13,661 research outputs found

    Nonlinear Dynamics of Chaotic Attractor of Chua Circuit and Its Application for Secure Communication

    Get PDF
    The Chua circuit is among the simplest non-linear circuits that shows most complex dynamical behavior, including chaos which exhibits a variety of bifurcation phenomena and attractors. In this paper, Chua attractor's chaotic oscillator, synchronization and masking communication circuits were designed and simulated. The electronic circuit oscilloscope outputs of the realized Chua system is also presented. Simulation and oscilloscope outputs are used to illustrate the accuracy of the designed and realized Chua chaotic oscillator circuits. The Chua system is addressed suitable for chaotic synchronization circuits and chaotic masking communication circuits using Matlab® and MultiSIM® software. Simulation results are used to visualize and illustrate the effectiveness of Chua chaotic system in synchronization and application of secure communication.  Keywords: chua nonlinear circuit, chaotic attractor, chaotic synchronization, secure communication

    Rich Variety of Bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit

    Get PDF
    A very simple nonlinear parallel nonautonomous LCR circuit with Chua's diode as its only nonlinear element, exhibiting a rich variety of dynamical features, is proposed as a variant of the simplest nonlinear nonautonomous circuit introduced by Murali, Lakshmanan and Chua(MLC). By constructing a two-parameter phase diagram in the (Fω)(F-\omega) plane, corresponding to the forcing amplitude (F) and frequency (ω)(\omega), we identify, besides the familiar period-doubling scenario to chaos, intermittent and quasiperiodic routes to chaos as well as period-adding sequences, Farey sequences, and so on. The chaotic dynamics is verified by both experimental as well as computer simulation studies including PSPICE.Comment: 4 pages, RevTeX 4, 5 EPS figure

    Chaos in a Switched-Capacitor Circuit

    Get PDF
    We report chaotic phenomena observed from a simple nonlinear switched-capacitor circuit. The experimentally measured bifurcation tree diagram reveals a period-doubling route to chaos. This circuit is described by a first-order discrete equation which can be transformed into the logistic map whose chaotic dynamics is well known.National Science Foundation ECS-8542885Comisión Interministerial de Ciencia y Tecnología 0245/81Office of Naval Research under Contract NOOO14-76-C-057

    Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices

    Get PDF
    Two generic classes of chaotic oscillators comprising four different configurations are constructed. The proposed structures are based on the simplest possible abstract models of generic second-order RC sinusoidal oscillators that satisfy the basic condition for oscillation and the frequency of oscillation formulas. By linking these sinusoidal oscillator engines to simple passive first-order or second-order nonlinear composites, chaos is generated and the evolution of the two-dimensional sinusoidal oscillator dynamics into a higher dimensional state space is clearly recognized. We further discuss three architectures into which autonomous chaotic oscillators can be decomposed. Based on one of these architectures we classify a large number of the available chaotic oscillators and propose a novel reconstruction of the classical Chua's circuit. The well-known Lorenz system of equations is also studied and a simplified model with equivalent dynamics, but containing no multipliers, is introduce

    Construction of classes of circuit-independent chaotic oscillatorsusing passive-only nonlinear devices

    Get PDF
    Two generic classes of chaotic oscillators comprising four different configurations are constructed. The proposed structures are based on the simplest possible abstract models of generic second-order RC sinusoidal oscillators that satisfy the basic condition for oscillation and the frequency of oscillation formulas. By linking these sinusoidal oscillator engines to simple passive first-order or second-order nonlinear composites, chaos is generated and the evolution of the two-dimensional sinusoidal oscillator dynamics into a higher dimensional state space is clearly recognized. We further discuss three architectures into which autonomous chaotic oscillators can be decomposed. Based on one of these architectures we classify a large number of the available chaotic oscillators and propose a novel reconstruction of the classical Chua’s circuit. The well-known Lorenz system of equations is also studied and a simplified model with equivalent dynamics, but containing no multipliers, is introduced

    Chaos via a piecewise-linear switch ed-capacitor circuit

    Get PDF
    A nonlinear switched-capacitor circuit that generates chaotic signals is reported. The circuit is described by a first-order piecewise-linear discrete equation that exhibits a chaotic dynamics. Experimental results illustrating the circuit performance and its use as a noise generator are included.Comisión Interministerial de Ciencia y Tecnología 3467-8

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current
    corecore