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Multi-element uncertainty quantification approaches can robustly resolve the high sensi-
tivities caused by discontinuities in parametric space by reducing the polynomial degree
locally to a piecewise linear approximation. It is important to extend the higher degree
interpolation in the smooth regions up to a thin layer of linear elements that contain the
discontinuity to maintain a highly accurate solution. This is achieved here by introducing
Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collo-
cation (SSC) method. For each simplex in the discretization of the parametric space, the
stencil with the highest polynomial degree is selected from the set of candidate stencils
to construct the local response surface approximation. The application of the resulting
SSC–ENO method to a discontinuous test function shows a sharper resolution of the jumps
and a higher order approximation of the percentiles near the singularity. SSC–ENO is also
applied to a chemical model problem and a shock tube problem to study the impact of
uncertainty both on the formation of discontinuities in time and on the location of discon-
tinuities in space.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Resolving discontinuities in stochastic problems is important, since they can lead to high sensitivities with respect to in-
put uncertainties. They can also result in oscillatory approximations and, consequently, in the prediction of non-zero prob-
abilities for unphysical realizations such as negative static pressures. In order to avoid these problems, the polynomial
interpolation degree can locally be reduced to a linear approximation to avoid overshoots at the discontinuity in a multi-ele-
ment uncertainty quantification (UQ) approach. In this context, two points are essential to maintain a highly accurate solu-
tion despite the locally first degree approximation. Firstly, the region in which the interpolation is reduced to a piecewise
linear function should be as small as possible. This means that the samples need to be concentrated around the discontinuity
to pinpoint its location. Secondly, the higher degree interpolation in the smooth regions should be extended as close as pos-
sible up to the discontinuity to maintain high order accuracy near the singularity. These two objectives are achieved here by
introducing an Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collocation (SSC) method.

The ENO scheme has been developed by Harten and Osher [13] as a robust spatial discretization in the finite volume
method (FVM) for deterministic Computational Fluid Dynamics (CFD) [14]. In that field, the robust approximation of discon-
tinuities is critical for resolving shock waves and contact surfaces in the flow field. Therefore, it was proposed by Abgrall [1]
and Barth [6] to use shock-capturing FVM to discretize also the parametric space to obtain robust approximations for
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stochastic CFD. These FVM discretizations of the combined physical and parametric space use the ENO and Weighted Essen-
tially Non-Oscillatory (WENO) [16] schemes. Since FVM has originally been developed for the three-dimensional physical
space, the direct extension of FVM to these high dimensional parametric spaces can, however, be inefficient due to the
curse-of-dimensionality. Because of the different nature of the parametric space, there are also no physical fluxes between
the cells in the stochastic directions, which form the basis of FVM. Therefore, we follow a different approach to extend the
robustness of FVM to parametric space. We reformulate the robustness principles of FVM in terms of the parametric space
and develop new UQ methods that satisfy these concepts in the stochastic dimensions. This approach has the advantages
that it maintains the FVM robustness in combination with the effectiveness of specifically designed methods for UQ, which
can also be used with other spatial discretizations than FVM. In this way, we have previously introduced, for instance, the
Total Variation Diminishing (TVD) [12,31], Extremum Diminishing (ED) [15,33], and Local Extremum Diminishing (LED)
[15,35] principles into UQ and proposed the Essentially Extremum Diminishing (EED) [34] concept.

The ENO spatial discretization [13] achieves an essentially non-oscillatory approximation of the solution of hyperbolic
conservation laws. Non-oscillatory means, in this context, that the number of local extrema in the solution does not increase
with time. The ENO scheme obtains this property using an adaptive-stencil approach with a uniform polynomial degree for
reconstructing the spatial fluxes. Each spatial cell Xj is assigned r stencils fSj;igr

i¼1 of degree p, all of which include the cell Xj

itself. Out of this set of candidate stencils fSj;ig, the stencil Sj is selected for cell Xj that results in the interpolation wjðxÞwhich
is smoothest in some sense based on an indicator of smoothness ISj;i. In this way, a cell next to a discontinuity is adaptively
given a stencil consisting of the smooth part of the solution, which avoids Gibbs-like oscillations in physical space. Attention
has been paid to the efficient implementation of ENO schemes by Shu and Osher [24,25]. Fig. 1 shows an example of the ENO
stencil selection in a FVM discretization of a discontinuity in one spatial dimension using piecewise quadratic polynomials.

ENO-type stencil selection is here used in the SSC multi-element UQ method to obtain an accurate approximation of dis-
continuities in parametric space. Multi-element UQ methods discretize the stochastic dimensions using multiple subdo-
mains comparable to spatial discretizations in physical space. These local methods [3,19,28] can be based on Stochastic
Galerkin (SG) projections of Polynomial Chaos (PC) expansions [10,36] in each of the subdomains. Other methods [2,8,17]
use a Stochastic Collocation (SC) approach [4,37] to construct the local polynomial approximations based on sampling at
quadrature points in the elements. These methods commonly use sparse grids of Gauss quadrature rules in hypercube sub-
domains combined with solution-based refinement measures for resolving nonlinearities. Because of the hypercube ele-
ments, these methods are most effective in capturing discontinuities that are aligned with one of the stochastic coordinates.

In contrast, the SSC method [35,34] is based on a simplex tessellation of the parametric space with sampling points at the
vertexes of the simplex elements. The polynomial approximation in the simplexes Nj is built using higher degree interpola-
tion stencils Sj, with local polynomial degree pj, consisting of samples in the vertexes of surrounding simplexes. The degree pj

is controlled by a Local Extremum Conserving (LEC) limiter, which reduces pj and the stencil size to avoid overshoots in the
interpolation of the samples where necessary. The limiter, therefore, leads to a non-uniform polynomial degree that reduces
to a linear interpolation in simplexes which contain a discontinuity and that increases away from singularities. SSC employs
adaptive refinement measures based on the hierarchical surplus and the geometrical properties of the simplexes to identify
the location of discontinuities. However, the limiter can result in an excessive reduction of the polynomial degree also at
significant distances away from a discontinuity. Since the polynomial degree affects the refinement criteria, this can also
deteriorate the effectiveness of the refinement to sharply resolve singularities.
XjXj−1
Xj+1
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Fig. 1. ENO stencil selection for the quadratic reconstruction wjðxÞ in the spatial cell Xj out of the candidates fwj;1;wj;2;wj;3g for cell-centered FVM in one
physical dimension.
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In order to obtain a more accurate solution of nonlinear response surfaces, ENO-type stencil selection is introduced into
the SSC method. For each simplex Nj; rj stencils fSj;ig

rj

i¼1 are constructed that contain Nj, and the stencil Sj is selected that re-
sults in the smoothest interpolation wjðnÞ. The polynomial degree pj;i of the candidate stencils Sj;i that are accepted by the LEC
limiter, is used as the indicator of smoothness ISj;i. A simplex Nj near a discontinuity, therefore, achieves a higher order
approximation by assigning Nj a higher degree interpolation stencil Sj that does not contain the discontinuity. The higher
polynomial degree pj leads also to lower values of the refinement measures in Nj, which restricts the refinement more to
the simplexes that contain the discontinuity. The stencil selection does not affect the linear approximation in the latter sim-
plexes, since the LEC limiter rejects the higher degree stencils that contain these elements.

The developed SSC–ENO method is applied to a chemical model problem and a shock tube problem. The chemical model
problem is used to analyze the impact of uncertainty in initial conditions on the formation of a discontinuity in time. The
initial-value problem with a normal input distribution was proposed by Reagan et al. [23] as a model involving nonlinearity
and bifurcation behavior, which are both characteristic for chemical systems. They used it to determine the effectiveness of
global PC formulations for problems resulting in a large coefficient of variation (CoV). The model was also considered by Le
Maître et al. [20] to compare the global PC expansion with their multi-resolution scheme. They both conclude that the prob-
lem is too challenging for global representations. A system with similar behavior describing the movement of a particle sub-
ject to a potential field and a friction force with an uncertain initial position was also studied by Le Maître et al. [18]. A
different class of unsteady models that involves the long time integration problem is treated, for instance, in [9,21,30].

The shock tube problem is considered to study the solution of a system of hyperbolic conservation laws with uncertain
discontinuity locations in space. Uncertainty analysis of hyperbolic systems has received relatively little attention [11]. The
example involves Sod’s Riemann problem [26] for the Euler equations of inviscid compressible gas dynamics. This Riemann
problem was used by Poëtte et al. [22] to illustrate their PC method based on an entropic variable in an example with steep
fronts and shocks. The problem was also studied by Tryoen et al. [27] using upwinding in a multi-resolution approach based
on local SG projections of the PC expansion. Abgrall [1] used shock tube like test cases to demonstrate the application of his
method to the Euler equations.

The efficient implementation of ENO-type stencil selection in the SSC method is discussed in Section 2. In Section 3, the
effectiveness of the resulting SSC–ENO approach is analyzed for a discontinuous test function. The chemical model problem
and the shock tube problem are considered in Sections 4 and 5, respectively. The conclusions are summarized in Section 6.

2. Simplex stochastic collocation with stencil selection

An efficient algorithm for the SSC–ENO interpolation stencil selection is developed below. The implementation and the
effect on the adaptive refinement are also discussed.

2.1. Simplex stochastic collocation

The SSC method [35,34] is a non-intrusive multi-element UQ approach that solves the following computational problem
subject to nn second-order random parameters n ¼ fn1; . . . ; nnn

g in parametric space N � Rnn
Lðx; t; n; uðx; t; nÞÞ ¼ Sðx; t; nÞ ð1Þ
with output quantity of interest uðx; t; nÞ, space x, and time t. The latter two arguments are dropped from here onto simplify
the notation. The response surface uðnÞ is approximated by a piecewise polynomial function wðnÞ using a PC [10,36] expan-
sion wjðnÞ in each of the simplexes Nj
wjðnÞ ¼
XPj

i¼0

cj;iWj;iðnÞ; ð2Þ
for n 2 Nj, where Wj;i are the basis polynomials, cj;i are the coefficients, and Pj þ 1 ¼ ðnn þ pjÞ!=ðnn!pj!Þ is the number of expan-
sion terms, with pj the local polynomial degree. The coefficients cj;i are computed by interpolating a stencil Sj out of the ns

samples v ¼ fv1; . . . ;vnsg, with vk ¼ uðnkÞ and k ¼ 1; . . . ;ns, at the sampling points nk in the vertexes of the ne simplexes Nj

with j ¼ 1; . . . ;ne. The deterministic simulations for vk are assumed to be computationally intensive such that they dominate
the computational cost of the uncertainty analysis.

For a piecewise linear interpolation wjðnÞ with pj ¼ 1, the stencil Sj ¼ fnkj;0
; . . . ; nkj;Nj

g consists of the Nj þ 1 ¼ nn þ 1 ver-
texes of Nj, with kj;l 2 f1; . . . ;nsg for j ¼ 1; . . . ;ne and l ¼ 0; . . . ;Nj. Higher degree stencils Sj with Nj P Pj are constructed
by adding vertexes nk of surrounding simplexes to Sj according to a nearest neighbor search based on the Euclidean distance
to the center of the simplex Nj in parametric space N. The center of Nj is defined as the average of the vertex locations of Nj.
We use Nj ¼ Pj here, but the interpolation can be constructed using a least squares approximation for Nj > Pj. The notation is
visualized in Fig. 2 for an example of a response surface approximation in a two-dimensional parametric space with nn ¼ 2.

The polynomial degree pj is chosen as high as possible with respect to the total number of available samples ns with
Nj þ 1 6 ns. The Local Extremum Conserving (LEC) limiter reduces the stencil size Nj þ 1, and pj, when wjðnÞ does not satisfy
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Fig. 2. Approximation of the response surface uðnÞ by the interpolation wjðnÞ of the samples vk at a stencil Sj of sampling points nk for the simplex Nj in a
two-dimensional parametric space with n ¼ fn1; n2g.
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min
n2Nj

wjðnÞ ¼min vj ^max
n2Nj

wjðnÞ ¼max vj; ð3Þ
with vj ¼ fvkj;0
; . . . ;vkj;nn

g the samples in Nj. The limiter (3) is applied to all simplexes in Sj and always holds for pj ¼ 1. For
additional robustness, the polynomial degree can be reduced by one more order than required by (3), if pj > 1. The ith mo-
ment lui

of uðnÞ is then computed by evaluating the following integrals using Monte Carlo integration with nmc � ns inte-
gration points
lui
�
Xne

j¼1

Z
Nj

wjðnÞifnðnÞdn; ð4Þ
weighted by the input probability density fnðnÞ of n. For more detailed information is referred to [35,34].

2.2. Interpolation stencil selection

The nearest neighbor construction of the interpolation stencils Sj combined with the LEC limiter (3) results in one stencil
Sj for each simplex Nj. If the stencils Sj are not restricted to the nearest neighbor sampling points nk, then multiple stencils Sj;i

may be possible for simplex Nj that satisfy the limiter. The stencil Sj;i that leads to the smoothest interpolation wj;iðnÞ is then
selected for a more accurate approximation of uðnÞ.

The first nn þ 1 sampling points nk of each stencil Sj;i ¼ fnkj;0
; . . . ; nkj;nn

g consist of the vertexes of Nj. This stencil corresponds
to the piecewise linear interpolation. The higher degree stencils of Nj;i þ 1 sampling points
Sj;i ¼ fnkj;0
; . . . ; nkj;nn

; . . . ; nkj;Nj;i
g; ð5Þ
can be constructed by adding, in principle, any combination of Nj;i � nn samples for any pj;i out of the remaining nk, with
k 2 f1; . . . ;nsg n fkj;0; . . . ; kj;nn

g and each sampling point appearing only once in the stencil Sj;i. Out of these stencils, only a
set of rj candidate stencils fSj;ig

rj

i¼1 is accepted of which the interpolation wj;iðnÞ satisfies the limiter. The stencil Sj 2 fSj;ig
for Nj is selected based on the non-uniform polynomial degree pj;i as the indicator of smoothness ISj;i ¼ pj;i
Sj ¼ Sj;i; with i ¼ arg max
i�2f1;...;rjg

pj;i� : ð6Þ
If multiple stencils have the same smoothness, then out of these stencils the one with the minimum average Euclidean dis-
tance of the sampling points nk to the center of Nj is chosen.

A two-dimensional example is given in Fig. 3 of the stencil selection for Nj close to a discontinuity, of which the location is
denoted by the diagonal line. The nearest neighbor stencil Sj for Nj only leads to a quadratic interpolation wjðnÞ with
Nj þ 1 ¼ 6, since higher degree stencils cross the discontinuity and are rejected by the limiter. On the other hand, stencil
selection can result in Sj, with a higher polynomial degree, that contains all sampling points nk in the smooth region at
one side of the discontinuity.

2.3. Efficient implementation

Constructing all possible stencils Sj;i for all simplexes Nj can become impractical as its complexity increases binomially
with the number of samples ns. Therefore, we restrict the stencil selection to a subset of these stencils by employing the
multi-element character of the approach. We allow only nearest neighbor stencils of other simplexes that contain Nj to
be assigned to Nj.



Fig. 3. Selection of the interpolation stencil Sj for the simplex Nj near a discontinuity in a two-dimensional parametric space.
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To that end, the nearest neighbor stencils ~Sj, with interpolation ~wjðnÞ and degree ~pj, are first constructed for each Nj as
described in Section 2.1. This results in a set of ne stencils f~Sjgne

j¼1. Next, it needs to be determined for each ~Sj which simplexes
Ni are part of the stencil. A stencil ~Sj is considered to contain Ni, if ~Sj contains all vertexes fnki;0

; . . . ; nki;nn
g of Ni. A set of ~rj can-

didate stencils f~Sj;ig
~rj

i¼1 for Nj is then collected from the nearest neighbor stencils that contain Nj. The stencil Sj ¼ ~Sj;i, and the
interpolation wjðnÞ ¼ ~wj;iðnÞ, with the highest degree ~pj;i is selected from f~Sj;ig

~rj

i¼1 as in (6). If none of the stencils f~Sj;ig has a
higher degree than the nearest neighbor stencil ~Sj, i.e. ~pj;i 6 ~pj for all i ¼ 1; . . . ;~rj, then the original stencil ~Sj is automatically
maintained.

This efficient SSC–ENO stencil selection algorithm results in virtually no additional computational costs compared to SSC
with nearest neighbor stencils, since no additional stencils or interpolations are constructed. The algorithm can only improve
the polynomial degree with pj P ~pj. Fig. 4 shows the adoption of the nearest neighbor stencil of another simplex Ni by Nj in
the two-dimensional example. Because the resulting stencil Sj is asymmetrical with respect to Nj, it leads to a higher poly-
nomial degree pj than its nearest neighbor stencil of Fig. 3(a). The efficiently selected stencil does not necessarily contain all
the sampling points on one side of the discontinuity.
2.4. Solution-adaptive refinement measures

The initial discretization of the parametric space consists of a simplex tessellation of sampling points at the corners of a
hypercube parametric space and one sample in the interior, see Fig. 5(a) for a two-dimensional example on the domain
discontinuity

ξ1

Sj

Ξj

Ξi

ξ2

Fig. 4. Efficiently selected stencil Sj for the simplex Nj by adopting the nearest neighbor stencil of the simplex Ni in a two-dimensional parametric space.



Fig. 5. Simplex tessellation of the two-dimensional parametric space N, where the sampling points nk and the simplexes Nj are denoted by the closed circles
and the lines, respectively.
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½�1;1�nn . The approximation converges by refining Nj with the highest value of a refinement measure in each refinement
step. The simplex is here refined by adding a sampling point nknew

on the longest edge of Nj to be able to capture also discon-
tinuities that cross the edges of the parametric space.

Consider nkj;0
and nkj;1

to be the endpoints of the longest edge of Nj. Then nknew
is given a random location on the edge
nknew
¼ ðhþ ð1� 2hÞUÞnkj;0

þ ð1� ðhþ ð1� 2hÞUÞÞnkj;1
; ð7Þ
with U a uniform random number on ½0;1� and h ¼ 1
3 for a sufficient spread of the samples. The randomness is used for effi-

cient sampling in multiple dimensions and for nn ¼ 1 the new sampling point is deterministically placed at the center of the
element with h ¼ 1

2. The discretization is updated by computing the sample vknew ¼ uðnknew
Þ and by making a Delaunay trian-

gulation of the sampling points. The sample vknew can also be incorporated by splitting all simplexes that contain the edge
ðnkj;0

; nkj;1
Þ into two new simplexes with nknew

one of their vertexes.
The following two solution-based refinement measures, ej and ej, are derived in [35,34] based on the hierarchical surplus

~ej and the geometrical properties of the simplexes
ej ¼ �Xjê2
j ; ej ¼ �Xj

�N
2Oj

j ; ð8Þ
with
êj ¼
~ej

max v �min v

�Nj

�Nk� ;ref

 !Oj

: ð9Þ
The probability �Xj and the normalized volume �Nj of Nj are defined as
�Xj ¼
Z

Nj

fnðnÞdn; �Nj ¼
1
�N

Z
Nj

dn; ð10Þ
with �N ¼
Pne

j¼1
�Nj and �Nk� ;ref a reference volume, see [35,34]. The local theoretical order of convergence Oj is given by
Oj ¼
pj þ 1

nn
: ð11Þ
Both measures ej and ej depend on the local polynomial degree pj through expression (11). The stencil selection decreases the
measures ej and ej in the simplexes in which the solution is smooth, since �Nj=�Nk� ;ref < 1 and �Nj < 1. The measure ej leads to
solution-based refinement through the reduction of pj at discontinuities by the limiter. It is a more reliable measure in multi-
ple stochastic dimensions than ej, since ej is based on the hierarchical surplus ~ej in a single discrete point. The size �Nj of the
simplexes can be used as the refinement measure in order to obtain uniform or volumetric refinement, see Fig. 5(b) for an
example with ns ¼ 40.
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2.5. SSC–ENO algorithm summary

The efficient implementation of the SSC–ENO interpolation algorithm consists of the following four steps that are per-
formed for j ¼ 1; . . . ;ne. It replaces the interpolation step in the refinement procedure of the nearest neighbor SSC method
as described in [34]:

1. Construct the nearest neighbor stencil ~Sj for interpolation ~wjðnÞ with polynomial degree ~pj in all simplexes Nj;
2. Collect the set of ~rj candidate stencils f~Sj;ig

~rj

i¼1 from the nearest neighbor stencils, with corresponding ~wj;iðnÞ and ~pj;i, that
contain Nj;

3. Select Sj ¼ ~Sj;i that results in the highest polynomial degree pj ¼ ~pj;i for Nj;
4. Update wjðnÞ ¼ ~wj;iðnÞ if Sj – ~Sj in Nj;

The stencil selection algorithm is essentially valid for arbitrary dimensionality.
3. Multidimensional discontinuous test function

In order to isolate the effect of the introduced stencil selection, results of the SSC–ENO method are compared to those of
SSC without stencil selection. A test function with discontinuities that are not aligned with the grid is considered up to five
dimensions. The impact of the refinement measures on the comparison is reported in Appendix A.

3.1. Test function

This example requires both a robust interpolation of the multiple sharp discontinuities of different strength intersecting
each other and a higher order approximation of the smooth parts of the solution. The response uðnÞ contains two Heaviside
step functions and a smooth background function
uðnÞ ¼ uhatðnÞ þ ubackðnÞ; ð12Þ
with
uhatðnÞ ¼ H
n � n�ffiffiffiffiffiffiffiffiffiffiffiffi
n� � n�

p þ n�1

 !
� chatH

n � n0ffiffiffiffiffiffiffiffiffiffiffi
n0 � n0
p þ n10
� �

; ð13Þ
which resembles a hat function in one dimension. The secondary jump has a strength of chat ¼ 0:25. Here H is the following
Heaviside function defined as
ustepðnÞ ¼ H
n � n�ffiffiffiffiffiffiffiffiffiffiffiffi
n� � n�

p þ n�1

 !
¼

0; n�n�ffiffiffiffiffiffiffi
n��n�
p þ n�1 < 0;

1; otherwise:

(
ð14Þ
The background function ubackðnÞ is
ubackðnÞ ¼
1
2
þ 1

p
arctanðcn1Þ; ð15Þ
which is normalized to a range between 0 and 1, with parameter value c ¼ 0:1. The vectors of arbitrary numbers
n� ¼ fn�1; . . . ; n�nn

g 2 ½�0:5; 0:5�nn and n0 ¼ fn10; . . . ; nnn
g 2 ½�0:5; 0:5� give the two discontinuities arbitrary locations and orien-

tations. The random parameters n are uniformly distributed on the domain Uð�1;1Þ.
The quality of the response surface approximation is assessed by considering the root mean square (RMS) error erms be-

tween wðnÞ and uðnÞ. The error erms is evaluated using the weighted Monte Carlo integration used for computing the statis-
tical moments
erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nmc

Xnmc

k¼1

w nmck

� �
� u nmck

� �� �2

vuut ; ð16Þ
with nmc the number of Monte Carlo integration points nmck
. The different strength of the steps is taken into account by mea-

sure ej through the hierarchical surpluses, which leads approximately to an order of magnitude smaller error than for ej in
Fig. 6 for nn ¼ 1 and two orders of magnitude compared to the uniform refinement measure �Nj. Measure ej resolves both
jumps equally well, since it is based on the local polynomial degree and the LEC limiter reduces the interpolation to first
order at both discontinuities. Nonetheless, we mostly use measure ej in the following, since it is a more reliable refinement
criterion in multiple stochastic dimensions.

Fig. 7(a) shows the response surface in two dimensions and SSC–ENO with measure ej and ns ¼ 150 resolves both discon-
tinuities equally well in Fig. 7(b). Starting from the initial discretization, the adaptive refinement measure ej automatically
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refines the simplex elements to a smaller size near the discontinuities to find their location. Farther away from the steps, the
simplexes maintain a larger size.

Fig. 8 shows that SSC–ENO results in a higher concentration of samples and smaller simplexes near the discontinuities in
discretization of the parametric space N than SSC. The sampling points, denoted by the closed circles, are clustered signifi-
cantly closer to the discontinuity locations, given by the dashed diagonal lines, for SSC–ENO than for SSC. This leads to a shar-
per resolution of the discontinuities with smaller simplexes for SSC–ENO at equal computational costs in terms of the sample
size. The more effective refinement by SSC–ENO is caused by the higher polynomial degree pj in the simplexes that do not
contain the discontinuities. SSC–ENO results in a linear interpolation in only the small simplexes that contain the disconti-
nuities to avoid overshoots.

The adaptive refinement measure ej does, however, not distinguish between the two different jump strengths, because
the LEC limiter reduces the polynomial degree at both discontinuities to pj ¼ 1. Therefore, measure ej places an equal number
of sampling points at the strong discontinuity and the weaker one with strength chat ¼ 0:25. The other adaptive measure ej

can distinguish the strength of the discontinuities based on the hierarchical surpluses, but ej is less reliable in multiple sto-
chastic dimensions. The limitations of both measures, ej and ej, can be avoided by combining them into one mixed refine-
ment criterion e�j
e�j ¼ aej þ ð1� aÞej ¼ �Xj a�N
2Oj

j þ ð1� aÞê2
j

� �
ð17Þ
with mixing parameter a 2 ½0;1�, and �Nj and êj both scaled by the parametric space size �N and the sample range
ðmax v �min vÞ, respectively. SSC–ENO with mixed refinement measure e�j and a ¼ 0:99 leads in Fig. 9 to a different level
of refinement for the two discontinuities with different strength. The weaker step is less refined, such that the stronger dis-
continuity can be resolved by an appreciable denser number of samples than in Fig. 8(b) for the same computational budget
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of ns ¼ 150. In the response surface approximation of Fig. 9(b), it can be seen that the larger jump is resolved more accurately
at the expense of a coarser approximation of the smaller jump than in Fig. 7(b). The SSC–ENO method has also been applied
successfully to test functions with non-planar discontinuities.
3.2. Higher dimensions

The effect of the accurate resolution by SSC–ENO of the discontinuities in (12) on the approximation error is considered
here up to five dimensions for chat ¼ 0. The mean lu and the standard deviation ru of SSC and SSC–ENO compared to a Monte
Table 1
Approximation of the mean by SSC and SSC–ENO with the refinement measure ej and nn ¼ f1;2;3g compared to the reference solution for the test function.

nn ns Mean lu Error el

Reference SSC–ENO SSC SSC–ENO SSC

1 17 1:1028 � 100 1:1029 � 100 1:1059 � 100 1:4009 � 10�4 3:1434 � 10�3

2 100 1:1082 � 100 1:1088 � 100 1:1114 � 100 5:9472 � 10�4 3:2353 � 10�3

3 200 1:1109 � 100 1:1108 � 100 1:1069 � 100 1:7910 � 10�4 4:0323 � 10�3

4 200 1:1256 � 100 1:1182 � 100 1:0949 � 100 7:3967 � 10�3 3:0681 � 10�2

5 200 1:1256 � 100 1:1097 � 100 1:1354 � 100 1:5916 � 10�2 9:8116 � 10�3
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Carlo reference solution with nmc ¼ 50;000 samples in Tables 1 and 2. In most cases, SSC–ENO is more accurate than SSC by
an order of magnitude. This improved accuracy is mainly caused by the increased effectiveness of the refinement. To illus-
trate this mechanism, we introduce a measure for the refinement effectiveness, RE, in terms of the fraction of the refine-
ments that split the discontinuous elements
Table 2
Approx
function

nn

1

2

3

4

5

RE ¼ nref;disc

nref
ð18Þ
with nref;disc the number of times the elements that contain the discontinuities is refined, and nref the total number of refine-
ment cycles. The effectiveness given in Table 3 is increased from a minimum of RE ¼ 42:9% for SSC to a maximum of
RE ¼ 77:9% for SSC–ENO. The decreasing difference between SSC–ENO and SSC with increasing nn is caused by the simpli-
fication in the efficient implementation and the constant value of ns.
4. Chemical model problem

The SSC–ENO method is applied to a chemical model problem with a discontinuity developing from two different smooth
initial conditions.
4.1. Initial-value problem

A simplified version of the Barkley model [5] considered in [20,23] consists of the following ordinary differential equation
(ODE)
du
dt
¼ �uðu� aÞðu� bÞ; ð19Þ
with the uncertain initial condition uðt; nÞ ¼ u0ðnÞ for t ¼ 0, and the parameter values a ¼ �6 and b ¼ 1 from [20]. The
numerical time integration is performed using the fourth order explicit Runge–Kutta method with a time step of
Dt ¼ 10�3. The realizations of (19) approach one of the two stable attractors at u ¼ �6 or u ¼ 1 for negative or positive
u0ðnÞ, respectively. As a consequence, a high gradient forms in parametric space at u0 ¼ 0.

We consider a normal distribution for u0ðnÞ with two different mean values, lu0
¼ 0:2 and lu0

¼ 1, and a constant coef-
ficient of variation of CoVu0 ¼ 1. In Fig. 10, it can be seen that the probability of negative initial values, Pðu0 < 0Þ, is identical
for both cases, such that they have the same asymptotic solution for the mean lu1 ¼ luðt !1Þ
lu1 ¼ aPðu0 < 0Þ þ bPðu0 > 0Þ; ð20Þ
and the standard deviation ru1
ru1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� lu1Þ

2Pðu0 < 0Þ þ ðb� lu1Þ
2Pðu0 > 0Þ

q
: ð21Þ
On the other hand, the transient behavior depends on the mean initial condition lu0
. We focus, therefore, on resolving the

large gradient at t ¼ 1:5 as well as the smooth transient solution in t 2 T ¼ ½0; 1:5�. To that end, the element refinement cri-
terion ej is taken to be the maximum of the refinement measures et;jðtÞ that are obtained for each Nj at each time step accord-
ing to
ej ¼max
t2T

et;jðtÞ: ð22Þ
The unbounded parameter range for the normal distribution is treated by truncating the domain beyond the extremes of the
Monte Carlo integration points for computing the statistical moments, as proposed in [35].
imation of the standard deviation by SSC and SSC–ENO with the refinement measure ej and nn ¼ f1;2;3g compared to the reference solution for the test
.

ns Standard deviation ru Error er

Reference SSC–ENO SSC SSC–ENO SSC

17 5:0506 � 10�1 5:0489 � 10�1 5:0305 � 10�1 1:6762 � 10�4 2:0047 � 10�3

100 4:9328 � 10�1 4:8444 � 10�1 4:7901 � 10�1 8:8390 � 10�3 1:4268 � 10�2

200 4:9275 � 10�1 4:6325 � 10�1 4:5551 � 10�1 2:9503 � 10�2 3:7238 � 10�2

200 4:8889 � 10�1 4:1599 � 10�1 4:1673 � 10�1 7:2898 � 10�2 7:2163 � 10�2

200 4:8888 � 10�1 3:8789 � 10�1 3:7364 � 10�1 1:0098 � 10�1 1:1524 � 10�1



Table 3
Refinement effectiveness, RE, by SSC and SSC–ENO with the refinement measure ej and nn ¼ f1;2;3g for the test function.

nn ns SSC–ENO SSC

1 17 0.643 0.429
2 100 0.779 0.453
3 200 0.744 0.550
4 200 0.689 0.634
5 200 0.743 0.713
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Fig. 10. Probability distribution of the initial condition u0ðnÞ for the chemical model problem with lu0
¼ f0:2; 1g.
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4.2. Mean initial value of lu0
¼ 0:2

The solution for the mean luðtÞ and standard deviation ruðtÞ by SSC–ENO is shown for the initial condition lu0
¼ 0:2 in

Fig. 11(a). Initially, luðtÞ increases until t ¼ 0:23 after which it decreases to the asymptotic value of lu1 ¼ �0:111. The for-
mation of the discontinuity leads to a monotonic increase of the standard deviation ruðtÞ by more than a factor ten, from the
initial ru0 ¼ 0:2 to ru1 ¼ 2:56 at t ¼ 1:5. SSC–ENO converges for ns ¼ 40 to the converged Monte Carlo reference solution
with nmc ¼ 50;000 on the whole time interval.

The approximation of the response uðt; nÞ as function of t and u0ðnÞ is given in Fig. 11(b) for ns ¼ 40. The density of the
lines at constant values of u0 represents the input probability density of u0ðnÞ. A relatively small fraction of
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Fig. 11. SSC–ENO with ns ¼ f10;20;30;40g for the chemical model problem with lu0
¼ 0:2.
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Pðu0 < 0Þ ¼ 15:9% of the realizations decreases to the stable point u ¼ �6. The majority of the response surface increases to
u ¼ 1, which results in the initially increasing transient for luðtÞ. The eventual decrease of luðtÞ is caused by the significantly
larger distance of the negative stable point u ¼ �6 from the origin compared to the positive attractor u ¼ 1. The standard
deviation gives a monotonically increasing behavior, because the realizations in the relevant part of the parametric space
all decrease monotonically at the left of the singularity and increase at the right. The sharp gradient at t ¼ 1:5 and the
smooth transient trajectories are accurately resolved by the combination of first order and higher degree interpolation poly-
nomials in SSC–ENO.

The discretization of the response surface by SSC–ENO with ns ¼ 40 is shown in Fig. 12(a) as function of time at
t ¼ f0; 0:1; 0:5; 1:5g. The samples at the element boundaries are denoted by the symbols. The large gradient in parametric
space forms at t ¼ 0:5 for u0 < 0 and approaches its asymptotic location u0 ¼ 0 from below. The refinement criterion (22)
successfully resolves this transient drift of the location of the largest gradient using smaller element sizes at the left of
u0 ¼ 0, compared to the larger elements in the smoother region for u0 > 0.

4.3. Mean initial value of lu0
¼ 1

The mean, the standard deviation, and the response surface for the second case with lu0
¼ 1 are given in Fig. 13. In con-

trast to the case with lu0
¼ 0:2, the mean luðtÞ shows a monotonic decrease to lu1 . The standard deviation ruðtÞ also has a

different transient with an initial decrease until it starts to increase at t ¼ 0:035 to ru1 . This qualitative difference is caused
by the decay, at the right of the singularity u0 ¼ 0, of 50% of the realizations to the positive stable point u ¼ 1 as shown in
Fig. 13(b). SSC–ENO captures this different transient with ns ¼ 40 samples. Because of the larger input standard deviation of
ru0 ¼ 1, a relatively sharper gradient develops already at earlier times, which is visible in Fig. 12(b).

5. Shock tube problem

A shock tube problem is used here to study the impact of uncertain discontinuity locations on a spatial flow field com-
pared to the deterministic solution.

5.1. Sod’s Riemann problem in a closed shock tube

The system of hyperbolic Euler equations for one-dimensional unsteady inviscid flow without heat conduction is given in
conservation formulation by
@U
@t
þ @FðUÞ

@x
¼ 0; ð23Þ
with the state vector Uðx; tÞ and flux vector Fðx; tÞ
U ¼
q
qu

qE

0
B@

1
CA; F ¼

qu

qu2 þ p

quH

0
B@

1
CA; ð24Þ
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¼ 1.
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and initial conditions Uðx;0Þ ¼ U0ðxÞ. For a perfect gas, the density qðx; tÞ, velocity uðx; tÞ, static pressure pðx; tÞ, total energy
Eðx; tÞ, and enthalpy Hðx; tÞ are related as E ¼ ð1=ðc� 1ÞÞp=qþ u2=2 and H ¼ Eþ p=q, with ratio of specific heats c ¼ cp=cv

[7]. The initial conditions U0ðxÞ involve Sod’s Riemann problem [26] with two uniform states at the left and the right of
x0 ¼ 0
uleft ¼ 0;
pleft ¼ 1;
qleft ¼ 1;

8><
>:

uright ¼ 0;
pright ¼ 0:1;
qright ¼ 0:125:

8><
>: ð25Þ
The uncertainty in the pressure pleft 2 ½0:9; 1:1� of the initial left state and the location x0 2 ½�0:025; 0:025� of the initial dis-
continuity is given by the uniform distribution. The output quantities of interest are the density at x ¼ 0:82, and q; p, and u
on the entire spatial domain. The problem is here confined to a closed shock tube on a finite spatial domain x 2 ½�0:2; 2�with
reflective walls at the boundaries, as considered deterministically in [32]. The Euler equations (23) are solved up to t ¼ 1
using a second order front tracking method [29,32], which tracks the location of waves in the flow solution and solves local
Riemann problems to simulate their interactions. It resolves shock waves and contact surfaces as true discontinuities unaf-
fected by numerical diffusion, which results in sharp jumps in the physical and parametric spaces. Rarefaction waves are
discretized by a series of characteristics and second order convergence is obtained using a piecewise linear reconstruction
of the rarefaction wave solution. Based on a convergence study, the rarefaction wave is here discretized using nf ¼ 64 char-
acteristic fronts.
5.2. Deterministic solution

The space–time solution of the deterministic problem is shown in Fig. 14(a) in terms of the wave paths for nf ¼ 16. A left
running rarefaction wave, a contact discontinuity, and a right running shock wave emanate from the discontinuity in the
initial conditions at x0 ¼ 0. The rarefaction wave reflects from the left boundary and interacts with the contact discontinuity
in the interior of the domain. The corresponding profiles of the density q, pressure p, and velocity u at t ¼ 1 are given in Figs.
14(b)–(d) for nf ¼ 64. Next to the shock wave, the contact surface also results in a discontinuity in the density field, while p
and u remain continuous in the interaction region.
5.3. Uncertain density at x ¼ 0:82

The effect on the density q in the vicinity of the contact discontinuity is resolved for x ¼ 0:82 and t ¼ 1 by SSC–ENO using
measure ej and ns ¼ 100. The response surface approximation for q as function of pleft and x0 in Fig. 15(a) shows that the test
function considered in Section 3 is representative for the solution of hyperbolic conservation laws. The response shows two
continuous regions separated by a diagonal discontinuity, which varies in strength and is slightly curved at relatively high
values of pleft. SSC–ENO leads to a robust approximation and an effective refinement of the discontinuity in Fig. 15(b) with a
large ratio between the size of the simplexes that contain the contact surface and the ones that discretize the continuous
density variations. This results for the density at x ¼ 0:82 in a mean of lq ¼ 0:231 and a standard deviation of
rq ¼ 0:0543, which corresponds to a coefficient of variation of CoVq ¼ 23:5%.
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Fig. 14. Sod’s Riemann problem in a closed shock tube with deterministic initial conditions.
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Fig. 17. Mean, and 90% and 100% uncertain intervals at t ¼ 1 by SSC–ENO with the measure �Nj and ns ¼ 100 for Sod’s Riemann problem in a closed shock
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5.4. Uncertain density, pressure, and velocity fields

The output uncertainty in the entire density profile on x 2 ½�0:2; 2� is depicted in Fig. 16 in terms of the mean value, and
the 90% and 100% uncertainty intervals for ns ¼ 100. The mean density shows the smearing of the shock and contact waves
compared to the deterministic solution, which is caused by the effect of the uncertainty on the location of the discontinuities.
The variation in the discontinuity positions is captured by the 100% interval, which is broadest in these regions and asym-
metrical around the mean indicating a highly nonlinear propagation of the uncertainty. The interval around the shock wave
shows the robust approximation of SSC–ENO without overshoots at the discontinuity. The varying interval size near the con-
tact surface is caused by the physical variation of the density jump in the interaction region. There is no uncertainty at the
right boundary, because the region at the right of the shock wave lies outside the domain of influence of pleft and x0.

The corresponding solutions for the pressure p and the velocity u in Fig. 17 are dominated by the uncertainty generated by
the shock wave with no major impact of the presence of the contact surface. Refinement measure �Nj is used here, since the
discontinuities have different locations in parametric space for each spatial point x.

The small steps in the uncertainty interval for the density near the contact discontinuity, in Fig. 16, are caused by the
known challenge of representing uncertain discontinuity locations. This is further explored in Fig. 18 for the convergence
of the mean and the standard deviation of q with ns ¼ f10;20;100g. The approximation of the mean for ns ¼ 10 contains
a smaller number of larger steps in the discontinuous regions. In a non-intrusive approach, the steps are caused by the dis-
continuity crossing a sampling point and the lack of resolution of the discontinuity location in between the samples. With an
increasing number of samples, the solution converges to a smooth representation with a larger number of smaller jumps.
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Fig. 18. Statistical moments of the density q at t ¼ 1 by SSC–ENO with the measure �Nj and ns ¼ f10;20;100g for Sod’s Riemann problem in a closed shock
tube with uncertain pleft and x0.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x location

de
ns

ity
 m

ea
n

3
5
33

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x location

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n
3
5
33

Fig. 19. Statistical moments of the density q at t ¼ 1 by SSC–ENO with the measure �Nj and ns ¼ f3;5;33g for Sod’s Riemann problem in a closed shock tube
with uncertain pleft .
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Fig. 20. Statistical moments of the density q at t ¼ 1 by SSC–ENO with the measure �Nj and ns ¼ f3;5;33g for Sod’s Riemann problem in a closed shock tube
with uncertain x0.
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Fig. 21. Local polynomial degree pj with the uniform refinement measure �Nj and ns ¼ 17 for the test function, where the vertical dashed line denotes the
discontinuity location.
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Fig. 22. Local polynomial degree pj with the adaptive refinement measure ej and ns ¼ 17 for the test function, where the vertical dashed line denotes the
discontinuity location.
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However, due to the absence of viscosity in the physical problem, the approximation maintains a staircase character which
leads to first order accuracy. It also results in the convergence to the maximum standard deviation from below in Fig. 18(b),
which causes an underprediction of the maximum standard deviation at underresolved sample sizes.

5.5. Separate effects of pleft and x0

The individual effects of the uncertainty in pleft and x0 on the mean and the standard deviation of the density q are given
Figs. 19 and 20, respectively. The univariate problems are solved using ns ¼ f3;5;33g samples. The number of approximately
equidistant steps in the staircase approximation is equal to the number of samples. The uncertain pressure pleft leads to a
larger variation in the shock wave location than x0, since pleft affects the shock speed. The uncertainty in x0 gives a vanishing
standard deviation in the uniform flow regions in between the waves, because x0 results only in a spatial offset of the initial
wave pattern and does not influence the post-states of the Riemann problem.
6. Conclusions

Essentially Non-Oscillatory (ENO) type stencil selection is introduced into the Simplex Stochastic Collocation (SSC) meth-
od to achieve an accurate approximation of discontinuities in parametric space. The stencil selection for simplex Nj chooses
the stencil Sj with the highest polynomial degree pj that is accepted by the Local Extremum Conserving (LEC) limiter. This
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Fig. 24. Refinement effectiveness RE (18) for the test function.
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Fig. 25. Cumulative probability distribution function and the 35th percentile by SSC–ENO with the uniform refinement measure �Nj and ns ¼ 17 for the test
function.
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Fig. 23. Error convergence for the test function.
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Fig. 26. Approximation of the 35th percentile with the uniform refinement measure �Nj for the test function.
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results in an increase of the local polynomial degree in the smooth regions and a concentration of the refinement in the sim-
plexes that contain the discontinuity. The efficient implementation of the algorithm assigns only nearest neighbor stencils to
other simplexes without constructing new stencils or interpolations.

The increased refinement effectiveness of the resulting SSC–ENO method for a discontinuous test function shows that the
local polynomial degree is reduced to a linear interpolation in only a thin layer of simplexes that contain the discontinuity.
This can lead to a reduction of the size of the discontinuous simplexes by a factor eight and a decrease of the error by two
orders of magnitude. It is also observed that the local polynomial degree near a discontinuity can increase from second to
sixth order, which can reduce the error in a percentile approximation by six orders of magnitude. A proposed mixed refine-
ment measure successfully distinguishes between discontinuities of different strength.

SSC–ENO is applied to a chemical model problem and a shock tube problem to study the impact of uncertainty on the
formation of a discontinuity in time as well as on the location of discontinuities in space. In the chemical model problem,
the steepening gradient in time results in an amplification of the input standard deviation by more than a factor ten. The
combination of the linear and higher degree polynomials in SSC–ENO accurately resolves both the sharp gradient and the
smooth transient trajectories. The adaptive refinement captures the qualitatively different transient behaviors and the tran-
sient drift of the location of the largest gradient for ns ¼ 40 samples.

The uncertainty in the shock tube problem results in an output coefficient of variation for the density of 23.5% in the inter-
action region of the contact and rarefaction wave. The large and asymmetrical uncertainty intervals, near the smeared dis-
continuities in the mean sense, indicate a robust approximation of the highly nonlinear propagation of the uncertainty in
those regions. The staircase approximation of the mean and standard deviation fields in space remains a challenge for rep-
resenting the solution with more than first order accuracy. In future work, the extension to the Weighted Essentially Non-
Oscillatory (WENO) scheme will also be considered, which has the advantage in spatial discretizations that it improves the
order of accuracy by one and leads to a smoother convergence behavior.
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Appendix A. Impact of refinement measures

The impact of the stencil selection with uniform and adaptive refinement on the error convergence and the percentile
approximation through the effect on the local polynomial degree is considered in this appendix for test function (12) with
chat ¼ 0 and nn ¼ 1.

A.1. Uniform refinement

Uniform refinement based on the size �Nj (10) of the elements Nj is considered first, in order to separate the effect of the
stencil selection on the polynomial degree from its influence on the adaptive refinement. The local polynomial degree pj in
the elements Nj is given in Fig. 21(a) for SSC with nearest neighbor stencils and ns ¼ 17. The location of the discontinuity is
denoted by the vertical dashed line. The reduction of the polynomial degree by the LEC limiter to a linear interpolation of the
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samples in the element that contains the step ensures the robust approximation of the jump without overshoots. The poly-
nomial degree gradually increases beyond pj ¼ 1 on both sides of the element that contains the discontinuity, because larger
symmetrical stencils can be built that do not contain the step. Eventually pj reaches its maxima of pj ¼ 6 and pj ¼ 9 halfway
the two smooth regions, after which it remains constant. In the latter elements, the stencils Sj contain all sampling points nk

on one side of the discontinuity.
In Fig. 21(b), the average polynomial degree of the SSC–ENO interpolation is significantly higher, since all elements that

do not contain the discontinuity obtain the maximum polynomial degree. A robust approximation of the jump is maintained,
since the degree pj ¼ 1 in the discontinuous element is not affected. The maximum degree is higher in the larger region at the
right of the jump, since it contains more samples than the left half.

A.2. Solution-adaptive refinement

The polynomial degree in the elements for adaptive refinement measure ej (8) is given in Fig. 22. For SSC, the degree is
reduced to pj ¼ 1 at the jump and increases slowly with distance away from the discontinuity. SSC–ENO leads to a uniform
high polynomial degree right up to the discontinuity in both smooth regions. The polynomial degree is reduced from the
maximum degree to pj ¼ 1 in the discontinuous element only. The high polynomial degree in all elements that do not con-
tain the step reduces the refinement measure ej in those elements relatively to ej in the discontinuous element. The sampling
is, therefore, more focused in the latter element, which leads to a discontinuous element with a size that is a factor eight
smaller for SSC–ENO than for SSC. The uniform polynomial degree in the smooth regions also leads to more uniform sam-
pling in those domains. The maximum degrees are different, and different from the case with uniform refinement, because of
the different distribution of the sampling points over the two continuous regions by the adaptive refinement procedure.

The convergence of erms (16) is shown in Fig. 23 for SSC and SSC–ENO with refinement measures �Nj; ej, and ej (8). The
adaptive refinement measures ej and ej result for SSC in only a slightly lower error than uniform refinement with measure
�Nj. The effectiveness of the adaptive measures is greatly enhanced by SSC–ENO, for which ej obtains an order of magnitude
lower error than ej and two orders of magnitude improvement compared to �Nj at ns ¼ 17. This is a result of the concentration
of the refinement in the discontinuous element.

The refinement effectiveness RE (18) as function of the increasing number of samples ns during the refinement procedure
is visualized in Fig. 24. RE of SSC–ENO with measure ej approaches 1, since it refines only the discontinuous element in each
step up to ns ¼ 17, after an initial search for the discontinuity until ns ¼ 6. SSC–ENO with ej also reaches a significantly higher
effectiveness of RE ¼ 64:3% than �Nj with RE ¼ 21:4%. SSC without stencil selection reduces the equivalent RE for ej and ej to
RE ¼ 50:0% and RE ¼ 42:9%, respectively. The stencil selection does not affect the refinement for measure �Nj.

A.3. Percentile approximation

In order to quantify the effect of the increased local polynomial degree independently of the improved refinement, an
example of the approximation of a percentile is considered for the uniform refinement measure �Nj. The solution for the
cumulative distribution function (CDF) of uðnÞ is shown in Fig. 25. The discontinuous response surface results for the uniform
input distribution of n in a non-standard output distribution for uðnÞ with a jump close to the 35th percentile. Since the re-
sponse for uðnÞ is monotonically increasing and the input distribution is uniform in ½�1;1�, the approximation at the 35th
percentile corresponds directly with the local response surface approximation at n ¼ �0:3.

The resulting approximation of the 35th percentile is given in Fig. 26 in terms of the local polynomial degree and the local
error. SSC–ENO increases the local degree during the refinement from initially first order to sixth order at ns ¼ 17. The poly-
nomial degree does not increase beyond second order for SSC due to the vicinity of the discontinuity. This leads to a reduc-
tion of the error in the 35th percentile approximation by SSC–ENO of six orders of magnitude compared to the result of SSC
in Fig. 26(b) owing to the higher order approximation of the smooth background function.
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