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Abstract

The use of medical imaging has increased in the last years, especially with magnetic
resonance imaging (MRI) and computed tomography (CT). Microarray imaging and
images that can be extracted from RNA interference (RNAi) experiments also play an
important role for large-scale gene sequence and gene expression analysis, allowing
the study of gene function, regulation, and interaction across a large number of genes
and even across an entire genome. These types of medical image modalities produce
huge amounts of data that, for several reasons, need to be stored or transmitted at the
highest possible fidelity between various hospitals, medical organizations, or research
units.

In this chapter, we study the performance of several compression methods developed
by the authors, as well as of image coding standards, when used to compress medical
images (computed radiography, computed tomography, magnetic resonance, and ul‐
trasound), RNAi images, and microarray images. The compression algorithms ad‐
dressed are based on image decomposition, finite-context modeling, and arithmetic
coding. In one of the methods, the input image is split into several bitplanes, and each
bitplane is encoded using finite-context models and arithmetic coding. In another ap‐
proach, the intensity levels of a given image are organized in a binary-tree structure,
where each leaf node is associated with an image intensity.

The experimental results presented in this chapter are state of the art regarding the
compression of some of these types of images. Moreover, several approaches and pre‐
processing techniques are presented, giving a good hint about new developments that
can be studied further. Also, this chapter intends to be used as a reference for compar‐
ison with new compression algorithms that may be developed in the future.

Keywords: Image coding, Lossless coding, Progressive decoding, Biomedical images,
Image coding standards, Image decomposition, Arithmetic coding, Finite-context
modeling
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1. Introduction

Image compression is a very important research field. It is fundamental in many different areas,
such as biomedical imaging, consumer electronics, and Internet, among others. The goal of an
image compression method is to represent an arbitrary image using the smallest possible
number of bits.

The use of medical imaging has increased in the last years, especially with magnetic resonance
imaging (MRI) and computed tomography (CT) [1]. These types of medical image modalities
produce huge amounts of data that, for several reasons, need to be stored or transmitted with
the highest possible fidelity between various hospitals and medical organizations.

Also related to biomedical imaging, microarray images play an important role for large-scale
gene sequence and gene expression analysis, allowing the study of gene function, regulation,
and interaction across a large number of genes and even across an entire genome [2, 3]. The
output of a microarray experiment is a pair of 16-bits-per-pixel images, usually with a very
high resolution, sometimes exceeding 13,000×4,000 pixels. Consequently, over 200 MB can be
required to store a single microarray image. Due to the development of these digital imaging
technologies, some concerns appeared regarding efficient ways of storing and transmitting the
images. In order to overcome these problems, sophisticated compression methods are
required.

Another type of images that are addressed in this chapter are those that can be extracted from
RNA interference (RNAi) experiments. Those experiments involve marking cells with various
fluorescent dyes to capture three components of interest, namely, DNA, actin, and PH3
channels [4].

Typically, lossless compression algorithms are recommended for dealing with these types of
images. In fact, lossless methods are generally required in applications where cost, legal issues,
and value play a decisive role, such as in medical imaging or in image archiving [5]. On one
hand, the use of lossless algorithms avoids problems of losing diagnostic information vital to
identify life-threatening illnesses in the early stages. On the other hand, if a given image is
lossless compressed, it is possible to recompress it in the future, using a more efficient
algorithm and without losing any information.

Usually, the performance of image coding standards, such as JPEG, JBIG, JPEG-LS, and
JPEG2000, falls short when they are applied to certain types of biomedical images. In order to
overcome this lower-performance issue, specific compression algorithms are essential. In the
class of lossless compression algorithms, there is a specific type that has progressive decoding
capabilities. This type of compression is usually designated as "lossy-to-lossless compression."
These algorithms are very flexible, because they allow stopping decoding at a certain point,
according to the available resources or user requirements. However, the original image can
also be obtained, without any loss, if the decoding process goes until the end.

In this chapter, we study the performance of several specific compression methods developed
by the authors, as well as of image coding standards, when applied to medical images
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(computed radiography, computed tomography, magnetic resonance, and ultrasound), RNAi
images, and microarray images. The addressed compression algorithms are based on image
decomposition, finite-context models, and arithmetic coding. We can divide these algorithms
into two categories. In the first one, the input image is split into several bitplanes and each
bitplane is encoded individually. This approach is combined with several preprocessing
techniques in order to improve the compression efficiency. In the second approach, the
intensity levels of a given image are organized in a binary-tree structure, where each leaf node
is associated with an image intensity.

We start by presenting the compression algorithms, namely, bitplane decomposition and
binary-tree decomposition. We include a brief explanation about finite-context models and
arithmetic coding, the entropy coding block used in both approaches. Then, we present a set
of experiments that have been performed using the compression algorithms described in Sect.
4, as well as experimental results using the most important image coding standards (e.g., PNG,
JBIG, JPEG-LS, and JPEG2000). At the end, we draw some conclusions.

This chapter intends to be a reference for comparison of new compression algorithms that may
be developed in the future, for two main reasons. On one hand, the experimental results
presented in Sect. 5.2 are state of the art regarding the compression of some of these types of
images. On the other hand, several approaches and preprocessing techniques are presented,
giving hints about new developments that can be done.

2. Compression methods

The compression algorithms that we address here can be classified into two different catego‐
ries. One based on bitplane decomposition and the other one based on binary-tree decompo‐
sition. For the first category, we use a sophisticated bitplane decomposition approach that was
successfully developed for the compression of microarray images [6]. Furthermore, we include
some preprocessing techniques, such as segmentation and histogram reduction, in order to
improve the compression results. An alternative bitplane decomposition approach based on
bit modeling by pixel value estimates is also considered.

The other approach, based on binary-tree decomposition, was developed with success for the
compression of medical images [7] and microarray images [8]. In this decomposition approach,
the intensity levels of a given image are organized in a binary-tree structure, where each leaf
node is associated with an image intensity.

In the following subsections, we address these two decomposition approaches and give a brief
explanation regarding finite-context models and arithmetic coding. The implementation of the
compression algorithms can be found in [9].

2.1. Finite-context models

Markov modeling is widely used in several fields, including image [7, 8, 10, 11, 12] and DNA
[13, 14, 15] compression. Finite-context models rely on the Markov property, since an order- k
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finite-context model gives a probability distribution for the next symbol, in a sequence of
symbols from an alphabet A, taking into account a recent past of depth k . Hence, the finite-
context model assigns probability estimates for each symbol, regarding the next outcome,
according to a conditioning context, ck ,n, computed over a finite and fixed number k >0 of past
outcomes ck ,n = xn−k +1…n = xn−k +1 … xn (order- k  finite-context model [16, 17, 18] with |A|k  states).
In the example illustrated in Fig. 1, where A0,1 and then | A| =2, an order- k  model implies
having 2k  conditioning states. In this case, k =5, so the number of conditioning states is 25 =32.

1 001101
...

10 0 1
...

FCM

xn+1

symbol

Output

bit-stream

Input

En
oder

xn−4

c5,n

P (s|c5,n)

Figure 1. Finite-context model: the probability of the next outcome xn+1 is conditioned by the k  last outcomes. In this

example, k =5

The probability estimates P(xn+1 | xn−k +1…n) are calculated using symbol counts that are
accumulated while processing each pixel of the input image, making them dependent not only
on the past k  symbols but also on n. The estimator used is
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where C(s | xn−k +1…n) represents the number of times that, in the past, symbol s was found
having ck ,n = xn−k +1…n as the conditioning context and where

( ) ( )1 1= |- + - +
Î
åK Kn k n n k n
a

C x C a x
A

(2)

is the total number of events that has occurred so far in association with context ck ,n. Parameter
α allows balancing between the maximum likelihood estimator and a uniform distribution
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(when the total number of events, n, is large, it behaves as a maximum likelihood estimator).
For α =1, (1) is the well-known Laplace estimator.

Initially, all counters are set to zero, i.e., the symbols are assumed to be equally probable. The
counters are updated each time a symbol is encoded. However, it is possible to update the
counters according to a specific rule. Since the context templates are causal, the decoder is able
to reproduce the same probability estimates without needing additional side information.

Table 1 presents a simple example of how a finite context is typically implemented. In this
example, we are dealing with an order-5 finite-context model, which means that the context
uses the last five encoded symbols to assign the symbol probabilities. Each row of Table 1
represents a probability model that is used to encode the current symbol, using the last five
encoded ones. For example, if the last symbols were "11000," i.e., c5,n =11000, then the model
sends the following probabilities to the arithmetic encoder (denoted as "Encoder" in Fig. 1): P0
and P1.

Context, c5,n C(0∣c5,n) C(0∣c5,n) C(c5,n)

00000 23 41 64

∶ ∶ ∶ ∶

00110 14 34 48

∶ ∶ ∶ ∶

01100 25 12 37

∶ ∶ ∶ ∶

11000 28 41 69

∶ ∶ ∶ ∶

11111 8 2 10

Table 1. A simple example illustrating how finite-context models are implemented. The rows of the table correspond
to probability models at a given instant n. In this example, the particular model that is chosen for encoding a symbol
depends on the last five encoded symbols (order-5 context)

One important aspect that must be considered is the size of the context. For an order- k  model
and |A2 (binary alphabet), the table has 2k  entries and, therefore, its size grows exponentially
with k . Using a deeper context, we might achieve higher performance, but this requires also
more memory.

2.1.1. Mixtures of finite-context models

In order to attain better compression results, the previous approach can be used in a more
robust scheme. The goal here is to use a model mixture with more than one finite-context
model. In our case, we decided to use only two different models: the one used by [6] and
another one based on bit modeling by pixel value estimate. This approach could be extended to
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use more models, but at a cost of some computation time. In what follows, we will describe
how this mixture scheme works.

The per symbol information content average provided by the finite-context model of order-
k , after having processed n symbols, is given by

( )
1

, 1 12
=0

1= |log
-

+ - +- å K

n

k n i i k i
i

H P x x
n

(3)

bits per symbol (or bits per pixel, bpp, in the case of images). Hence, the Hk ,n can be viewed
as a measure of the performance of the model until that instant. When using several models
simultaneously, the probability estimate can be given by a weighted average of the probabil‐
ities provided by each model, according to

( ) ( )1 1 1 ,= | ,+ + - +å Kn n n k n k n
k

P x P x x w (4)

where wk ,n denotes the weight assigned to model k  and

, = 1.å k n
k

w (5)

In order to compute the probability estimate for a certain symbol, it is necessary to combine
the probability estimates given by (1) using (4). The weight assigned to model k  can be
computed according to

( ), 1= | ,Kk n nw P k x (6)

i.e., by considering the probability that model k  generated the sequence until that point. In that
case, we would get

( ) ( ) ( ), 1 1= | | ,µK Kk n n nw P k x P x k P k (7)

where P(x1…n |k ) denotes the likelihood of sequence x1…n being generated by model k  and P(k )
denotes the prior probability of model k . Assuming

( ) 1= ,P k
K

(8)
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where K  denotes the number of models, we also obtain

( ), 1 | .µ Kk n nw P x k (9)

Calculating the logarithm, we get
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which is related to the code length that would be required by model k  for representing the
sequence x1…n. It is, therefore, the accumulated measure of the performance of model k  until
instant n. In order to improve the global performance, we decided to use a mechanism that
progressively forgets past performances of the models. This mechanism allows each model to
progressively forget the past and, consequently, to give more importance to the most recent
past. Therefore, we rewrite (11) as

( )

( ) ( )

1 12
=1

1

1 1 1 12 2
=1

| , = (a)log

= | , | , , (b)log logg

-

-

- -+

å

å

K

K K

n

i i
i

n

i i n n
i

P x k x

P x k x P x k x
(11)

where γ∈0,1 dictates the forgetting factor to be used. Defining

( ), 1 1
=1

= | , -Õ K

n

k n i i
i

p P x k x (12)

and removing the logarithms, we can rewrite () as

( ), , 1 1 1= | ,g
- -Kk n k n n np p P x k x (13)

and, finally, set the weights to
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Usually, a compression algorithm can be divided into two parts, modeling and coding. The
Markov models are responsible for providing a statistical model as reliable as possible to be
used later in the coding stage. The coding stage is where the statistical model is used to
compress the data. Arithmetic coding is usually the technique that is used. In the following
section, we give a brief explanation on how arithmetic coding works.

2.1.2. Arithmetic coding

Arithmetic coding is a compression technique developed by Rissanen [19] in the late 1970s.
This method is a good alternative to Huffman coding [20], because it usually generates better
compression results. In order to obtain better results, an appropriate probability estimator
must be used in the arithmetic encoder (e.g., based on finite-context models, as described
above).

This method represents a set of symbols using a single number in the interval [0,1). As the
number of symbols of the message grows, the initial interval [0,1) will shrink and the number
of bits necessary to represent the interval will increase. When we are processing the pixels of
an image in a raster scan order, the probabilities of the intensities of the pixels are conditioned
by the context determined by a combination of the already encoded neighboring pixels. The
encoder and the decoder estimate this context model dynamically adapting it to the input data,
during the encoding/decoding process. According to [16, 17, 18], this arithmetic encoding
method generates output bitstreams with average bitrates almost identical to the entropy of
the source model.

2.2. Bitplane decomposition

The technique to separate an image into different planes (bitplanes), known as bitplane
decomposition, plays an important role in image compression. Usually, each pixel of a
grayscale image is represented by 8 bits, or 16 bits as the case of some biomedical images used
in the experimental results presented in this chapter. Suppose that the image has N ×M  pixels
and each one is composed of eight bitplanes, ranging from bitplane 0 for the least significant
bitplane (LSBP) to bitplane 7 for the most significant bitplane (MSBP). In fact, plane 0 contains
all the lowest-order bits in the bytes comprising the pixels in the image as well as plane 7 holds
the most significant bits [21]. Figure 2 illustrates these ideas and Fig. 3 shows the various
bitplanes for the image presented on the left. As we can see, the MSBPs (especially 7-4) contain
the majority of the visually significant data. On the other hand, the lower planes (namely,
planes 0-3) contribute to more subtle details in the image.

The bitplane decomposition technique is very useful on image compression. On one hand, it
allows some bi-level compression methods, such as JBIG, to be applied to typical grayscale
images. The compression method is applied to each bitplane after the decomposition. On the
other hand, it is possible to create sophisticated models that take advantage of this decompo‐
sition. For instance, it is possible to use information of the previous bitplanes (usually the
MSBPs) to improve the compression performance of the LSBPs.
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Figure 2. Bitplane representation of an eight-bit image [21]

Figure 3. An 8-bit grayscale image and its eight bitplanes. The numbers at the bottom of each image identify the bit‐
plane, where 0 denotes the less-significant plane and 7 the most significant plane (adapted from [22])

In [23], an embedded image-domain adaptive compression (EIDAC) scheme used with success
on simple images (with a reduced number of active intensity values) is presented. EIDAC uses
a context-adaptive bitplane coder, where each bitplane is encoded using a binary arithmetic
coder. Later, in [24], a compression method inspired from EIDAC for microarrays image is
proposed. The same authors improved their method using a more robust 3D context modeling
[24]. We used this last approach in our experiments and also other alternative versions using
some preprocessing techniques, namely, segmentation and bitplane reduction.

2.2.1. Segmentation

In the literature, we can find several algorithms for image segmentation. In our approach, we
decided to use a threshold-based method inspired from the work presented in [25]. The
segmentation is attained by means of a dynamic thresholding scheme. By applying a threshold
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value, the pixels of the image can be split in two sets (background and foreground). For each
threshold value, it is possible to obtain the number of pixels and the standard deviation of the
intensities of these pixels in each set. The desired threshold is calculated according to (17).
Using (17), it is always guaranteed that the weighted sum of the standard deviation of both
the background and foreground is minimal,

( ){ } { }16= argmin , =  | 0 2 1 ,Î £ £ -f T T t tT N (15)

where

( ) ( ) ( ) ( ) ( )= stdev size stdev size ,´ + ´T T T Tf T B B F F (16)

BT p∈ Imagep <T } represents the set of pixels in the background section, FT p∈ Imagep ≥T }
represents the set of pixels in the foreground section, stdev(x) is the standard deviation of x,
and size(y) is the number of pixels of set y. Instead of testing all possible threshold values to
find the minimum value of f (T ), a recursive search algorithm is used to accelerate the search
routine. It is possible to use this recursive search algorithm because f (T ) plunges down at a
certain threshold value, which is chosen as the final threshold value. After the threshold search
is completed, a binary map is created where the foreground pixels will be set to "1" and the
background pixels to "0."

2.2.2. Bitplane reduction

Bitplane reduction is an interesting method that can further improve compression efficiency
by eliminating redundancy in the pixel precision for simple images. Simple images are images
where the number of different intensities that occur is very small, compared to the total number
of possible intensities. For example, if we have only 24 different intensities out of 256 for an 8-
bit image, we only need 5 bits to represent each pixel intensity. This means that, when we are
encoding the image, we only need to encode five bitplanes instead of the original eight
bitplanes.

Yoo et al. [26] have shown that it is possible to obtain compression gains using the simplest
form of bitplane reduction, known as histogram compaction (HC). Later, [23] presented a more
robust bitplane reduction method called scalable bitplane reduction (SBR). This approach finds
the reduced bitplane codeword by growing a binary tree. The method splits each node of the
binary tree into two nodes using a simple MINMAX metric to measure the distortion.

In order to better understand the SBR algorithm, we present a small example in Fig. 4. Initially,
we associate all the active pixel values to the root node. In this small example, the image only
has four active pixel values. Starting in the root node, the algorithm splits all the children sub-
nodes using a MINMAX criterion. The split process in the root node starts by computing the
value 32,767 from (0 + 65,535. The computed value is then used to split the node. All the
intensities that are lower or equal to 32,767 are inserted in the left sub-node. On the other hand,
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the remaining intensities (>32,767) are associated with the right sub-node. After splitting the
root node, the SBR algorithm adds a zero to the left node codeword and a one to the right node
codeword. This splitting process is repeated until all sub-nodes have only one intensity
associated with them. In this specific example, "0" is a complete codeword for the original pixel
value zero, due to the fact that the first left node or partition does not have more sub-nodes.
As a result of the variable-length codewords, the average codeword length can be less than 3
bits. This is useful because during the encoding process, it is possible to skip some bitplanes
of the pixel codewords with a lower length.

{0, 32760, 65530, 65535}

{0} {32760, 65530, 65535}

{32760} {65530, 65535}

{65530} {65535}

10

0 1

0 1

0 1

0

1

1

0

1

1

1

Figure 4. Binary tree to obtain the codewords to represent the active pixel values 0,32,760,65,530,65,535 in the re‐
duced bitplane space after applying the SBR algorithm. Each of the tree nodes is associated with a symbol (an intensi‐
ty) set to be partitioned, except the end nodes. Each branch defines the bit value of specific symbols at the
corresponding bitplane in the reduced bitplane domain. For the intermediate nodes, 32,760,65,530,65,535 and
65,530,65,535, the split process is done using the MINMAX criterion

Taking as example the intensities 0,32,760,65,530,65,535 presented in Fig. 4, we present in Table
2 the codewords for the two histogram reduction methods. As can be seen, the codewords
obtained using the HC algorithm are dependent on the number of active intensities. The
codeword size can be computed according to

2= ( ) ,logé ùê úS N (17)

where N  denotes the number of active intensities. In the example presented in Fig. 4, we have
four different intensities, so the codeword size is log24=2. The codeword size is constant for
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all intensities for the HC method. On the contrary, the resulting codewords obtained using the
SBR algorithm have different sizes (see Table 2).

Intensity
Value

HC SBR

Codeword Codeword size Codeword Codeword size

0 00 2 0 1

32,760 01 2 10 2

65,530 10 2 110 3

65,535 11 2 111 3

Table 2. A small example showing the differences between the two bitplane reduction methods HC and SBR. The
codeword in each column represents the new value that will be assigned to the pixel values of the first column. In HC,
the codeword size is constant. In SBR, the codeword size is variable

2.2.3. Simple bitplane coding

In [27], Kikuchi et al. introduced the concept of bit modeling by the pixel value estimates. In
their approach, instead of using the true bit values of each bitplane, they used the expectation
values of the pixels to build up the contexts. This approach is known as bit modeling by pixel
value estimate. They extended their work more recently to be applied to various types of images
(color, grayscale, color-quantized, bi-level, and halftone) [28] and for HDR (high-dynamic-
range) images [29].

Let us consider that a given pixel value at location (i, j) in a given image to be encoded is
denoted as x(i, j). Its decoded value is denoted by y(i, j). In order to facilitate the explanation,
the location indexes (i, j) are omitted from now on. A typical raster scan order is used to process
each pixel of a given image. Similar to Kikuchi's method, as the process of the bitplane coding
proceeds to lower bitplanes, the decoded value, y, of the target pixel approaches the true pixel
value x =(x16 x15 … x1) where xn denotes the n th bit of x in the case of a 16-bit grayscale image.

Contrarily to Kikuchi's method, our approach uses only one type of context, denoted as
neighborhood context in Kikuchi's work. The contexts are built by the estimates of partially
decoded pixels based on the template depicted in Fig. 5. The pixel location of x is labeled by
"X" on the 15-pixel template in Fig. 5, and

( )1, for >
= ,

0, otherwise
ìï
í
ïî

k

y k y
c (18)

where k∈ {1,2,…,15 denotes the spatial location on the template illustrated in Fig. 5. y(i) and
y represent the most recent estimates of the neighboring pixels and the target pixel, respec‐
tively.

Applications of Digital Signal Processing through Practical Approach136



13 9 12

14 5 2 6 8

15 7 1 X 3

10 4 11

Figure 5. Fifteen-pixel template for building up the context. The target pixel to be encoded is labeled by an "X"

In Kikuchi's method, the inter-bit correlation on a bitplane is not used. Instead, for modeling
a target bit, the authors used the pixel value estimates of which more significant bits have been
already available at the decoder. Their method is referred to as bit modeling by pixel values,
where the pixel value estimates are used rather than of the unknown true values at the decoder.
Contrarily to Kikuchi's method that uses a nine-pixel template, our approach uses a variable-
size 15-pixel template (see Fig. 5). In our case, a greedy search routine is performed in each
bitplane in order to obtain the context size that attains the best compression performance
(lower bits per pixel as possible). According to Kikuchi's method, the decoded pixel values are
spatially correlated to each other as significantly high as the true pixel values which will make
sense to use a larger template. Furthermore, since the alphabet size is only two, the probability
of having context dilution is low. Similar to Kikuchi's method, we are considering some
noncausal locations with respect to the scanning order of the pixels (locations y3y4y10 and y11
in Fig. 5). The usage of noncausal pixels is only possible because the context bits are defined
by using the estimates of pixel values, which are available in the decoder.

Let us consider that we are coding an N  -bit depth image, where N ≤16. Suppose that the n th

bitplane is being encoded at present, where n∈ {1… N }. For every pixel, the higher bits from
the (n + 1)th until N th bitplane are known at the decoder. The other lower n bits are unknown.
The value of the unknown part can be distributed over the interval of 0,2n −1 . Similar to
Kikuchi's method, the values zero and one occur with equal probability in the unknown less
significant n bits. Under this assumption, the pixel value estimate of the target pixel is
expressed by

( ) 1= 2 1
2

-ê ú
+ -ê ú

ë û
n n

n

yy (19)

at the n th bitplane encoding/decoding, where y is the latest decoded value and . denotes
truncation. In Fig. 6, we illustrate an example of a binary representation of the pixel value
estimate in the case n =8.

Initially, all the pixel estimate values are set to y =2N −1−1. The encoding procedure starts at the
MSBP and stops at the LSBP. Assuming a target pixel xn of bitplane n is the one being encoded,
under the context of {ck }, the pixel estimate y of the target pixel is immediately updated by a
simple bit operation as
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1 22 2 .- -ê ú¬ + - ë û
n n

ny y x (20)

The pixel value estimate is used in a coming chance of reference and will be the decoded pixel
value, when the decoding is stopped (after all the bitplanes are processed). The most recent
estimate of a given pixel is always made up of two parts: its significant bits are those already
encoded/decoded true bits and the other less significant bits are 0 (zero) followed by a
successive 1s (ones). The value of the less significant bits is equal to the expectation value of
the unknown lower bits, if binary symbols of zero and one are assumed to occur in those bits
with equal probability.

y(8) = x16 x15 x14 x13 x12 x11 x10 x9 0 1 1 1 1 1 1 1

Figure 6. Binary representation of a pixel value estimate in the case of n=8

2.3. Binary-tree decomposition

Binary trees are also an important data structure that can be used in several algorithms. In the
case of image compression, we can associate each leaf node of the binary tree to an image
intensity. The binary tree can be viewed as a simple nonlinear generalization of lists; instead
of having one way to continue to another element, there are two alternatives that lead to two
different elements [30]. Every node (or vertex) in an arbitrary tree has at least two children (see
Fig. 7). Each child is designated as left child or right child, according to the position in relation
to the tree root.

Figure 7. An example of a binary tree with eight intensities or gray levels. Each internal node contains an intensity
representative that is computed according to the set of intensities that are associated to the node. The leaf nodes repre‐
sent the number of different intensities that actually occur; in this case, we have a total of eight intensities

One of the first methods where binary trees were used for image compression was proposed
by Chen et al. [31] regarding the compression of color-quantized images. Chen's method uses
a binary-tree structure of color indexes instead of a linear list structure. Using this binary-tree
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structure, Chen's method can progressively recover an image from two colors to all of the
colors contained in the original image. Inspired by the work done by [31], a few years later,
the authors of [7, 11, 12] developed a lossy-to-lossless method based on binary-tree decompo‐
sition and context-based arithmetic coding. In the last approach, the authors studied the
performance of their method in several kinds of grayscale images, including medical images.
As can been seen, this decomposition approach is very versatile because it can be applied in
color-quantized images and also in grayscale images.

This binary-tree decomposition approach was intended to be used in images with a small
number of intensities, usually with eight or less bits per pixel, due to a tight relation between
the processing time and the number of different intensities of the image. In this work, we intend
to study the performance of this approach to compress biomedical images, such as microarray
images, RNAi, etc. Another interesting feature of this approach is its capability of progressive
decoding, which means that the decoding process can be stopped at any moment according
to a specific distortion metric, obtaining an image with some loss. Moreover, it is possible to
obtain the original image without any loss if the full decoding process is performed. In the
next two sections, we describe in more detail the compression algorithm that is based on a
binary-tree decomposition and context-based arithmetic coding.

2.3.1. Hierarchical organization of the intensity levels

This method is based on a hierarchical organization of the intensity levels of the image. This
organization of the intensity levels is attained by means of a binary tree. Each node of the binary
tree, n, represents a certain subset, Sn, of the intensities of the image. The root node contains
all active pixel values of the image ℐI1,I2,…,IN }, where N  represents the number of different

intensities that occur in the image. Therefore, Sn⊂ℐ and S1≡ℐ. Each node possesses a repre‐
sentative intensity, I n, given by

= ,
2

ê ú+
ê ú
ê úë û

n n
n m MI II (21)

where Im
n and IM

n are, respectively, the smallest and largest pixel value in Sn and where x

denotes the largest integer less than or equal to x. Computing the value of I n according to (23)
leads to the smallest possible L ∞ reconstruction error when the intensities associated to node

n (those in Sn) are all substituted by I n. The error is given by

= .e¥ -n n n
MI I (22)

In order to better understand the construction of the binary tree, we present in Fig. 7 a small
example for an image with only five active pixel values 32,50,250,33,768,65,530. The construction
of this tree begins with the association to the root node of the set of intensities that occur in the
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original image. After this association, it is necessary to compute I 1 according to (23). In the
example depicted in Fig. 8, I 1 = (32 + 65,530) / 2 =32,781 and ε∞1 =65,530−32,781, for the root node.

The next step consists of splitting the root node into two sub-nodes and, therefore, splitting S1

into two subsets. In order to split S1, we need only to compare the intensity I ∈S1 with I 1. The
intensities lower than I 1 are associated with the left node and the other ones with the right
one. This procedure is repeated until all nodes are expanded, i.e., until having a tree with N
leaves (N  is the number of active intensities presented in the original image). The next node
to expand is chosen, taking into consideration the smallest possible L ∞ reconstruction error.
In case of a tie, one is arbitrarily chosen, although it is necessary that the decoder picks the
same one.

32781

(32749)

{32, 50, 250, 33768, 65530}

141

(109)

49649

(15881)

{32, 50, 250} {33768, 65530}

41

(9)

{32, 50} 250 33768 65530

32 50

Figure 8. Example of a small binary tree that illustrates the hierarchical organization of the intensity values for an im‐
age with five active pixel values 32,50,250,33,768,65,530

In order for the decoder to be able to build the same tree, it is necessary to send the information
of the active pixel values to the decoder using a 65,536-bit indicator. In order to encode this
indicator, the encoder uses the following strategy. First, the maximum intensity value IN  is
sent. After that, a string of In bits is transmitted, such that if the n th  bit of the string is one, it
means that the intensity n −1 is present in the image and zero otherwise. The previous 65,536-
bit indicator is enough for the decoder to construct exactly the same binary tree.

2.3.2. Encoding pixel locations

After each node is expanded, two new nodes are created, each one with a representative
intensity (I l

n for the left node and Ir
n for the right node). This step can be seen as a region of

arbitrary shape, containing zeros (relative to the left node) and ones (regarding the right node),
that needs to be communicated to the decoder. The position where the pixels in the image are
associated with the parent node that was expanded is known by the decoder. However, it is

Applications of Digital Signal Processing through Practical Approach140



necessary to communicate to the decoder the zeros and ones that correspond to the pixels that
after the expand procedure will be associated to the left and right nodes, respectively. Since
the decoder has access to the pixels associated to the parent node that was expanded, it is
enough to encode a binary mask, where zero indicates that the pixel needs to change its
intensity to I l

n and one indicates a change to Ir
n. This binary mask is encoded using arithmetic

coding based on variable-size finite-context models [16, 17, 18].

The performance of the compression method is directly dependent on the encoding of these
binary masks. The encoding efficiency of these binary masks can be controlled by a carefully
chosen context modeling that will then drive the binary arithmetic encoder. The context is
constructed based on the template depicted in Fig. 9. The number of context pixels can go up
to 16 at most, and they are numbered according to their distance to the encoding pixel
(represented in gray in Fig. 9). A particular context is represented using a sequence of bits,

1 2K kb b b (23)

where

0, if ( ) ( )
= ,

1, otherwise

ì - £ -ï
í
ïî

n n
l r

i

I i I I i I
b

and where I (i) denotes the intensity of the pixel in the current reconstructed image corre‐
sponding to position i of the context template.

1

4

12

6

10

9

8

25

7

3 11

15

1613

14

Figure 9. Context template used in this work. The use of noncausal pixels is possible, because context information can
be obtained from the previous version of the reconstructed image

The value k  defines the model order used. In this case, the k  value varies as the encoding
proceeds. This variation is necessary in order to improve the compression performance.
Furthermore, it is expected to have larger mask regions initially in the first nodes that are
expanded and smaller regions when n ≈N . This variation is also useful to avoid the problem
of context dilution. In this research work, we present two modes of context creation. One is
denoted as "greedy" where the context size is first chosen using a k  value according to [32].
After that, the method tests incrementally several context sizes bigger and smaller than k  and
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stops when it reaches one context that produces worse results than the previous best. In the
end, the algorithm has two context sizes. One attained when applying an increment to k  and
the other one when applying a decrement to k . The best context size is then chosen to encode
the binary mask. The other mode is slower because it tests all possible context sizes. This second
mode, denoted as "best," always attains the best context size that minimizes the bitrate. For
both cases, the context size needs to be sent to the decoder, for each node that is expanded.

There is also an alternative way to encode the binary mask. If the number of bits required to
encode the mask and the context size is bigger than the total number of pixels associated with
the node to be expanded, the encoder sent the binary mask as a binary string, without
compression. In order for the decoder to differentiate between these two modes, a binary
stream is needed to be encoded for each node that is expanded.

3. Evaluation of the compression methods

In this section, we present compression results obtained by the compression methods pre‐
sented earlier in Sect. 4. We decided to present only the results of the best version of each
method in order to avoid extending this section. We start with the description of the data sets
used in this work. Then, we provide the obtained compression results. At the end of this
section, we present a study of the rate distortion, comparing the two compression approaches
described in Sect. 4 and two image coding standards, JBIG and JPEG2000.

3.1. Data sets

To evaluate the compression methods presented in this chapter, we used three types of images:
microarray, medical, and RNAi. The output data obtained in a microarray experiment is a pair
of 16-bits-per-pixel grayscale images, one from the so-called red channel and the other from
the green channel (see Fig. 10). We use a total of 298 microarray images of nine different data
sets as described in Table 3.

(a) “Deff661Cy5” (b) “Deff661Cy3” (c) Color version

Figure 10. Example of a microarray experiment from the ISREC data set. (a) and (b) correspond to the pair of microar‐
ray images. (c) a color version created from (a) as the red channel and (b) as the green channel
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Regarding the medical images, we used images of four modalities: computed radiography
(CR), computed tomography (CT), magnetic resonance (MR), and ultrasound (US). In Fig. 11,
we can find five examples of medical images used in this work. The data set used in [33] was
also considered as a medical reference data set. All the medical image data sets are depicted
in Table 4, a total of 370 images.

(a) “cr 4503” (b) “ct 17” (c) “mr 2321” (d) “us 3393” (e) “mdb001”

Figure 11. Example of medical images from different modalities

Finally, we also used a recent and popular image type that can be extracted from RNA
interference (RNAi) experiments. Those experiments involve marking of cells with various
fluorescent dyes to capture three components of interest, namely, DNA, actin, and PH3
channels [4]. In Table 5, we can find the RNAi image data sets used in this work, a total of
34,560 images. The images were retrieved from the RNAi experiments without any kind of
transformation (no normalization was applied). For us, it does not make sense to perform a
normalization operation in order to reduce the image depth from 10 to 8 bits per pixel. The
normalization is a lossy process, and hence, applying a lossless compression method to images
that suffered some loss is not appropriate. In Fig. 12 we present some examples of RNAi
images.

(a) DNA (b) PH3 (c) Actin (d) Merged

Figure 12. Examples of RNAi image, (a) DNA channel, (b) action channel, (c) PH3 channel, and (d) all the previous
channels merged in an RBG image

In Tables 3-5, we can see several important measures: image size, depth, entropy, intensity
usage, and a sparsity measure called Gini index or GI [34]. The GI is a normalized measure
that assumes values between zero and one. Values close to zero means that image has a lower
sparsity histogram. On the other hand, values close to one represent an image that has a very
sparse histogram.
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Data sets Year Images Approximate size (cols
×  rows)

Depth Average
entropy

(bpp)

Average
intensity usage

(percentage)

Gini Index
[0-1]

ApoA1 [35] 2001 32 > 1,044×1,041 16 11.038 39.507% 0.494

Arizona [36] 2011 6 =13,800×4,400 16 9.306 82.821% 0.774

IBB [37] 2013 44 = 2,019×6,235 16 8.503 54.072% 0.806

ISREC [38] 2001 14 = 1,000×1,000 16 10.435 33.345% 0.710

Omnibus-LM
[39]

2006 25 =12,200×4,320 16 5.713 50.130% 0.726

Omnibus-HM
[40]

2006 25 =12,200×4,320 16 7.906 98.076% 0.892

Stanford [41] 2001 40 > 1,900×2,000 16 8.306 27.515% 0.615

Yeast [42] 1998 109 = 1,024×1,024 16 6.614 5.391% 0.518

YuLou [43] 2004 3 > 1,800×1,900 16 9.422 36.906% 0.556

Overall 298 16 7.415 67.003% 0.782

Table 3. Microarray image data sets used in this work. The number of images represents the total number of images
that each data set contains (each image corresponds to one channel)

Data sets Year Images Approximate size (cols
× rows)

Depth Average
entropy (bpp)

Average intensity
usage

(percentage)

Gini Index
[0-1]

CR 2003 12 > 612× 746 10-16 9.905 11.487% 0.240

CT 2003 12 > 340× 340 12-16 8.032 2.879% 0.389

MR 2003 12 > 256× 256 16 6.837 1.636% 0.624

US 2003 12 > 584× 476 8 4.561 0.358% 0.714

MIAS [33] 1995 322 =1,024×1,024 8 4.544 0.357% 0.681

Overall 370 8-16 5.169 1.596% 0.631

Table 4. Medical image data sets used. The computed radiography (CR), computed tomography (CT), magnetic
resonance (MR), and ultrasound (US) data sets can be found in [44]. The last data set, mini-MIAS, contains 322
mammography images

Taking into consideration Table 3, we can see that the image sizes of the microarray data sets
are very large (ranging from 1,000×1,000 to 13,800×4,400) and the bit depth is 16 for all the data
sets. The average entropy goes from 5.7 bpp to 11 bpp, and the percentage of active intensities
varies from 5.4% to 98.1%. The GI measures are all higher than 0.49 for all data sets reaching
values close to 0.89 (very sparse) for the Omnibus-HM data set.
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Regarding the medical image data sets (see Table 4), we can see that the image sizes are lower
when compared to the microarray images (except for the mini-MIAS data set). The bit depth
varies from 8 to 16 bits and the average entropy from 4.5 bpp to 9.9 bpp. The average intensity
usage is very low for these medical images. For the CR data set, only 11.5% of the total available
intensities are actually used. For the other data sets, this measure is even lower (3). For the GI
measure, we can see that the MR, US, and mini-MIAS data sets have a GI higher than 0.6. On
the other hand, for the CR and CT data sets, the GI values are lower (0.24 and 0.39, respectively).

Data sets Year Images Approximate size
(cols × rows)

Depth Average
entropy

(bpp)

Average
intensity usage

(percentage)

Gini Index
[0-1]

RNAi D1

∣ (DNA) 2,304 7.408 4.140% 0.274

∣ (PH3) 2006 2,304 =512×512 12 5.631 1.019% 0.056

∣ (Actin) 2,304 7.583 2.287% 0.192

RNAi D2

∣ (DNA) 2,304 6.617 2.925% 0.172

∣ (PH3) 2006 2,304 =512×512 12 5.572 0.661% 0.050

∣ (Actin) 2,304 6.565 1.334% 0.099

RNAi D3

∣ (DNA) 2,304 7.210 4.195% 0.257

∣ (PH3) 2006 2,304 =512×512 12 5.659 0.981% 0.054

∣ (Actin) 2,304 7.653 3.215% 0.242

RNAi D4

∣ (DNA) 2,304 7.530 4.249% 0.286

∣ (PH3) 2006 2,304 =512×512 12 5.662 1.080% 0.057

∣ (Actin) 2,304 7.907 3.070% 0.244

RNAi D5

∣ (DNA) 2,304 7.281 4.046% 0.256

∣ (PH3) 2006 2,304 =512×512 12 5.622 0.904% 0.052

∣ (Actin) 2,304 7.649 2.772% 0.221

RNAi all

∣ (DNA) 11,520 7.209 3.911% 0.249

∣ (PH3) 2006 11,520 =512×512 12 5.629 0.929% 0.054

∣ (Actin) 11,520 7.471 2.536% 0.199

Overall 2006 34,560 =512×512 12 6.770 2.458% 0.167

Table 5. Five RNAi image data sets extracted from the first five plates that can be found in [45]. Contrary to other
authors, the images were extracted from the RNAi files without any loss. The exact image intensity values were used
to create the images. No normalization was performed
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Figure 13. Encoding speed in kilobytes per second for the methods evaluated in this work. BPD (bitplane decomposi‐
tion), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane reduction), SBC-
Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition)
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Finally, we provide 5 RNAi image data sets in Table 5. We split each data set into three channels
(DNA, PH3, and actin). All the images have size 512×512 and depth of 12 bits. Globally, the
average entropy is about 6.77 bpp and the average intensity usage is around 2.5%. Regarding
the GI, the values are very low (<0.17), which means that these images are not very sparse.

3.2. Experimental results

In this subsection, we present the results obtained using several general purpose compression
tools (e.g., gzip, bzip2, PPMd, and LZMA), image coding standards (e.g., PNG, JBIG, JPEG-
LS, and JPEG2000), and the methods described in Sect. 4. In Tables 6-8, we can find the
compression results for all data set described earlier in Sect. 5.1, using several general com‐
pression tools and image coding standards. Default parameters were used in all compression
tools. Hence, we did not try to adjust some parameters in order to improve the compression
results. Only the lossless mode was imposed.

JBIG results were obtained using version 2.0 of the JBIG-Kit package1. The results for the JPEG-
LS standard were obtained using version 2.2 of the SPMG JPEG-LS codec2. JPEG2000 lossless
compression was obtained using version 5.1 of JJ2000 codec with default parameters for
lossless compression3. For additional reference, we also provided compression results using
the gzip, bzip2, ppmd, and lzma general-purpose compression tools.

Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

ApoA1 12.711 11.068 10.984 11.374 12.568 10.851 10.608 11.063

Arizona 11.263 9.040 8.980 9.402 11.017 8.896 8.676 9.107

IBB 10.453 9.081 8.495 8.985 10.090 9.344 9.904 10.516

ISREC 12.464 10.922 10.730 11.126 12.476 10.925 11.145 11.366

Omnibus
(LM)

7.124 5.346 4.977 5.527 6.781 5.130 4.936 5.340

Omnibus
(HM)

9.558 7.523 7.219 7.787 9.160 7.198 6.952 7.587

Stanford 9.972 7.961 7.809 8.273 9.776 7.906 7.684 8.060

Yeast 7.672 6.075 5.794 6.389 8.303 6.888 8.580 9.079

YuLou 11.434 9.394 9.285 9.708 11.428 9.298 8.974 9.515

Average 9.044 7.189 6.859 7.388 8.729 7.051 6.996 7.511

Table 6. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the microarray image data sets. Default compression parameters have been used for all algorithms.
The best results are highlighted in bold

1 http://www.cl.cam.ac.uk/ mgk25/jbigkit
2 The original website of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it can be obtained from
http://sweet.ua.pt/luismatos/codecs/jpeg_ls_v2.2.tar.gz
3 The original website of this codec, http://jj2000.epfl.ch, is currently unavailable. Nevertheless, this codec can be obtained
from http://sweet.ua.pt/luismatos/codecs/jj2000_5.1-src.zip
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Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

CR 9.284 6.140 6.230 7.197 7.991 6.152 5.784 5.845

CT 8.790 5.604 5.847 6.996 9.411 8.822 8.089 8.334

MR 8.342 5.313 5.514 6.663 9.795 9.940 9.321 9.389

US 3.496 2.742 2.642 2.820 3.061 2.908 2.750 3.138

mini-MIAS 2.637 1.696 1.590 2.022 1.672 1.562 1.416 1.443

Average 3.452 2.242 2.163 2.660 2.484 2.183 2.005 2.040

Table 7. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the medical image data sets. Default compression parameters have been used for all algorithms. The
best results are highlighted in bold

Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

RNAi D1

∣ (DNA) 9.120 6.846 6.832 7.314 9.857 6.802 6.311 6.533

∣ (PH3) 7.461 5.933 5.804 6.008 11.552 5.994 5.806 5.830

∣ (Actin) 9.274 6.807 6.839 7.353 11.801 6.790 6.304 6.452

RNAi D2

∣ (DNA) 8.358 6.469 6.389 6.714 9.421 6.469 6.094 6.233

∣ (PH3) 7.396 5.884 5.760 5.963 12.420 5.964 5.793 5.804

∣ (Actin) 8.309 6.378 6.315 6.638 12.449 6.422 6.032 6.122

RNAi D3

∣ (DNA) 8.948 6.735 6.637 7.153 9.665 6.704 6.238 6.436

∣ (PH3) 7.490 5.952 5.819 6.030 11.756 6.042 5.812 5.842

∣ (Actin) 9.362 6.874 7.387 7.431 10.582 6.838 6.353 6.509

RNAi D4

∣ (DNA) 6.243 6.925 6.915 7.415 10.014 6.878 6.372 6.612

∣ (PH3) 7.491 5.950 5.824 6.028 11.548 6.028 5.813 5.845

∣ (Actin) 9.586 7.014 7.070 7.629 10.955 6.977 6.460 6.630

RNAi D5

∣ (DNA) 9.007 6.765 6.745 7.198 9.775 6.729 6.259 6.459

∣ (PH3) 7.450 5.928 5.798 6.001 11.745 5.994 5.804 5.825

∣ (Actin) 9.346 6.857 6.893 7.414 11.185 6.828 6.342 6.493

RNAi all

∣ (DNA) 8.935 6.748 6.703 7.159 9.746 6.716 6.255 6.455

∣ (PH3) 7.458 5.929 5.801 6.006 11.804 6.004 5.806 5.829

∣ (Actin) 9.176 6.786 6.900 7.293 11.394 6.771 6.298 6.441

Average 8.523 6.488 6.468 6.819 10.982 6.497 6.120 6.242

Table 8. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the RNAi image data sets. Default compression parameters have been used for all algorithms. The
best results are highlighted in bold
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According to the results depicted in Tables 6-8, it seems that, globally, JPEG-LS is the best
image coding standard. Among the general compression methods used, PPMd is the one that
attained the best compression results.

Tables 9-11 provide lossless compression results using the methods described in Sect. 4. BPD
(bitplane decomposition) corresponds to the results using method [6]; BFS (background-
foreground separation) corresponds to using the previous approach with segmentation. The
columns HC (histogram compaction) and SBR (scalable bitplane reduction) correspond to the
approaches that use bitplane reduction in method [6]. The SBC-Mix (simple bitplane coding-
mixture) corresponds to the approach described in Sect. 4.2.3 using a mixture of finite-context
models. The last column, denoted as BTD (binary-tree decomposition), corresponds to the
results obtained using the method described in Sect. 4.3.

If we look closely to Table 9, we can see that the method based on binary-tree decomposition
is the one that attained the best compression results among all the others, for the case of
microarray images. The best method is about 11% better than JPEG-LS. However, the method
SBC-Mix is the best for three data sets: ApoA1, ISREC, and Yulou.

Regarding the experiments performed on medical images and taking into consideration the
results presented in Table 10, we can conclude once again that the method based on binary-
tree decomposition outperforms all the others and is about 9% better than JPEG-LS.

Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

ApoA1 10.194 10.234 10.231 10.232 10.205 10.142 10.194

Arizona 8.242 8.245 8.244 8.243 10.308 8.219 8.186

IBB 7.974 7.982 7.978 7.978 8.537 7.966 7.943

ISREC 10.159 10.193 10.195 10.199 10.260 10.148 10.198

Omnibus
(LM)

4.567 4.570 4.561 4.565 4.645 4.545 4.539

Omnibus
(HM)

6.471 6.479 6.473 6.472 6.581 6.443 6.400

Stanford 7.379 7.349 7.350 7.349 7.403 7.305 7.303

Yeast 5.453 5.395 5.527 5.466 5.492 5.326 5.318

YuLou 8.619 8.641 8.626 8.626 8.669 8.591 8.592

Average 6.284 6.288 6.286 6.285 6.437 6.257 6.235

Table 9. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the microarray image
data sets
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Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

CR 5.338 5.207 5.291 5.214 5.764 5.137 5.136

CT 4.836 4.840 4.857 4.875 8.302 4.762 4.809

MR 4.654 4.702 4.835 4.833 9.382 4.594 4.783

US 2.472 2.564 2.478 2.471 2.722 2.439 2.462

mini-MIAS 1.390 1.378 1.391 1.391 1.430 1.358 1.352

Average 1.877 1.853 1.874 1.865 2.016 1.826 1.822

Table 10. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the medical image
data sets

Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

RNAi D1

∣ (DNA) 6.250 6.293 6.250 6.255 6.225 6.179 6.186

∣ (PH3) 5.559 5.570 5.570 5.569 5.571 5.545 5.555

∣ (Actin) 6.255 6.311 6.244 6.258 6.220 6.185 6.205

RNAi D2

∣ (DNA) 5.959 5.986 5.968 5.968 5.960 5.918 5.930

∣ (PH3) 5.537 5.547 5.539 5.540 5.545 5.518 5.525

∣ (Actin) 5.919 5.948 5.904 5.928 5.904 5.876 5.892

RNAi D3

∣ (DNA) 6.175 6.213 6.169 6.164 6.145 6.106 6.111

∣ (PH3) 5.580 5.598 5.584 5.585 5.590 5.564 5.572

∣ (Actin) 6.313 6.366 6.299 6.306 6.277 6.236 6.247

RNAi D4

∣ (DNA) 6.309 6.355 6.312 6.317 6.289 6.239 6.244

∣ (PH3) 5.577 5.593 5.582 5.584 5.587 5.561 5.570

∣ (Actin) 6.423 6.484 6.412 6.419 6.395 6.348 6.363

RNAi D5

∣ (DNA) 6.195 6.233 6.194 6.198 6.166 6.126 6.133

∣ (PH3) 5.558 5.568 5.564 5.567 5.569 5.543 5.552

∣ (Actin) 6.299 6.355 6.286 6.298 6.263 6.224 6.240

RNAi all

∣ (DNA) 6.178 6.216 6.179 6.182 6.157 6.113 6.121

∣ (PH3) 5.562 5.575 5.568 5.569 5.573 5.546 5.555

∣ (Actin) 6.242 6.293 6.229 6.242 6.212 6.174 6.189

Average 5.994 6.028 5.992 5.998 5.980 5.945 5.955

Table 11. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the RNAi image data
sets
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Finally, in Table 11, we present the results for the RNAi images, and in this case, method SBC-
Mix is the one that attained the best compression results, almost 3% better than JPEG-LS. The
difference between the SBC-Mix and BTD is very low (close to 0.01 bpp). In our opinion, it
seems that the methods described in Sect. 4 attain better compression results when compared
to JPEG-LS for images with higher GI values (sparse images). This is the reason why the binary-
tree decomposition approach attains between 9% to 11% better results than JPEG-LS for the
microarray and medical images. On the other hand, the RNAi images have a lower GI (around
0.17), therefore the lower performance of our methods when compared to JPEG-LS.

In Figs. 15 and 16, we can see the encoding and decoding speed in kilobytes per second for the
compression methods described in Sect. 4. In the encoding phase, it seems that the method
based on binary-tree decomposition is the fastest one among all the others for all data sets. In
the decoding phase, the fastest method is different from data set to data set. For the microarray
and medical image data sets, the methods based on bitplane decomposition are faster than the
method based on binary-tree decomposition. On the other hand, for the RNAi images, the
method based on binary-tree decomposition is faster than all the others. The SBC-Mix method
is the slowest one in all data sets. The lower decoding speed for the SBC-Mix is due to the
mixture procedure. For each symbol that is processed, the model weights need to be updated,
which is a very time-consuming task.

3.3. Rate distortion study

The two decomposition approaches described in Sect. 4 have progressive decoding capabilities
(also known as lossy to lossless). Due to that, it is important to understand what is the error
induced in the image during the decoding phase when only part of the data is decoded. This
characteristic allows also to obtain the original image without any loss.

In Figs. 15 and 16, we present the rate distortion curves of two images, "array1" from the YouLou
data set and "cr_17218" from the medical CR data set, according to two metrics: L 2 -norm (root-
mean-square error or RMSE) and L ∞ -norm (maximum absolute error or MAE). We used JBIG,
JPEG2000, the approach based on bitplane decomposition [6], and the other based on binary-
tree decomposition [8].

Regarding Fig. 15, we can notice that the method based on binary-tree decomposition outper‐
forms all the other methods in terms of L 2 -norm and L ∞ -norm. JBIG and method [6] have a
similar performance in terms of rate distortion. The JPEG2000 standard attains globally worse
results in terms of L 2. Furthermore, we can notice a sudden degradation of the rate distortion,
for higher bitrates L ∞. We believe that this phenomenon is probably related to the default
parameters used by the encoder, which might not be well suited for microarray images.

In Fig. 16, we can see in the first plot, related to the L 2 -norm, that method [6] attains the worse
distortion results. JBIG is slightly better but worse than JPEG2000 and the method [8]. We can
also see that JPEG2000 outperforms all the other methods in terms of L 2 -norm for lower
bitrates. For bitrates higher than 2 bpp, the best method is the one based on binary-tree
decomposition. For the L ∞ -norm, JPEG2000 and method [6] are the ones that attained the
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Figure 15. Rate distortion curves showing the performance of the bitplane decomposition (BPD), the binary-tree de‐
composition (BTD), and the JPEG2000, and JBIG standards, in lossy-to-lossless mode for the microarray image "array1"
from the YuLou data set. Results are given both for the L 2 (root-mean-square error or RMSE) and L ∞ (maximum ab‐
solute error or MAE) norms
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Figure 16. Rate distortion curves showing the performance of the bitplane decomposition (BPD), the binary-tree de‐
composition (BTD), and the JPEG2000 and JBIG standards, in lossy-to-lossless mode for the medical image "cr_17218"
from the CR data set. Results are given both for the L ∞ (root-mean-square error or RMSE) and (>8 bpp) (maximum
absolute error or MAE) norms
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worse results. On the other hand, method [8] outperforms all the others, regardless of the
bitrate. We did not include results for other images to avoid extending this chapter, but the
results obtained with the medical images are very similar with the results obtained using RNAi
images. On the other hand, we can conclude that the rate distortion results for the microarray
images are not similar to the other data set types (medical and RNAi).

4. Conclusions

The use of biomedical imaging has increased in the last years. These biomedical images include
microarray, medical, and RNAi images. In this chapter, we have studied two image decom‐
position approaches to be applied to this type of images in order to compress them efficiently.

We presented a set of comprehensive results regarding the lossless compression of biomedical
images using general coding methods (e.g., gzip), image coding standards (e.g., JPEG2000),
and the two image decomposition approaches that rely on finite-context models and arithmetic
coding.

From the obtained experimental results, we conclude that JPEG-LS gives the best compression
results, among the image coding standards, but lacks lossy-to-lossless capability, which may
be a decisive functionality if remote transmission over possibly slow links is a requirement.

We developed compression algorithms based on two decomposition approaches: bitplane
decomposition and binary-tree decomposition. In the bitplane decomposition, we also used
segmentation, bitplane Reduction, and an approach based on bit modeling by the pixel value
estimates. All the developed methods allow lossy-to-lossless compression and are based on
finite-context models and arithmetic coding. According to the obtained results, the approach
based on binary-tree decomposition seems to be the one that attains the best compression
results. The only exceptions are the RNAi images, for which the best method is the one based
on a mixture of finite-context models.

In terms of coding speed, the compression algorithm based on a binary-tree decomposition
seems to be the fastest one among all the others in the encoding phase. In the decoding stage,
the approaches based on bitplane decomposition seem to be faster for the microarray and
medical image data sets. For the RNAi images, the method based on binary-tree decomposition
seems to be the fastest one.

A rate distortion study was also performed and, according to the obtained results, it seems
that the method based on binary-tree decomposition attains the best results for the majority
of the cases. The results obtained by the developed compression algorithms have been
compared with general-purpose compression methods and also with image coding standards.
According to the results, we can conclude that these compression methods have better
compression performance in all the image test sets used.
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