553 research outputs found

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 ÎĽ\mum, to 11.0 ÎĽ\mum. The baseline design includes the goal wavelength extension to 0.4 ÎĽ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 ÎĽ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    The JPEG2000 still image compression standard

    Get PDF
    The development of standards (emerging and established) by the International Organization for Standardization (ISO), the International Telecommunications Union (ITU), and the International Electrotechnical Commission (IEC) for audio, image, and video, for both transmission and storage, has led to worldwide activity in developing hardware and software systems and products applicable to a number of diverse disciplines [7], [22], [23], [55], [56], [73]. Although the standards implicitly address the basic encoding operations, there is freedom and flexibility in the actual design and development of devices. This is because only the syntax and semantics of the bit stream for decoding are specified by standards, their main objective being the compatibility and interoperability among the systems (hardware/software) manufactured by different companies. There is, thus, much room for innovation and ingenuity. Since the mid 1980s, members from both the ITU and the ISO have been working together to establish a joint international standard for the compression of grayscale and color still images. This effort has been known as JPEG, the Join

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Lossy-to-Lossless Compression of Biomedical Images Based on Image Decomposition

    Get PDF
    The use of medical imaging has increased in the last years, especially with magnetic resonance imaging (MRI) and computed tomography (CT). Microarray imaging and images that can be extracted from RNA interference (RNAi) experiments also play an important role for large-scale gene sequence and gene expression analysis, allowing the study of gene function, regulation, and interaction across a large number of genes and even across an entire genome. These types of medical image modalities produce huge amounts of data that, for several reasons, need to be stored or transmitted at the highest possible fidelity between various hospitals, medical organizations, or research units

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    JPEG2000: The upcoming still image compression standard

    Get PDF
    With the increasing use of multimedia technologies, image compression requires higher performance as well as new features. To address this need in the specific area of still image encoding, a new standard is currently being developed, the JPEG2000. It is not only intended to provide rate-distortion and subjective image quality performance superior to existing standards, but also to provide functionality that current standards can either not address efficiently or not address at all

    Shape representation and coding of visual objets in multimedia applications — An overview

    Get PDF
    Emerging multimedia applications have created the need for new functionalities in digital communications. Whereas existing compression standards only deal with the audio-visual scene at a frame level, it is now necessary to handle individual objects separately, thus allowing scalable transmission as well as interactive scene recomposition by the receiver. The future MPEG-4 standard aims at providing compression tools addressing these functionalities. Unlike existing frame-based standards, the corresponding coding schemes need to encode shape information explicitly. This paper reviews existing solutions to the problem of shape representation and coding. Region and contour coding techniques are presented and their performance is discussed, considering coding efficiency and rate-distortion control capability, as well as flexibility to application requirements such as progressive transmission, low-delay coding, and error robustnes

    JPEG2000 image coding system theory and applications

    Get PDF
    JPEG2000, the new standard for still image coding, provides a new framework and an integrated toolbox to better address increasing needs for compression. It offers a wide range of functionalities such as lossless and lossy coding, embedded lossy to lossless coding, progression by resolution and quality, high compression efficiency, error resilience and region-of-interest (ROI) coding. Comparative results have shown that JPEG2000 is indeed superior to established image compression standards. Overall, the JPEG2000 standard offers the richest set of features in a very efficient way and within a unified algorithm. The price of this is its additional complexity, but this should not be perceived as a disadvantage, as the technology evolves rapidly

    Preserving data integrity of encoded medical images: the LAR compression framework

    Get PDF
    International audienceThrough the development of medical imaging systems and their integration into a complete information system, the need for advanced joint coding and network services becomes predominant. PACS (Picture Archiving and Communication System) aims to acquire, store and compress, retrieve, present and distribute medical images. These systems have to be accessible via the Internet or wireless channels. Thus protection processes against transmission errors have to be added to get a powerful joint source-channel coding tool. Moreover, these sensitive data require confidentiality and privacy for both archiving and transmission purposes, leading to use cryptography and data embedding solutions. This chapter introduces data integrity protection and developed dedicated tools of content protection and secure bitstream transmission for medical encoded image purposes. In particular, the LAR image coding method is defined together with advanced securization services
    • …
    corecore