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Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate
approximations of discontinuities in the physical space. Stochastic methods are usually
based on local adaptivity for resolving discontinuities in the stochastic dimensions. How-
ever, the adaptive refinement in the probability space is ineffective in the non-intrusive
uncertainty quantification framework, if the stochastic discontinuity is caused by a discon-
tinuity in the physical space with a random location. The dependence of the discontinuity
location in the probability space on the spatial coordinates then results in a staircase
approximation of the statistics, which leads to first-order error convergence and an under-
prediction of the maximum standard deviation. To avoid these problems, we introduce
subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a
truly discontinuous representation of random spatial discontinuities in the interior of
the cells discretizing the probability space. The presented SSC–SR method is based on
resolving the discontinuity location in the probability space explicitly as function of the
spatial coordinates and extending the stochastic response surface approximations up to
the predicted discontinuity location. The applications to a linear advection problem, the
inviscid Burgers’ equation, a shock tube problem, and the transonic flow over the RAE
2822 airfoil show that SSC–SR resolves random spatial discontinuities with multiple sto-
chastic and spatial dimensions accurately using a minimal number of samples.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The notion of subcell resolution in the Finite Volume Method (FVM) originated from Harten [13] to prevent the smearing
of contact discontinuities in the solution of hyperbolic conservation laws in the physical space X. It is based on the observa-
tion that the location of a discontinuity xdisc within a spatial cell Xj can be derived from the computed cell-averaged value �wj

approximating a flow quantity uðxÞ. In an Essentially Non-Oscillatory (ENO) FVM scheme [12], the ENO reconstructions of
uðxÞ in the cells to the left and the right of the discontinuous cell Xj, wj�1ðxÞ and wjþ1ðxÞ, are then extended up to an approx-
imation of the discontinuity location xdisc in Xj such that their integral matches the cell average �wj, see Fig. 1. This allows for
resolving discontinuities in the interior of the cells instead of restricting them to the cell face locations. The concept can be
extended to multiple spatial dimensions using the dimensional splitting approach.

In contrast, stochastic methods commonly approximate discontinuities in the probability space N using local adaptivity in
a multi-element discretization of the stochastic dimensions. These local methods divide the probability space into multiple
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Fig. 1. Subcell resolution in the FVM spatial discretization for uðxÞ with the extensions of the ENO approximations wj�1ðxÞ and wjþ1ðxÞ up to the estimate of
the discontinuity location xdisc that match the cell average �wj.
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subdomains comparable to spatial discretizations of the physical space. For instance, multi-element stochastic Galerkin
methods [4,19,30] use polynomial chaos expansions [15,37] to approximate the response in each of the cells discretizing
the probability space. Non-intrusive alternatives [3,14,18] employ Stochastic Collocation (SC) approaches [5,38] to construct
local polynomial interpolations of samples at quadrature points in the cells. These methods commonly use sparse grids of
Gauss quadrature rules in hypercube subdomains combined with solution-adaptive refinement measures [20] for resolving
nonlinearities. The non-intrusive Simplex Stochastic Collocation (SSC) method [34,35] based on a simplex tessellation of the
probability space achieves a robust approximation of discontinuities using a linear interpolation at the jump and ENO-type
stencil selection in the SSC–ENO approach [36].
Fig. 2. A step function uðxÞ with a random jump location xdisc ¼ n in the physical space results in different discontinuity locations, ndisc;1 and ndisc;2, in the
probability space for different spatial points x1 and x2.
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However, in problems where the location of a discontinuity in the physical space is random, adaptive refinement in the
probability space proves ineffective in the non-intrusive uncertainty quantification framework, see [26,32]. This is not nec-
essarily the case for adaptive intrusive Galerkin projection methods, see for instance [29]. For each point x in the physical
space, the spatial discontinuity namely results in a jump at a different location n in the probability space, see Fig. 2. Random
discontinuity locations also result in staircase approximations for the mean and standard deviation fields that converge with
first-order accuracy only. This coincides with an underprediction of the maximum standard deviation as well. Since a non-
intrusive stochastic approach is based on the interpolation of samples, the discontinuity does not affect the solution unless it
moves across a sampling point in the probability space. At that moment, the solution changes discontinuously and it remains
constant in between. This results in the mentioned staircase approximation, while the exact solution can be continuous. This
is illustrated in more detail for the example in Section 3.1. Therefore, we introduce the concept of subcell resolution into the
SSC–SR method to achieve accurate approximations of random spatial discontinuities in the probability space.

The subcell resolution is obtained by extracting the discontinuity location xdisc in the physical space from each of the
deterministic simulations for the sampled random parameter values nk. These physical discontinuity locations xdisc are inter-
polated in the stochastic dimensions to derive a relation for the location of the discontinuity ndisc in the probability space as a
function of the spatial coordinate x. In the discontinuous cells, the interpolations wjðnÞ of the neighboring cells Nj are then
extended from both sides up to the predicted discontinuity location ndisc. This leads to a genuinely discontinuous represen-
tation of the jump in the interior of the cells in the probability space, which avoids the underprediction of the standard devi-
ation without the need for linear interpolation and adaptive sampling near the discontinuity. It also avoids the staircase
approximation of the statistical moments because of the continuous dependence of the discontinuity location ndisc in the
probability space on the spatial coordinate x. For multiple random parameters, it leads to a multi-dimensional representation
of the discontinuous front without the need for dimensional splitting.

Subcell resolution in stochastic methods has also been proposed by Ghosh and Ghanem [16] in the form of basis enrich-
ment in the polynomial chaos expansion. Their approach is, however, based on incorporating a priori knowledge about the
discontinuity location by selecting appropriate enrichment functions. Abgrall [1,2] and Barth [6] have extended FVM directly
to discretize the combined physical and probability spaces using the ENO scheme. We consider here the spatial and stochas-
tic dimensions separately to reduce the dimensionality of the problems. A solution for the staircase approximation of the
statistics in case of random spatial discontinuities has also been proposed by Barth [7] using image enhancement postpro-
cessing techniques in the combined discretization of the physical and probability spaces.

The developed SSC–SR method is analyzed in application to a linear advection problem, the inviscid Burgers’ equation, a
Riemann problem in a shock tube, and the transonic flow over an airfoil. For the inviscid Burgers’ equation, a staircase solu-
tion of the stochastic Galerkin approach has been reported in [22]. It has been suggested to use additional dissipation to
smoothen the steps for a qualitatively better solution. The inviscid Burgers’ equation has also been used by Chen et al.
[10] and Chantrasmi et al. [8] as a model for the flow through a dual throat nozzle to study random shock wave locations.
The inviscid Burgers’ equation and the Riemann problem have been considered by Poëtte et al. [23] to demonstrate that their
polynomial chaos method based on entropic variables is more precise in discontinuous cases than the stochastic Galerkin
method. Both problems have also been used by Tryoen et al. [28] to assess the robustness and the efficiency of their mul-
ti-resolution stochastic Galerkin method with upwinding in case of discontinuities in the physical and probability spaces.
In transonic airfoil flows, a stair-like solution profile and an underprediction of the standard deviation have been observed
by Simon et al. [26] in the region of the shock movement. They conclude that these problems can be alleviated by selecting a
sufficiently high number of sampling points with respect to the spatial resolution at the expense of significant computational
costs in higher dimensional problems. A non-intrusive stochastic projection method has also been applied to transonic flow
over an airfoil by Chassaing and Lucor [9] with randomness in the free-stream conditions. Other transonic airfoil flows have
previously been considered in [31,32].

The subcell resolution is introduced in the SSC–SR method in Section 2. The results for the linear advection problem, the
inviscid Burgers’ equation, the shock tube problem, and the transonic airfoil flow are compared with those of the SSC–ENO
method without subcell resolution in Sections 2–6, respectively. The main conclusions are summarized in Section 7.

2. Simplex stochastic collocation with subcell resolution

The subcell resolution in stochastic problems is presented for discontinuities and discontinuous derivatives in combina-
tion with a sampling strategy for the resulting SSC–SR algorithm.

2.1. Stochastic problem statement

Consider the following operator equation for the flow quantity uðx; t; nÞ as function of the spatial and temporal coordi-
nates, x 2 X � Rnx with the spatial dimensionality nx 2 f1;2;3g and t 2 T � R, and the vector of nn second-order random
parameters n ¼ fn1; . . . ; nnn

g 2 N with the probability distribution fnðnÞ and the parameter space N � Rnn
Lðx; t; n; uðx; t; nÞÞ ¼ Sðx; t; nÞ; ð1Þ
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where the operator L and the source term S are defined on the domain X � T � N with appropriate initial and boundary con-
ditions. The temporal argument t is dropped from here onto shorten the notation. The parameter space N is discretized in the
SSC method [34,35] using a tessellation of ne non-overlapping simplexes Nj, for which holds N ¼

Sne
j¼1Nj. Computationally

intensive deterministic solutions vkðxÞ ¼ uðx; nkÞ of the governing Eq. (1) are calculated using a spatial discretization method
for the parameter values that correspond to the ns sampling points nk at the vertexes of the simplexes Nj. This results in the
set of samples vðxÞ ¼ fv1ðxÞ; . . . ;vns ðxÞg. The response surface for uðx; nÞ in the probability space is approximated by wðx; nÞ
using a polynomial chaos expansion [15,37] in all simplexes Nj in terms of the basis polynomials Wj;iðnÞ
Fig. 3.
by the
wjðx; nÞ ¼
XPjðxÞ

i¼0

cj;iðxÞWj;iðnÞ; ð2Þ
with piecewise polynomial wðx; nÞ ¼ wjðx; nÞ for n 2 Nj and PjðxÞ þ 1 ¼ ðnn þ pjðxÞÞ!=ðnn!pjðxÞ!Þ the number of expansion
terms, where pjðxÞ is the local polynomial degree of wjðx; nÞ in Nj. The index j of the polynomial degree pjðxÞ of the interpo-
lation wjðx; nÞ in the simplex Nj in the probability space denotes that pjðxÞ can be different for different simplexes Nj in the
probability space. In addition, the polynomial degree pjðxÞ in one simplex Nj in the probability space can also be different for
different points in the spatial discretization of x depending on the resulting location of the discontinuity in the probability
space for that x. In order to clarify the notation, the subscript k is consistently used for sampling points nk and the subscript j
is only used to refer to simplex elements Nj. The way in which the polynomial degree pjðxÞ is selected is described in Appen-
dix A. Monomials are used for the basis polynomials Wj;iðnÞ in this case and orthogonal polynomials could be used to improve
the numerical stability. The coefficients cj;iðxÞ are determined by interpolating the samples vkðxÞ of a stencil
SjðxÞ ¼ fnkj;0

; . . . ; nkj;Nj ðxÞ
g of NjðxÞ þ 1 unique sampling points nk, with kj;l 2 f1; . . . ;nsg and l ¼ 0; . . . ;NjðxÞ. The first nn þ 1 sam-

pling points nk of the stencil SjðxÞ consist of the vertexes of the simplex Nj and the NjðxÞ � nn other sampling points are ver-
texes of the surrounding simplexes, see Fig. 3 for an example in a two-dimensional probability space. The interpolation
procedure (2) in the probability space is denoted by the interpolation operator I , for which holds wðx; nÞ ¼ IðvðxÞÞ. More
details about the stochastic discretization and the initial tessellation before refinements are given in Appendix A.

2.2. Subcell resolution

The sequence of operations in the subcell resolution algorithm is listed below. The subcell resolution is first introduced for
a one-dimensional physical space x 2 X with nx ¼ 1 and later described for multiple spatial dimensions.

2.2.1. Extraction of discontinuity locations
Assume that uðx; nÞ contains a discontinuity, of which the location xdiscðnÞ in the physical space X is a function of the sto-

chastic dimensions n. The samples vðxÞ for the flow quantity uðx; nÞ are then used to extract ns realizations
vdisc ¼ fvdisc1 ; . . . ;vdiscns

g for the physical discontinuity location xdiscðnÞ at the sampling points nk. This is referred to as the
extraction operation E that returns vdisc ¼ EðvðxÞÞwith vdisck

¼ xdiscðnkÞ. In Fig. 4(a), an example of the extraction of vdisck
from

the sample vkðxÞ for the sampling point nk is given for one stochastic dimension n. The set of realizations vdisck
for ns ¼ 5 sam-

pling points nk is shown in Fig. 4(b) by the dots in the plot of the discontinuity location xdiscðnÞ in the physical space as func-
tion of the random parameter n.
SSC discretization of a two-dimensional probability space for approximating the response uðx; nÞ as function of the stochastic dimensions n ¼ fn1; n2g
interpolation wjðx; nÞ of a stencil SjðxÞ of the samples vkðxÞ at the sampling points nk for the simplex Nj .



Fig. 4. Example of the subcell resolution approach for a discontinuity in a one-dimensional probability space.

J.A.S. Witteveen, G. Iaccarino / Journal of Computational Physics 251 (2013) 17–52 21
The specific method for the extraction E of the physical discontinuity locations vdisck
from the deterministic flow fields for

the local flow quantity vkðxÞ can depend on the type of representation of the discontinuity that is used by the spatial discret-
ization method. The discontinuity locations are explicitly resolved, for example, in subcell resolution FVM discretizations in
the physical space and front tracking methods or level set approaches. Shock sensors in hybrid shock capturing methods or
adaptive mesh refinement strategies can also be used to identify the discontinuity locations. Otherwise, approaches can be
used based on local maxima in the gradient magnitude of the solutions vkðxÞ, such as the shock detector proposed by Harten
[13]. These different extraction operators E are illustrated in the numerical examples in Sections 2–6 for FVM and front
tracking discretizations in physical space.

2.2.2. Interpolation of discontinuity locations
The realizations vdisc for the physical discontinuity location are interpolated over the probability space to the function

wdiscðnÞ to obtain an approximation of the discontinuity location xdiscðnÞ in the physical space as function of the stochastic
coordinates n, see Fig. 4(b). The piecewise higher-degree polynomial interpolation wdiscðnÞ ¼ IðvdiscÞ is obtained using the
interpolation operator I (2)



Fig. 5.
simplex
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wdiscj
ðnÞ ¼

XPdiscj

i¼0

cdiscj;i
Wj;iðnÞ; ð3Þ
with wdiscðnÞ ¼ wdiscj
ðnÞ for n 2 Nj and the Pdiscj

þ 1 coefficients cdiscj;i
determined by the interpolation of a stencil Sdiscj

of the
realizations vdisck

.

2.2.3. Intersection with spatial point x
The location of the discontinuity in the probability space for a certain point x in the physical space can then be described

by the hypersurface NdiscðxÞ � N. This discontinuous hypersurface NdiscðxÞ in the probability space is given by the intersection
of wdiscðnÞwith the hyperplane xdiscðnÞ ¼ x, such that for all points ndisc 2 NdiscðxÞ holds wdiscðndiscÞ ¼ x. Therefore, Ndisc contains
all combinations of random parameter values ndisc for which the discontinuity in the physical space is predicted to be located
at x. In the example of Fig. 4(b) with a one-dimensional probability space, the set NdiscðxÞ consists of a single point ndisc for
which wdiscðndiscÞ ¼ x. For multiple random parameters n, the intersection NdiscðxÞ of wdiscðnÞ with xdiscðnÞ ¼ x is a piecewise
higher-degree function that is able to capture nonlinear curvatures of discontinuous hypersurfaces in the probability space.

2.2.4. Identification of discontinuous simplexes
The parameter space N is next divided into two subdomains N�ðxÞ and NþðxÞ separated by NdiscðxÞ, for which holds

wdiscðn�Þ < x with n� 2 N�ðxÞ;wdiscðnþÞ > x with nþ 2 NþðxÞ, and N ¼ N�ðxÞ [ NþðxÞ. The discontinuous simplexes Nj that con-
tain NdiscðxÞ are identified by
wdiscj
ðn�Þ < x for some n� 2 Nj ^wdiscj

ðnþÞ > x for some nþ 2 Nj: ð4Þ
2.2.5. Reconstruction of discontinuous response surface
The interpolation wjðx; nÞ (2), in the simplexes Nj that satisfy (4), is replaced by a discontinuous representation of the re-

sponse surface uðx; nÞ. To that end, the simplex Nj is divided into two regions N�j ðxÞ � N�ðxÞ and Nþj ðxÞ � NþðxÞ with
Nj ¼ N�j ðxÞ [ Nþj ðxÞ. The interpolation wjðx; nÞ in N�j ðxÞ is replaced by the approximation w�j ðx; nÞ ¼ wi� ðx; nÞ of the simplex
Ni� closest to Nj for which holds Ni� � N�. The nearest cell Ni� is defined as the simplex that has the most vertexes nk in com-
mon with Nj and that has the highest polynomial degree pi� out of these cells. The region Nþj ðxÞ is assigned the different inter-
polation wþj ðx; nÞ ¼ wiþ ðx; nÞ of the nearest simplex Niþ � Nþ with i�; iþ 2 f1; . . . ;neg=j. The notation is illustrated in Fig. 5 for
the case of a two-dimensional probability space. This leads for SSC–SR to the response surface approximation wðx; nÞ given by
wðx; nÞ ¼
wjðx; nÞ; n 2 Nj; Nj � N� _ Nj � Nþ;

w�j ðx; nÞ; n 2 N�j ; Nj å N� ^ Nj å Nþ;

wþj ðx; nÞ; n 2 Nþj ; Nj å N� ^ Nj å Nþ;

8><
>: ð5Þ
which is discontinuous at the predicted discontinuity location NdiscðxÞ, see Fig. 4(c) for the result in the one-dimensional
probability space. Integrating wðx; nÞ over the parameter space N yields an approximation of the statistical moments of u
at the spatial point x. In order to obtain the spatial fields for the mean lwðxÞ and the standard deviation rwðxÞ, the approx-
imations NdiscðxÞ and wðx; nÞ are constructed for each point x in the spatial discretization of X.
Division of the simplex Nj in the two-dimensional parameter space N by the discontinuous front NdiscðxÞ into N�j ðxÞ and Nþj ðxÞ with the nearest
es Ni� and Niþ in N�ðxÞ and NþðxÞ, respectively.



J.A.S. Witteveen, G. Iaccarino / Journal of Computational Physics 251 (2013) 17–52 23
2.2.6. Multiple spatial dimensions
For nx 2 f2;3g, the location of the discontinuity is described by the discontinuous surface XdiscðnÞ � X in the physical

space. Therefore, instead of using the discontinuity location xdiscðnÞ, the signed Euclidean distance ddiscðx; nÞ from the discon-
tinuity XdiscðnÞ to a point x in the physical space is parameterized for nx > 1. The sign is obtained using the cross product, at
the point on the discontinuity XdiscðnÞ closest to x, between the tangent of XdiscðnÞ and the vector to x, which is illustrated in
Section 6 for the RAE 2822 airfoil. The subcell resolution method is then equal to the approach presented in this section for
nx ¼ 1 by substituting ddiscðx; nÞ for xdiscðnÞ and the location of the discontinuous hypersurface NdiscðxÞ is given by
ddiscðx; nÞ ¼ 0. Since ddiscðx; nÞ depends on the reference point x in the physical space, the realizations vdisck

ðxÞ of ddiscðx; nÞ
and the interpolation wdiscðx; nÞ become a function of x, such that the interpolation step wdiscðx; nÞ ¼ IðvdiscðxÞÞ is also re-
peated for each x in the spatial discretization. For a one-dimensional physical space, r ¼ 1, the distance reduces to
ddiscðx; nÞ ¼ xdiscðnÞ � x such that parameterizing the discontinuity location xdiscðnÞ ¼ XdiscðnÞ is sufficient, which is indepen-
dent of x. If multiple discontinuities are present in the spatial field of uðx; nÞ then the subcell resolution algorithm is applied
to each physical discontinuity. A non-monotonic function for wdiscðx; nÞ also results in multiple discontinuities in wðx; nÞ at
certain values of x.

2.3. Sampling strategy

At physical points x where the hypersurface NdiscðxÞ is located close to the boundary of the parameter space N, no sim-
plexes Ni may lie entirely in the region on one side of NdiscðxÞ. For instance, N� might not contain any simplexes Ni� for updat-
ing the interpolation w�j ðx; nÞ to wi� ðx; nÞ in N�j ðxÞ of the simplex Nj that contains NdiscðxÞ. Such an example is given in Fig. 6 for
the initial number of ns ¼ 5 samples in a two-dimensional probability space. In that case, a constant function is used for
w�j ðx; nÞ. The constant value for w�j ðx; nÞ is the arithmetic average of the samples vkðxÞ at the vertexes of Nj in N�j . The treat-
ment of discontinuous derivatives in the response surface and, in that case, the linear reconstruction of w�j ðx; nÞwhen NdiscðxÞ
is located close to the boundary of N are discussed in Appendix B. In any other cases, the interpolation wjðx; nÞ (2) is simply
retained.

The potentially constant approximation of w�j ðx; nÞ near the boundary of N, or the linear function in case of a discontin-
uous derivative, is the lowest local polynomial degree of the otherwise higher-degree response surface approximation
wðx; nÞ. Therefore, a sampling strategy is used that reduces the size of these regions in the parameter space N. To that
end, the following refinement measure emaxj

, based on [34], is used for the simplexes Nj in the refinement procedure
Fig. 6.
interpo
emaxj
¼max

x2X
ejðxÞ; ejðxÞ ¼ �Xj

�N
2OjðxÞ
j ; ð6Þ
with the probability �Xj contained by Nj, the normalized volume of Nj in the parameter space N, and the local estimated order
of convergence OjðxÞ given by
�Xj ¼
Z

Nj

fnðnÞdn; �Nj ¼
1
�N

Z
Nj

dn; OjðxÞ ¼
pjðxÞ þ 1

nn
; ð7Þ
where �N ¼
R
N dn. The polynomial degree pjðxÞ of the discontinuous simplexes Nj is defined as the probabilistically weighted

average of the polynomial degrees over its two subdomains N�j and Nþj
Example of the initial discretization of a two-dimensional parameter space N with ns ¼ 5, where no simplex Ni� is available to update the
lation w�j ðx; nÞ in N�j ðxÞ.
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pjðxÞ ¼
1
�Xj

Z
N�j

p�j ðxÞfnðnÞdnþ
Z

Nþ
j

pþj ðxÞfnðnÞdn

" #
; ð8Þ
with p�j ðxÞ and pþj ðxÞ the polynomial degrees of w�j ðx; nÞ and wþj ðx; nÞ in N�j and Nþj , respectively. The refinement focuses auto-
matically on the simplexes Nj with a low interpolation degree pjðxÞ weighted by the local probability �Xj. The low values of
pjðxÞ occur near the boundary of N at certain x-locations, instead of at the discontinuity NdiscðxÞ, as is demonstrated in the
numerical examples. The response surface approximation wdiscðx; nÞ for the discontinuity location xdiscðnÞ can be included
in the refinement measure (6) through pdiscj

to resolve nonlinearities in wdiscðx; nÞ as well.
2.4. SSC–SR algorithm summary

The SSC–SR algorithm replaces the linear approximation wjðx; nÞ of the SSC–ENO method [36] in the simplexes Nj that
contain a spatial discontinuity by a discontinuous representation. The algorithm contains the following five steps, which
are valid in probability spaces of arbitrary dimensionality nn and not limited to simplex discretizations of the stochastic
dimensions:

1. Extract the realizations vdisck
¼ EðvkðxÞÞ for the discontinuity location xdiscðnÞ in the physical space X from the samples

vkðxÞ for the response uðx; nÞ at the sampling points nk with k ¼ 1; . . . ;ns;
2. Interpolate the realizations vdisc to the function wdiscðnÞ ¼ IðvdiscÞ approximating the discontinuity location xdiscðnÞ in the

physical space as function of the stochastic coordinates n;
3. Intersect the function wdiscðnÞ with the hyperplane xdiscðnÞ ¼ x to find the location of the discontinuous hypersurface

NdiscðxÞ � N in the probability space for the spatial point x;
4. Identify the simplexes Nj that contain the discontinuous hypersurface NdiscðxÞ using (4);
5. Update the interpolations w�j ðx; nÞ and wþj ðx; nÞ in each of the discontinuous simplexes Nj on both sides of NdiscðxÞ by the

approximations wi� ðx; nÞ and wiþ ðx; nÞ of the nearest simplexes Ni� and Niþ in the regions N�ðxÞ and NþðxÞ of the parameter
space N on either side of NdiscðxÞ, respectively, which results in the response surface approximation wðx; nÞ given by (5).

The spatial fields of the statistical moments are obtained by repeating steps 3 to 5 for the points x in the spatial discretization
of X and integrating wðx; nÞ over the parameter space N. In multi-dimensional physical spaces X, the signed Euclidean dis-
tance ddiscðx; nÞ between the point x and the discontinuity XdiscðnÞ � X in the physical space is parameterized, instead of
xdiscðnÞ, and steps 1 and 2 are also repeated. If no simplexes Ni� or Niþ are available at an x-location for certain simplexes
Nj, then a constant or linear function for w�j ðx; nÞ or wþj ðx; nÞ is used for discontinuities or discontinuous derivatives, respec-
tively, as described in Section 2.3 and Appendix B. The extraction E of step 1 is assumed to be attainable as is shown for the
numerical examples in the following sections, which consider regular perturbation problems without topological changes of
the discontinuities.

Subcell resolution is based on the sequential application of the same interpolation algorithm I to two different response
surface approximation problems. The first one is for representing the discontinuity location wdiscðnÞ ¼ IðvdiscÞ and the second
one for the response itself wðx; nÞ ¼ IðvðxÞÞ. This requires the implementation of only one interpolation algorithm, which can
be a less complex one than the simplex discretization used here. It is then relatively straightforward to implement the sub-
cell resolution steps summarized above into the interpolation method for random vectors n with more than two dimensions
and multidimensional spatial vectors x. The simplex discretization is also formulated and implemented here for arbitrary
stochastic dimensionality.
3. Linear advection equation

The application of the SSC–SR method to a linear advection problem with discontinuous initial conditions is considered in
multiple stochastic and physical dimensions. The results are compared to those of the SSC–ENO approach and Monte Carlo
(MC) simulation. The linear advection equation in two spatial dimensions for the convected quantity uðx; y; tÞ is
@u
@t
þ a

@u
@x
þ b

@u
@y
¼ 0; ð9Þ
with the advection velocities a and b in the x and y-directions, respectively. The initial conditions are given by
uðx; y;0Þ ¼ H ðx� x0Þ þ ðy� y0Þð Þ ¼
0; xþ y < x0 þ y0;

1; xþ y P x0 þ y0;

�
ð10Þ
where H is the Heaviside step function, and x0 and y0 describe the initial discontinuity location. The analytical solution of (9)
and (10) is uðx; y; tÞ ¼ H ðx� x0 � atÞ þ ðy� y0 � btÞð Þ.
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3.1. Random advection velocity a

Randomness is first considered in the advection velocity a, given by a uniform distribution on the interval Uð�0:5; 0:5Þ,
with one spatial coordinate x and a deterministic value for the initial discontinuity location of x0 ¼ 0. The initial condition
and the deterministic solution at t ¼ 1 are shown in Fig. 7(a) for a ¼ 0:5. The randomness in a leads to a random disconti-
nuity location xdisc in the physical space with xdisc ¼ a at t ¼ 1. The combination with the variability in x0 of Fig. 7(b) is con-
sidered in Section 3.2.

The resulting profiles for the mean luðxÞ and standard deviation ruðxÞ of u are given in Figs. 8 and 9 for SSC–ENO and SSC–
SR. Uniform, or volumetric, sampling is used in this example for both approaches based on the refinement measure �Nj. The
sampling strategy of Section 2.3 is explored for the other test cases. In Fig. 8(a), the SSC–ENO method clearly gives a staircase
approximation of the mean luðxÞ with the number of steps equal to the number of sampling points ns ¼ f3;5;33g. The re-
sults with the increasing number of smaller discontinuities approach the converged linear MC solution obtained with
nmc ¼ 5 � 104 samples. The equidistant steps occur when the spatial discontinuity crosses one of the uniformly spaced sam-
pling points in the one-dimensional probability space. The staircase behavior is, therefore, typical for non-intrusive methods
and not specific to SSC–ENO only. It would even appear in the MC solution at an inadequate number of samples of nmc < nx,
with nx the spatial resolution of nx ¼ 1 � 103 points used here. In contrast, SSC–SR achieves a continuous solution for luðxÞ in
Fig. 8(b), which is already converged to the MC result for ns ¼ 3 and ns ¼ 5 samples.

The staircase approximation of SSC–ENO and the converged continuous solution of SSC–SR can also be observed in Fig. 9
for ruðxÞ. The standard deviation of SSC–ENO converges from below to the MC maximum of rumax ¼ 0:500 at x ¼ 0. A zoom of
ruðxÞ on the interval x 2 ½0; 0:2�, in Fig. 10, reveals that for ns ¼ 33 samples SSC–ENO still underestimates the maximum stan-
dard deviation with rumax ¼ 0:495. It also shows the truly continuous solution of SSC–SR for ruðxÞ with ns ¼ 3.

The behavior of the SSC–ENO and SSC–SR solutions can be understood by inspecting the response surface of u in the prob-
ability space as function of the random parameter a for an arbitrary x-location, x ¼ 0:1, in Fig. 11. The randomness in the step
location xdisc in the physical space appears in the MC response surface in the probability space for x ¼ 0:1 as a discontinuity at
adisc ¼ 0:1. SSC–ENO results in a linear interpolation of the samples at the jump, which converges only slowly with the
increasing number of samples ns ¼ 3 and ns ¼ 5. The actual location of the discontinuity in between two samples is, there-
fore, not reflected in the SSC–ENO approximation, which leads to the plateaus in the solutions for luðxÞ and ruðxÞ.

On the contrary, SSC–SR gives a sharp representation of the jump in the discontinuous cell. It extrapolates the approxi-
mations in the adjacent cells for ns ¼ 5 up to the estimate of the discontinuity location adisc. For ns ¼ 3, the approximation to
the right of the discontinuity is a constant function through the rightmost sample at a ¼ 0:5, because in that case the dis-
continuous cell has no neighboring cell to the right. This corresponds to the exact piecewise constant solution of the linear
advection equation, which will not be the case for the nonlinear problems in the next sections.

The location of the discontinuity adisc in the probability space is estimated by SSC–SR as shown in Fig. 12 for ns ¼ f3;5g.
The closed circles denote the realizations vdisck

¼ x0 þ akt of the discontinuity location xdisc in the physical space for the deter-
ministic solutions at the sampling points ak. The interpolation wdiscðaÞ of the linear relation between xdisc and a is exact for
ns ¼ 3. For the example of Fig. 11 at x ¼ 0:1, the discontinuity location adisc ¼ 0:1 in the probability space results from the
intersection of wdiscðaÞ with the horizontal line xdisc ¼ 0:1.

3.2. Random advection velocity a and initial discontinuity location x0

The additional randomness in the initial discontinuity location x0 is described by a uniform distribution Uð�0:2; 0:2Þ,
which is uncorrelated with the probability distribution of a. The effect of the variation in x0 was shown in Fig. 7(b) in terms
of the deterministic solution for x0 ¼ 0:2 and a ¼ 0:5. The results for the two-dimensional probability space are given in
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Fig. 7. Initial conditions and deterministic solutions at t ¼ 1 for the linear advection equation in one spatial dimension.
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Fig. 8. Mean luðxÞ of u for the linear advection equation in one spatial dimension with the random advection velocity a.
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Fig. 9. Standard deviation ruðxÞ of u for the linear advection equation in one spatial dimension with the random advection velocity a.
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Fig. 10. Zoom of the standard deviation ruðxÞ of u on x 2 ½0; 0:2� for the linear advection equation in one spatial dimension with the random advection
velocity a.
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Fig. 13 in the form of the mean luðxÞ, and the 90% and 100% probability intervals for SSC–ENO with ns ¼ 33 and SSC–SR with
ns ¼ 5. SSC–ENO gives again a staircase approximation, also for the 90% interval representation. The steps are more irregular
because the sampling points in two stochastic dimensions are no longer equidistant. The SSC–SR result already matches the
MC solution for both the mean and the intervals at the initial number of ns ¼ 5 samples for discretizing the two-dimensional
probability space. At certain x-locations the mean luðxÞ lies outside the 90% quantiles because of the nonlinearity of the re-
sponse surface.

The two-dimensional response surface approximations of SSC–ENO and SSC–SR are visualized in Figs. 14 and 15 for
x ¼ 0:1. The exact solution for the response of u as function of the random parameters a and x0 is given in Fig. 14(a). It is
a piecewise constant function with a diagonal discontinuity, because of the impact of both a and x0 on the discontinuity loca-
tion in the physical space. Fig. 14(b) shows the simplex tessellation of SSC–ENO for ns ¼ 33 and the piecewise linear inter-
polation of the samples at the discontinuity.
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Fig. 11. Response surface approximations for u at x ¼ 0:1 with ns ¼ f3;5g samples as function of the random advection velocity a for the linear advection
equation in one spatial dimension.
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Fig. 12. Response surface approximation wdisc for the physical discontinuity location xdisc as function of the random advection velocity a by SSC–SR with
ns ¼ f3;5g samples for the linear advection equation in one spatial dimension.
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Fig. 13. Mean luðxÞ, and 90% and 100% probability intervals of u for the linear advection equation in one spatial dimension with the random advection
velocity a and initial discontinuity location x0.
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The SSC–SR method leads to a multi-dimensional representation of the discontinuity in Fig. 15(a) that matches the exact
response surface for ns ¼ 5. The jump position is found by constructing the response surface wdiscða; x0Þ for the discontinuity
location xdisc in the physical space as function of a and x0 shown in Fig. 15(b), in which a different axes orientation is used for
clarity of the figure. The discontinuous front in the a–x0 plane for x ¼ 0:1 is given by the intersection of the response surface
wdiscða; x0Þ with the horizontal plane through xdisc ¼ 0:1. The approximation of u in the continuous cell at low values of a is
then extended into the discontinuous cells up to the estimated discontinuity location. On the other side of the step, the re-
sponse surface approximation in the discontinuous cells is obtained by a constant interpolation through the two sampling
points at a ¼ 0:5, since no continuous cell is available in that region for the discretization with ns ¼ 5 samples.
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3.3. Higher-dimensional probability spaces

The advection velocity a is decomposed into a summation of na random parameters ai to obtain higher-dimensional prob-
ability spaces than in the previous paragraph
Table 1
Mean l
advecti

na

1

2

3

4

5

a ¼
Xna

i¼1

ai; ai ¼ U �
0:5
na

;
0:5
na

� �
; ð11Þ
such that a 2 ½�0:5; 0:5�. The dimensionality of the problem is then equal to the number of random parameters na with the
deterministic initial condition x0 ¼ 0. The mean lu and standard deviation ru at x ¼ 0:1 are given in Tables 1 and 2 up to
na ¼ 5 dimensions for SSC–SR with the initial number of samples nsinit , MC with the same number of samples, and the MC
reference solution with nmc ¼ 5 � 104. It shows that SSC–SR continues to match the reference results exactly also for discon-
tinuities in the higher-dimensional probability spaces. Therefore, the effectiveness of the subcell resolution approach does, in
principle, not depend on the dimensionality of this problem up to na ¼ 5. The MC solution with the same number of samples
u of SSC–SR compared to MC and its reference solution for the linear advection equation in one spatial dimension with the higher-dimensional random
on velocity a.

nsinit Reference SSC–SR MC

3 6:000 � 10�1 6:000 � 10�1 6:667 � 10�1

5 6:830 � 10�1 6:830 � 10�1 8:000 � 10�1

9 7:181 � 10�1 7:181 � 10�1 7:778 � 10�1

17 7:480 � 10�1 7:480 � 10�1 8:235 � 10�1

33 7:756 � 10�1 7:756 � 10�1 8:182 � 10�1



Table 2
Standard deviation ru of SSC–SR compared to MC and its reference solution for the linear advection equation in one spatial dimension with the higher-
dimensional random advection velocity a.

na nsinit Reference SSC–SR MC

1 3 4:899 � 10�1 4:899 � 10�1 4:714 � 10�1

2 5 4:653 � 10�1 4:653 � 10�1 4:000 � 10�1

3 9 4:499 � 10�1 4:499 � 10�1 4:157 � 10�1

4 17 4:341 � 10�1 4:341 � 10�1 3:812 � 10�1

5 33 4:172 � 10�1 4:172 � 10�1 3:857 � 10�1
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Fig. 16. Initial condition and deterministic solution for the linear advection equation in two spatial dimensions.
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is less accurate with an error up to 10% also in higher dimensions. The increase of the initial samples nsinit
can further be re-

duced, for instance, to a linear growth by omitting the samples at the vertexes of the parameter space N as proposed in [34].
3.4. Multi-dimensional physical space

The advection problem is considered in a two-dimensional physical space with fully correlated random advection veloc-
ities, a ¼ b ¼ Uð�0:5; 0:5Þ, and deterministic initial conditions x0 ¼ y0 ¼ 0. The solution of the deterministic problem for
a ¼ 0:5 is given in Fig. 16 together with the initial condition at t ¼ 0. The random discontinuity location leads to the mean
luðx; yÞ and standard deviation ruðx; yÞ fields shown in Figs. 17 and 18 for SSC–ENO with ns ¼ 9 and SSC–SR with ns ¼ 3. Also
in multiple spatial dimensions, the SSC–SR method avoids the staircase profile of SSC–ENO in a continuous solution that is
identical to the MC result (not shown). Since the problem contains more than one spatial dimension, the signed minimum
distance ddisc between the discontinuity and a point ðx; yÞ in the physical space is parameterized, instead of the discontinuity
location xdisc. In this analytical problem, the distance is given by ddisc ¼ 1

2

ffiffiffi
2
p
ðða� xÞ þ ðb� yÞÞ. Since ddisc depends on x and y,

the construction of the response surface for ddisc is repeated for each of the 100� 100 points in the spatial grid used here.
4. Inviscid Burgers’ equation

The Burgers’ equation is considered to examine the performance of the SSC–SR method for nonlinear shock speeds and
discontinuous derivatives in the response surface. The inviscid Burgers’ equation for the velocity uðx; tÞ in one spatial dimen-
sion is given by
@u
@t
þ u

@u
@x
¼ 0: ð12Þ
The initial conditions on the domain x 2 ½�1;1� consist here of three uniform regions
uðx;0Þ ¼
u0; �1 6 x < �0:5;
�0:5; �0:5 6 x < x0;

0:5; x0 6 x 6 1;

8><
>: ð13Þ
with two random parameters describing the initial discontinuity location x0 ¼ Uð�0:2; 0:2Þ and the initial value
u0 ¼ Uð1; 1:5Þ. The deterministic problems are solved numerically using a second-order front tracking method [33], which
discretizes rarefaction fans by a series of nf characteristic waves. The shock speed is then updated after every interaction



Fig. 17. Mean luðx; yÞ of u for the linear advection equation in two spatial dimensions with the random advection velocities a and b.

Fig. 18. Standard deviation ruðx; yÞ of u for the linear advection equation in two spatial dimensions with the random advection velocities a and b.
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with a characteristic wave using a local Riemann solver. It resolves discontinuous phenomena as genuine discontinuities,
however, there is a numerical error in its location after it interacts with a continuous wave.
4.1. Random initial discontinuity location x0

The front tracking solution in the space–time plane up to t ¼ 1 is given in Fig. 19 for the extreme values of x0 with
u0 ¼ 1:5. It shows the interaction of the shock wave with the discretization of the rarefaction fan and the resulting curved
shock path for nf ¼ 20. The initial conditions and the deterministic solutions for u at t ¼ 1 are shown in Fig. 20 for
x0 ¼ f�0:2; 0; 0:2g with nf ¼ 100. The initial discontinuity location x0 affects the locations of both the shock wave and the
discontinuous derivative at the rightmost characteristic of the rarefaction fan at t ¼ 1. The SSC–SR method tracks the discon-
tinuity and the discontinuous derivative using the location of the fronts labeled as the shock wave and the rightmost char-
acteristic by the front tracking method in the physical space. If the discontinuous derivative is difficult to identify, for
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Fig. 19. Front tracking solution in space–time with u0 ¼ 1:5 and nf ¼ 20 characteristics discretizing the rarefaction wave for the inviscid Burgers’ equation.
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instance in FVM solutions with numerical diffusion, then it does not need to be modeled explicitly by the SSC–SR method
resulting locally in the same solution as SSC–ENO.

The mean luðxÞ and the standard deviation ruðxÞ of u are given in Figs. 21 and 22 for the random initial discontinuity
location x0 and the deterministic initial value of u0 ¼ 1:5. The results for SSC–ENO and SSC–SR are obtained using
ns ¼ f3;5;33g and ns ¼ f3;5;9g samples, respectively. The steps in the SSC–ENO approximation in the shock region are
not equidistant in this case, because of the nonlinearity of the shock path. SSC–SR leads to a more accurate solution for both
the shock wave and the discontinuous derivative at the rightmost characteristic. The SSC-SR result further improves in the
shock region with an increase of the number of samples from ns ¼ 3 to ns ¼ 5. This is partly caused by the nonlinearity of the
response surface for the shock location xshock, shown in Fig. 23(a), which is not fully captured by the quadratic approximation
for ns ¼ 3. The effect of the sampling strategy (6) on the location of the samples can be seen for ns ¼ 9 in terms of the con-
centration of the sampling points near the boundaries of the parameter domain. An example is given below that illustrates
the benefits of this non-uniform sampling. Fig. 23(b) shows that the location of the rightmost characteristic xchar depends
linearly on the random initial discontinuity location x0.

An example of the convergence for the discontinuous response surface of u at x ¼ 0:1 is given in Fig. 24 for SSC–ENO and
SSC–SR with ns ¼ f3;5;9g. In Fig. 24(b) for SSC–SR, the nonlinearity of the shock path leads to a slightly different disconti-
nuity location for ns ¼ 3 than for the higher values of ns, which agree with the MC solution. The error convergence is given in
Tables 3 and 4 for the mean, standard deviation, and the root mean square (RMS) error erms defined by [35]
erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nmc

Xnmc

k¼1

w nmck

� �
� u nmck

� �� �2

vuut ; ð14Þ
with nmc the number of MC integration points, nmck
, introduced in Appendix A. The given order of convergenceO for SSC–ENO

is obtained from the least squares fit through the errors up to ns ¼ 33 samples. SSC–ENO results approximately in first-order
convergence for the statistical moments due to the linear approximation in the discontinuous cell. The order of the RMS error
erms is approximately half of that because of the discontinuity in the response function. SSC–SR shows a faster convergence
than SSC–ENO to a smaller error at a lower sample size of ns ¼ 9. The order of convergence is not computed for SSC–SR, be-
cause the method is not expected to have a polynomial convergence owing to the simultaneous increase of the number of
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Fig. 21. Mean luðxÞ of velocity u for the inviscid Burgers’ equation with the random initial discontinuity location x0.
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Fig. 22. Standard deviation ruðxÞ of velocity u for the inviscid Burgers’ equation with the random initial discontinuity location x0.
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Fig. 23. Response surface approximations for the location of the discontinuity, xshock, and the discontinuous derivative, xchar, for the inviscid Burgers’
equation with the random initial discontinuity location x0.
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Fig. 24. Response surface approximations for u at x ¼ 0:1 with ns ¼ f3;5;9g for the inviscid Burgers’ equation with the random initial discontinuity location
x0.
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samples and the polynomial interpolation degree. The error obtained with MC using the same number of samples is shown
for comparison in Table 5 together with the reference solution for nmc ¼ 5 � 104. MC is approximately as accurate as SSC–ENO
in this case, because of the linear approximation of the discontinuity. SSC–SR results in an error that is also two orders of
magnitude smaller than MC, which illustrates the usefulness of the present method.

A response surface for u with a discontinuous derivative is obtained for the x-location of x ¼ 0:47 as shown in Fig. 25 for
SSC–ENO and SSC–SR with ns ¼ f3;5;9g. The SSC–SR method obtains the exact solution for ns ¼ 3 because of the correct rep-
resentation of the discontinuous derivative. Two other cases of SSC–SR response surface approximations are illustrated in
Fig. 26 for x ¼ 0:036 and x ¼ 0:66 with ns ¼ f3;5;9g. At x ¼ 0:036 in Fig. 26(a), the discontinuity in the response surface
is located close to the maximum value of the random parameter x0 ¼ 0:2. This leads to a constant approximation to the right



Table 3
Error convergence and order O for SSC–ENO at x ¼ 0:1 for the inviscid Burgers’ equation with the random initial discontinuity location x0.

ns Mean lu Standard deviation ru RMS norm

Value Error Value Error erms

3 4:000 � 10�1 2:378 � 10�1 4:933 � 10�1 2:406 � 10�1 4:394 � 10�1

5 5:750 � 10�1 6:276 � 10�2 6:591 � 10�1 7:477 � 10�2 2:349 � 10�1

9 6:625 � 10�1 2:474 � 10�2 7:120 � 10�1 2:186 � 10�2 1:558 � 10�1

17 6:203 � 10�1 1:745 � 10�2 7:159 � 10�1 1:793 � 10�2 1:210 � 10�1

33 6:418 � 10�1 4:035 � 10�3 7:281 � 10�1 5:717 � 10�3 7:340 � 10�2

O – 1:559 – 1:467 0:700

Table 4
Error convergence for SSC–SR at x ¼ 0:1 for the inviscid Burgers’ equation with the random initial discontinuity location x0.

nmc Mean lu Standard deviation ru RMS norm

Value Error Value Error erms

3 6:447 � 10�1 6:925 � 10�3 7:355 � 10�1 1:645 � 10�3 9:735 � 10�2

5 6:376 � 10�1 1:915 � 10�4 7:338 � 10�1 4:659 � 10�5 1:618 � 10�2

9 6:377 � 10�1 5:470 � 10�5 7:338 � 10�1 1:330 � 10�5 8:649 � 10�3

Table 5
Error convergence for MC compared to the reference solution at x ¼ 0:1 for the inviscid Burgers’ equation with the random initial discontinuity location x0.

ns Mean lu Standard deviation ru

Value Error Value Error

3 5:222 � 10�1 1:155 � 10�1 6:935 � 10�1 4:032 � 10�2

5 6:120 � 10�1 2:576 � 10�2 7:268 � 10�1 7:036 � 10�3

9 6:728 � 10�1 3:508 � 10�2 7:413 � 10�1 7:468 � 10�3

17 6:280 � 10�1 9:735 � 10�3 7:314 � 10�1 2:465 � 10�3

33 6:451 � 10�1 7:324 � 10�3 7:356 � 10�1 1:731 � 10�3

5 � 104 6:378 � 10�1 – 7:338 � 10�1 –
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Fig. 25. Response surface approximations for u at x ¼ 0:47 with ns ¼ f3;5;9g for the inviscid Burgers’ equation with the random initial discontinuity
location x0.
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of the discontinuity through the only sample at that side of the jump for ns ¼ 5. The sampling strategy (6) focuses on the
zeroth order polynomial in this region, such that for ns ¼ 9 a linear approximation is obtained. Fig. 26(b) shows a discontin-
uous derivative located close to x0 ¼ 0:2 for x ¼ 0:66 with only one sampling point at the right of the kink. In that case, the
constant approximation near the right boundary for ns ¼ f3;5g is avoided using the continuity at the location of the discon-
tinuous derivative to construct a linear function at the right of the kink through the rightmost sample.
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Fig. 26. Response surface approximations of u for SSC–SR with ns ¼ f3;5;9g for the inviscid Burgers’ equation with the random initial discontinuity location
x0.
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Fig. 27. Mean luðxÞ, and 90% and 100% probability intervals of u for the inviscid Burgers’ equation with the random initial discontinuity location x0 and
initial value u0.
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4.2. Random initial discontinuity location x0 and initial value u0

The effect of the additional randomness in the initial value u0 ¼ Uð1; 1:5Þ in (13) is considered next. The resulting varia-
tion of the output u between 1 and 1:5 at the left boundary of the spatial domain can be recognized in Fig. 27 for the mean,
and 90% and 100% probability intervals of SSC–ENO with ns ¼ 33 and SSC–SR with ns ¼ 17. The size of the intervals shows
the varying shock strength in the interaction region caused by the random shock location.

The changing strength of the discontinuity is also visible in the response surface approximations for u in Fig. 28 for the
physical location x ¼ �0:1. SSC–SR obtains a sharp resolution of both the curvature and the variable strength of the shock in
the parameter space compared to the piecewise linear result of SSC–ENO. The curvature is resolved by the nonlinearity of the
SSC–SR response surface for the shock location xshock in the physical space as function of x0 and u0 shown in Fig. 29(a). The
intersection of the piecewise polynomial response surface for xshock with the horizontal plane for x ¼ �0:1 gives a higher-de-
gree approximation of the curvature. The response surface for the location of the discontinuous derivative at the rightmost
characteristic of the rarefaction fan, xchar, is linear in x0 and independent of u0 as given in Fig. 29(b). A different axis orien-
tation is used in the latter figure for better visibility.

Examples of response surface approximations by SSC–SR with a discontinuous derivative are given in Fig. 30 for x ¼ 0:47
and x ¼ 0:66. It shows that the discontinuous derivative has a different orientation in the parameter space than the shock in
Fig. 28. These significantly different response surfaces at different x-locations make stochastic problems with random spatial
discontinuities challenging to solve. The continuity at the kink in the response surface enables SSC–SR to resolve the discon-
tinuous derivative also when it is located close to the boundary of the parameter space as for x ¼ 0:66 in Fig. 30(b).
5. Shock tube problem

Sod’s Riemann problem in a closed shock tube is a test case that involves a system of hyperbolic conservation laws, for
which the SSC–ENO method has been shown to give a staircase approximation of the discontinuities in [36].
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5.1. Simplex stochastic collocation results

The initial conditions for the static pressure p and the density q are given by Sod’s Riemann problem on a finite spatial
domain x 2 ½�0:2; 2� with reflecting walls
(

pleft ¼ 1;
qleft ¼ 1;

pright ¼ 0:1;
qright ¼ 0:125;

(
ð15Þ
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for a fluid at rest with velocity u ¼ 0 on both sides of a diaphragm at x0. The dynamics of the flow for t > 0 is governed by the
Euler equations for an inviscid fluid
@

@t

q
qu

qE

0
B@

1
CAþ @

@x

qu

qu2 þ p

quH

0
B@

1
CA ¼ 0; ð16Þ
with E ¼ ð1=ðc� 1ÞÞp=qþ u2=2;H ¼ Eþ p=q, and c ¼ cp=cv for the total specific energy E, total specific enthalpy H, the adi-
abatic coefficient c, and the specific heats cp and cv. The second-order front tracking method is used to solve (16) with
nf ¼ 64 fronts discretizing the rarefaction wave. The deterministic solution up to t ¼ 1 in Fig. 31(a) shows the interaction
of the rarefaction wave with the contact discontinuity. This results in two discontinuities in the density profile in
Fig. 31b) and and three points with a discontinuous derivative at t ¼ 1, which are tracked by the location of the fronts.
The randomness is introduced in the pressure of the initial left state pleft and the diaphragm location x0 given by the uncor-
related uniform distributions pleft ¼ Uð0:9; 1:1Þ and x0 ¼ Uð�0:025; 0:025Þ.

The convergence of the mean lqðxÞ and the standard deviation rqðxÞ of the density q at t ¼ 1 is shown in Figs. 32 and 33
for SSC–ENO with ns ¼ f10;20;100g and SSC–SR with ns ¼ f10;15;20g. The shock and contact waves are smeared by the ran-
dom location of the discontinuities in the results for the mean density lqðxÞ with respect to the deterministic solution of
Fig. 31(b). The standard deviation rqðxÞ also has local maxima in the regions of the discontinuity displacement. The results
for SSC–SR are indistinguishable and converged to a maximum standard deviation of rq;max ¼ 0:0730 at x ¼ 1:754 for
ns ¼ 15. SSC–ENO underestimates the maximum output randomness with rq;max ¼ 0:0700 by 4.16% even for ns ¼ 100.

The 90% and 100% probability intervals are compared to the mean density profile in Fig. 34(a) for SSC–SR with ns ¼ 15.
The wide and asymmetrical intervals in the discontinuous regions show the high nonlinearity of the stochastic problem and
the randomness in the discontinuity locations. Fig. 34(b) gives the discontinuous SSC–SR response surface approximation of
q at x ¼ 0:82 for ns ¼ 15.
5.2. Comparison with other stochastic methods and spatial discretizations

The overall accuracy of the method depends on the noise in the shock sensor, the convergence of the response surfaces for
the discontinuity locations, and the computation of the statistics. In this section, the results are compared to different uncer-
tainty quantification methods for different spatial discretizations to understand whether the sequence of the two stochastic
interpolation problems in SSC–SR is robust. The SSC–SR and SSC–ENO results are compared with the following well-estab-
lished non-intrusive techniques: Monte Carlo (MC) simulation, Polynomial Chaos (PC), and Stochastic Collocation (SC). For a
fair comparison between methods, this is done for the following two different numerical methods for the spatial discretiza-
tion: the Front Tracking Method (FTM) and the Finite Volume Method (FVM). Two different spatial meshes are also used in
FVM to demonstrate the effect on the efficiency of SSC–SR and to estimate the influence on the SSC–SR performance. In this
way, it can be discussed what level of spatial discretization is needed with respect to direct impact of the relative contribu-
tion from the deterministic component of the numerical scheme on the overall error budget. The convergence of the stan-
dard deviation rqðxÞ of the density q and of the error in the maximum standard deviation rqmax

with respect to a converged
MC solution are considered for different numbers of samples and for the different spatial discretizations.

The spectral projection method is used in the non-intrusive PC method, in which a number of random samples is pro-
jected onto the orthogonal Legendre PC basis polynomials for computing the PC coefficients [25]. A different set of random
sampling points is used here to assess the convergence of PC and MC than in the MC reference solution. A first-order poly-
nomial basis is employed for PC in this section, since higher-degree polynomials result in nonphysical negative values for the
gas density q. Similar results for higher-degree PC are added in Section 5.3. The quality of all the other methods is also
−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

shock wave
characteristic
contact wave

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

de
ns

ity

Fig. 31. Sod’s Riemann problem in a closed shock tube.
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Fig. 32. Mean lqðxÞ of the density q for Sod’s Riemann problem in a closed shock tube with random initial pressure pleft and diaphragm location x0.
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Fig. 33. Standard deviation rqðxÞ of the density q for Sod’s Riemann problem in a closed shock tube with random initial pressure pleft and diaphragm
location x0.
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Fig. 34. SSC–SR results with ns ¼ 15 for Sod’s Riemann problem in a closed shock tube with random initial pressure pleft and diaphragm location x0.
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considered at this level. The quality of the representation furnished by all the other methods does not lead to nonphysical
negative values for the gas density. The SC method is based on hierarchical sampling at the tensor product of Clenshaw-Cur-
tis quadrature points and global Lagrangian polynomial interpolation [38]. The FVM spatial discretization uses a second-or-
der Godonov method with a minmod slope limiter [27] and a CFL number of 0.25 on a coarse mesh of nx ¼ 88 spatial
volumes and a fine mesh with nx ¼ 352. These mesh sizes have been selected after a convergence study for the density
qðxÞ of the deterministic problem at the nominal inputs. The deterministic solutions on these coarse and fine FVM meshes
are shown in Fig. 35 for the nominal initial conditions. The discontinuities are smeared especially in the coarse approxima-
tion to see what happens if the fronts are not accurately captured. The uncertain initial conditions are implemented in such a
way that the discretized cell averages are equal to the exact initial conditions averaged over the volume. The discontinuity
locations are extracted from the FVM solutions as defined in Section 6.
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Fig. 35. Deterministic FVM solutions of Sod’s Riemann problem in a closed shock tube.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n

MC
MC FTM
PC 5
PC 10
PC 20
PC 50
PC 100

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n

MC
MC FTM
SC 4
SC 9
SC 25
SC 81

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n

MC
MC FTM
PC 5
PC 10
PC 20
PC 50
PC 100

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n

MC
MC FTM
SC 4
SC 9
SC 25
SC 81

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n

MC
PC 5
PC 10
PC 20
PC 50
PC 100

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

de
ns

ity
 s

ta
nd

ar
d 

de
vi

at
io

n

MC
SC 4
SC 9
SC 25
SC 81

Fig. 36. Standard deviation rqðxÞ of the density q for Sod’s Riemann problem in a closed shock tube for the PC1 and SC stochastic methods and the FVM and
FTM spatial discretizations.
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The numerical results for the standard deviation rqðxÞ of PC1 and SC are shown in Fig. 36 and of SSC–ENO and SSC–SR in
Fig. 37 with ns ¼ f5;10;20;50;100g. The number of samples for SC is ns ¼ f4;9;25;81g because of the limited flexibility of
choosing the number of its quadrature points. The set of SC quadrature points is not considered for all the methods to dem-
onstrate the flexibility of choosing the number of points in the other methods. The results are compared to those of the MC
reference solutions both from the same spatial mesh and from the FTM spatial discretization. The difference between the MC
reference solutions with the FVM and FTM spatial discretizations shows that the numerical diffusion of the discontinuities in
FVM results in an underprediction of the standard deviation compared to FTM. The MC-FVM reference solutions converge to
those with the FTM discretization for an increasing spatial mesh size. The first-order PC1 method does not converge to the
MC reference solutions, because the linear polynomial is insufficient to capture the nonlinear response surface. This error
increases with an increasingly accurate spatial solution on the fine mesh and with the inviscid FTM discretization. The SC
predictions approach the MC reference solution with the same spatial discretization. The global polynomial of SC converges
well for the relatively smooth solution on the coarse FVM mesh. The problem of the staircase solution of the statistics is also
not present for the coarse approximation because of the numerical smearing of the discontinuity. However, the accuracy of
the SC approximation also decreases with an increasing spatial resolution, especially for smaller sample sizes.
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Fig. 37. Standard deviation rqðxÞ of the density q for Sod’s Riemann problem in a closed shock tube for the SSC–ENO and SSC–SR stochastic methods and
the FVM and FTM spatial discretizations.
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Fig. 37 shows that SSC–ENO has a similar convergence behavior and accuracy as the SC method. The rate of convergence
of SSC–SR for the coarse FVM discretization is comparable to that of SSC–ENO. In contrast to SC and SSC–ENO, the SSC–SR
convergence improves for the more accurate spatial solutions from the fine FVM mesh and the FTM discretization. This is an
important desirable property of SSC–SR, since simultaneous convergence in both the physical space and the probability
space is usually required.

The error convergence of the maximum standard deviation rqmax
is given in Tables 6–12, where rqmax

is defined as
maxx2½�0:2;2�rqðxÞ. The results of MC, PC1, SSC–ENO, and SSC–SR for the coarse and fine FVM, and the FTM discretization com-
pared to the reference MC solution for the same discretization are reported in Tables 6–8. It confirms that MC has slow con-
vergence and that PC1 does not converge to the reference solution for an increasing number of samples. SSC–SR leads to a
smaller error than SSC–ENO for all cases, which illustrates the benefit of the subcell resolution. The equivalent results for the
SC method in Table 9 show that its stochastic accuracy decreases consistently with increasing spatial accuracy for the same
number of samples. It can be concluded that SSC–SR is the most accurate method with a decreasing error with increasing
spatial resolution for the small sample sizes of ns 6 10, such that SSC–SR results in high accuracy at low computational costs.
This demonstrates that the sequence of the two stochastic problems in SSC–SR is robust enough for this situation. SSC–SR
also converges to the lowest error at ns ¼ 100 for both the FTM method and one FVM spatial discretization. The improvement
is largest for the most accurate FTM spatial discretization with a reduction of the error by at least four orders of magnitude
compared to the other stochastic methods.

Tables 10–12 contain the convergence of rqmax
on the FVM meshes with respect to the inviscid FTM reference solution.

The underestimation of rqmax
by the MC reference solutions on the coarse and fine FVM meshes gives an error of

2:148 � 10�2 and 5:169 � 10�3, respectively, compared to the one for FTM. None of the stochastic methods converges to a value
below these reference errors caused by the spatial accuracy, since they converge to the MC solution with the same spatial
discretization. Therefore, the results of the stochastic methods for the FTM spatial discretization give the best indication of
their convergence to the true solution without underprediction of rqmax

by numerical diffusion. Also in that respect, the pro-
posed SSC–SR method leads to the highest accuracy for the most relevant case. SSC–SR is compared to more advanced sto-
chastic methods for more complex flow problems in [17].
5.3. Higher-degree PC

In Section 5.2 the PC is limited to first order polynomials due to nonphysical negative values for the gas density prediction
for higher-degree polynomials. If one does not consider the quality of the polynomial representation furnished by the PC, the
statistics evaluation can be always obtained even for the high-degree polynomials. Similar results are added in this section.

The numerical results for rqðxÞ of PC with higher-order polynomial degrees, p ¼ 2 and p ¼ 3, are shown in Fig. 38. The
range of the vertical axis is extended to rqðxÞ ¼ ½0;0:12�, because of the large overshoots for PC3 and low numbers of samples
in combination with the FTM spatial discretization. It shows that higher polynomial degrees in PC do not improve the solu-
tion and the accuracy becomes worse for low sample sizes. The nonphysical predictions contribute to these conclusions for
the statistics evaluation.

In Tables 13–17, the error convergence of the maximum standard deviation rqmax
is given. The results confirm that the

accuracy does not notably improve with an increasing global polynomial degree in this case due to the discontinuous
response.
6. Transonic flow over the RAE 2822 airfoil

Non-uniform probability distributions are considered in a FVM discretization of multiple spatial dimensions for the tran-
sonic flow over the RAE 2822 airfoil [11]. The randomness in this NODESIM–CFD test case [21] is given by independent nor-
mal distributions for the free-stream Mach number M1 and the angle of attack a with the mean values 0.734 and 2.79�, and
standard deviations 0.005 and 0.1�, respectively. The flow problem is solved using an upwind discretization of the inviscid
Euler equations in FLUENT to obtain a sharp discontinuity in the flow field up to the pressure distribution on the airfoil sur-
face. The deterministic results for the two-dimensional spatial discretization with a structured grid of 5 � 104 cells are shown
Table 6
Error in the maximum standard deviation rqmax

of the density q compared to the MC reference solution of rqmax
¼ 5:161 � 10�2 with the coarse mesh FVM spatial

discretization for Sod’s Riemann problem in a closed shock tube.

ns MC PC1 SSC–ENO SSC–SR

5 1:420 � 10�2 1:011 � 10�2 1:288 � 10�2 9:075 � 10�3

10 3:114 � 10�3 3:045 � 10�3 4:956 � 10�3 5:615 � 10�3

20 2:059 � 10�3 4:173 � 10�4 9:289 � 10�4 7:558 � 10�4

50 3:428 � 10�3 4:420 � 10�3 4:124 � 10�5 1:625 � 10�5

100 7:941 � 10�5 2:410 � 10�3 2:062 � 10�5 6:907 � 10�6



Table 7
Error in the maximum standard deviation rqmax

of the density q compared to the MC reference solution of rqmax
¼ 6:814 � 10�2 with the fine mesh FVM spatial

discretization for Sod’s Riemann problem in a closed shock tube.

ns MC PC1 SSC–ENO SSC–SR

5 8:077 � 10�3 6:818 � 10�3 2:122 � 10�2 6:274 � 10�3

10 1:542 � 10�3 4:415 � 10�3 1:378 � 10�2 1:240 � 10�4

20 2:213 � 10�3 5:401 � 10�3 7:061 � 10�3 2:027 � 10�3

50 1:742 � 10�3 8:705 � 10�3 2:288 � 10�3 1:304 � 10�3

100 1:747 � 10�4 7:752 � 10�3 1:078 � 10�3 5:610 � 10�4

Table 8
Error in the maximum standard deviation rqmax

of the density q compared to the MC reference solution of rqmax
¼ 7:309 � 10�2 with the FTM spatial

discretization for Sod’s Riemann problem in a closed shock tube.

ns MC PC1 SSC–ENO SSC–SR

5 4:542 � 10�3 1:328 � 10�3 2:551 � 10�2 2:814 � 10�3

10 1:740 � 10�3 9:203 � 10�3 1:819 � 10�2 2:003 � 10�5

20 1:074 � 10�3 8:912 � 10�3 7:160 � 10�3 1:952 � 10�7

50 1:200 � 10�3 1:267 � 10�2 3:842 � 10�3 8:003 � 10�7

100 5:176 � 10�4 1:207 � 10�2 3:101 � 10�3 3:137 � 10�8

Table 9
Error in the maximum standard deviation rqmax

of the density q for the SC stochastic method compared to the MC reference solutions for Sod’s Riemann
problem in a closed shock tube.

ns FVM coarse mesh FVM fine mesh FTM

4 1:284 � 10�2 2:393 � 10�2 2:909 � 10�2

9 6:569 � 10�3 1:234 � 10�2 1:535 � 10�2

25 3:962 � 10�4 1:556 � 10�3 3:208 � 10�3

81 2:699 � 10�5 2:062 � 10�4 4:649 � 10�4

Table 10
Error in the maximum standard deviation rqmax

of the density q for the coarse mesh FVM spatial discretization compared to the MC reference solution with the
FTM spatial discretization for Sod’s Riemann problem in a closed shock tube.

ns MC PC1 SSC–ENO SSC–SR

5 3:568 � 10�2 3:158 � 10�2 3:436 � 10�2 3:055 � 10�2

10 1:836 � 10�2 1:843 � 10�2 2:643 � 10�2 2:709 � 10�2

20 2:354 � 10�2 2:189 � 10�2 2:241 � 10�2 2:072 � 10�2

50 2:490 � 10�2 2:590 � 10�2 2:152 � 10�2 2:149 � 10�2

100 2:140 � 10�2 2:389 � 10�2 2:150 � 10�2 2:147 � 10�2

Table 11
Error in the maximum standard deviation rqmax

of the density q for the fine mesh FVM spatial discretization compared to the MC reference solution with the
FTM spatial discretization for Sod’s Riemann problem in a closed shock tube.

ns MC PC1 SSC–ENO SSC–SR

5 1:325 � 10�2 1:199 � 10�2 2:639 � 10�2 1:105 � 10�3

10 6:712 � 10�3 9:584 � 10�3 1:895 � 10�2 5:045 � 10�3

20 7:382 � 10�3 1:057 � 10�2 1:223 � 10�2 7:196 � 10�3

50 6:911 � 10�3 1:387 � 10�2 7:457 � 10�3 6:473 � 10�3

100 4:994 � 10�3 1:292 � 10�2 6:247 � 10�3 5:730 � 10�3
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in Fig. 39 in terms of the static pressure field around the airfoil and the distribution of the pressure coefficient Cp over the
surface
Cp ¼
p� p1
1
2 q1u2

1
; ð17Þ



Table 12
Error in the maximum standard deviation rqmax

of the density q for the SC stochastic method compared to the
MC reference solution with the FTM spatial discretization for Sod’s Riemann problem in a closed shock tube.

ns FVM coarse mesh FVM fine mesh

4 3:432 � 10�2 2:909 � 10�2

9 2:805 � 10�2 1:750 � 10�2

25 2:187 � 10�2 6:725 � 10�3

81 2:145 � 10�2 5:375 � 10�3
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Fig. 38. Standard deviation rqðxÞ of the density q for Sod’s Riemann problem in a closed shock tube for the higher-degree PC stochastic method and the
FVM and FTM spatial discretizations.

42 J.A.S. Witteveen, G. Iaccarino / Journal of Computational Physics 251 (2013) 17–52
where the subscript 1 denotes the free-stream conditions of the pressure, the density, and the velocity. A transonic shock
wave forms above the airfoil, which results in a discontinuity in the surface pressure distribution. The undershoot down-
stream of the shock wave is caused by the expansion present after an inviscid shock in a transonic flow. An image showing
the mesh in the proximity of the airfoil and in the region of the shock is shown in Fig. 40. The mesh size is chosen based on a
convergence study for this pressure coefficient profile of the deterministic problem for the nominal boundary conditions.



Table 13
Error for the higher-degree PC stochastic method in the maximum standard deviation rqmax

of the density q compared to the MC
reference solution of rqmax

¼ 5:161 � 10�2 with the coarse mesh FVM spatial discretization for Sod’s Riemann problem in a closed
shock tube.

ns PC2 PC3

5 4:968 � 10�3 5:581 � 10�3

10 9:526 � 10�3 1:122 � 10�2

20 1:791 � 10�3 4:695 � 10�3

50 4:171 � 10�3 1:776 � 10�3

100 2:223 � 10�3 1:417 � 10�3

Table 14
Error for the higher-degree PC stochastic method in the maximum standard deviation rqmax

of the density q compared to the MC
reference solution of rqmax

¼ 6:814 � 10�2 with the fine mesh FVM spatial discretization for Sod’s Riemann problem in a closed
shock tube.

ns PC2 PC3

5 3:177 � 10�3 1:534 � 10�2

10 3:094 � 10�3 6:328 � 10�3

20 2:566 � 10�3 5:926 � 10�3

50 7:439 � 10�3 5:986 � 10�4

100 6:813 � 10�3 2:776 � 10�3

Table 15
Error for the higher-degree PC stochastic method in the maximum standard deviation rqmax

of the density q compared to the MC
reference solution of rqmax

¼ 7:309 � 10�2 with the FTM spatial discretization for Sod’s Riemann problem in a closed shock tube.

ns PC2 PC3

5 5:972 � 10�3 1:727 � 10�2

10 3:562 � 10�4 3:764 � 10�2

20 5:909 � 10�3 7:463 � 10�3

50 1:016 � 10�2 2:155 � 10�3

100 1:087 � 10�2 4:781 � 10�3

Table 16
Error for the higher-degree PC stochastic method in the maximum standard deviation rqmax

of the density q for the coarse mesh
FVM spatial discretization compared to the MC reference solution with the FTM spatial discretization for Sod’s Riemann problem
in a closed shock tube.

ns PC2 PC3

5 2:645 � 10�2 1:590 � 10�2

10 1:195 � 10�2 1:026 � 10�2

20 1:969 � 10�2 1:678 � 10�2

50 2:565 � 10�2 2:325 � 10�2

100 2:370 � 10�2 2:289 � 10�2

Table 17
Error for the higher-degree PC stochastic method in the maximum standard deviation rqmax

of the density q for the fine mesh FVM
spatial discretization compared to the MC reference solution with the FTM spatial discretization for Sod’s Riemann problem in a
closed shock tube.

ns PC2 PC3

5 1:992 � 10�3 1:017 � 10�2

10 2:075 � 10�3 1:159 � 10�3

20 7:736 � 10�3 7:570 � 10�4

50 1:261 � 10�2 5:768 � 10�3

100 1:198 � 10�2 7:945 � 10�3
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Fig. 40. Spatial Euler mesh for the transonic flow over the RAE 2822 airfoil.
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6.1. Simplex stochastic collocation results

The shock location xshock along the airfoil is parameterized by SSC–SR for resolving the stochastic surface pressure distri-
bution. The shock sensor of Harten [13] is used to extract xshock from each of the samples, based on the maximum of the gra-
dient magnitude of the pressure coefficient jdCp=dxj in the shock region. A discrete resolution of the shock location, limited
to the spatial cell faces, is avoided by defining xshock as the extremum of a parabolic fit through the maximum of jdCp=dxj and
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Fig. 41. The SSC–SR algorithm for the transonic flow over the RAE 2822 airfoil at the nominal flow conditions.
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the values at its two neighboring spatial points. This approach is illustrated for the nominal flow conditions in Fig. 41(a), for
which a shock location of xshock ¼ 0:667 is found.

The extraction step E is repeated on each layer of cells above the airfoil to obtain the two-dimensional shape of the shock
wave Xshock for resolving the stochastic pressure field. In that case, the signed distance dshock between the points in the spatial
mesh ðx; yÞ and the closest point on the shock wave is parameterized instead of the shock location xshock. The sign of dshock is
obtained from the cross product dshock � tshock between the vector dshock from the point on the shock to the spatial point ðx; yÞ
and the tangent vector tshock on the shock wave, with dshock ¼ kdshockk. To that end, the third component of the vector
dshock � tshock is considered, since it changes sign when the reference point ðx; yÞ crosses the shock wave Xshock. The orientation
of the vectors dshock and tshock with respect to the shock Xshock is shown in Fig. 41(b) for the nominal flow conditions. An alter-
native for three spatial dimensions is to define the sign of dshock by whether the point ðx; yÞ is located upstream or down-
stream of the shock Xshock. It needs to be ensured that the shock representation on unstructured grids is good enough to
allow this technique, see for example the shock sensors for unstructured grids in [24]. The unbounded range of the normal
distribution is treated by truncating the probability space beyond the last MC integration point used for calculating the sta-
tistical moments as in [35]. The probabilistic weighting by the normal distribution is accounted for by the sampling strategy
(6).

The mean of the pressure coefficient lCp
ðxÞ along the airfoil is given in Fig. 42 as function of the x coordinate normalized

by the chord length c for SSC–ENO and SSC–SR with ns ¼ f5;17;50g. The steps in the staircase approximation of SSC–ENO
have different strengths in this case due to the non-uniform distribution of the probability over the parameter space. The
SSC–ENO solution smoothens for an increasing number of samples, partly because of the presence of numerical diffusion
in FVM for solving the Euler equations. However, SSC–ENO overestimates the length of the region over which the shock wave
is smeared in the mean pressure distribution compared to the SSC–SR results, which show good convergence already for
ns ¼ 5. The minor oscillations in both results are caused by the physical undershoot downstream of the shock in the deter-
ministic solution shown in Fig. 39(b). The effect of this local post-shock expansion in the samples on the statistics converges
with an increasing number of samples.

The standard deviation of the pressure coefficient rCp ðxÞ along the upper surface in Fig. 43 is significantly underpredicted
in the shock region by SSC–ENO with a maximum of rCp ;max ¼ 0:362 for ns ¼ 50. It converges only slowly to the SSC–SR solu-
tion of rCp ;max ¼ 0:616 at ns ¼ 50, which corresponds to an underprediction by 41.2%. In contrast, the SSC–SR method already
gives an accurate prediction for only ns ¼ 5 samples that largely coincides with the approximation of ns ¼ 50. On the other
hand, the region around the shock wave in which rCp ðxÞ is elevated is overpredicted by SSC–ENO. Both effects are caused by
the underresolution of the discontinuity in the probability space by the piecewise linear approximation of the discontinuity
by SSC–ENO. The linear function leads to a lower standard deviation through the underprediction of the gradients in the re-
sponse surface and to a longer shock region through the smearing of the discontinuity in the probability space. The normal
input distributions increase these two effects due to the concentration of the probability in a small region of the probability
space, which makes the sharp resolution of the discontinuity in that region even more important.

The mean lpðx; yÞ and standard deviation rpðx; yÞ of the pressure field around the RAE 2822 airfoil are given in Figs. 44
and 45 for SSC–ENO and SSC–SR with ns ¼ 5 samples, which correspond on the upper surface with the results of Figs. 42 and
43. SSC–ENO does not resolve the smearing of the shock wave in the mean for ns ¼ 5 compared to the deterministic solution
of Fig. 39(a) as SSC–SR does. For this minimal number of samples, SSC–SR also captures already the detailed spatial structure
of the local standard deviation field rpðx; yÞ, while SSC–ENO gives a qualitative indication of the region with increased values
of rpðx; yÞ only.
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Fig. 42. Mean pressure coefficient lCp
ðxÞ along the surface with ns ¼ f5;17;50g for the transonic flow over the RAE 2822 airfoil with random free-stream

Mach number M1 and angle of attack a.
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Fig. 43. Standard deviation of the pressure coefficient lCp
ðxÞ along the surface with ns ¼ f5;17;50g for the transonic flow over the RAE 2822 airfoil with

random free-stream Mach number M1 and angle of attack a.

Fig. 44. Mean pressure field lpðx; yÞ with ns ¼ 5 for the transonic flow over the RAE 2822 airfoil with random free-stream Mach number M1 and angle of
attack a.

Fig. 45. Standard deviation of the pressure field rpðx; yÞwith ns ¼ 5 for the transonic flow over the RAE 2822 airfoil with random free-stream Mach number
M1 and angle of attack a.

46 J.A.S. Witteveen, G. Iaccarino / Journal of Computational Physics 251 (2013) 17–52
6.2. Comparison with other stochastic methods

In this section, the same results are furnished for MC, PC1, and SC as reported for SSC–ENO and SSC–SR. In order to inter-
pret the Figs. 44 and 45, they are compared with respect to the same contour plots for the other techniques in Fig. 46. Similar



Fig. 46. Pressure field pðx; yÞ for the MC, PC1, and SC stochastic methods for the transonic flow over the RAE 2822 airfoil with random free-stream Mach
number M1 and angle of attack a.
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results for higher-degree PC are added in the next section. The number of samples for MC and PC1 is equal to the ns ¼ 5 for
SSC. The number of samples in SC is ns ¼ 4 based on Clenshaw-Curtis quadrature on the same truncated domain as for SSC.

The largest effect is caused by the truncation of the unbounded domain and the sampling on the boundary of the trun-
cated domain in SC. This results in a significant effect on lpðx; yÞ and an increase of rpðx; yÞ above the entire length of the
airfoil. This overprediction is caused by the location of the samples in the tails of the distribution in contrast to the random
samples in MC and PC1 near the peak of the distribution. This already affects SSC–ENO to a lesser extent than SC and it is
further reduced substantially by the subcell resolution in SSC–SR. The introduction of subcell resolution into SC, PC, and
MC could therefore also have the potential to further improve the results of these methods.
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Fig. 47. Pressure coefficient CpðxÞ along the surface for the MC, PC1, and SC stochastic methods for the transonic flow over the RAE 2822 airfoil with random
free-stream Mach number M1 and angle of attack a.

Fig. 48. Pressure field pðx; yÞ for the higher-degree PC stochastic method for the transonic flow over the RAE 2822 airfoil with random free-stream Mach
number M1 and angle of attack a.
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The corresponding results for the mean and standard deviation of the pressure coefficient are compared in Fig. 47 for the
different techniques in particular. SC shows also a large overestimation of rCp ðxÞ on the surface even in the smooth regions,
which would diminish with increasing convergence. On the other hand, MC and PC1 give an underprediction of rCp ;max at this
sample size compared to the final SSC-SR result.

6.3. Higher-degree PC

The global polynomials in higher-degree PC are again not suitable in Fig. 48 for approximating this highly nonlinear prob-
lem. This is illustrated by the necessary extension of the maximum of the color-range from 2 � 104 Pa to 9 � 104 Pa as com-
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pared to Figs. 45 and 46. The maximum for rCp ðxÞ in Fig. 49 of rCp ;max ¼ 2:459 for PC3 is 4 times larger than for SSC–SR and it
increases with p. This even occurs for this case in which the transonic shock wave at the surface is not a true discontinuity
but smeared over several spatial cell widths. These results demonstrate the additional value of subcell resolution also under
these challenging circumstances.
7. Conclusions

A subcell resolution approach is introduced into the Simplex Stochastic Collocation (SSC) method for solving stochastic
problems with randomness in the location of spatial discontinuities. The presented SSC–SR method is based on extracting
the discontinuity location XdiscðnÞ in the physical space from each of the deterministic solutions. The realizations of the phys-
ical distance ddiscðx; nÞ to the discontinuity XdiscðnÞ are interpolated over the stochastic dimensions to predict the location of
the discontinuity NdiscðxÞ in the probability space. The stochastic response surface approximations are then extended from
both sides up to the discontinuous hypersurface NdiscðxÞ. This results in a truly discontinuous representation of random spa-
tial discontinuities in the interior of the cells discretizing the stochastic dimensions.

The application to a linear advection problem shows that SSC–SR avoids the staircase approximation of the mean and the
standard deviation by the SSC–ENO method without subcell resolution, because of the continuous dependence of the discon-
tinuity location NdiscðxÞ in the probability space on the spatial coordinates x. It also prevents the underestimation of the max-
imum standard deviation by matching the exact solution already for the initial number of samples in multiple stochastic and
spatial dimensions. The results of the SSC–SR sampling strategy for the Burgers’ equation with discontinuities and discon-
tinuous derivatives in the response surface demonstrate that the error convergence of SSC–SR significantly exceeds the
first-order accuracy of SSC–ENO. The subcell resolution obtains a piecewise higher-degree approximation of the curved dis-
continuity with varying strength in the probability space.

In the shock tube problem with random initial conditions, SSC–SR results in a converged solution for ns ¼ 15 samples
compared to an underprediction of the maximum standard deviation rq;max by 4.16% for SSC–ENO with ns ¼ 100. The impact
of the random free-stream conditions on the transonic flow around the RAE 2822 airfoil are accurately resolved in the surface
pressure distribution, and the mean and standard deviation pressure fields for a minimal number of ns ¼ 5 samples. The non-
uniform input probability distributions lead to an even more significant underprediction of rCp ;max by 41.2% for SSC–ENO
with ns ¼ 50.

In future work, the application of the proposed method will be extended to more complex discontinuity surfaces with
change of local curvatures, closed topologies, and shock interactions, see for example [17]. SSC–SR resolves discontinuities
in the stochastic space due to discontinuous solutions in the physical space by identifying discontinuities. The limits of appli-
cability due to the discontinuity identification are specified below. Most of the problems considered here involve disconti-
nuities of which the location is tracked from its initial position to a certain time. Maybe a more important case is when the
discontinuity is generated at a random position from a continuous initial solution. Applications with discontinuities gener-
ated by continuous initial conditions will be considered in future work. The steady RAE 2822 airfoil is similar to this case in
space in the sense that only at some locations the discontinuity is present and not at others. This identification problem also
needs to be considered in the light of resolving high-gradient problems in the form of the viscous counterpart of the pre-
sented test cases. It may not be possible to define the point of the discontinuity location for these problems with smeared
discontinuities. Instead, the point of the highest gradient can be used such as in the cases with numerical diffusion in the
FVM spatial discretizations in this work. SSC–SR has been shown to converge for these problems with numerical viscosity.
An explicit modeling of the gradient in the response surface could be considered next if the regularity properties of the solu-
tion are known a priori. Whether the origin of the smearing is physical or numerical is expected to be similar from a purely
stochastic discretization perspective. SSC–SR has also been shown to converge for problems with numerical viscosity, since
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the strength of the inserted discontinuity in the response surface will eventually vanish when the samples are drawn from a
smooth response. The original deterministic subcell resolution for the FVM spatial discretization is also known to converge
the jump size to the level of the reconstruction error if a discontinuity is placed in a smooth part of the solution [13]. The
interpolation algorithm can automatically treat an arbitrary number of spatial discontinuities or discontinuous derivatives
after they are extracted and categorized by an appropriate shock sensor.
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Appendix A. Simplex stochastic collocation with stencil selection

The SSC method [34,35] starts with an initial discretization of the probability space consisting of a simplex tessellation of
the sampling points nk at the corners of the hypercube parameter space N and one nk at the nominal input values for n. The
approximation is then refined by splitting the longest edge of a simplex Nj in two by adding a sampling point nk. The random
sampling point is located at least one third of the edge length away from the endpoints to ensure a sufficient spread of the
samples. The tesselation is updated by a Delaunay triangulation of the new set of sampling points nk or the simplexes Nj that
contain the refined edge can all be split in two. In a one-dimensional probability space, the new sampling point nk is used to
split the cell Nj into two cells of equal size.

The interpolation wðx; nÞ is based on a stencil SjðxÞ of NjðxÞ þ 1 ¼ PjðxÞ þ 1 sampling points nk. The stencil size at an x-loca-
tion is restricted by the available number of samples NjðxÞ þ 1 6 ns and the Local Extremum Conserving (LEC) limiter [35] for
the polynomial degree pjðxÞ given by
min
n2Ni

wiðx; nÞ ¼min viðxÞ ^max
n2Ni

wiðx; nÞ ¼max viðxÞ; ðA:1Þ
in all simplexes Ni that are contained in the stencil SjðxÞ of the simplex Nj, with viðxÞ ¼ fvki;0
ðxÞ; . . . ;vki;nn

ðxÞg the samples
vkðxÞ at the vertexes nk of the simplex Ni. In the subcell resolution formulation, the stencils SjðxÞ are also explicitly restrained
from crossing the discontinuity location NdiscðxÞ in the probability space.

The sampling points nk are added to the stencil SjðxÞ in the order of their Euclidean distance to the center of simplex Nj in
the parameter space N. In the extension to the SSC–ENO method [36] with ENO-type stencil selection, the simplex Nj is as-
signed the nearest neighbor stencil SiðxÞ of another simplex Ni, if its polynomial degree piðxÞ is higher than that of SjðxÞ and if
SiðxÞ contains Nj. The stencil selection leads to higher-degree interpolations wjðx; nÞ in the cells Nj next to the discontinuous
simplexes, which are used in the subcell resolution approach for the extrapolation. The moments lui

ðxÞ of the response
uðx; nÞ are finally approximated by integrating the function wðx; nÞ over the parameter space N using a Monte Carlo evalu-
ation with nmc � ns integration points nmck
lui
ðxÞ �

Xne

j¼1

Z
Nj

wjðx; nÞifnðnÞdn �
Xnmc

k¼1

wðx; nmck
Þi; ðA:2Þ
with wðx; nmck
Þ ¼ wjðx; nmck

Þ for nmck
2 Nj.

Appendix B. Subcell resolution for discontinuous derivatives

Discontinuities in the first derivatives of a continuous response surface uðx; nÞ can also be treated by the subcell resolution
algorithm to avoid a local reduction in the polynomial degree pj of the approximation wðx; nÞ. The extraction step
vdisc ¼ EðvðxÞÞ determines, in that case, the realizations vdisc of the location of the discontinuous derivatives in the physical
space. A method E for detecting kinks in the samples vðxÞ is illustrated for the examples in Sections 4 and 5. The interpolation
wdiscðnÞ of the realizations vdisc is then used to determine the hypersurface NdiscðxÞ describing the location of the discontin-
uous derivatives in the probability space in order to construct the different approximations w�j ðx; nÞ and wþj ðx; nÞ in the sim-
plexes Nj that contain NdiscðxÞ as in (5). This leads to a response surface approximation wðx; nÞwith discontinuous derivatives
at NdiscðxÞ, which is however not necessarily continuous at NdiscðxÞ. The size of this, in general small, discontinuity at NdiscðxÞ
decreases with an increasingly accurate approximation of the smooth responses on both sides of NdiscðxÞ as the number of
samples ns increases. An example with a discontinuous derivative in a one-dimensional probability space is given in
Fig. B.50, which is equivalent to the discontinuous example in Fig. 4(a) and (c). Fig. 4(b) would be the same for both cases.

In the case that NdiscðxÞ represents a discontinuous derivative and no Ni� is available for updating w�j ðx; nÞ in N�j ðxÞ, be-
cause NdiscðxÞ is located close to the boundary of N, then a linear function is used for w�j ðx; nÞ, instead of a constant value

in case NdiscðxÞ is a discontinuity. The updated interpolation wþj ðx; nÞ in Nþj ðxÞ on the other side of NdiscðxÞ can be used in com-
bination with the continuity of uðx; nÞ at NdiscðxÞ to update w�j ðx; nÞ using a linear approximation. The first step is then to
determine the values of wþj ðx; nÞ at the locations where NdiscðxÞ intersects the edges of Nj. These values are used in combina-



Fig. B.50. Example of the subcell resolution approach for a discontinuous derivative in a one-dimensional probability space.

Fig. B.51. Subcell resolution for a discontinuous derivative NdiscðxÞ located close to the boundary of a two-dimensional parameter space N with a linear
update of w�j ðx; nÞ using wþj ðx; nÞ and the continuity at NdiscðxÞ.

J.A.S. Witteveen, G. Iaccarino / Journal of Computational Physics 251 (2013) 17–52 51
tion with the samples vkðxÞ at the vertexes nk of Nj in N�j to construct virtual values in the other vertexes of Nj by linear
extrapolation over the edges. This is visualized in Fig. B.51 by the open circles in the approximation of the response
uðx; nÞ in a two-dimensional probability space. The virtual values are used together with vkðxÞ at the vertexes nk in N�j to con-
struct a linear update for w�j ðx; nÞ using (2) with pj ¼ 1. If multiple virtual values are estimated for one vertex, because the

vertex in Nþj is the endpoint of multiple edges of Nj that cross NdiscðxÞ, then their arithmetic average is used.
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