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Uncertainty progagation is a non-deterministic approach that is essential in a validation
process to increase the confidence in the numerical predictions by quantifying the un-
certainties. These uncertainty quantification methods need to be at least as robust as the
spatial discretization method to actually improve the reliability of the simulation results. A
number of advanced robustness criteria have been well-established in Finite Volume Meth-
ods (FVM) such the Local Extremum Diminishing (LED) concept and the Monotonicity
Preserving (MP) principle. However, it has been shown that LED methods are limited
to at most first-order accuracy for non-monotonic solutions. Therefore, the MP concept
is here introduced into a non-deterministic method to obtain a robust and higher-order
quantification of uncertainties. Two formulations of the MP limiter that will be considered
for a sinusoidal test function, a random wave equation, and a transonic RAE2822 airfoil
flow reveal that non-monotonic responses can lead to lower sensitivities.

I. Introduction

The need for accurate resolution of shock waves in Computational Fluid Dynamics (CFD) is a major driver
in the development of robust numerical methods for approximating discontinuities. The Local Extremum
Diminishing (LED) robustness concept has, for example, been introduced into the Finite Volume Method
(FVM) for preventing overshoots at discontinuities.9 However, LED schemes have the disadvantage that
they reduce to first-order accuracy at physical local extrema in the solution.10 Monotonicity-Preserving
(MP) limiters have therefore been developed which do not affect the accuracy at smooth extrema.4 A
straightforward approach to avoid the clipping of extrema is to turn off the convexity-preserving constraints
in cells with a non-monotonic solution.11 These cells can be identified by a change in the sign of the
discrete derivatives over the volume, in combination with a tolerance for distinguishing physical extrema
from spurious numerical oscillations. Because of the dependence on this threshold value, it can be difficult to
differentiate between smooth and non-smooth extrema. Therefore, a second MP approach has been proposed
which automatically enlarges the limiter intervals near physical extrema in such a way that the solution is
continuously dependent on the data.16 See Figure 1 for sketches of these LEC and MP limiters for FVM in
the physical space.

The robust approximation of discontinuities is also important in Uncertainty Quantification (UQ), since
nonlinearities can result in strong amplification of input uncertainties during their propagation through a
computational model. In that respect, the introduction of FVM robustness concepts into multi-element UQ
methods seems promising, because their local tessellation of the probability space into multiple subdomains
is comparable to spatial FVM discretizations in physical space. These multi-element methods3,6, 12 usually

∗Scientific Staff Member, AIAA Member, Phone: +31(0)20 592 4085, Fax: +31(0)20 203 1226, jeroen.witteveen@cwi.nl.
†Associate Professor, AIAA Member, jops@stanford.edu.

1 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

er
oe

n 
W

itt
ev

ee
n 

on
 J

an
ua

ry
 2

8,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
02

99
 

 16th AIAA Non-Deterministic Approaches Conference 

 13-17 January 2014, National Harbor, Maryland 

 AIAA 2014-0299 

 Copyright © 2014 by J.A.S. Witteveen, G. Iaccarino. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301642683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jeroen.witteveen@cwi.nl
mailto:jops@stanford.edu


(a) LEC limiter (b) MP limiter11 (c) MP limiter16

Figure 1. Limiters in the FVM discretization of the physical space.

employ global UQ methods7,22 confined to hypercube subdomains. FVM approaches have been used in UQ
in the form of the Essentially Non-Oscillatory (ENO) scheme,1,2, 5, 19 upwind discretizations,17 and subcell
resolution.18 Global UQ methods for approximating stochastic discontinuities are, for example, based on
entropic variables14 and iterative formulations.15

The LED concept has also been extended successfully to UQ in terms of the Local Extremum Conserving
(LEC) limiter for interpolation in the Simplex Stochastic Collocation (SSC) method20,21 to avoid overshoots
in the approximation of discontinuous response surfaces. However, it has been observed that the LEC limiter
leads to a linear first-order approximation at local extrema in the probability space as well. The MP concept
is here introduced into UQ to achieve higher-order approximations of local minima and maxima in the SSC
method, while at the same time improving robustness at discontinuities.

Formulation of the MP limiter in probability space is developed in the context of the SSC framework in
Section II. The properties of the resulting SSC–MP method are demonstrated for a sinusoidal test function
in Section III. In Sections IV and V, the application to a random wave equation and the transonic flow
over the RAE2822 airfoil is considered. Conclusions and opportunities for future work are summarized in
Section VI.

II. Simplex stochastic collocation with monotonicity-preserving limiter

The SSC method is based on a simplex elements tessellation of the probability space and higher-degree
polynomial interpolation of samples at the vertexes of the simplexes, as described in Section II.A. The LEC
limiter for the interpolant is briefly reviewed in Section II.B and the MP limiter is introduced in Section II.C.

II.A. The simplex stochastic collocation framework

The SSC approach20,21 calculates the probability distribution of an output quantity of interest u(x, ξ) for
a computational problem subject to a vector of nξ second-order random parameters ξ = {ξ1, . . . , ξnξ

} ∈ Ξ
in the initial and boundary conditions or in the mathematical model. The probability density fξ(ξ) of the
random parameters ξ in the parameter space Ξ ⊂ R

nξ is assumed to be known. This parameter space Ξ is
discretized by the SSC method using a Delaunay tessellation of ne non-overlapping simplexes Ξj , for which
holds Ξ =

⋃ne

j=1 Ξj . Computationally intensive deterministic solutions vk(x) = u(x, ξk) of the governing
equations are calculated for the parameter values that correspond to the ns sampling points ξk at the vertexes
of the simplexes Ξj . The initial sampling points ξk are given by deterministic sampling at the corners of the
parameter space Ξ and at the nominal conditions. Additional sampling points are subsequently determined
based on random sampling in the simplexes Ξj with the highest values of a solution-based refinement measure
that depends on the local polynomial degree pj , which results in the set of samples v(x) = {v1(x), . . . , vns

(x)}.
The response surface for u(x, ξ) in Ξ is approximated by a higher-degree piecewise polynomial interpolation
w(x, ξ) of the samples v(x). The approximation w(x, ξ) is constructed using a polynomial chaos expansion7
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in each of the simplexes Ξj in terms of the basis polynomials Ψj,i(ξ)

wj(x, ξ) =

Pj(x)
∑

i=0

cj,i(x)Ψj,i(ξ), (1)

with w(x, ξ) = wj(x, ξ) for ξ ∈ Ξj and Pj(x) + 1 = (nξ + pj(x))!/(nξ!pj(x)!) the number of expansion
terms, where pj(x) is the local polynomial degree of wj(x, ξ) in Ξj . The coefficients cj,i(x) are determined
by interpolating the samples vk(x) of a stencil Sj(x) = {ξkj,0

, . . . , ξkj,Nj(x)
} of Nj(x) + 1 unique sampling

points ξk, with kj,l ∈ {1, . . . , ns} and l = 0, . . . , Nj(x). The higher-degree stencils Sj(x) consist of the nξ+1
sampling points ξk at the vertexes of the simplex Ξj and Nj(x)− nξ other sampling points at the vertexes
of surrounding simplexes. The statistical moments of u(x, ξ) are finally approximated by integrating w(x, ξ)
over the parameter space Ξ using a Monte Carlo evaluation with nmc ≫ ns integration points ξmck

.

II.B. Local extremum conserving limiter

The higher-degree interpolation w(x, ξ) obtains an accurate approximation of smooth monotonic response
surfaces u(x, ξ). In order to also ensure a robust interpolation at discontinuities in the probability space, the
LEC limiter eliminates overshoots and undershoots of the interpolation w(x, ξ) with respect to the samples
v. It reduces locally the size of the stencil Sj(x) and the polynomial degree pj(x) of Ξj by one until the
following LEC condition is satisfied20

min
ξ∈Ξi

wi(x, ξ) = minvi(x) ∧max
ξ∈Ξi

wi(x, ξ) = maxvi(x), (2)

in all simplexes Ξi that are contained in the stencil Sj(x) of the simplex Ξj , with vi(x) = {vki,0
(x), . . . , vki,nξ

(x)}

the samples vk(x) at the vertexes ξk of the simplex Ξi. The interpolation w(x, ξ) is then LED with respect
to the response u(x, ξ), since the samples v are LED with respect to u(x, ξ) for vk(x) = u(x, ξk). The lim-
iter automatically reduces the polynomial degree pj(x) to a piecewise linear interpolation at discontinuities,
which always satisfies Eq. (2). However, it can also limit the polynomial degree to pj(x) = 1 at local extrema
in the response surface, which results in an undesirable first-order approximation of smooth non-monotonic
solutions.

II.C. Monotonicity-preserving limiter

The MP limiter combines the monotonicity of the approximation at discontinuities with higher-degree in-
terpolation at smooth local extrema through a three-step implementation. The first step is the replacement
of the LEC condition Eq. (2) with an MP condition in the interior of the simplexes Ξj , since Eq. (2) does
not necessarily result in a monotonic interpolation in Ξj as long as no artificial extrema exceed the sampled
values vj . This requirement is enforced by making a Delaunay sub-tessellation in Ξj of the vertexes ξk of
Ξj and the Monte Carlo (MC) points ξmck

in Ξj for integrating w(x, ξ). If the value w(x, ξmck
) at any of

the MC points ξmck
of this simplex sub-triangulation in Ξj is larger or smaller than the value at all other

vertexes of all sub-simplexes of which ξmck
is a vertex, then the interpolation wj(x, ξ) is non-monotonic.

The polynomial degree pj(x) and the stencil Sj(x) of Ξj are then reduced similarly as for the LEC limiter.
This MP criterion is more restrictive than that of the LEC version, and it is always satisfied for a reduction
to pj(x) = 1.

The second part is to turn off the MP limiter at local extrema in the solution, since at these locations
there is no monotonicity in the response that can be preserved. This is the stochastic equivalent of the MP
limiter for FVM in the physical space by11 in the sense that it deactivates the limiter at local extrema. These
extrema in u(x, ξ) are identified by local extrema in the samples v in the interior of Ξ, since u(x, ξ) has a
local extremum if vk(x) is also a local extremum. A local extremum at ξk is again detected if vk(x) is larger
or smaller than the samples in all other vertexes of all simplexes that contain ξk. If vk(x) is such a local
extremum, then the MP limiter is deactivated in all simplexes of which ξk is a vertex.

In order to avoid overshoots, it is important to turn the MP limiter off only at smooth extrema in the
solution and not for extrema at discontinuities. The gradient magnitude of a linear interpolation in Ξj is
used in the third step to detect the latter non-smooth extrema. If the gradient in any of the simplexes that
contain the local extremum ξk surpasses a threshold value, then ξk is not treated as a smooth extremum
and the MP limiter is retained in all simplexes that contain the vertex ξk. The second formulation of the
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MP limiter in FVM by16 based on enlarging the limiter intervals will be extended in future work, since it is
expected to give equally robust results without the sensitivity to a threshold parameter.

III. A sinusoidal test function

The SSC method is first applied to the following non-monotonic sine function

u(ξ) = sin(cξ), (3)

in order to quantify the impact of the MP limiter on the approximation of smooth extrema. The constant
c = 2.5 ensures that the function has a local maximum in the range of the uniformly distributed random
parameter ξ = U(0, 1), as can be seen in Figure 2. Figure 2(a) and (b) shows the SSC results based on the
LEC and MP limiters with ns = 5 samples compared to a MC reference solution with nmc = 50, 000 samples.
Since the LEC limiter does not allow overshoots in the interpolation w(ξ) with respect to the samples v, the
robustness of the LEC limiter for the approximation of discontinuities also reduces the interpolation to a
piecewise linear function around the local maximum. This leads to a relatively large approximation error at
the local extremum. In contrast, the MP limiter detects the local maximum in the solution in the form of the
local maximum in the samples at ξ = 0.75. The MP constraint is therefore turned off in the elements to the
left and the right of ξ = 0.75. This results in a suitable global fourth-order polynomial approximation of the
smooth response with a local maximum beyond the samples, which accurately approximates the reference
solution.
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(a) LEC limiter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ξ

u

 

 

MP
samples
MC

(b) MP limiter

Figure 2. Response surface approximation for the sine function with ns = 5.

The effect of the different response surface approximations on the convergence of the RMS error with
respect to the MC reference solution is shown in Figure 3 as a function of the number of samples ns. The
LEC limiter results in a slow first-order error convergence due to the piecewise linear approximation at the
maximum. Superlinear convergence to machine precision is obtained by the higher-degree approximation of
the MP limiter owing to the simultaneous increase of the polynomial degree with the number of samples.
This leads to the reduction of the RMS error by many orders of magnitude. In Figure 3(b) the local error in
the LEC approximation is displayed for ns = 17. This result illustrates that the error in the LEC solution is
dominated by the piecewise linear approximation of the local maximum around ξ = 0.628. The convergence
for the statistical moments in terms of the mean µu and the standard deviation σu is given in Table 1 as a
function of ns for the LEC and MP limiters compared to the MC reference solution. For the MP limiter the
statistics converge to the MC results for ns = 9. The LEC limiter leads to larger initial errors for ns = 3 and
does not reach the MC solution for ns = 17. It also consistently underpredicts the mean and the standard
deviation for this concave function.

IV. Random wave equation

The characteristics of the MP limiter in a problem that combines a discontinuity with local extrema in
the response are demonstrated for a random wave equation. The following linear wave equation for u(x, t, ξ)
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Figure 3. Error in the response surface approximation for the sine function.

Table 1. Convergence of µu and σu by the LEC and MP limiters compared to the MC reference solution for the sine

function.

ns µu σu

LEC MP LEC MP

3 6.2410 · 10−1 7.3239 · 10−1 2.5501 · 10−1 2.5957 · 10−1

5 7.0606 · 10−1 7.2034 · 10−1 2.6355 · 10−1 2.7751 · 10−1

9 7.1844 · 10−1 7.2045 · 10−1 2.7523 · 10−1 2.7720 · 10−1

17 7.2020 · 10−1 7.2045 · 10−1 2.7695 · 10−1 2.7720 · 10−1

MC 7.2045 · 10−1 2.7720 · 10−1

has been proposed by8

∂u

∂t
− a(ξ)

∂u

∂x
= 0, (4)

on the spatial domain x ∈ [−1, 1]. The random wave speed a(ξ) = cξ changes sign with ξ = U(−1, 1) and a
constant c = 0.5. The time-dependent inflow boundary conditions are defined as

u(−1, t, ξ) = sin(2π(a(ξ)t− 1)), ξ < 0, (5)

u(1, t, ξ) = sin(π(a(ξ)t+ 1)), ξ ≥ 0, (6)

(7)

with compatible initial conditions

u(x, 0, ξ) =

{

sin(2πx), ξ < 0,

sin(πx), ξ ≥ 0.
(8)

The analytical solution of (4) to (8) is given by

u(x, t, ξ) =

{

sin[2π(a(ξ)t+ x)], ξ < 0,

sin[π(a(ξ)t+ x)], ξ ≥ 0,
(9)

which results in smooth non-monotonic realizations as a function of x in the physical space on both sides of
a discontinuity in the parameter space at ξ = 0. Knowledge about the discontinuity location is not used in
solving the problem, since in general it might not be available.

The solution is first considered at one spatial location, x = 0.55, for t = 1 with adaptive refinement to
ns = 25. The response surface approximations resulting from the LEC and MP limiters are compared to an
MC reference solution with nmc = 50, 000 in Figure 4. The figure shows a challenging response surface with
a smooth local maximum at ξ = −0.6 and two other extrema at the left and the right of a discontinuity.
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The LEC limiter leads to equal refinement at both the discontinuity and the smooth local maximum in
Figure 4(a), because the refinement measure depends on the local polynomial degree that is also reduced to
a piecewise linear function at the smooth extremum. This gives a less sharp resolution of the discontinuity
compared to the MP limiter in Figure 4(b). The MP limiter only refines the samples at the step since it
results in a higher-degree approximation of the smooth maximum. The jump is robustly approximated with
a piecewise linear interpolation, because the MP limiter is not turned off in the elements that contain a local
extremum at a discontinuity such that overshoots of the samples are avoided. The discontinuity is detected
in terms of a threshold for the gradient magnitude for which the value of 5 is used in this case. The error in
µu and σu for the discretization with ns = 25 is given in Table 2, and the RMS error convergence is shown
in Figure 5 up to ns = 50. The faster convergence of the MP limiter results in errors an order of magnitude
lower than those of the LEC limiter, mainly because of the sharper resolution of the discontinuity.
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Figure 4. Response surface approximation for the random wave equation at x = 0.55 with adaptive refinement to ns = 25.

Table 2. Error in µu and σu by the LEC and MP limiters with respect to the MC reference solution for the random

wave equation at x = 0.55 with adaptive refinement to ns = 25.

MC error ε

LEC MP

mean µu 5.6733 · 10−1 1.0114 · 10−2 1.2535 · 10−3

st.dev. σu 3.5910 · 10−1 1.1978 · 10−2 1.5498 · 10−3
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Figure 5. RMS error convergence by the MP limiter for the random wave equation at x = 0.55 with adaptive refinement

to ns = 50.

The convergence of µu(x) and σu(x) over the entire spatial domain x ∈ [−1, 1] is shown in Figures 6
and 7 for ns = {20, 30}. The adaptive refinement measure is here based on the minimum of the local
polynomial degree pj in an element Ξj over all nx = 100 spatial points. The statistics show a smooth
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oscillatory behavior as a function of x, just like each of the samples. The MP limiter gives a more accurate
approximation of the MC reference solution than the LEC limiter, especially for σu(x). The underlying
response surface approximations for u(x, 1, ξ) over the physical coordinate x and the stochastic dimension ξ
are given in Figure 8. The figure shows two oscillating responses with different wave numbers at both sides
of the discontinuity at ξ = 0, which has a varying strength as a function of x. The black lines at constant
ξ-values denote the sampling locations that follow from the LEC and MP limiters. The LEC limiter results
in almost uniform refinement, since it also adapts to the location of the local extrema, which move in ξ
as a function of x. This does not affect the sampling of the MP limiter, which focuses on resolving the
discontinuity. Therefore, the MP limiter shows the most improvement in the approximation of the standard
deviation with respect to the LEC limiter in Figure 7 at x-locations where the jump at the discontinuity
location is the largest.
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(a) LEC limiter
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Figure 6. Mean µu(x) for the random wave equation with adaptive refinement.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

st
d 

u

 

 

20
25
30
MC

(a) LEC limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

st
d 

u

 

 

20
25
30
MC

(b) MP limiter

Figure 7. Standard deviation σu(x) for the random wave equation with adaptive refinement.

V. RAE 2822 airfoil

The lift coefficient Cl has a non-monotonic dependence on the Mach number M in the standard transonic
flow problem around the RAE 2822 airfoil.13 The uniform distribution for M is in that case defined by a
mean of µM = 0.734 and standard deviation of σM = 0.005 at an angle of attack of α = 2.79o and a
Reynolds number of Re = 6.5 · 106. The fully turbulent flow problem is solved using the Fluent Reynolds-
averaged Navier-Stokes solver with the Spalart-Allmaras turbulence model and a second-order Roe upwind
discretization on a two-dimensional mesh of 7.5 · 104 spatial cells, as shown in Figure 9. The height of the
first cell layer above the airfoil is with 1 · 10−5c smaller than the y+-value of 1 and the dimensions of the
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(a) LEC limiter

(b) MP limiter

Figure 8. Response surface approximation for the random wave equation with adaptive refinement to ns = 30.
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mesh are 32.5c× 25c, where c = 1 is the airfoil chord. Only the pressure forces on the airfoil are taken into
account in computing Cl.

(a) Mesh (b) Zoom on the airfoil

Figure 9. Spatial computational mesh for the transonic flow over the RAE 2822 airfoil.

Approximation of the non-monotonic response surface of Cl as a function of M is shown in Figure 10
for the initial discretization of the LEC and MP limiters with ns = 3. The quadratic interpolation through
the samples for the MP limiter already leads to a more realistic representation of the dependence of Cl on
M . The LEC limiter gives a piecewise linear approximation because the sampling point at the nominal
condition M = 0.734 is not exactly located at the maximum of Cl. This results initially for ns = 3 in an
underprediction of the mean lift coefficient µCl

for the LEC limiter, as demonstrated by the convergence
in Table 3. The mean and standard deviation of the drag and pitching moment coefficients, Cd and Cm,
respectively, are given in Table 4 for the MP limiter with ns = 9. Both Cd and Cm depend monotonically on
M such that the LEC results are identical. The drag coefficient Cd has the highest coefficient of variation
with CoVCd

= 14.9%, and Cl is relatively the least sensitive to variations in M with CoVCl
= 0.204%

because of the non-monotonicity of its response surface.

0.7253 0.73 0.735 0.74 0.7427
0.785

0.7875

0.79

0.7925

0.795

M

C
l

 

 

Figure 10. Response surface approximation of Cl as a function of M by the LEC and MP limiters for the transonic

flow over the RAE 2822 airfoil with ns = 3.

VI. Conclusions

The LEC limiter in the SSC method for the robust approximation of discontinuities in the probability
space also reduces the polynomial interpolation degree to a piecewise linear function at smooth local ex-
trema in the response surface. Therefore, the MP limiter is introduced into UQ to combine a higher-degree
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Table 3. Convergence of µCl
by the LEC and MP limiters for the transonic flow over the RAE 2822 airfoil.

ns LEC MP

3 7.9059 · 10−1 7.9153 · 10−1

5 7.9117 · 10−1 7.9115 · 10−1

9 7.9131 · 10−1 7.9139 · 10−1

Table 4. Mean µ, standard deviation σ, and coefficient of variation CoV of the lift, drag, and pitching moment coefficients

by the MP limiter for the transonic flow over the RAE 2822 airfoil with ns = 9.

µ σ CoV

Cl 7.9139 · 10−1 1.6140 · 10−3 2.0395 · 10−3

Cd 1.4710 · 10−2 2.1910 · 10−3 1.4895 · 10−1

Cm 9.8398 · 10−2 3.4812 · 10−3 3.5379 · 10−2

approximation of smooth non-monotonic solutions with a non-oscillatory interpolation at discontinuities.
The approach deactivates the stricter MP limiter in elements that contain a local extremum, except at
discontinuities. The MP limiter shows superlinear convergence to machine precision for a non-monotonic
sinusoidal function compared to first-order convergence by the LEC limiter. In the application to a random
wave equation with local extrema and discontinuities in the response surface, the MP limiter is an order
of magnitude more accurate than the LEC limiter because it focuses on refining the discontinuity owing
to the higher-degree approximation of the extrema. The MP limiter enables us to accurately resolve the
non-monotonic response of the lift coefficient Cl as a function of the random Mach number for the RAE2822
transonic airfoil. This reveals that Cl is less sensitive to the uncertainty owing to the non-monotonicity of
the response surface compared to the drag and moment coefficients Cd and Cm with monotonic responses. In
the full paper, a second version of the MP limiter will be implemented that does not depend on a threshold
value to distinguish between smooth and non-smooth extrema.
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