20 research outputs found

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes

    Anonymity-preserving location data publishing

    Get PDF
    Advances in wireless communication and positioning technology have made possible the identification of a user\u27s location and hence collect large volumes of personal location data. While such data are useful to many organizations, making them publicly accessible is generally prohibited because location data may imply sensitive private information. This thesis investigates the challenges inherent in publishing location data while preserving location privacy of data subjects. Since location data itself may lead to subject re-identification, simply removing user identity from location data is not sufficient for anonymity preservation, and other measures must be employed. We provide a literature survey and discuss limitations of related work on this problem. We then propose a novel location depersonalization technique that produces efficient depersonalization of large volumes of location data. The proposed technique is evaluated using simulation. Our study shows that it is possible to guarantee a desired level of anonymity protection while allowing accurate location data to be published

    Revisión de literatura de jerarquía volúmenes acotantes enfocados en detección de colisiones

    Get PDF
    (Eng) A bounding volume is a common method to simplify object representation by using the composition of geometrical shapes that enclose the object; it encapsulates complex objects by means of simple volumes and it is widely useful in collision detection applications and ray tracing for rendering algorithms. They are popular in computer graphics and computational geometry. Most popular bounding volumes are spheres, Oriented-Bounding Boxe s (OBB’ s), Axis-Align ed Bound ing Boxes (AABB’ s); moreover , the literature review includes ellipsoids, cylinders, sphere packing, sphere shells , k-DOP’ s, convex hulls, cloud of points, and minimal bounding boxe s, among others. A Bounding Volume Hierarchy is ussualy a tree in which the complete object is represented thigter fitting every level of the hierarchy. Additionally, each bounding volume has a cost associated to construction, update, and interference te ts. For instance, spheres are invariant to rotation and translations, then they do not require being updated ; their constructions and interference tests are more straightforward then OBB’ s; however, their tightness is lower than other bounding volumes. Finally , three comparisons between two polyhedra; seven different algorithms were used, of which five are public libraries for collision detection.(Spa) Un volumen acotante es un método común para simplificar la representación de los objetos por medio de composición de formas geométricas que encierran el objeto; estos encapsulan objetos complejos por medio de volúmenes simples y son ampliamente usados en aplicaciones de detección de colisiones y trazador de rayos para algoritmos de renderización. Los volúmenes acotantes son populares en computación gráfica y en geometría computacional; los más populares son las esferas, las cajas acotantes orientadas (OBB’s) y las cajas acotantes alineadas a los ejes (AABB’s); no obstante, la literatura incluye elipses, cilindros empaquetamiento de esferas, conchas de esferas, k-DOP’s, convex hulls, nubes de puntos y cajas acotantes mínimas, entre otras. Una jerarquía de volúmenes acotantes es usualmente un árbol, en el cual la representación de los objetos es más ajustada en cada uno de los niveles de la jerarquía. Adicionalmente, cada volumen acotante tiene asociado costos de construcción, actualización, pruebas de interferencia. Por ejemplo, las esferas so invariantes a rotación y translación, por lo tanto no requieren ser actualizadas en comparación con los AABB no son invariantes a la rotación. Por otro lado la construcción y las pruebas de solapamiento de las esferas son más simples que los OBB’s; sin embargo, el ajuste de las esferas es menor que otros volúmenes acotantes. Finalmente, se comparan dos poliedros con siete algoritmos diferentes de los cuales cinco son librerías públicas para detección de colisiones

    Interactive isosurface ray tracing of large octree volumes

    Get PDF
    Journal ArticleWe present a technique for ray tracing isosurfaces of large compressed structured volumes. Data is first converted into a losslesscompression octree representation that occupies a fraction of the original memory footprint. An isosurface is then dynamically rendered by tracing rays through a min/max hierarchy inside interior octree nodes. By embedding the acceleration tree and scalar data in a single structure and employing optimized octree hash schemes, we achieve competitive frame rates on common multicore architectures, and render large time-variant data that could not otherwise be accomodated

    Bézier Method For Image Processing

    Get PDF
    This project concerns about Bézier method in Computer Aided GeometricDesign (CAGD) involving Bézier Curve and Bézier Surface which widely related to the other theorem and method. The aim of this project is to introduce the basic of Bézier method and then generate the Bézier curves, Bézier surfaces, theory and properties and develop Bézier method in image processing application specifically image compression by using MATLAB

    AMM: Adaptive Multilinear Meshes

    Full text link
    We present Adaptive Multilinear Meshes (AMM), a new framework that significantly reduces the memory footprint compared to existing data structures. AMM uses a hierarchy of cuboidal cells to create continuous, piecewise multilinear representation of uniformly sampled data. Furthermore, AMM can selectively relax or enforce constraints on conformity, continuity, and coverage, creating a highly adaptive and flexible representation to support a wide range of use cases. AMM supports incremental updates in both spatial resolution and numerical precision establishing the first practical data structure that can seamlessly explore the tradeoff between resolution and precision. We use tensor products of linear B-spline wavelets to create an adaptive representation and illustrate the advantages of our framework. AMM provides a simple interface for evaluating the function defined on the adaptive mesh, efficiently traversing the mesh, and manipulating the mesh, including incremental, partial updates. Our framework is easy to adopt for standard visualization and analysis tasks. As an example, we provide a VTK interface, through efficient on-demand conversion, which can be used directly by corresponding tools, such as VisIt, disseminating the advantages of faster processing and a smaller memory footprint to a wider audience. We demonstrate the advantages of our approach for simplifying scalar-valued data for commonly used visualization and analysis tasks using incremental construction, according to mixed resolution and precision data streams

    A robust algorithm for implicit description of immersed geometries within a background mesh

    Get PDF
    The paper presents a robust algorithm, which allows to implicitly describe and track immersed geometries within a background mesh. The background mesh is assumed to be unstructured and discretized by tetrahedrons. The contained geometry is assumed to be given as triangulated surface. Within the background mesh, the immersed geometry is described implicitly using a discontinuous distance function based on a level-set approach. This distance function allows to consider both, “double-sided” geometries like membrane or shell structures, and “single-sided” objects for which an enclosed volume is univocally defined. For the second case, the discontinuous distance function is complemented by a continuous signed distance function, whereas ray casting is applied to identify the closed volume regions. Furthermore, adaptive mesh refinement is employed to provide the necessary resolution of the background mesh. The proposed algorithm can handle arbitrarily complicated geometries, possibly containing modeling errors (i.e., gaps, overlaps or a non-unique orientation of surface normals). Another important advantage of the algorithm is the embarrassingly parallel nature of its operations. This characteristic allows for a straightforward parallelization using MPI. All developments were implemented within the open source framework “KratosMultiphysics” and are available under the BSD license. The capabilities of the implementation are demonstrated with various application examples involving practice-oriented geometries. The results finally show, that the algorithm is able to describe most complicated geometries within a background mesh, whereas the approximation quality may be directly controlled by mesh refinement
    corecore