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Abstract
Depth first search (DFS) tree is one of the most well-known data structures for designing efficient
graph algorithms. Given an undirected graph G = (V, E) with n vertices and m edges, the
textbook algorithm takes O(n + m) time to construct a DFS tree. In this paper, we study the
problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally,
we show:

Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that
reports a DFS tree in O(n) worst case time per operation, and requires O

(
min{m log n, n2}

)
preprocessing time.

Our result improves the previous O(n log3 n) worst case update time algorithm by Baswana
et al. [1] and the O(n log n) time by Nakamura and Sadakane [15], and matches the trivial Ω(n)
lower bound when it is required to explicitly output a DFS tree.

Our result builds on the framework introduced in the breakthrough work by Baswana et al. [1],
together with a novel use of a tree-partition lemma by Duan and Zhang [9], and the celebrated
fractional cascading technique by Chazelle and Guibas [6, 7].
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16:2 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

1 Introduction

Depth First Search (DFS) is one of the most renowned graph traversal techniques. After
Tarjan’s seminal work [21], it demonstrates its power by leading to efficient algorithms
to many fundamental graph problems, e.g., biconnected components, strongly connected
components, topological sorting, bipartite matching, dominators in directed graph and
planarity testing.

Real world applications often deal with graphs that keep changing with time. Therefore it
is natural to study the dynamic version of graph problems, where there is an online sequence
of updates on the graph, and the algorithm aims to maintain the solution of the studied
graph problem efficiently after seeing each update. The last two decades have witnessed a
surge of research in this area, like connectivity [10, 12, 13, 14], reachability [18, 20], shortest
path [8, 19], bipartite matching [3, 16], and min-cut [22].

We consider the dynamic maintenance of DFS trees in undirected graphs. As observed
by Baswana et al. [1] and Nakamura and Sadakane [15], the incremental setting, where
edges/vertices are added but never deleted from the graph, is arguably easier than the fully
dynamic setting where both kinds of updates can happen – in fact, they provide algorithms
for incremental DFS with Õ(n) worst case update time, which is close to the trivial Ω(n)
lower bound when it is required to explicitly report a DFS tree after each update. So,
is there an algorithm that requires nearly linear preprocessing time and space,
and reports a DFS tree after each incremental update in O(n) time? In this paper,
we study the problem of maintaining a DFS tree in the incremental setting, and give an
affirmative answer to this question.

1.1 Previous works on dynamic DFS

Despite the significant role of DFS tree in static algorithms, there is limited progress on
maintaining a DFS tree in the dynamic setting.

Many previous works focus on the total time of the algorithm for any arbitrary updates.
Franciosa et al. [11] designed an incremental algorithm for maintaining a DFS tree in a DAG
from a given source, with O(mn) total time for an arbitrary sequence of edge insertions;
Baswana and Choudhary [2] designed a decremental algorithm for maintaining a DFS tree in
a DAG with expected O(mn log n) total time. For undirected graphs, Baswana and Khan [4]
designed an incremental algorithm for maintaining a DFS tree with O(n2) total time.

These algorithms used to be the only results known for the dynamic DFS tree problem.
However, none of these existing algorithms, despite that they are designed for only a partially
dynamic environment, achieves a worst case bound of o(m) on the update time.

That barrier is overcome in the recent breakthrough work of Baswana et al. [1], they
provide, for undirected graphs, a fully dynamic algorithm with worst case O(

√
mn log2.5 n)

update time, and an incremental algorithm with worst case O(n log3 n) update time. Due
to the rich information in a DFS tree, their results directly imply faster worst case fully
dynamic algorithms for subgraph connectivity, biconnectivity and 2-edge connectivity.

The results of Baswana et al. [1] suggest a promising way to further improve the worst
case update time or space consumption for those fully dynamic algorithms by designing
better dynamic algorithms for maintaining a DFS tree. In particular, based on the framework
by Baswana et al. [1], Nakamura and Sadakane [15] propose an algorithm which takes
O(
√

mn log1.75 n/
√

log log n) time per update in the fully dynamic setting and O(n log n)
time in the incremental setting, and O(m log n) bits of space.
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1.2 Our results

In this paper, following the approach of [1], we improve the update time for the incremental
setting, also studied in [1], by combining a better data structure, a novel tree-partition lemma
by Duan and Zhang [9] and the fractional-cascading technique by Chazelle and Guibas [6, 7].

For any set U of incremental updates (insertion of a vertex/an edge), we let G + U denote
the graph obtained by applying the updates in U to the graph G. Our results build on the
following main theorem.

I Theorem 1. There is a data structure with O(min{m log n, n2}) size, and can be built in
O(min{m log n, n2}) time, such that given a set U of k insertions, a DFS tree of G + U can
be reported in O(n + k) time.

By the above theorem combined with a de-amortization trick in [1], we establish the
following corollary for maintaining a DFS tree in an undirected graph with incremental
updates.

I Corollary 2 (Incremental DFS tree). Given a sequence of online edge/vertex insertions,
a DFS tree can be maintained in O(n) worst case time per insertion.

1.3 Organization of the Paper
In Section 2 we introduce frequently used notations and review two building blocks of our
algorithm – the tree partition structure [9] and the fractional cascading technique [6, 7]. In
Section 3 and Section 4, we study a batched version of the incremental setting, where all
incremental updates are given at once, after which a single DFS tree is to be reported. After
that, by a standard de-amortization technique, our algorithm for the batched setting directly
implies the efficient algorithm for the incremental setting stated in Corollary 2.

2 Preliminaries

Let G = (V, E) denote the original graph, T a corresponding DFS tree rooted at a special
vertex r ∈ V , and U a set of inserted vertices and edges. We first introduce necessary
notations.

T (x): The subtree of T rooted at x.
path(x, y): The path from x to y in T .
par(v): The parent of v in T .
N(x): The adjacency list of x in G.
L(x): The reduced adjacency list for vertex x, which is maintained during the algorithm.
T ∗: The newly generated DFS tree after the batch insertion U .
par∗(v): The parent of v in T ∗.

Our algorithm uses a tree partition lemma in [9] and the famous fractional cascading
structure in [6, 7], which are summarized as the following two lemmas.

I Lemma 3 (Tree partition structure [9]). Given a rooted tree T and any integer parameter k

such that 2 ≤ k ≤ n = |V (T )|, we can mark a subset of vertices of no more than 3n/k − 5,
such that after removing all marked vertices, the tree T is partitioned into sub-trees of size at
most k. Also, the marked vertex subset can be computed in O(n log n) time.

SWAT 2018



16:4 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Algorithm 1: BatchInsert
Data: a DFS tree T of G, set of insertions U

Result: a DFS tree T ∗ of G + U

1 Add each inserted vertex v into T , set par(v) = r;
2 Initialize L(v) to be ∅ for each v;
3 Add each inserted edge (u, v) to L(u) and L(v);
4 Call DFS(r);

Algorithm 2: DFS
Data: a DFS tree T of G, the entering vertex v

Result: a partial DFS tree
1 Let u = v;
2 while par(u) is not visited do
3 Let u = par(u);
4 Mark path(u, v) to be visited;
5 Let (w1, . . . , wt) = path(u, v);
6 for i ∈ [t] do
7 if i 6= t then
8 Let par∗(wi) = wi+1;
9 for child x of wi in T except wi+1 do

10 Let (y, z) = Q(T (x), u, v), where y ∈ path(u, v);
11 Add z into L(y);

12 for i ∈ [t] do
13 for x ∈ L(wi) do
14 if x is not visited then
15 Let par∗(x) = wi;
16 Call DFS(x);

I Lemma 4 (Fractional cascading [6, 7]). Given k sorted arrays {Ai}i∈[k] of integers with
total size

∑k
i=1 |Ai| = m. There exists a data structure which can be built in O(m) time and

using O(m) space, such that for any integer x, the successors of x in all Ai’s can be found in
O(k + log m) time.

3 Handling batch insertions

In this section, we study the dynamic DFS tree problem in the batch insertion setting.
The goal of this section is to prove Theorem 1. Our algorithm basically follows the same
framework for fully dynamic DFS proposed in [1]. Since we are only interested in the batch
insertion setting, we can moderately simplify their algorithms by directly pruning those
details unrelated to insertions, as described in pseudo-code BatchInsert (Algorithm 1) and
DFS (Algorithm 2).

In Algorithm BatchInsert, we first attach each inserted vertex to the super root r, and
pretend it has been there since the very beginning. Then only edge insertions are to be
considered. All inserted edges are added into the reduced adjacency lists of corresponding
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vertices. We then use DFS to traverse the graph starting from r based on T , L, and build the
new DFS tree while traversing the entire graph and updating the reduced adjacency lists.

In Algorithm DFS, the new DFS tree is built in a recursive fashion. Every time we enter
an untouched subtree, say T (u), from vertex v ∈ T (u), we change the root of T (u) to v and
go through path(v, u); i.e., we wish to reverse the order of path(u, v) in T ∗. One crucial step
behind this operation is that we need to find a new root for each subtree T (w) originally
hanging on path(u, v). The following lemma tells us where the T (w) should be rerooted on
path(u, v) in T ∗.

I Lemma 5 ([1]). Let T ∗ be a partially constructed DFS tree, v the current vertex being
visited, w an (not necessarily proper) ancestor of v in tree T ∗, and C a connected component
of the subgraph induced by unvisited vertices. If there are two edges e and e′ from C incident
on v and w, then it is sufficient to consider only e during the rest of the DFS traversal.

Let Q(T (w), u, v) be the edge between the highest vertex on path(u, v) incident to a
vertex in subtree T (w), and the corresponding vertex in T (w). Q(T (w), u, v) is defined to be
Null if such an edge does not exist. By Lemma 5, it suffices to ignore all other edges but
just keep the edge returned by Q(T (w), u, v); this is because we have reversed the order of
path(u, v) in T ∗ and thus Q(T (w), u, v) connects to the lowest possible position in T ∗. Hence
T (w) should be rerooted at Q(T (w), u, v).

Denote (x, y) to be the edge returned by Q(T (w), u, v) where x ∈ path(u, v), and then
we add y into L(x). After finding an appropriate entering edge for each hanging subtree, we
process each vertex v ∈ path(u, v) in ascending order of depth (with respect to tree T ). For
every unvisited w ∈ L(v), we set par∗(w) = v, and recursively call DFS(w).

I Theorem 6. BatchInsert correctly reports a feasible DFS tree T ∗ of graph G + U .

Proof. We argue that in a single call DFS(v), where u is the highest unvisited ancestor of v,
every unvisited (at the moment of being enumerated) subtree T (w) hanging from path(u, v),
as well as every vertex on path(u, v) except v, will be assigned an appropriate parent such that
these parent-child relationships constitute a DFS tree of G at the termination of BatchInsert.
When the traversal reaches v, the entire T (u) is untouched, or else u would have been marked
by a previous visit to some vertex in T (u). We could therefore choose to go through path(v, u)
to reach u first. By Lemma 5, if a subtree T (w) is reached from some vertex on path(u, v), it
suffices to consider only the edge Q(T (w), u, v). After adding the query results of all hanging
subtrees into the adjacency lists of vertices on path(u, v), every hanging subtree visited from
some vertex x on path(u, v) should be visited in a correct way through edges in L(x) solely.
Since every vertex will eventually be assigned a parent, BatchInsert does report a feasible
DFS tree of graph G + U . J

For now we have not discussed how to implement Q(T (w), u, v) and the above algorithm
only assumes blackbox queries to Q(T (·), ·, ·). The remaining problem is to devise a data
structure D to answer all the queries demanded by Algorithm DFS in O(n) total time. We will
show in the next section that there exists a data structure D with the desired performance,
which is stated as the following lemma.

I Lemma 7. There exists a data structure D with preprocessing time O
(
min{m log n, n2}

)
time and space complexity O

(
min{m log n, n2}

)
that can answer all queries Q(T (w), x, y) in

a single run of BatchInsert in O(n) time.

Proof of Theorem 1. By Lemma 7, the total time required to answer queries is O(n). The
total size of reduced adjacency lists is bounded by O(n + |U |), composed by O(|U |) edges

SWAT 2018



16:6 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

added in BatchInsert and O(n) added during DFS. Thus, the total time complexity of
BatchInsert is O(n + |U |).

During preprocessing, we use depth first search on G to get the initial DFS tree T , and build
D in time O

(
min{m log n, n2}

)
. The total time for preprocessing is O

(
min{m log n, n2}

)
. J

4 Dealing with queries in BatchInsert

In this section we prove Lemma 7. Once this goal is achieved, the overall time complexity of
batch insertion taken by Algorithm BatchInsert would be O(n + |U |).

In the following part of this section, we will first devise a data structure in Section 4.1,
that answers any single query Q(T (w), u, v) in O(log n) time, which would be useful in other
parts of the algorithm. We will then present another simple data structure in Section 4.2,
which requires O(n2) preprocessing time and O(n2) space and answers each query in O(1)
time. Finally, we propose a more sophisticated data structure in Section 4.3, which requires
O(m log n) preprocessing time and O(m log n) space and answers all queries Q(T (w), x, y)
in a single run of BatchInsert in O(n) time. Hence, we can always have an algorithm that
handles a batch insertion U in O(n + |U |) time using O(min{m log n, n2}) preprocessing time
and O(min{m log n, n2}) space, thus proving Theorem 1. We can then prove Corollary 2
using the following standard de-amortization argument.

I Lemma 8. (Lemma 6.1 in [1]) Let D be a data structure that can be used to report
the solution of a graph problem after a set of U updates on an input graph G. If D can be
initialized in O(f) time and the solution for graph G+U can be reported in O(h+|U |×g) time,
then D can be modified to report the solution after every update in worst-case O

(√
fg + h

)
update time after spending O(f) time in initialization, given that

√
f/g ≤ n.

Proof of Corollary 2. Taking f = min{m log n, n2}, g = 1, h = n and directly applying the
above lemma will yield the desired result. J

4.1 Answering a single query in O(log n) time
We show in this subsection that the query Q(T (·), ·, ·) can be reduced efficiently to the range
successor query (see, e.g., [17], for the definition of range successor query), and show how
to answer the range successor query, and thus any individual query Q(T (·), ·, ·), in O(log n)
time.

To deal with a query Q(T (w), x, y), first note that since T is a DFS tree, all edges
not in T but in the original graph G must be ancestor-descendant edges. Querying edges
between T (w) and path(x, y) where x is an ancestor of y and T (w) is hanging from path(x, y) is
therefore equivalent to querying edges between T (w) and path(x, par(w)), i.e., Q(T (w), x, y) =
Q(T (w), x, par(w)). From now on, we will consider queries of the latter form only.

Consider the DFS sequence of T , where the i-th element is the i-th vertex reached during
the DFS on T . Note that every subtree T (w) corresponds to an interval in the DFS sequence.
Denote the index of vertex v in the DFS sequence by first(v), and the index of the last vertex
in T (v) by last(v). During the preprocessing, we build a 2D point set S. For each edge
(u, v) ∈ E, we add a point p = (first(u), first(v)) into S. Notice that for each point p ∈ S,
there exists exactly one edge (u, v) associated with p. Finally we build a 2D range tree [6, 7]
on point set S with O(m log n) space and O(m log n) preprocessing time.

To answer an arbitrary query Q(T (w), x, par(w)), we query the point with minimum
x-coordinate lying in the rectangle Ω = [first(x), first(w) − 1] × [first(w), last(w)]. If no
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such point exists, we return Null for Q(T (w), x, par(w)). Otherwise we return the edge
corresponding to the point with minimum x-coordinate.

Now we prove the correctness of our approach.
If our method returns Null, Q(T (w), x, par(w)) must equal Null. Otherwise, suppose
Q(T (w), x, par(w)) = (u, v). Noticing that (first(u), first(v)) is in Ω, it means our method
will not return Null in that case.
If our method does not return Null, denote (u′, v′) to be the edge returned by our
method. We can deduce from the query rectangle that u′ ∈ T (x)\T (w) and v′ ∈ T (w).
Thus, Q(T (w), x, par(w)) 6= Null. Suppose Q(T (w), x, par(w)) = (u, v). Notice that
(first(u), first(v)) is in Ω, which means first(u′) ≤ first(u). If u′ = u, then our method
returns a feasible solution. Otherwise, from the fact that first(u′) < first(u), we know
that u′ is an ancestor of u, which contradicts the definition of Q(T (w), x, par(w)).

4.2 An O(n2)-space data structure
In this subsection we propose a data structure with quadratic preprocessing time and space
complexity that answers any Q(T (·), ·, ·) in constant time.

Since we allow quadratic space, it suffices to precompute and store answers to all possible
queries Q(T (w), u, par(w)). For preprocessing, we enumerate each subtree T (w), and fix the
lower end of the path to be v = par(w) while we let the upper end u go upward from v by
one vertex at a time to calculate Q(T (w), u, par(w)) incrementally, in order to answer all
queries of the form Q(T (w), ·, par(w)) in O(n) total time.

As u goes upward on tree T , we need to find an edge, if existent, from u to T (w) in
O(1) time. To to this, we pre-compute, using dynamic programming, the answers for all
possible w’s as an independent task in O(n) total time, for each fixed u ∈ V . Prepare an
array Au[·] indexed by all descendants w of u which is initialised with all Null’s. Start listing
all descendants w incident to u. For each such w, we enumerate its ancestors v below u

in descending order in terms of depth and reset Au[v] = (u, w), and this enumeration gets
halted when we meet for the first time an ancestor v with Au[v] already 6= Null. It is clear
that u is connected to T (w) iff Au[w] 6= Null, since for each descendant w where u is incident
to some vertices in T (w), Au[w] is reset when the algorithm lists the first neighbour of u in
T (w). The total time of this procedure is clearly O(n) since every Au[v] is manipulated for
at most once.

I Lemma 9. The preprocessing time and query time of the above data structure are O(n2)
and O(1) respectively.

Proof. The array Au can be built for each vertex u in total time O(n2). For each subtree
T (w), we go up the path from w to the root r, and spend O(1) time for each vertex u

on path(r, w) to get the answer for Q(T (w), u, par(w)). There are at most n vertices on
path(r, w), so the time needed for a single subtree is O(n), and that needed for all subtrees
is n ·O(n) = O(n2) in total. On the other hand, for each query, we simply look it up and
answer in O(1) time. Hence we conclude that the preprocessing time and query time are
O(n2) and O(1) respectively. J

4.3 An O(m log n)-space data structure
Observe that in BatchInsert (and DFS), a bunch of queries {Q(T (wi), x, y)} are always made
simultaneously, where {T (wi)} is the set of subtrees hanging from path(x, y). We may

SWAT 2018
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r

r0

a1 a2

……
an

2 �1 an
2

Figure 1 In this example, if we stick to the 2D-range-based data structure introduced before,
then computing all Q(T (ai), r, r′) would take as much as O(n log n) time.

therefore answer all queries for a path in one pass, instead of answering them one by one.
By doing so we confront two types of hard queries.

First consider an example where the original DFS tree T is a chain L where a1 is the root
of L and for 1 ≤ i ≤ n− 1, ai+1 is the unique child of ai. When we invoke DFS(a1) on L,
path(u, v) is the single node a1. Thus, we will call Q(T (a2), a1, a1) and add the returned edge
into L(a1). Supposing there are no back-edges in this graph, the answer of Q(T (a2), a1, a1)
will be the edge (a1, a2). Therefore, we will recursively call the DFS(a2) on the chain (a2, an).
Following further steps of DFS, we can see that we will call the query Q(T (w), x, y) for Ω(n)
times. For the rest of this subsection, we will show that we can deal with this example
in linear time. The idea is to answer queries involving short paths in constant time. For
instance, in the example shown above, path(u, v) always has constant length. We show that
when the length of path(u, v) is smaller than 2 log n, it is affordable to preprocess all the
answers to queries of this kind in O(m log n) time and O(n log n) space.

The second example we considered is given as Figure 1. In this tree, the original root is
r. Suppose the distance between r and r′ is n/2. When we invoke DFS(r′), path(u, v) the
path from r to r′. Thus, we will call T (a1, r, r′), T (a2, r, r′), . . ., T (an−2, r, r′), which means
we make Ω(n) queries. In order to deal with this example in linear time, the main idea is
using fractional cascading to answer all queries Q(T (w), x, y) with a fixed path(u, v), for all
subtrees T (w) with small size.

In the examples shown above, all subtrees cut off path(u, v) have constant size and thus
the total time complexity for this example is O(n). We will finally show that, by combining
the two techniques mentioned above, it is enough to answer all queries Q(T (w), x, y) in linear
time, thus proving Lemma 7.

Data structure
The data structure consists of the following parts.
(i) Build the 2D-range successor data structure that answers any Q(T (·), ·, ·) in O(log n)

time.
(ii) For each ancestor-descendent pair (u, v) such that u is at most 2 log n hops above v,

precompute and store the value of Q(T (v), u, par(v)).
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Mv1

v1

v2

Mv2
Mv4

Mv3

v4
v3

Figure 2 In this example, each blue node rep-
resents a vertex vi(1 ≤ i ≤ 4) from set M , and
Mvi ’s are drawn as yellow triangles. For each
triangle, a fractional cascading data structure is
built on adjacency lists of all vertices inside.

{� log n

{� log n

{� log n

{� log n

Figure 3 In this picture, sets M and X ∪
{r} are drawn as blue nodes and black nodes
respectively, and each yellow triangle is a subtree
rooted at a leaf of T [X], which has size ≥ log n.
Note that every ancestor-descendent tree path
between two black nodes contains a blue node.

(iii) Apply Lemma 3 with parameter k = log n and obtain a marked set of size O(n/ log n).
Let M be the set of all marked vertices x such that |T (x)| ≥ log n. For every v /∈M ,
let ancv ∈M be the nearest ancestor of v in set M .
Next we build a fractional cascading data structure for each u ∈ M in the following
way. Let Mu be the set of all vertices in T (u) whose tree paths to u do not intersect
any other vertices u′ 6= u from M , namely Mu = {v | ancv = u}; see Figure 2 for an
example. Then, apply Lemma 4 on all N(v), v ∈Mu where N(v) is treated as sorted
array in an ascending order with respect to depth of the edge endpoint opposite to v;
this would build a fractional cascading data structure that, for any query encoded as a
w ∈ V , answers for every v ∈ Mu its highest neighbour below vertex w in total time
O(|Mu|+ log n).

Here is a structural property of M that will be used when answering queries.

I Lemma 10. For any ancestor-descendent pair (u, v), if path(u, v)∩M = ∅, then path(u, v)
has ≤ 2 log n hops.

Proof. Suppose otherwise. By definition of marked vertices there exists a marked vertex
w ∈ path(u, v) that is ≤ log n hops below u. Then since path(u, v) has > 2 log n many hops,
it must be T (w) ≥ log n which leads to w ∈M , contradicting path(u, v) ∩M = ∅. J

Preprocessing time
First of all, for part (i), as discussed in a previous subsection, 2D-range successor data
structure takes time O(m log n) to initialize. Secondly, for part (iii), on the one hand by
Lemma 3 computing a tree partition takes time O(n log n); on the other hand, by Lemma
4, initializing the fractional cascading with respect to u ∈M costs O(

∑
v∈Mu

|N(v)|) time.

SWAT 2018



16:10 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Since, by definition of Mu, each v ∈ V is contained in at most one Mu, u ∈M , the overall
time induced by this part would be O(

∑
u∈M

∑
v∈Mu

|N(v)|) = O(m).
Preprocessing part (ii) requires a bit of cautions. The procedure consists of two steps.

(1) For every ancestor-descendent pair (u, v) such that u is at most 2 log n hops above v, we
mark (u, v) if u is incident to T (v).
Here goes the algorithm: for every edge (u, w) ∈ E (u being the ancestor), let z ∈
path(u, w) be the vertex which is 2 log n hops below u (if path(u, w) has less than 2 log n

hops, then simply let z = w); note that this z can be found in constant time using the
level-ancestor data structure [5] which can be initialized in O(n) time. Then, for every
vertex v ∈ path(u, z), we associate the pair (u, v) with edge (u, w); if a vertex pair is
associated with more than one edge, we only keep an arbitrary one. The total running
time of this procedure is O(m log n) since each edge (u, w) takes up O(log n) time.

(2) Next, for each v ∈ V , we compute all entries Q(T (v), u, par(v)) required by (ii) in an
incremental manner. Let u1, u2, · · · , u2 log n be the nearest 2 log n ancestors of v sorted
in descending order with respect to depth, and then we directly solve the recursion

Q(T (v), ui+1, par(v)) =
{

Q(T (v), ui, par(v)) (ui+1, v) is not associated with any edge
(ui+1, w) (ui+1, v) is associated with edge (ui+1, w)

for all 0 ≤ i < 2 log n in O(log n) time. Note that no Q(T (v), ui+1, par(v)) is an undefined
value since (u1, v) is always associated with an edge, say (u1, v) itself. The total running
time would thus be O(n log n).

Summing up (i)(ii)(iii), the preprocessing time is bounded by O(m log n).

Query algorithm and total running time
We show how to utilize the above data structures (i)(ii)(iii) to implement Q(T (·), ·, ·) on line
9-11 in Algorithm DFS such that the overall time complexity induced by this part throughout
a single execution of Algorithm BatchInsert is bounded by O(n).

Let us say we are given (w1, w2, · · · , wt) = path(u, v) and we need to compute Q(T (x), u, v)
for every subtree T (x) that is hanging on path(u, v). There are three cases to discuss.

(1) If path(u, v) ∩M = ∅, by Lemma 10 we claim path(u, v) has at most 2 log n hops, and
then we can directly retrieve the answer of Q(T (x), u, v) from precomputed entries of
(ii), each taking constant query time.

(2) Second, consider the case where path(u, v) ∩M 6= ∅. Let s1, s2, · · · , sl, l ≥ 1 be the con-
secutive sequence (in ascending order with respect to depth in tree T ) of all vertices from
M that are on path(u, v). For those subtrees T (x) that are hanging on path(u, par(s1)),
we can directly retrieve the value of Q(T (x), u, par(x)) from (ii) in constant time, as by
Lemma 10 path(u, par(s1)) has at most 2 log n hops.

(3) Third, we turn to study the value of Q(T (x), u, par(x)) when par(x) belongs to a
path(si, par(si+1)), i < l or path(sl, v). The algorithm is two-fold.
(a) First, we make a query of u to the fractional cascading data structure built at vertex

si (1 ≤ i ≤ l), namely part (iii), which would give us, for every descendent y ∈Msi
,

the highest neighbour of y below u. Using this information we are able to derive the
result of Q(T (x), u, v) if |T (x)| < log n, since in this case T (x) ∩M = ∅ and thus
T (x) ⊆Msi .
By Lemma 4 the total time of this procedure is O(|Msi

|+ log n).
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(b) We are left to deal with cases where |T (x)| ≥ log n. In this case, we directly compute
Q(T (x), u, v) using the 2D-range successor built in (i) which takes O(log n) time.

Correctness of the query algorithm is self-evident. The total query time is analysed as
follows. Throughout an execution of Algorithm BatchInsert, (1) and (2) contribute at most
O(n) time since each T (x) is involved in at most one such query Q(T (x), u, v) which takes
constant time. As for (3)(a), since each marked vertex s ∈M lies in at most one such path
(w1, w2, · · · , wt) = path(u, v), the fractional cascading data structure associated with Ms

is queried for at most once. Hence the total time of (3)(a) is O(
∑

s∈M (|Ms| + log n)) =
O(n + |M | log n) = O(n); the last equality holds by |M | ≤ O(n/ log n) due to Lemma 3.

Finally we analyse the total time taken by (3)(b). It suffices to upper-bound by O(n/ log n)
the total number of such x with the property that |T (x)| ≥ log n and path(u, par(x))∩M 6= ∅.
Let X be the set of all such x’s.

I Lemma 11. Suppose x1, x2 ∈ X and x1 is an ancestor of x2 in tree T . Then path(x1, x2)∩
M 6= ∅.

Proof. Suppose otherwise path(x1, x2)∩M = ∅. Consider the time when query Q(T (x2), u, v)
is made and let path(u, v) be the path being visited by then. As x2 ∈ X, by definition it
must be path(u, par(x2))∩M 6= ∅. Therefore, path(u, x2) is a strict extension of path(x1, x2),
and thus x1, par(x1) ∈ path(u, x2), which means x1 and par(x1) become visited in the same
invocation of Algorithm DFS. This is a contradiction since for any query of form Q(T (x1), ·, ·)
to be made, by then par(x1) should be tagged “visited” while x1 is not. J

Now we prove |X| = O(n/ log n). Build a tree T [X] on vertices X ∪ {r} in the natural
way: for each x ∈ X, let its parent in T [X] be x’s nearest ancestor in X ∪ {r}. Because of

|X| < 2#leaves of T [X] + #vertices with a unique child in T [X]

it suffices to bound the two terms on the right-hand side: on the one hand, the number of
leaves of T [X] is at most n/ log n since for each leave x it has |T (x)| ≥ log n; on the other
hand, for each x ∈ T [X] with a unique child y ∈ T [X], by Lemma 11 path(x, y) ∩M 6= ∅,
and so we can charge this x to an arbitrary vertex in path(x, y) ∩M , which immediately
bounds the total number of such x’s by |M | = O(n/ log n); see Figure 3 for an illustration.
Overall, |X| ≤ O(n/ log n).
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