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ABSTRACT

Numerical errors in Computational Fluid Dynamics (CFD) can already be made sufficiently small. Nowadays

physical uncertainties tend to dominate the accuracy of numerical CFD predictions. In Uncertainty Quantifica-

tion (UQ), the input uncertainties are taken into account by probability distributions. Deriving a new model for

propagating the uncertainty using an intrusive UQ approach requires the modification of existing codes. An al-

ternative is to use non-intrusive UQ methods, which can re-use an existing deterministic solver as a black-box.

These kind of non-intrusive UQ methods interpolate samples in the range of the input distributions. However,

this interpolation has the disadvantage that it can lead to overshoots of the samples in case of discontinuous

responses, such as shock waves and contact surfaces. The unique contribution that CFD can bring to the field

of UQ is the robust approximation of discontinuities in the probability space. There is extensive experience

in the finite volume method (FVM) community with original robustness concepts for the reliable solution of

these discontinuities. Here, we extend a number of these robustness principles to the probability space and

demonstrate their effectiveness in test problems from stochastic CFD. The introduced concepts are: Local Ex-

tremum Conserving/Diminishing (LEC/LED) limiters; Total Variation Diminishing (TVD) schemes; Essentially

Non-Oscillatory (ENO) stencil selection; Subcell resolution (SR); and Monotonicity Preserving (MP) limiters.
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1.0 INTRODUCTION

Computational Fluid Dynamics (CFD) is the process in which real-world objects or designs are described by a

geometrical representation in a computer to predict the forces of the fluid on the object using a discretization

of the space around the object. In this process, numerical errors are introduced in the form of the finite dis-

cretization error, the approximation order truncation error, the nonlinear iteration error, and the digital computer

round-off error. However, numerical error estimation is a well-established field and computational resources

are nowadays so widely available that these numerical errors can be made sufficiently small. On the other

hand, also physical uncertainties have an impact CFD predictions. These can be weather conditions through the

boundary conditions, production tolerances on the geometry, wear and tear of the surface roughness parameter,

and model-form uncertainty. Nowadays these physical uncertainties tend to dominate the accuracy of numerical

CFD predictions.

The common deterministic simulation paradigm is to assume that model parameters, and initial and bound-

ary conditions are exactly known. The model then results in one prediction for the output quantities of interest.

In Uncertainty Quantification (UQ), the input uncertainties can be taken into account by probability distribu-

tions. The objective of UQ is then to compute the probability distribution and the statistical moments of the

outputs of interest. These uncertainties can be propagated by deriving a new model and implementation for the

uncertainty propagation problem, which can be solved at once. This is called intrusive UQ, because existing

deterministic codes need to be modified.

An alternative is to use non-intrusive UQ methods, which can re-use an existing deterministic solver as a

black-box. These kind of methods are based on performing multiple deterministic simulations for the parameter

values in the range of the uncertain input distributions. The Monte Carlo (MC) simulation method is one

of these non-intrusive UQ methods and it is based on collecting ensemble statistics of many simulations for

randomly sampled parameter values. In order to reduce the number of CFD runs to a feasible level, other

non-intrusive UQ methods employ a form of interpolation of the sampling results. One of such methods is the

Stochastic Collocation (SC) method, which is based on Lagrangian global polynomial interpolation of sampling

at numerical quadrature points. However, this interpolation has the disadvantage that it can lead to overshoots

of the samples and non-zero probabilities for unphysical predictions in case of discontinuous responses, which

can occur in the solution of the nonlinear equations governing fluid flow in the form of shock waves and contact

surfaces.

The unique contribution that CFD can bring to the field of UQ is the robust approximation of discontinuities

in the probability space. There is extensive experience in the finite volume method (FVM) community with

original robustness concepts for the reliable solution of discontinuities in the form of shock waves and contact

surfaces in flow fields. Here, we extend a number of these robustness principles to the probability space and

demonstrate their effectiveness in test problems from stochastic CFD. The introduced concepts are:

1. Local Extremum Conserving/Diminishing (LEC/LED) limiters;

2. Total Variation Diminishing (TVD) schemes;

3. Essentially Non-Oscillatory (ENO) stencil selection;

4. Subcell resolution (SR);
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5. Monotonicity Preserving (MP) limiters.

These approaches are implemented into the multi-element Simplex Stochastic Collocation (SSC) UQ method

in the next section. They can also be applied to other UQ methodologies. Abgrall [1] and Barth [2] have ex-

tended FVM directly to discretize the combined physical and probability spaces using the ENO scheme. We

consider here the spatial and stochastic dimensions separately to reduce the dimensionality of the problems.

Subcell resolution in stochastic methods has also been proposed by Ghosh and Ghanem [4] in the form of

basis enrichment in the polynomial chaos expansion. Their approach is, however, based on incorporating a

priori knowledge about the discontinuity location by selecting appropriate enrichment functions. A solution

for the staircase approximation of the statistics in case of random spatial discontinuities has also been pro-

posed by Barth [2] using image enhancement postprocessing techniques in the combined discretization of the

physical and probability spaces. The conclusions from the numerical results in Section 3.0 are summarized in

Section 4.0.

2.0 METHODOLOGY

Consider the following computationally intensive problem subject to nξ second-order random parameters ξ =
{ξ1, . . . , ξnξ} ⊂ Ξ with a known input probability density fξ(ξ) in the parameter space Ξ ⊂ R

nξ

L(x, t, ξ;u(x, t, ξ)) = S(x, t, ξ). (1)

where the operator L and the source term S are defined on the domain X × T × Ξ with output quantity of

interest u(x, t, ξ), space x ∈ X ⊂ R
nx , nx = {1, 2, 3}, and time t ∈ T ⊂ R. The latter two arguments are

dropped to simplify the notation. Second-order random parameters are random parameters with finite variance,

which includes most practical cases [3]. The solution of (1) is a random event with the set of outcomes Ω of

the probability space (Ω,F , P ) with F ⊂ 2Ω the σ-algebra of events and P a probability measure.

2.1 Simplex Stochastic Collocation

The SSC method with the stencil selection and subcell resolution extensions are of the multi-element type of

UQ methods. Multi-element UQ methods discretize the stochastic dimensions using multiple subdomains com-

parable to spatial discretizations in physical space. These local methods [8] can be based on Stochastic Galerkin

(SG) projections of Polynomial Chaos (PC) expansions [3] in each of the subdomains. Other methods use a

Stochastic Collocation (SC) approach [16] to construct the local polynomial approximations based on sampling

at quadrature points in the elements. These methods commonly use sparse grids of Gauss quadrature rules in

hypercube subdomains combined with solution-based refinement measures for resolving nonlinearities. Be-

cause of the hypercube elements, these methods are most effective in capturing discontinuities that are aligned

with one of the stochastic coordinates.

The simplex stochastic collocation (SSC) method [12, 13] computes the statistics and the probability dis-

tribution of u(ξ) in a non-intrusive way by discretizing the probability space using a simplex tessellation of

ns samples points ξk, with k = 1, . . . , ns. This is a similar concept to spatial discretizations of the physi-

cal space in CFD methods. A series of ns deterministic problems (1) is then solved to compute the samples

v = {v1, . . . , vns}, with vk = u(ξk), for the parameter values ξk that correspond to the vertexes of the ne sim-

plexes Ξj in probability space with j = 1, . . . , ne. The response surface u(ξ) is approximated by a piecewise

polynomial interpolation w(ξ) of the samples v using a polynomial chaos [3] expansion wj(ξ) in each of the
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Figure 1: Approximation of the response surface u(ξ) by the interpolation wj(ξ) of the samples vk at a stencil Sj of sampling
points ξk for the simplex Ξj in a two-dimensional probability space with ξ = {ξ1, ξ2}.

simplexes Ξj

wj(ξ) =

Pj
∑

i=0

cj,iΨj,i(ξ), (2)

for ξ ∈ Ξj , where Ψj,i are the basis polynomials, cj,i are the coefficients, and Pj+1 = (nξ+pj)!/(nξ!pj !) is the

number of expansion terms, with pj the local polynomial degree of wj(ξ). The coefficients cj,i are computed

by interpolating a stencil Sj out of the ns samples v = {v1, . . . , vns}. For a piecewise linear interpolation

wj(ξ) with pj = 1, the stencil Sj = {ξkj,0 , . . . , ξkj,Nj
} consists of the Nj +1 = nξ+1 vertexes of the simplex

Ξj , with kj,l ∈ {1, . . . , ns} for j = 1, . . . , ne and l = 0, . . . , Nj . Higher degree stencils Sj with Nj ≥ Pj

are constructed by adding vertexes ξk of surrounding simplexes to the stencil according to a nearest neighbor

search based on the Euclidean distance to the center of the simplex Ξj in parameter space Ξ. The center of

Ξj is defined as the average of the vertex locations of Ξj . The relation Nj = Pj is used here or least squares

approximation can be used to construct the interpolation for Nj > Pj . The interpolation procedure (2) in the

probability space is denoted by the interpolation operator I, for which holds w(x, ξ) = I(v(x)). The notation

is visualized in Figure 1 for an example of a response surface approximation in a two-dimensional probability

space with nξ = 2.

The polynomial degree pj is chosen as high as possible with respect to the total number of available samples

ns with Nj + 1 ≤ ns. The robustness of the interpolation wj(ξ) of the samples vj = {vkj,0 , . . . , vkj,nξ
} in the

simplex Ξj is guaranteed by the local extremum conserving (LEC) limiter that reduces the stencil size Nj + 1,

and pj , in case of overshoots until wj(ξ) satisfies

min
ξ∈Ξj

wj(ξ) = minvj ∧ max
ξ∈Ξj

wj(ξ) = maxvj . (3)
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The LEC limiter (3) is applied to all simplexes in a stencil Sj and always holds for pj = 1. The resulting

interpolation w(ξ) is then Local Extremum Diminishing (LED) with respect to the exact but unknown solution

u(ξ) The ith moment µui of u(ξ) is then computed as a summation of integrals over the ne simplexes Ξj using

a Monte Carlo evaluation with nmc ≫ ns integration points ξmck

µui(x) ≈

ne
∑

j=1

∫

Ξj

wj(x, ξ)
ifξ(ξ)dξ ≈

nmc
∑

k=1

w(x, ξmck
)i, (4)

with w(x, ξmck
) = wj(x, ξmck

) for ξmck
∈ Ξj .

The initial discretization of the probability space consists of a simplex tessellation of sampling points ξk
at the corners of a hypercube probability space and one sample in the interior. The sampling strategy is then

based on splitting the longest edge of the simplex Ξj with the highest value of a refinement measure in each

refinement step in two by adding a sampling point ξk. The random sampling point is located at least one third

of the edge length away from the endpoints to ensure a sufficient spread of the samples. In a one-dimensional

probability space, the new sampling point ξk is used to split the cell Ξj into two cells of equal size. The

tesselation is updated by computing the sample vknew = u(ξknew) and by making a Delaunay triangulation of

the new set of sampling points ξk or by splitting the simplexes Ξj that contain the refined edge in two. The

following refinement measure ej is used based on the geometrical properties of the simplex Ξj and the local

polynomial degree pj

ej = Ω̄jΞ̄
2Oj

j , (5)

where the probability Ω̄j , the normalized volume Ξ̄j , and the estimated order of convergence Oj of Ξj are

defined as

Ω̄j =

∫

Ξj

fξ(ξ)dξ, Ξ̄j =
1

Ξ̄

∫

Ξj

dξ, Oj =
pj + 1

nξ

, (6)

with Ξ̄ =
∑ne

j=1 Ξ̄j . Measure (5) accounts for both the interpolation accuracy and the probabilistic weighting in

the moment integrals (4). It also leads to solution-based refinement through the reduction of pj at discontinuities

by the LEC limiter (3). The size Ξ̄j of the simplexes can be used as the refinement measure in order to obtain

uniform or volumetric refinement.

2.2 ENO stencil selection

The ENO spatial discretization [5] achieves an essentially non-oscillatory approximation of the solution of

hyperbolic conservation laws. Non-oscillatory means, in this context, that the number of local extrema in the

solution does not increase with time. The ENO scheme obtains this property using an adaptive-stencil approach

with a uniform polynomial degree for reconstructing the spatial fluxes. Each spatial cell Xj is assigned r
stencils {Sj,i}

r
i=1 of degree p, all of which include the cell Xj itself. Out of this set of candidate stencils {Sj,i},

the stencil Sj is selected for cell Xj that results in the interpolation wj(x) which is smoothest in some sense

based on an indicator of smoothness ISj,i. In this way, a cell next to a discontinuity is adaptively given a stencil

consisting of the smooth part of the solution, which avoids Gibbs-like oscillations in physical space. Attention

has been paid to the efficient implementation of ENO schemes by Shu and Osher [9].

The nearest neighbor construction of the interpolation stencils Sj combined with the LEC limiter (3) results

in one stencil Sj for each simplex Ξj . If the stencils Sj are not restricted to the nearest neighbor sampling

points ξk, then multiple stencils Sj,i may be possible for simplex Ξj that satisfy the LEC limiter. The stencil

Sj,i that leads to the smoothest interpolation wj,i(ξ) is then selected for a more accurate approximation of u(ξ)
[14].
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(a) Nearest neighbor stencil (b) Selected stencil

Figure 2: Selection of the interpolation stencil Sj for the simplex Ξj near a discontinuity in a two-dimensional probability space.

The first nξ + 1 sampling points ξk of each stencil Sj,i = {ξkj,0 , . . . , ξkj,nξ
} consist of the vertexes of

the simplex Ξj . This stencil corresponds to the piecewise linear interpolation. The higher degree stencils of

Nj,i + 1 sampling points

Sj,i = {ξkj,0 , . . . , ξkj,nξ
, . . . , ξkj,Nj,i

}, (7)

can be constructed by adding, in principle, any combination of Nj,i−nξ samples for any pj,i out of the remaining

sampling points ξk, with k ∈ {1, . . . , ns}\{kj,0, . . . , kj,nξ
} and each sampling point appearing only once in

the stencil Sj,i. Out of these stencils, only a set of rj candidate stencils {Sj,i}
rj
i=1 is accepted of which the

interpolation wj,i(ξ) satisfies the LEC limiter. The stencil Sj for Ξj is selected from this set {Sj,i} based on an

indicator of smoothness ISj,i for each of the candidates. Since the stencils Sj,i have a non-uniform polynomial

degree pj,i, the degree of the stencils accepted by the LEC limiter is here used as the indicator of smoothness

ISj,i = pj,i. The stencil with the highest polynomial degree is then assigned to Ξj in order to obtain the highest

order approximation

Sj = Sj,i, with i = argmax
i∗∈{1,...,rj}

pj,i∗ . (8)

If multiple stencils have the same smoothness pj,i, then out of these stencils the one with the minimum average

Euclidean distance of the sampling points ξk to the center of Ξj is chosen.

A two-dimensional example is given in Figure 2 of the stencil selection for the simplex Ξj close to a

discontinuity, of which the location is denoted by the diagonal line. The nearest neighbor stencil Sj for Ξj only

leads to a quadratic interpolation wj(ξ) with Nj + 1 = 6, since higher degree stencils cross the discontinuity

and are rejected by the LEC limiter. On the other hand, stencil selection can result in a stencil Sj , with a higher

polynomial degree pj , that contains all sampling points ξk in the smooth region at one side of the discontinuity.

Constructing all possible stencils Sj,i for all simplexes Ξj can become impractical as its complexity in-

creases binomially with the number of samples ns. Therefore, we restrict the stencil selection to a subset of

these stencils by employing the multi-element character of the approach. We allow only nearest neighbor sten-
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discontinuity

ξ
1

S
j

Ξ
j

Ξ
i
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Figure 3: Efficiently selected stencil Sj for the simplex Ξj by adopting the nearest neighbor stencil of the simplex Ξi in a
two-dimensional probability space.

cils of other simplexes that contain Ξj to be assigned to the simplex Ξj , if that leads to a higher polynomial

degree than its own stencil.

To that end, the nearest neighbor stencils S̃j , with interpolation w̃j(ξ) and degree p̃j , are first constructed

for each simplex Ξj as described in Section 2.1. This results in a set of ne stencils {S̃j}
ne

j=1 for all simplexes

Ξj . Next, it needs to be determined for each stencil S̃j which simplexes Ξi are part of the stencil. A stencil

S̃j is considered to contain another simplex Ξi, if S̃j contains all vertexes {ξki,0 , . . . , ξki,nξ
} of Ξi, which is

always true for i = j. A set of r̃j candidate stencils {S̃j,i}
r̃j
i=1 for simplex Ξj is then collected from the nearest

neighbor stencils that contain Ξj . The stencil Sj = S̃j,i, and the interpolation wj(ξ) = w̃j,i(ξ), with the highest

degree p̃j,i is selected from {S̃j,i}
r̃j
i=1 as in (8). If none of the stencils {S̃j,i} has a higher degree than the nearest

neighbor stencil S̃j , i.e. p̃j,i ≤ p̃j for all i = 1, . . . , r̃j , then the original stencil S̃j is automatically maintained,

since the sampling points of the nearest neighbor stencil have, by definition, the smallest average Euclidean

distance to the center of Ξj .

This efficient SSC–ENO stencil selection algorithm results in virtually no additional computational costs

compared to SSC with nearest neighbor stencils, since no additional stencils or interpolations are constructed.

Existing nearest neighbor stencils are assigned only to other simplexes, if that increases the local polynomial

degree. The algorithm can, therefore, only improve the polynomial degree, pj ≥ p̃j , because {S̃j,i} always

contains the stencil S̃j . The impact of the stencil selection on the increase of the polynomial degree pj in the

smooth regions of the solution, decreases the refinement measure ej in the simplexes in which the solution is

smooth, since Ξ̄j < 1. This results in more focused refinement of the simplexes that contain nonlinearities.

Figure 3 shows the adoption of the nearest neighbor stencil of another simplex Ξi by the simplex Ξj in

the two-dimensional example. Because the resulting stencil Sj is asymmetrical with respect to Ξj , it leads to

a higher polynomial degree pj than its nearest neighbor stencil of Figure 2(a). The efficiently selected stencil

does not necessarily contain all the sampling points on one side of the discontinuity.
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(a) Extraction E of vdisck from the sample

vk(x) = u(x, ξk) for the sampling point

ξk

(b) Intersection of xdisc(ξ) = x with the

interpolation wdisc(ξ) of vdisc at ξdisc

(c) Reconstruction of w(ξ) with a discon-

tinuity at ξdisc for the physical location x

Figure 4: Example of the subcell resolution approach for a discontinuity in a one-dimensional probability space.

2.3 Subcell resolution

The notion of subcell resolution in FVM originated from Harten [6] to prevent the smearing of contact discon-

tinuities in the solution of hyperbolic conservation laws in the physical space X . It is based on the observation

that the location of a discontinuity xdisc within a spatial cell Xj can be derived from the computed cell-averaged

value w̄j approximating a flow quantity u(x). In an ENO scheme [5], the ENO reconstructions of u(x) in the

cells to the left and the right of the discontinuous cell Xj , wj−1(x) and wj+1(x), are then extended up to an

approximation of the discontinuity location xdisc in Xj such that their integral matches the cell average w̄j .

This allows for resolving discontinuities in the interior of the cells instead of restricting them to the cell face

locations. The concept can be extended to multiple spatial dimensions using the dimensional splitting approach.

The subcell resolution is first introduced for a one-dimensional physical space x ∈ X with nx = 1 and

later described for multiple spatial dimensions [15]. Assume that u(x, ξ) contains a discontinuity, of which the

location xdisc(ξ) in the physical space X is a function of the stochastic dimensions ξ. The samples v(x) for

the flow quantity u(x, ξ) are then used to extract ns realizations vdisc = {vdisc1 , . . . , vdiscns
} for the physical

discontinuity location xdisc(ξ) at the sampling points ξk. This is referred to as the extraction operation E that

returns vdisc = E(v(x)) with vdisck = xdisc(ξk). In Figure 4(a), an example of the extraction of vdisck from the

sample vk(x) for the sampling point ξk is given for one stochastic dimension ξ. The set of realizations vdisck for

ns = 5 sampling points ξk is shown in Figure 4(b) by the dots in the plot of the discontinuity location xdisc(ξ)
in the physical space as function of the random parameter ξ.

The specific method for the extraction E of the physical discontinuity locations vdisck from the deterministic

flow fields for the local flow quantity vk(x) can depend on the type of representation of the discontinuity that

is used by the spatial discretization method. The discontinuity locations are explicitly resolved, for example, in

subcell resolution FVM discretizations in the physical space and front tracking methods or level set approaches.

Shock sensors in hybrid shock capturing methods or adaptive mesh refinement strategies can also be used to

identify the discontinuity locations. Otherwise, approaches can be used based on local maxima in the gradient

magnitude of the solutions vk(x), such as the shock detector proposed by Harten [6].

The realizations vdisc for the physical discontinuity location are interpolated over the probability space to
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the function wdisc(ξ) to obtain an approximation of the discontinuity location xdisc(ξ) in the physical space as

function of the stochastic coordinates ξ, see Figure 4(b). The piecewise higher-degree polynomial interpolation

wdisc(ξ) = I(vdisc) is obtained using the interpolation operator I (2)

wdiscj (ξ) =

Pdiscj
∑

i=0

cdiscj,iΨj,i(ξ), (9)

with wdisc(ξ) = wdiscj (ξ) for ξ ∈ Ξj and the Pdiscj + 1 coefficients cdiscj,i determined by the interpolation of

a stencil Sdiscj of the realizations vdisck . The location of the discontinuity in the probability space for a certain

point x in the physical space can then be described by the hypersurface Ξdisc(x) ⊂ Ξ. This discontinuous

hypersurface Ξdisc(x) in the probability space is given by the intersection of wdisc(ξ) with the hyperplane

xdisc(ξ) = x, such that for all points ξdisc ∈ Ξdisc(x) holds wdisc(ξdisc) = x. Therefore, Ξdisc contains all

combinations of random parameter values ξdisc for which the discontinuity in the physical space is predicted

to be located at x. In the example of Figure 4(b) with a one-dimensional probability space, the set Ξdisc(x)
consists of a single point ξdisc for which wdisc(ξdisc) = x. For multiple random parameters ξ, the intersection

Ξdisc(x) of wdisc(ξ) with xdisc(ξ) = x is a piecewise higher-degree function that is able to capture nonlinear

curvatures of discontinuous hypersurfaces in the probability space.

The parameter space Ξ is next divided into two subdomains Ξ−(x) and Ξ+(x) separated by Ξdisc(x), for

which holds wdisc(ξ
−) < x with ξ− ∈ Ξ−(x), wdisc(ξ

+) > x with ξ+ ∈ Ξ+(x), and Ξ = Ξ−(x) ∪ Ξ+(x).
The discontinuous simplexes Ξj that contain Ξdisc(x) are identified by

wdiscj (ξ
−) < x for some ξ− ∈ Ξj ∧ wdiscj (ξ

+) > x for some ξ+ ∈ Ξj . (10)

The interpolation wj(x, ξ) (2), in the simplexes Ξj that satisfy (10), is replaced by a discontinuous representa-

tion of the response surface u(x, ξ). To that end, the simplex Ξj is divided into two regions Ξ−
j (x) ⊂ Ξ−(x) and

Ξ+
j (x) ⊂ Ξ+(x) with Ξj = Ξ−

j (x) ∪ Ξ+
j (x). The interpolation wj(x, ξ) in Ξ−

j (x) is replaced by the approxi-

mation w−
j (x, ξ) = wi−(x, ξ) of the simplex Ξi− closest to Ξj for which holds Ξi− ⊂ Ξ−. The nearest cell Ξi−

is defined as the simplex that has the most vertexes ξk in common with Ξj and that has the highest polynomial

degree pi− out of these cells. The region Ξ+
j (x) is assigned the different interpolation w+

j (x, ξ) = wi+(x, ξ) of

the nearest simplex Ξi+ ⊂ Ξ+ with i−, i+ ∈ {1, . . . , ne}/j. The notation is illustrated in Figure 5 for the case

of a two-dimensional probability space. This leads for SSC–SR to the response surface approximation w(x, ξ)
given by

w(x, ξ) =







wj(x, ξ), ξ ∈ Ξj , Ξj ⊂ Ξ− ∨ Ξj ⊂ Ξ+,
w−
j (x, ξ), ξ ∈ Ξ−

j , Ξj 6⊂ Ξ− ∧ Ξj 6⊂ Ξ+,

w+
j (x, ξ), ξ ∈ Ξ+

j , Ξj 6⊂ Ξ− ∧ Ξj 6⊂ Ξ+,
(11)

which is discontinuous at the predicted discontinuity location Ξdisc(x), see Figure 4(c) for the result in the

one-dimensional probability space. Integrating w(x, ξ) over the parameter space Ξ yields an approximation of

the statistical moments of u at the spatial point x. In order to obtain the spatial fields for the mean µw(x) and

the standard deviation σw(x), the approximations Ξdisc(x) and w(x, ξ) are constructed for each point x in the

spatial discretization of X .

In multiple spatial dimensions, nx ∈ {2, 3}, the location of the discontinuity is described by the discontinu-

ous surface Xdisc(ξ) ⊂ X in the physical space. Therefore, instead of using the discontinuity location xdisc(ξ),
the signed Euclidean distance ddisc(x, ξ) from the discontinuity Xdisc(ξ) to a point x in the physical space

is parameterized for nx > 1. The sign is obtained using the cross product, at the point on the discontinuity

Xdisc(ξ) closest to x, between the tangent of Xdisc(ξ) and the vector to x, which is illustrated in Section 3.2.1
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Figure 5: Division of the simplex Ξj in the two-dimensional parameter space Ξ by the discontinuous front Ξdisc(x) into Ξ−

j (x)

and Ξ+
j (x) with the nearest simplexes Ξi− and Ξi+ in Ξ−(x) and Ξ+(x), respectively.

for the RAE 2822 airfoil. The subcell resolution method is then equal to the approach presented in this sec-

tion for nx = 1 by substituting ddisc(x, ξ) for xdisc(ξ) and the location of the discontinuous hypersurface

Ξdisc(x) is given by ddisc(x, ξ) = 0. Since ddisc(x, ξ) depends on the reference point x in the physical space,

the realizations vdisck(x) of ddisc(x, ξ) and the interpolation wdisc(x, ξ) become a function of x, such that the

interpolation step wdisc(x, ξ) = I(vdisc(x)) is also repeated for each x in the spatial discretization. For a one-

dimensional physical space, r = 1, the distance reduces to ddisc(x, ξ) = xdisc(ξ)− x such that parameterizing

the discontinuity location xdisc(ξ) = Xdisc(ξ) is sufficient, which is independent of x. If multiple discontinu-

ities are present in the spatial field of u(x, ξ) then the subcell resolution algorithm is applied to each physical

discontinuity. A non-monotonic function for wdisc(x, ξ) also results in multiple discontinuities in w(x, ξ) at

certain values of x.

At physical points x where the hypersurface Ξdisc(x) is located close to the boundary of the parameter

space Ξ, no simplexes Ξi may lie entirely in the region on one side of Ξdisc(x). For instance, Ξ− might not

contain any simplexes Ξi− for updating the interpolation w−
j (x, ξ) to wi−(x, ξ) in Ξ−

j (x) of the simplex Ξj

that contains Ξdisc(x). In that case, a constant function is used for w−
j (x, ξ). The constant value for w−

j (x, ξ)

is the arithmetic average of the samples vk(x) at the vertexes of Ξj in Ξ−
j . In any other cases, the interpolation

wj(x, ξ) (2) is simply retained.

2.4 Monotonicity preserving limiter

The MP limiter combines the monotonicity of the approximation at discontinuities with higher-degree interpo-

lation at smooth local extrema through a three-step implementation. The first step is the replacement of the LEC

condition Eq. (3) with an MP condition in the interior of the simplexes Ξj , since Eq. (3) does not necessarily

result in a monotonic interpolation in Ξj as long as no artificial extrema exceed the sampled values vj . This
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requirement is enforced by making a Delaunay sub-tessellation in Ξj of the vertexes ξk of Ξj and the Monte

Carlo (MC) points ξmck
in Ξj for integrating w(x, ξ). If the value w(x, ξmck

) at any of the MC points ξmck
of

this simplex sub-triangulation in Ξj is larger or smaller than the value at all other vertexes of all sub-simplexes

of which ξmck
is a vertex, then the interpolation wj(x, ξ) is non-monotonic. The polynomial degree pj(x) and

the stencil Sj(x) of Ξj are then reduced similarly as for the LEC limiter. This MP criterion is more restrictive

than that of the LEC version, and it is always satisfied for a reduction to pj(x) = 1.

The second part is to turn off the MP limiter at local extrema in the solution, since at these locations there

is no monotonicity in the response that can be preserved. This is the stochastic equivalent of the MP limiter for

FVM in the physical space by [7] in the sense that it deactivates the limiter at local extrema. These extrema in

u(x, ξ) are identified by local extrema in the samples v in the interior of Ξ, since u(x, ξ) has a local extremum

if vk(x) is also a local extremum. A local extremum at ξk is again detected if vk(x) is larger or smaller than

the samples in all other vertexes of all simplexes that contain ξk. If vk(x) is such a local extremum, then the

MP limiter is deactivated in all simplexes of which ξk is a vertex.

In order to avoid overshoots, it is important to turn the MP limiter off only at smooth extrema in the solution

and not for extrema at discontinuities. The gradient magnitude of a linear interpolation in Ξj is used in the third

step to detect the latter non-smooth extrema. If the gradient in any of the simplexes that contain the local

extremum ξk surpasses a threshold value, then ξk is not treated as a smooth extremum and the MP limiter is

retained in all simplexes that contain the vertex ξk. The second formulation of the MP limiter in FVM by [10]

based on enlarging the limiter intervals will be extended in future work, since it is expected to give equally

robust results without the sensitivity to a threshold parameter.

3.0 RESULTS

3.1 Shock tube problem

The shock tube problem involves Sod’s Riemann problem for the Euler equations of one-dimensional unsteady

inviscid flow without heat conduction. The governing system of hyperbolic equations is given in conservation

formulation by
∂U

∂t
+

∂F (U)

∂x
= 0, (12)

with the state vector U(x, t) and flux vector F (x, t)

U =





ρ
ρu
ρE



 , F =





ρu
ρu2 + p
ρuH



 , (13)

and initial conditions U(x, 0) = U0(x). For a perfect gas, the density ρ(x, t), velocity u(x, t), static pressure

p(x, t), total energy E(x, t), and enthalpy H(x, t) are related as E = (1/(γ−1))p/ρ+u2/2 and H = E+p/ρ,

with ratio of specific heats γ = cp/cv. Sod’s Riemann problem is characterized by the initial conditions U0(x)
consisting of two uniform states at the left and the right of x0 = 0







uleft = 0,
pleft = 1,
ρleft = 1,







uright = 0,
pright = 0.1,
ρright = 0.125.

(14)

The pressure pleft of the initial left state and the location x0 of the initial discontinuity are assumed to be

uncertain. The uncertainty is given by two uniform distributions on the domains pleft ∈ [0.9; 1.1] and x0 ∈
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(a) Space-time, nf = 16 (b) Density ρ at t = 1, nf = 64

Figure 6: Sod’s Riemann problem in a closed shock tube with deterministic initial conditions.

[−0.025; 0.025]. The output quantities of interest are the density ρ at x = 0.82 and on the entire spatial domain.

The problem is here confined to a closed shock tube on a finite spatial domain x ∈ [−0.2; 2] with reflective walls

at the boundaries, as considered deterministically in [11]. The Euler equations (12) are solved up to t = 1 using

a second order front tracking method [11], which tracks the location of waves in the flow solution and solves

local Riemann problems to simulate their interactions. It resolves shock waves and contact surfaces as true

discontinuities unaffected by numerical diffusion, which results in sharp jumps in the physical and probability

spaces. Rarefaction waves are discretized by a series of characteristics and second order convergence is obtained

using a piecewise linear reconstruction of the rarefaction wave solution. Based on a convergence study, the

rarefaction wave is here discretized using nf = 64 characteristic fronts.

The space–time solution of the deterministic problem is shown in Figure 6(a) in terms of the wave paths for

nf = 16. A left running rarefaction wave, a contact discontinuity, and a right running shock wave emanate from

the discontinuity in the initial conditions at x0 = 0. The rarefaction wave reflects from the left boundary and

interacts with the contact discontinuity in the interior of the domain. The corresponding profile of the density

ρ at t = 1 is given in Figure 6(b) for nf = 64. Next to the shock wave, the contact surface also results in a

discontinuity and three points with a discontinuous derivative in the density field.

The uncertainty in pleft and x0 leads to a jump in the response surface for the density ρ at an x–location near

the contact discontinuity, x = 0.82. The SSC discretization of the two-dimensional probability space is shown

in Figure 7(a) in terms of the tessellation of ns = 100 sampling points. The adaptive refinement algorithm

clusters the sampling points near the discontinuity that runs diagonally through the probability space. The

SSC–ENO method obtains a significantly higher density of the sampling points near the jump in Figure 7(b)

for the same number of samples. This results in a sharper resolution of the discontinuity and a larger ratio

in size between the cells near the singularity and those that discretize the continuous regions. The improved

effectiveness of the adaptive refinement is caused by the increase of the local polynomial degree pj in the

smooth cells Ξj by the stencil selection and the resulting concentration of the sampling in the cells that contain

the discontinuity. SSC–ENO predicts a mean pressure of µρ = 0.231 with a standard deviation of σρ = 0.0543.

The coarser discretization of the discontinuity by SSC leads to an underprediction of the standard deviation with

σρ = 0.0534.

The SSC–ENO response surface approximation for ρ as a function of pleft and x0 with the simplex tes-
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(a) SSC (b) SSC–ENO

Figure 7: Discretization of the parameter space Ξ for the density ρ at x = 0.82 and t = 1 with ns = 100 for Sod’s Riemann problem
in a closed shock tube with uncertain pleft and x0.

sellation is shown in Figure 8(a). The response shows two continuous regions separated by a discontinuity

that varies in strength and that is slightly curved. SSC–ENO gives a robust approximation of the discontinu-

ity without overshoots because of the linear interpolation in the small simplexes that contain the singularity.

Nevertheless, the subcell resolution of the SSC–SR method already achieves a more accurate response surface

approximation using uniform sampling with only ns = 15 samples in Figure 8(b). The jump is captured as a

true discontinuity by extrapolating the interpolations wj(ξ) from both sides into the discontinuous cells up to

the predicted singularity location. This leads to a piecewise higher-degree approximation that resolves the two

smooth regions and the curved discontinuity of varying strength in between.

The discontinuity location is approximated using SSC–SR by interpolating the contact discontinuity loca-

tions xcontact extracted from the deterministic simulations, as shown in Figure 9. The interpolation of xcontact
as a function of pleft and x0 is performed using the SSC–ENO algorithm. The resulting jump line for x = 0.82
in the (pleft, x0)–plane is then given by the intersection of the surface for xcontact with the horizontal plane

at xcontact = 0.82. The jump line approximation consists of a piecewise higher-order polynomial that is able

to capture its curvature. The statistical moments predicted by SSC–SR are µρ = 0.231 and σρ = 0.0557.

The mean value matches that of SSC–ENO, but the standard deviation is underpredicted by SSC–ENO be-

cause of the linear approximation of the discontinuity. It corresponds to an output coefficient of variation of

CoVρ = 24.1%.

The output uncertainty in the entire density profile on x ∈ [−0.2; 2] is depicted in Figures 10 and 11 in terms

of the convergence for the mean µρ(x) and the standard deviation σρ(x) of SSC–ENO with ns = {10, 20, 100}
and SSC–SR with ns = {10, 15, 20}. The mean density µρ(x) shows the smearing of the shock and contact

waves compared to the deterministic solution, which is caused by the random location of the discontinuities.

This also produces the local maxima of the standard deviation σρ(x) in the discontinuous regions. The results

for SSC–SR are indistinguishable and converged to a maximum standard deviation of σρ,max = 0.0730 at

x = 1.754 for ns = 15.
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(a) SSC–ENO with ns = 100 (b) SSC–SR with ns = 15

Figure 8: Response surface approximations for the density ρ at x = 0.82 and t = 1 for Sod’s Riemann problem in a closed shock
tube with uncertain pleft and x0.

Figure 9: SSC–SR response surface approximation for the contact discontinuity location xcontact at t = 1 with ns = 15 for Sod’s
Riemann problem in a closed shock tube with uncertain pleft and x0.

(a) SSC-ENO with ns = {10, 20, 100} (b) SSC-SR with ns = {10, 15, 20}

Figure 10: Mean µρ(x) of the density ρ for Sod’s Riemann problem in a closed shock tube with uncertain initial pressure pleft
and diaphragm location x0.
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(a) SSC-ENO with ns = {10, 20, 100} (b) SSC-SR with ns = {10, 15, 20}

Figure 11: Standard deviation σρ(x) of the density ρ for Sod’s Riemann problem in a closed shock tube with uncertain initial
pressure pleft and diaphragm location x0.

SSC–ENO results in a staircase approximation in the discontinuous regions. With an increasing number of

samples, the solution converges to a smooth representation with a larger number of smaller jumps. However,

due to the absence of viscosity in the physical problem, the approximation maintains a staircase character

which leads to first-order accuracy. It also results in the convergence to the maximum standard deviation from

below which causes an underprediction of the maximum standard deviation at underresolved sample sizes.

It leads to an underprediction of the maximum output uncertainty with σρ,max = 0.0700 by 4.16% even for

ns = 100. Refinement measure Ξ̄j is used here for SSC–ENO, since the discontinuities have different locations

in probability space for each spatial point x.

3.2 Transonic airfoil

3.2.1 Inviscid flow

Non-uniform probability distributions are considered in a FVM discretization of multiple spatial dimensions

for the transonic flow over the RAE 2822 airfoil. The randomness in this NODESIM–CFD test case is given

by independent normal distributions for the free-stream Mach number M∞ and the angle of attack α with the

mean values 0.734 and 2.79o, and standard deviations 0.005 and 0.1o, respectively. The flow problem is solved

using an upwind discretization of the inviscid Euler equations in FLUENT to obtain a sharp discontinuity in the

flow field up to the pressure distribution on the airfoil surface. The deterministic results for the two-dimensional

spatial discretization with 5 · 104 cells are shown in Figure 12 in terms of the static pressure field around the

airfoil and the distribution of the pressure coefficient Cp over the surface

Cp =
p− p∞
1
2ρ∞u2∞

, (15)

where the subscript ∞ denotes the free-stream conditions of the pressure, the density, and the velocity. A tran-

sonic shock wave forms above the airfoil, which results in a discontinuity in the surface pressure distribution.

The undershoot downstream of the shock wave is caused by the expansion present after an inviscid shock in a

transonic flow.

The shock location xshock along the airfoil is parameterized by SSC–SR for resolving the stochastic surface

pressure distribution. The shock sensor of Harten [6] is used to extract xshock from each of the samples, based
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(a) Static pressure field p (b) Surface pressure coefficient −Cp

Figure 12: Deterministic results for the transonic flow over the RAE 2822 airfoil.

on the maximum of the gradient magnitude of the pressure coefficient |dCp/dx| in the shock region. A discrete

resolution of the shock location, limited to the spatial cell faces, is avoided by defining xshock as the extremum

of a parabolic fit through the maximum of |dCp/dx| and the values at its two neighboring spatial points. The

extraction step E is repeated on each layer of cells above the airfoil to obtain the two-dimensional shape of the

shock wave Xshock for resolving the stochastic pressure field.

The standard deviation of the pressure coefficient σCp
(x) along the upper surface in Figure 13 is signifi-

cantly underpredicted in the shock region by SSC–ENO with a maximum of σCp,max = 0.362 for ns = 50.

It converges only slowly to the SSC–SR solution of σCp,max = 0.616 at ns = 50, which corresponds to an

underprediction by 41.2%. Convergence is therefore not established with this method for ns = 50. In con-

trast, the SSC–SR method already gives an accurate prediction for only ns = 5 samples that largely coincides

with the approximation of ns = 50. On the other hand, the region around the shock wave in which σCp
(x)

is elevated is overpredicted by SSC–ENO. Both effects are caused by the underresolution of the discontinuity

in the probability space by the piecewise linear approximation of the discontinuity by SSC–ENO. The linear

function leads to a lower standard deviation through the underprediction of the gradients in the response surface

and to a longer shock region through the smearing of the discontinuity in the probability space. The normal

input distributions increase these two effects due to the concentration of the probability in a small region of the

probability space, which makes the sharp resolution of the discontinuity in that region even more important.

The standard deviation σp(x, y) of the pressure field around the RAE 2822 airfoil is given in Figure 14

for SSC–ENO and SSC–SR with ns = 5 samples, which correspond on the upper surface with the results of

Figure 13. For this minimal number of samples of ns = 5, SSC–SR also captures already the detailed spatial

structure of the local standard deviation field σp(x, y), while SSC–ENO gives a qualitative indication of the

region with increased values of σp(x, y) only.
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(a) SSC–ENO (b) SSC–SR

Figure 13: Standard deviation of the pressure coefficient σCp
(x) along the surface with ns = {5, 17, 50} for the transonic flow

over the RAE 2822 airfoil with random free-stream Mach number M∞ and angle of attack α.

(a) SSC–ENO (b) SSC–SR

Figure 14: Standard deviation of the pressure field σp(x, y) with ns = 5 for the transonic flow over the RAE 2822 airfoil with
random free-stream Mach number M∞ and angle of attack α.
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Figure 15: Response surface approximation of Cl as a function of M by the LEC and MP limiters for the transonic flow over the
RAE 2822 airfoil with ns = 3.

Table 1: Convergence of µCl
by the LEC and MP limiters for the transonic flow over the RAE 2822 airfoil.

ns LEC MP

3 7.9059 · 10−1 7.9153 · 10−1

5 7.9117 · 10−1 7.9115 · 10−1

9 7.9131 · 10−1 7.9139 · 10−1

3.2.2 Viscous flow

The lift coefficient Cl has a non-monotonic dependence on the Mach number M in the standard transonic flow

problem around the RAE 2822 airfoil. The uniform distribution for M is defined by a mean of µM = 0.734 and

standard deviation of σM = 0.005 at an angle of attack of α = 2.79o and a Reynolds number of Re = 6.5 · 106.

The fully turbulent flow problem is solved using the Fluent Reynolds-averaged Navier-Stokes solver with the

Spalart-Allmaras turbulence model and a second-order Roe upwind discretization on a two-dimensional mesh

of 7.5 · 104 spatial cells. The height of the first cell layer above the airfoil is with 1 · 10−5c smaller than the

y+-value of 1 and the dimensions of the mesh are 32.5c × 25c, where c = 1 is the airfoil chord. Only the

pressure forces on the airfoil are taken into account in computing Cl.

Approximation of the non-monotonic response surface of Cl as a function of M is shown in Figure 15

for the initial discretization of the LEC and MP limiters with ns = 3. The quadratic interpolation through

the samples for the MP limiter already leads to a more realistic representation of the dependence of Cl on M .

The LEC limiter gives a piecewise linear approximation because the sampling point at the nominal condition

M = 0.734 is not exactly located at the maximum of Cl. This results initially for ns = 3 in an underprediction

of the mean lift coefficient µCl
for the LEC limiter, as demonstrated by the convergence in Table 1. The mean

and standard deviation of the drag and pitching moment coefficients, Cd and Cm, respectively, are given in

Table 2 for the MP limiter with ns = 9. Both Cd and Cm depend monotonically on M such that the LEC

results are identical. The drag coefficient Cd has the highest coefficient of variation with CoVCd
= 14.9%, and

Cl is relatively the least sensitive to variations in M with CoVCl
= 0.204% because of the non-monotonicity

of its response surface.
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Table 2: Mean µ, standard deviation σ, and coefficient of variation CoV of the lift, drag, and pitching moment coefficients by the
MP limiter for the transonic flow over the RAE 2822 airfoil with ns = 9.

µ σ CoV

Cl 7.9139 · 10−1 1.6140 · 10−3 2.0395 · 10−3

Cd 1.4710 · 10−2 2.1910 · 10−3 1.4895 · 10−1

Cm 9.8398 · 10−2 3.4812 · 10−3 3.5379 · 10−2

4.0 CONCLUSIONS

The Simplex Stochastic Collocation (SSC) method obtains robust and non-intrusive solutions of uncertainty

quantification problems in computational fluid dynamics. It is based on a simplex tessellation discretization

of the probability space and piecewise polynomial interpolation of higher-degree stencils of samples at the

vertexes of the simplexes.

Essentially Non-Oscillatory (ENO) type stencil selection is introduced into the SSC method to achieve an

accurate approximation of discontinuities in probability space. The stencil selection for simplex Ξj chooses the

stencil Sj with the highest polynomial degree pj that is accepted by the Local Extremum Conserving (LEC)

limiter. This results in an increase of the local polynomial degree in the smooth regions and a concentration

of the refinement in the simplexes that contain the discontinuity. The efficient implementation of the algorithm

assigns only nearest neighbor stencils to other simplexes without constructing new stencils or interpolations.

A subcell resolution approach is also introduced into the SSC method for solving stochastic problems with

randomness in the location of spatial discontinuities. The presented SSC–SR method is based on extracting the

discontinuity location Xdisc(ξ) in the physical space from each of the deterministic solutions. The realizations

of the physical distance ddisc(x, ξ) to the discontinuity Xdisc(ξ) are interpolated over the stochastic dimensions

to predict the location of the discontinuity Ξdisc(x) in the probability space. The stochastic response surface

approximations are then extended from both sides up to the discontinuous hypersurface Ξdisc(x). This results

in a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing

the stochastic dimensions.

The LEC limiter reduces the polynomial interpolation degree to a piecewise linear function at smooth local

extrema in the response surface. Therefore, the MP limiter is introduced into UQ to combine a higher-degree

approximation of smooth non-monotonic solutions with a non-oscillatory interpolation at discontinuities.

The uncertainty in the shock tube problem results in an output coefficient of variation for the density of

23.5% in the interaction region of the contact and rarefaction wave. The large and asymmetrical uncertainty

intervals, near the smeared discontinuities in the mean sense, indicate a robust approximation of the highly

nonlinear propagation of the uncertainty in those regions. SSC–SR results in a converged solution for ns = 15
samples compared to an underprediction of the maximum standard deviation σρ,max by 4.16% for SSC–ENO

with ns = 100.

The impact of the random free-stream conditions on the transonic flow around the RAE 2822 airfoil are

accurately resolved in the surface pressure distribution, and the mean and standard deviation pressure fields for

a minimal number of ns = 5 samples. The non-uniform input probability distributions lead to an even more

significant underprediction of σCp,max by 41.2% for SSC–ENO with ns = 50. The MP limiter enables us

to accurately resolve the non-monotonic response of the lift coefficient Cl as a function of the random Mach

number for the RAE2822 transonic airfoil. This reveals that Cl is less sensitive to the uncertainty owing to

the non-monotonicity of the response surface compared to the drag and moment coefficients Cd and Cm with

monotonic responses.
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