32 research outputs found

    Stable Matching with Evolving Preferences

    Full text link
    We consider the problem of stable matching with dynamic preference lists. At each time step, the preference list of some player may change by swapping random adjacent members. The goal of a central agency (algorithm) is to maintain an approximately stable matching (in terms of number of blocking pairs) at all times. The changes in the preference lists are not reported to the algorithm, but must instead be probed explicitly by the algorithm. We design an algorithm that in expectation and with high probability maintains a matching that has at most O((log(n))2)O((log (n))^2) blocking pairs.Comment: 13 page

    An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

    Get PDF
    Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E)G=(V,E) with nn vertices and mm edges, the textbook algorithm takes O(n+m)O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n)O(n) worst case time per operation, and requires O(min{mlogn,n2})O\left(\min\{m \log n, n^2\}\right) preprocessing time. Our result improves the previous O(nlog3n)O(n \log^3 n) worst case update time algorithm by Baswana et al. and the O(nlogn)O(n \log n) time by Nakamura and Sadakane, and matches the trivial Ω(n)\Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas

    On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

    Get PDF
    Conditional lower bounds for dynamic graph problems has received a great deal of attention in recent years. While many results are now known for the fully-dynamic case and such bounds often imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove amortized bounds for incremental and decremental algorithms. In this paper we consider partially dynamic versions of three classic problems in graph theory. Based on popular conjectures we show that: -- No algorithm with amortized update time O(n1ε)O(n^{1-\varepsilon}) exists for incremental or decremental maximum cardinality bipartite matching. This significantly improves on the O(m1/2ε)O(m^{1/2-\varepsilon}) bound for sparse graphs of Henzinger et al. [STOC'15] and O(n1/3ε)O(n^{1/3-\varepsilon}) bound of Kopelowitz, Pettie and Porat. Our linear bound also appears more natural. In addition, the result we present separates the node-addition model from the edge insertion model, as an algorithm with total update time O(mn)O(m\sqrt{n}) exists for the former by Bosek et al. [FOCS'14]. -- No algorithm with amortized update time O(m1ε)O(m^{1-\varepsilon}) exists for incremental or decremental maximum flow in directed and weighted sparse graphs. No such lower bound was known for partially dynamic maximum flow previously. Furthermore no algorithm with amortized update time O(n1ε)O(n^{1-\varepsilon}) exists for directed and unweighted graphs or undirected and weighted graphs. -- No algorithm with amortized update time O(n1/2ε)O(n^{1/2 - \varepsilon}) exists for incremental or decremental (4/3ε)(4/3-\varepsilon')-approximating the diameter of an unweighted graph. We also show a slightly stronger bound if node additions are allowed. [...]Comment: To appear at ICALP'16. Abstract truncated to fit arXiv limit

    A Tight Bound for Shortest Augmenting Paths on Trees

    Full text link
    The shortest augmenting path technique is one of the fundamental ideas used in maximum matching and maximum flow algorithms. Since being introduced by Edmonds and Karp in 1972, it has been widely applied in many different settings. Surprisingly, despite this extensive usage, it is still not well understood even in the simplest case: online bipartite matching problem on trees. In this problem a bipartite tree T=(WB,E)T=(W \uplus B, E) is being revealed online, i.e., in each round one vertex from BB with its incident edges arrives. It was conjectured by Chaudhuri et. al. [K. Chaudhuri, C. Daskalakis, R. D. Kleinberg, and H. Lin. Online bipartite perfect matching with augmentations. In INFOCOM 2009] that the total length of all shortest augmenting paths found is O(nlogn)O(n \log n). In this paper, we prove a tight O(nlogn)O(n \log n) upper bound for the total length of shortest augmenting paths for trees improving over O(nlog2n)O(n \log^2 n) bound [B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Shortest augmenting paths for online matchings on trees. In WAOA 2015].Comment: 22 pages, 10 figure

    Parameterized Streaming Algorithms for Vertex Cover

    Full text link
    As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems where we are given a parameter kk and the objective is to decide whether there is a solution bounded by kk. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of the Vertex Cover problem. We consider the following three models for a graph stream on nn nodes: 1. The insertion-only model where the edges can only be added. 2. The dynamic model where edges can be both inserted and deleted. 3. The \emph{promised} dynamic model where we are guaranteed that at each timestamp there is a solution of size at most kk. In each of these three models we are able to design parameterized streaming algorithms for the Vertex Cover problem. We are also able to show matching lower bound for the space complexity of our algorithms. (Due to the arXiv limit of 1920 characters for abstract field, please see the abstract in the paper for detailed description of our results)Comment: Fixed some typo

    On the hardness of partially dynamic graph problems and connections to diameter

    Get PDF

    Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) update time

    Get PDF
    We consider the problems of maintaining an approximate maximum matching and an approximate minimum vertex cover in a dynamic graph undergoing a sequence of edge insertions/deletions. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon [FOCS 2016] gave a randomized dynamic algorithm for this problem that has an approximation ratio of 2 and an amortized update time of O(1) with high probability. This algorithm requires the assumption of an oblivious adversary, meaning that the future sequence of edge insertions/deletions in the graph cannot depend in any way on the algorithm’s past output. A natural way to remove the assumption on oblivious adversary is to give a deterministic dynamic algorithm for the same problem in O(1) update time. In this paper, we resolve this question. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano [SODA 2015]; it had an approximation ratio of (2 + e) and an amortized update time of O(logn=e2 ). Our result can be generalized to give a fully dynamic O( f3 )-approximate algorithm with O( f2 ) amortized update time for the hypergraph vertex cover and fractional hypergraph matching problem, where every hyperedge has at most f vertices

    Fully Dynamic Matching in Bipartite Graphs

    Full text link
    Maximum cardinality matching in bipartite graphs is an important and well-studied problem. The fully dynamic version, in which edges are inserted and deleted over time has also been the subject of much attention. Existing algorithms for dynamic matching (in general graphs) seem to fall into two groups: there are fast (mostly randomized) algorithms that do not achieve a better than 2-approximation, and there slow algorithms with \O(\sqrt{m}) update time that achieve a better-than-2 approximation. Thus the obvious question is whether we can design an algorithm -- deterministic or randomized -- that achieves a tradeoff between these two: a o(m)o(\sqrt{m}) approximation and a better-than-2 approximation simultaneously. We answer this question in the affirmative for bipartite graphs. Our main result is a fully dynamic algorithm that maintains a 3/2 + \eps approximation in worst-case update time O(m^{1/4}\eps^{/2.5}). We also give stronger results for graphs whose arboricity is at most \al, achieving a (1+ \eps) approximation in worst-case time O(\al (\al + \log n)) for constant \eps. When the arboricity is constant, this bound is O(logn)O(\log n) and when the arboricity is polylogarithmic the update time is also polylogarithmic. The most important technical developement is the use of an intermediate graph we call an edge degree constrained subgraph (EDCS). This graph places constraints on the sum of the degrees of the endpoints of each edge: upper bounds for matched edges and lower bounds for unmatched edges. The main technical content of our paper involves showing both how to maintain an EDCS dynamically and that and EDCS always contains a sufficiently large matching. We also make use of graph orientations to help bound the amount of work done during each update.Comment: Longer version of paper that appears in ICALP 201
    corecore