achieve by extending the overwrite logic framework from [42]
into mutation logic, which is able to handle atomic substitutions.

The main differences between SR and WSR are the weakening of one unnecessarily strong
condition in the definition, and the specification of a set of clauses that can be used for
ensuring the interference conditions but will not participate in interference themselves.
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These minor differences have an impact on the versatility of the proof system. Shorter
proofs can be obtained, lemmas can be used in a less obstrusive way, the efficiency of the
backwards checking algorithm is enhanced, and smaller unsatisfiable cores and trimmed
proofs can be generated.
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