30 research outputs found

    Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification

    Get PDF
    Multi-element uncertainty quantification approaches can robustly resolve the high sensitivities caused by discontinuities in parametric space by reducing the polynomial degree locally to a piecewise linear approximation. It is important to extend the higher degree interpolation in the smooth regions up to a thin layer of linear elements that contain the discontinuity to maintain a highly accurate solution. This is achieved here by introducing Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collocation (SSC) method. For each simplex in the discretization of the parametric space, the stencil with the highest polynomial degree is selected from the set of candidate stencils to construct the local response surface approximation. The application of the resulting SSC–ENO method to a discontinuous test function shows a sharper resolution of the jumps and a higher order approximation of the percentiles near the singularity. SSC–ENO is also applied to a chemical model problem and a shock tube problem to study the impact of uncertainty both on the formation of discontinuities in time and on the location of discontinuities in space

    Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification

    Get PDF
    Multi-element uncertainty quantification approaches can robustly resolve the high sensitivities caused by discontinuities in parametric space by reducing the polynomial degree locally to a piecewise linear approximation. It is important to extend the higher degree interpolation in the smooth regions up to a thin layer of linear elements that contain the discontinuity to maintain a highly accurate solution. This is achieved here by introducing Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collocation (SSC) method. For each simplex in the discretization of the parametric space, the stencil with the highest polynomial degree is selected from the set of candidate stencils to construct the local response surface approximation. The application of the resulting SSC–ENO method to a discontinuous test function shows a sharper resolution of the jumps and a higher order approximation of the percentiles near the singularity. SSC–ENO is also applied to a chemical model problem and a shock tube problem to study the impact of uncertainty both on the formation of discontinuities in time and on the location of discontinuities in space

    Non-intrusive uncertainty quantification

    Get PDF

    Subcell resolution in simplex stochastic collocation for spatial discontinuities

    Get PDF
    Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC–SR method is based on resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers’ equation, a shock tube problem, and the transonic flow over the RAE 2822 airfoil show that SSC–SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples

    Simplex-stochastic collocation method with improved scalability

    Get PDF
    The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than 5. The main purpose of this paper is to identify bottlenecks, and to improve upon this bad scalability. In order to do so, we propose an alternative interpolation stencil technique based upon the Set-Covering problem, and we integrate the SSC method in the High-Dimensional Model-Reduction framework. In addition, we address the issue of ill-conditioned sample matrices, and we present an analytical map to facilitate uniformly-distributed simplex sampling
    corecore