
Baumgärtner et al. Adv. Model. and Simul.
in Eng. Sci. (2018) 5:21
https://doi.org/10.1186/s40323-018-0113-8

RESEARCH ART ICLE Open Access

A robust algorithm for implicit description
of immersed geometries within a
background mesh
Daniel Baumgärtner1* , Johannes Wolf1, Riccardo Rossi2, Pooyan Dadvand2

and Roland Wüchner1

*Correspondence:
daniel.baumgaertner@tum.de
1Technische Universität
München, Arcisstr. 21, 80333
München, Germany
Full list of author information is
available at the end of the article

Abstract

The paper presents a robust algorithm, which allows to implicitly describe and track
immersed geometries within a background mesh. The background mesh is assumed to
be unstructured and discretized by tetrahedrons. The contained geometry is assumed
to be given as triangulated surface. Within the background mesh, the immersed
geometry is described implicitly using a discontinuous distance function based on a
level-set approach. This distance function allows to consider both, “double-sided”
geometries like membrane or shell structures, and “single-sided” objects for which an
enclosed volume is univocally defined. For the second case, the discontinuous distance
function is complemented by a continuous signed distance function, whereas ray
casting is applied to identify the closed volume regions. Furthermore, adaptive mesh
refinement is employed to provide the necessary resolution of the background mesh.
The proposed algorithm can handle arbitrarily complicated geometries, possibly
containing modeling errors (i.e., gaps, overlaps or a non-unique orientation of surface
normals). Another important advantage of the algorithm is the embarrassingly parallel
nature of its operations. This characteristic allows for a straightforward parallelization
using MPI. All developments were implemented within the open source framework
“KratosMultiphysics” and are available under the BSD license. The capabilities of the
implementation are demonstrated with various application examples involving
practice-oriented geometries. The results finally show, that the algorithm is able to
describe most complicated geometries within a background mesh, whereas the
approximation quality may be directly controlled by mesh refinement.

Keywords: Immersed boundary method, Implicit geometry description, Embedded
geometry, Boundary tracking, Distance function, Level-set approach, Local best-fit
approximation, Ray casting, Adaptive mesh refinement

Introduction
The increasing maturity of numerical techniques allows to perform detailed mechanical
simulations taking into account geometrically complex, possiblymoving objects, provided
that a suitable computational mesh is available throughout the simulation. Unfortunately
the availability of such a mesh is becoming more and more a bottleneck as the geometric
complexity increases. Consider, for example, a situation in which the flow around an
object shall be computed. Following classical approaches, the corresponding fluid domain

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-018-0113-8&domain=pdf
http://orcid.org/0000-0003-4832-8913
http://creativecommons.org/licenses/by/4.0/

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 2 of 40

would be discretized by a “body-fitted” mesh, i.e., a mesh which matches the boundaries
of the object. The requirement to locally match the boundaries, however, is problematic
when the object represents a complicated geometry, say a complete racing car, or when
the object contains many fine details, like the hole of a screw. In such cases, a proper
resolution of the boundary can require a lot of manual modeling effort or lead to an
impractical high mesh density. The corresponding limitations may be easily understood
by trying out quality open source mesh generators like [1–5].
The situation becomes even worse when moving objects need to be taken into account,

like in problems of fluid-structure interaction. In these cases, the requirement to main-
tain a body-fitted mesh results in heavy mesh update procedures, which eventually will
fail when large movements and rotations are involved. Furthermore, the simulation of
problems with changing topology (like in the flow simulation of the landing gear of an
aircraft during deployment) becomes virtually impossible, since the mesh graph changes.
“Immersed boundary methods” appear to be a possible remedy to such problems. The

general idea of immersed boundary methods is to place a model of the object of interest
directly into a given background mesh, identify the object’s boundaries relative to the
background mesh, and use the background mesh along with the implicit description of
the immersed boundaries to eventually perform a mechanical analysis. The advantage
is, that no body-fitted mesh is required anymore giving rise to a significantly decreased
modeling effort. On the other hand, such an operation causes an intersection between the
computational domain, i.e., the backgroundmesh, and the objects’ skin. Correspondingly,
algorithms are required to identify these intersections and to describe the immersed object
implicitly.
It is obvious, that such an implicit geometrical representation of the object strongly

depends on the grid size of the background mesh. That is, a too coarse mesh cannot
represent the immersed object as accurately as a body-fittedmesh and geometrical details
will be lost unless a local refinement is performed.However, this property is not necessarily
bad, but can be exploited to run simulations with an intentionally reduced level of fidelity,
as it is e.g. done in the context of the multiresolution paradigm.
Many approaches to perform computations based on an immersed boundary method

were developed over the years. In the field of CFD, a review of immersed boundary meth-
ods is given by [6]. An extended formulation to consider fluid-structure interaction is
presented in [7]. More recent developments focusing on the finite element method are
described in [8–11]. And an example in the context of the finite volume method is given
by [12]. In the field of structural mechanics, the finite cell method (FCM) relies on an
immersed boundary formulation [13,14]. An earlier proposition to represent solids in a
structured background mesh is elaborated in detail in [15].
Besides the approaches above, which mostly focus on volumetric objects, the recently

proposed isogeometric B-Rep analysis (IBRA) uses similar ideas to analyze thin-walled
structures described as trimmed geometries in CAD. In IBRA, the geometry under consid-
eration, representing e.g. a membrane or a shell, is immersed into an underlying NURBS-
surface patch and the actual geometry is described by the cut-out of an arbitrarily curved
free-form shape [16–18].
Different to these and other works, the focus of the current paper is not on the consider-

ation of immersed boundaries in the formulation and solution of a physical problem, but
on the development of a robust algorithm to allow for an implicit description, tracking or

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 3 of 40

reconstruction of geometries that are immersed within a background mesh. In general,
such an algorithm represents the basis of immersed boundary methods.
We consider the case of unstructured tetrahedral meshes, intersected by immersed

objects given in form of triangulated surfaces. The immersed geometry is described
implicitly using a discontinuous distance function based on a level-set approach. This
allows to consider both, “double-sided” geometries, like sails, where fluid flows on both
sides, and “single-sided” objects, for which an enclosed volume is univocally defined. For
the second case, the discontinuous distance function is complemented by a continuous
signed distance function. In this case, the identification of “inside” and “outside” regions,
associated to respectively a positive and negative distance, is done by employing a ray
casting approach. The ray casting is improved by using a cascade of techniques in order
to enhance its robustness when dealing with “dirty” geometries. Furthermore, an adaptive
mesh refinement, based on the technique described in [19], is employed to provide the
necessary or intended resolution of the background mesh.
The proposed approach allows handling arbitrarily complicated geometries, possibly

containing modeling errors (gaps, overlaps or a non-unique orientation of surface nor-
mals). An important advantage over alternatives is the embarrassingly parallel nature
of the operations involved, which allows a straightforward parallelization using MPI,
provided that a copy of the object skin is owned by each of the MPI domains. All of
the developments in current work were implemented and tested within the framework
KratosMultiphysics [20,21] and are available under the BSD license [22].
Despite the focus on the implicit geometry description in this paper, it should be noted,

that special attention is required if the proposed approach, with its included discontinuous
distance function, is to be employed for the solution of physical problems. As a detailed
discussion of the corresponding implications is far beyond the scope of this paper, but
of interest especially in a finite element context, the situation in this case shall be briefly
commented in the following.
The use of a discontinuous distance function inevitably implies that the finite element

space is not conforming across cut faces. To consider this non-conformity, special strate-
gies are typically employed in the formulation of conditions along the immersed bound-
aries. A discussion of these strategies is not subject of this paper, but one can readily
conclude that their formulation is a non-trivial task, particularly since it is difficult to
discretize the immersed boundary for integration purposes. However, it is worthwhile to
note, that the area of non-conformity tends to zero for smooth surfaces and an infinitely
refined backgroundmesh. In this context, the authors found, that applying boundary con-
ditions based on discontinuous shape functions without any additional treatment of the
non-conformity may be an effective approach in the solution of physical problems, even
though a variational crime is committed. E.g., studies of the authors with a flow solver uti-
lizing discontinuous shape functions as described in [23] show results in agreement with
published data from general CFD analysis. This, however, is by no means a general result
and different strategies will need to be devised when alternative solvers or formulations
are employed.
The paper is organized as follows: “Implicit geometry representation by means of a

level-set approach” section introduces the main approach to represent immersed geome-
tries within a background mesh by means of a level-set approach. The necessary spatial
search algorithm to determine intersected elements and the corresponding intersection

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 4 of 40

points is then described in “Octree-based spatial search to determine intersections” sec-
tion. Using the information about intersected elements, the actual representation of the
immersed geometry by a discontinuous distance function is discussed in “Geometrical
representation of immersed objects using a discontinuous distance function” section. In
this section, also the related challenges are systematically prepared and specific solution
approaches are elaborated. For an efficient improvement of the implicit geometry repre-
sentation, local refinement strategies are presented in “Refinement strategies to improve
the approximation quality” section. In “Identification of closed regions using a continu-
ous distance function” section, an additional continuous distance function is introduced,
which is required for inside-outside distinctions in case of enclosed volumes. Finally, in
“Examples of immersed geometries with different features and challenges” section, the
developed and implemented concepts are demonstrated in various application examples
each having its own challenges with respect to the immersed geometry.

Implicit geometry representation bymeans of a level-set approach
In this paper, we consider the case in which a geometry described by a triangulated
surface is immersed into an unstructured tetrahedral background mesh. The objective
is to implicitly describe the immersed geometry with respect to the background mesh,
whereas particular focus is on the possibility to handle arbitrarily complicated geometries.
The key idea to be leveraged is, that any tetrahedron in the background mesh can be
intersected by the immersed geometry at most through a plane (which is not the case, e.g.,
for hexahedrons). Furthermore, it is assumed, that in cases where a given tetrahedron is
intersected in a pattern that does not exactly form such a cutting plane, it may be properly
approximated, e.g., by best-fit techniques. Given a description of the cutting plane for
every intersected tetrahedron, it is finally possible to reconstruct an approximation of the
immersed geometry.
To describe the cutting planes and hence the immersed geometry, a so called “level-set

approach”, as described in [24], is utilized. The latter provides an implicit definition of
the geometry as the zero isosurface of a smooth function defined over the background
mesh. Typically, this function is chosen as the signed distance to the geometry of interest,
whereas the sign is defined to be negative on one side of the geometry and positive on the
other. The idea of such a distance function is visualized in Fig. 1. In the figure, the distance
function associates to each node of the backgroundmesh the closest signed distance to the
given immersed geometry. The sign may be chosen according to the normal orientation
of the immersed geometry. The immersed geometry then appears as the zero distance
isosurface.
Provided that the object to be considered encloses a volume, the definition of a signed

distance is univocal. In such cases the use of a continuous distance function is well defined
and provides the obvious advantage of guaranteeing that the implicit surface description
is continuous across the faces of the intersected elements. There are, however, many cases
where the definition of a signed distance is not univocal. For example, consider the case in
Fig. 2, which shows two open geometries intersecting a background mesh (one may think
of a cut through two sails within a 2D fluid mesh). Node N1 belongs at the same time to
both of the two labeled elements (E1, E2). Hence, assuming the same orientation for the

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 5 of 40

Fig. 1 Distance function to implicitly describe an immersed geometry

Fig. 2 Need for a discontinuous distance function when dealing with arbitrary complicated geometries due
to a potential non-unique definition of signed distances

given geometries, it must have a negative signed distance when considered as a part of E2
and a positive signed distance as a part of E1, which is obviously impossible.
In order to successfully capture such exceptions and to be able to describe arbitrarily

complicated geometries, a distance function is used, which is defined on an purely ele-
mental basis. That is, the distances are computed individually for each element of the
background mesh rather than for each node. This elemental description implies that the
very same node may have different distance values when considered as part of different
elements. The concept of an element-wise computation of distances is illustrated in Fig.
3. This customization gives rise to a central characteristic of our approach: The approx-
imation of the immersed geometry turns into a purely local operation and the distance
function becomes discontinuous along the immersed boundary.
Note, that the discontinuous distance function has stronger representation properties

compared to the continuous one. This is obvious, since any continuous distance can
be represented in terms of element-wise discontinuous distances while the contrary is
obviously not true. As a matter of fact, the element-wise computation of the distances
allows the approximation of arbitrarily complicated geometries within the background
mesh. The quality of the approximation is thereby only determined by the quality of the

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 6 of 40

Fig. 3 Element-wise computation of distances

approximation of the cutting plane within each tetrahedron. Note also, that by having a
purely local operation the distances can be computed independently for all elements in
the background mesh. A parallelization of the approach is hence straight-forward and
very effective, which is beneficial in terms of computational efficiency. Also, as seen later,
the inherent discontinuities arising in the representation of the immersed geometry may
be considered as negligible assuming a sufficiently refined background mesh. Given only
a coarse mesh, choices of possible refinement strategies are described in “Refinement
strategies to improve the approximation quality” section.
In the special case of dealing with closed geometries immersed in a background mesh,

it is typically also required to determine which nodes of the background mesh are lying
inside the closed regions and which ones are outside. In this special case, a continuous
distance function is well defined and may be readily used to compute signed distances
such that a negative distance indicates a point inside and a positive sign a point outside of
the closed region. Therefore, in cases including closed immersed geometries, a continuous
distance function is reconstructed on the basis of the abovementioned discontinuous one.
A ray casting approach is then used to assign the resulting nodal distances with a sign. The
latter appears to be the most robust solution, as it is detailed in “Identification of closed
regions using a continuous distance function” section.
In summary, the proposed strategy to implicitly represent immersed geometries inside

a background mesh is as follows: first, the immersed geometry is described element-wise
by distances to the locally approximated cutting plane. This process corresponds to the
formulation of a discontinuous distance function. If the problem involves complicated
geometries, adaptive mesh refinement is applied prior to this step. Then, in case the
immersed geometry contains closed bodies, the discontinuous distance function is com-
plemented by a continuous one such that signed nodal distancesmay be determined. After
computing both distance functions, the immersed geometry is finally described implicitly
with respect to the background mesh and it may be readily reconstructed on the basis of
the given distance values. The process is summarized in Fig. 4. The following chapters
will detail each individual step of this overall process. The corresponding chapters are
referenced in the figure.

Octree-based spatial search to determine intersections
To describe immersed geometries implicitly with respect to a given background mesh, it
has to be determined whether and which elements of the immersed geometry intersect a
given element of the background mesh. To this end, spatial search techniques have to be
applied. Since spatial search is typically very expensive, an efficient method in the context
of immersed approaches becomes particularly important.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 7 of 40

Input: background tet-mesh & triangulated surface geometry (e.g. stl)

Compute elemental distances using discontinuous distance function

Refine background mesh if nessecary (5)

Output: Implicit geometry description with respect to the background mesh

Closed geometry included?

Compute signed nodal distances using continous distance function (6)

Determine sign of nodal distances using ray casting

Construct continous from discontinuous distance function

Y

N

Tet intersects geometry? (3)

Loop over all tets

Determine local cutting plane (4)

For each tet node compute distance to cutting plane (4)

Y

N

Fig. 4 Algorithm for implicit geometry description based on a combined discontinuous and continuous
distance function (sections containing further details are referenced in brackets)

In the present work, it is necessary to find all intersecting elements of the immersed
geometry for a given element of the backgroundmesh. For thatmatter, it is valid to assume
that the background mesh is modeled as a convex hull over the immersed geometry so
that Nb > Ng , where Nb and Ng are the number of background and geometry elements,
respectively. In a straightforward algorithm, to identify all intersections, every geometry
element may be checked against each element of the background mesh corresponding
to an algorithm of complexity O(Nb × Ng). For a highly refined background mesh this
quickly leads to an explosion of the computational costs. This calls for more advanced
spatial search techniques.
Luckily, spatial search of this type represents a classical problem in computer science for

which various approaches are available [25]. The idea behind many of these approaches
is to divide the domain in subdomains and order the objects to be searched based on
such divisions. A regular division of the domain thereby leads to a bin search structure
[26–28], whereas a hierarchical division leads to a tree search structure [29–31]. The bin
structure is the best option for a homogeneous distribution of the objects. In contrast to
that, hierarchical structures are more suitable for distributions with high concentration
of the objects or very irregular shapes, respectively.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 8 of 40

Fig. 5 Distribution of leaf cells resulting from a quadtree data structure generated around a circular
geometry using eight consecutive levels of refinement

Since in the present case objects have to be searched in a very irregular domain, i.e., given
an element of the background mesh it is necessary to search the intersecting elements of
the immersed geometry, whereas the immersed geometry itself can be arbitrarily shaped
and hence represent a very irregular domain, spatial search based on an octree appeared to
be the best solution. In this method, a block-shaped bounding box around the immersed
geometry is divided into eight equal cells, where each cell is partitioned into another
eight cells in case that an element of the immersed geometry is contained. This process is
performed several times up to the desired level of refinement. The final distribution of cells
is then referred to as the leaf cells. As a result, the domain of the geometry is represented
by a tree-like data structure, i.e., an octree in 3D or a quadtree in 2D. An example for the
distribution of leaf cells resulting from a quadtree data structure is given in Fig. 5. There
are many partitioning techniques of this type [31]. In this work a mid-point partitioning
based on the work of [32] has been employed as basic data structure.
Having identified a suitable data structure, the following general procedure is proposed

to perform spatial search: First, the basic octree data structure representing the immersed
geometry is created. Then, every element of the background mesh is assigned with point-
ers to the corresponding leaf cells it intersects with. Based on this link of information
from both domains, the intersection testing between the immersed geometry and the
background mesh can be eased significantly. Instead of checking every element of the
backgroundmesh against each element of the immersed geometry, one checks for a given
background element just a small subset of all geometry elements for potential intersec-
tions. This reduces the complexity of the intersection test from originallyO(Nb × Ng) to
an order ofO(Nb × log(Ng)).
The resulting algorithm to determine all intersection points between a background

mesh and an immersed geometry using the spatial search described above is visualized in
Fig. 6. As shown in the figure, the corresponding algorithm contains three main steps:

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 9 of 40

Input: background tet-mesh & triangulated surface geometry

Search for subset of leaf cells inersecting tet

Generate bounding box around tet

Cell intersects tet (box-tet intersection)?

Generate octree based on immersed geometry

Output: Intersections between brackground mesh & immersed geometry

Loop over tet elements of background mesh

Determine intersections between tet & geometry in subset of leaf cells

Y

Determine leaf cells intersecting bounding box (box-box intersection)

Loop over intersecting leaf cells

Add cell to container

N

Loop over tet edges

Check intersections between triangle & tet edge (triangle-line int.)

Loop over leaf cells in container

Loop over triangles in leaf cell

Fig. 6 Algorithm based on an octree data structure to determine intersection points between background
mesh and immersed geometry

At first, an octree representing the immersed geometry is created and a loop over the
elements of the background mesh is initialized.
Then, within the loop, the second main step is to determine all octree leaf cells inter-

secting with the given element of the background mesh (which was assumed to be a
tetrahedron). This set of cells is efficiently determined by combining a rough intersection
test with a subsequentmore accurate one. In the rough test, a bounding box is constructed
around the given tetrahedron and it is checked which leaf cells of the octree this box has
an intersection with. This reduces the more costly box-tetrahedron intersection test to a
simple box–box algorithm [33]. Only after such an intersection was found, a more accu-
rate test follows to check for the actual box-tetrahedron intersection. The accurate test
is done using the algorithm described in [34]. As a result of this second main step, a set

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 10 of 40

Fig. 7 Approximation of an immersed geometry within each intersected element of a background mesh

Fig. 8 Signed nodal distance values defining cutting plane for an intersected element as zero isosurface. The
cutting plane locally approximates the immersed geometry (blue area)

of leaf cells containing all (triangular) geometry elements with a possible intersection is
obtained. This set is stored in a container and associated to the given background element.
Given this container for an element of the background mesh, one can in the last main

step identify the actual intersection points. As the detection of intersection points between
a tetrahedron and a triangle is a geometrically complex problem, this step is divided into
a loop over several basic tests. In these basic tests, the intersection points are deter-
mined subsequently by testing all tetrahedron edges against the given triangles, which
only involves a basic computation of the intersection point between a ray and a triangle.
Having performed this last main step for all elements of the backgroundmesh in the loop,
all intersection points with the immersed geometry are finally determined.

Geometrical representation of immersed objects using a discontinuous
distance function
In “Implicit geometry representation by means of a level-set approach” section the gen-
eral approach to implicitly represent immersed objects within a background mesh was
introduced. In this context, a tetrahedral background mesh and a triangulated immersed
geometry is assumed. The corresponding algorithm is summarized in Fig. 4. This chapter
discusses in detail how to compute the elemental distances within the algorithm. Also it
presents a way to visualize the corresponding approximation of the immersed geometry.
This visualization will be the basis for the discussion of the approximation quality.

Computation of elemental distances

Since a tetrahedral background mesh was assumed, the best possible representation of a
geometric detail within a single background element is a plane. Therefore, in the present

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 11 of 40

work, the arbitrary boundary of an immersed object is represented by a collection of pla-
nar cutting planes, whereas in each intersected element of the background mesh there is
exactly one defined plane. The principle is conceptually illustrated in Fig. 7. As a conse-
quence of this local reduction of the immersed geometry to a cutting plane, the approxi-
mation quality is strictly limited by the density of the background mesh.
According to the previously introduced discontinuous level-set approach, this cutting

plane is separately defined for each intersected element as zero isosurface emanating
from signed distance values associated to its nodes. To obtain the corresponding zero
isosurfaces, three basic steps have to be performed:

1. Determine all intersection points between background mesh and immersed geome-
try,

2. Determine the specific cutting plane for each intersected background element based
on the local intersection pattern,

3. Compute for each node of an intersected element the signed distance to its cutting
plane.

The first step in the previous enumeration is done using the algorithm presented in
Fig. 6. How to determine the cutting plane is discussed in section . Assuming the cutting
plane is already determined and hence available, the set of four signed nodal distances
may finally be computed as follows:

di = n
‖n‖ · (Ni − P). (1)

Here, the nodal distance values in each element of the background mesh, di, are com-
puted from the nodal coordinates Ni, a normal vector n representing the orientation of
the cutting plane, and a corresponding base pointP on the plane given by one of the inter-
section points. The concept is visualized in Fig. 8. Note, that in the proposed approach the
set of four signed nodal distance values is computed in a purely local operation. Hence,
each background element has its own set of nodal distances. Therefore, in the following,
this set of distances is referred to as elemental distances. These elemental distances finally
define the discontinuous (element-wise) distance function. Having defined the discon-
tinuous distance function, an approximation of the immersed structure appears as zero
isosurface within the background mesh.

Visualization of the approximated immersed geometry

Toevaluatewhether the proposed algorithmcan represent immersed objects properly, it is
necessary to visualize the geometric approximation emanating from the implicit descrip-
tion through the distance function. Such a visualization provides an important insight into
how the immersed object “is seen” by the backgroundmesh. To obtain such a visualization,
a triangular mesh is recreated from the given distance values in a post-processing routine.
More precisely, within a loop over the intersected background elements, all intersection
points of a given element are recomputed from its four signed distance values. Then, the
intersection points are used to form triangles depending on the number of intersection
points. If there are exactly three points, a triangle can be directly defined. In cases where
a background element only has one or two intersection points, no triangle can be created.
Such a background element is hence ignored in the reconstruction. If the element is inter-

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 12 of 40

sected at four points, the corresponding quadrilateral area is recreated as two neighboring
triangles with similar orientation. All triangles are finally collected in a container andmay
be visualized as a common surface mesh.
The procedure is conceptually visualized in Fig. 9a. In the figure, two distance values di

and dj are computed for every edge in each tetrahedron separately. These values describe
the distances of the two corresponding edge nodesNi andNj to the immersed boundary.
If the product of both distance values is positive, then the corresponding element is not
intersected by an immersed geometry. In case the product is negative, however, it means
that the tetrahedron is intersected at this edge and the corresponding intersection point
P can be computed by linear interpolation:

P = |dj|
|di| + |dj| · Ni + |di|

|di| + |dj| · Nj . (2)

In the given example, the distance values indicate that both tetrahedrons are intersected,
whereas the linear interpolation results in one element with four intersection points and
one with three intersection points. Correspondingly, three triangles can be reconstructed.
These three triangles eventually represent a local reconstruction of the immersed bound-
ary as it is seen by the two tetrahedrons (the background mesh).
A more complicated example is given in Fig. 9b, where the implicit representation of

an immersed cylinder is visualized. It is important to realize that the resulting triangular
surface mesh (�A) is different from the original immersed surface mesh (�I given as
STL) and only serves visualization purposes. Thus, the supposedly bad quality of the
reconstructed surface mesh (see the blue mesh in Fig. 9b) is only a result of the chosen
visualization technique and does not have any further implications. This is important to
remember in the follow-up sections, when results of a surface approximation are shown
with feature lines for a better distinction of individual geometrical aspects.

Determination of cutting planes for different intersection patterns

As explained in “Computation of elemental distances” section, in order to implicitly
describe an immersed object, its boundary is approximated by a collection of planar
cutting planes defined for each intersected element of the background mesh. Therefore,
this cutting plane has to be determined depending on the local intersection pattern. Deter-
mining this pattern is a challenging operation since different geometriesmay locally result
in the same intersection pattern. Because of that, no unique definition of the cutting plane
is possible. Thus, numerous special cases have to be considered in order to obtain a robust
algorithm. How to determine the cutting plane for the most important scenarios is dis-
cussed in this section. All of these scenarios and the corresponding intersection patterns
are conceptually visualized in Table 1. Note, that the scenarios are visualized in 2D but
they are readily transferable to the three-dimensional case.

Approximation of planar surfaces

If a planar face is intersecting a background element, two different intersection patterns
have to be considered, i.e., one pattern with three and another one with four intersection
points (see Fig. 10). In both cases all intersection points are lying in a common plane so
that the given cutting plane accurately defines the immersedboundary.The corresponding

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 13 of 40

a

b

Fig. 9 Visualization of the geometry approximation resulting from an implicit description of the immersed
object by a discontinuous distance function. a Concept: visualization by surface reconstruction. b Example:
approximation of an immersed cylinder

cutting plane is defined using three of the possibly four given intersection points together
with the surface normal vector from the immersed boundary.
To evaluate the corresponding approximation quality, the algorithm is tested for the

case of a simple triangulated plate immersed into a box-shaped background mesh with
around 19,000 elements, see Fig. 11a. The testing process is as follows: first, the elemental
distances are computed as described in “Computation of elemental distances” section,
whereas immersed planar surfaces are treated as introduced above. Then, the hereby
approximated surface is reconstructed and visualized following the approach introduced
in “Visualization of the approximated immersed geometry” section. The resulting approx-
imation of the immersed structure is presented in Fig. 11b.
As can be seen from the figure, the rectangle is well described by the applied method

except from the region around the edges. This issue can be traced back to the fact that
the background elements at the edges are not intersected completely and therefore an
approximation of the immersed boundary in these areas is not possible (compare last
scenario in Table 1). However, as pointed out earlier, this approximation error is inherent
to any immersedapproachanddue to the limitedmesh resolution. It canbewell reducedby
refinement strategies as discussed in “Refinement strategies to improve the approximation
quality” section.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 14 of 40

Table 1 Scenarios of immersed geometries leading to different intersection
patterns—the geometric complexity increases from the top to the bottom of the table

Scenario Visualization Possible approximation

Planar intersection In case the immersed boundary is planar within an intersected ele-

ment, the cutting plane can be determined to exactly represent this

boundary

Slight curvatures In case the orientation of the immersed boundary is slightly chang-

ing, an exact representation of the boundary is not possible any-

more but a cutting plane can be easily determined to minimize the

approximation error

Sharp edges A sharp edge located within an element cannot be described by

a single cutting plane. Best approximation by a cutting plane is

through a chamfered edge

Several boundaries Since an element per definition can just have one cutting plane, the

only possible approximation in case several boundaries are intersect-

ing, is a plane that replaces all boundaries by a single one following

a fitting criterion

Incomplete intersection In this case, a local approximation of the immersed boundary using

four signed distance values is impossible. Hence this case must be

ignored. Note, however, that the corresponding approximation error

is inherent to any immersed approach and due to the limited mesh

resolution. It can be well reduced by refinement strategies

Fig. 10 Relevant intersection patterns for an immersed plane face. a Three intersection points. b Four
intersection points

Approximation of curved surfaces

As opposed to planar geometries, a curved surface generally can not be approximated
exactly by a single cuttingplane since thenormal vector of the immersedboundary changes
its direction within the intersected element. Therefore, a decision has to bemade in terms
of a normal vector and a base point in order to describe a plane which best approximates
the immersed boundary. To this end three different cases are considered:
Case: three intersection points The case is conceptually visualized in Fig. 12. For the sake
of clarity and comparability with the following solutions, the actually three dimensional
situation is reduced to a corresponding two-dimensional case without loss of generality.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 15 of 40

Fig. 11 Test case to evaluate surface approximation for immersed planar geometries. a Test setup: plate
immersed into box-shaped background mesh with ∼ 19,000 elements. b Reconstruction of the immersed
boundary (�A)

Fig. 12 Concept to approximate a slightly curved immersed boundary within a background element

Given an intersection pattern with three intersection points (P1,P2,P3), a good approx-
imation of the immersed boundary is easily obtained by the triangle formed from these
intersection points. Therefore, the cutting plane is defined to be this triangle, whereas one
of the intersection points is chosen as base point of the plane and the normal vector is
derived from the cross product of two edges:

n = −−→P1P2 × −−→P1P3. (3)

Case: four intersection points In the case of four intersection nodes, the points are generally
not located in a common plane anymore. In this case, a best-fit approach is chosen to
compute the cutting plane such that it has a minimal distance to all intersection points.
To formulate the corresponding optimization problem, first recall the equations which
define the four nodal distances di of the corresponding background element:

d1 = n
‖n‖ · (PA − P1), (4a)

d2 = n
‖n‖ · (PA − P2), (4b)

d3 = n
‖n‖ · (PA − P3), (4c)

d4 = n
‖n‖ · (PA − P4). (4d)

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 16 of 40

Here, n defines the unknown normal of the approximation plane. PA defines a base
point on the plane and Pi represents the position of the i − th intersection point. The
above equation can be rewritten in matrix form as follows:

d = n
‖n‖P, (5)

whereas the matrix P collects the distance vectors between the intersection points and
the base point of the plane:

P =

⎡
⎢⎢⎢⎣

PA − P1
PA − P2
PA − P3
PA − P4

⎤
⎥⎥⎥⎦ . (6)

To find an optimal compromise for the cutting plane, a least squares approximation is
applied, and the unknown normal vector as well as the unknown base point are chosen
such that the nodal distances are minimized:

minimize
n,PA

f : f = ‖d‖2 = 1
‖n‖2 · nT PTP︸︷︷︸

A
n. (7)

In the last equation thematrix productPTP is summarized to amatrixA. To reduce the
problem, the base point is predefined as average point over all given intersection points:

PA = 1
4

4∑
i=1

Pi, . (8)

Furthermore, a unit surface normal is required, such that:

nTn = 1. (9)

The final formulation of the least-squares problem reads:

minimizen nTAn

subject to nTn − 1 = 0.
(10)

This corresponds to a constrained quadratic optimization problem. To solve for the
three unknown components of the normal vector n = {nx, ny, nz}, a Lagrange function L
is formulated using the Lagrangian multiplier λ:

L(n, λ) = nTAn + λ(nTn − 1). (11)

The stationary point of L is obtained based on the following necessary conditions:

∂L
∂n = An + λn = 0 (12a)

∂L
∂λ

= nTn − 1 = 0. (12b)

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 17 of 40

Fig. 13 Special intersection pattern for curved geometries in which edges of the background mesh are
intersected twice. a 3D example. b Close-up of the same example

The first Eq. (12a), can be rearranged such that the following eigenvalue problem is
obtained:

An = λn. (13)

Here, λ denotes the eigenvalue of thematrixA andn the corresponding eigenvector.With
this knowledge in mind, Eq. (13) is multiplied by nT , which results in:

nTAn = λ. (14)

As the left hand side in this equation now characterizes the objective function f [refer to
Eq. (7)], one can deduce from (14) that the objective value is minimal if n corresponds the
eigenvector of the symmetric matrix A with the smallest eigenvalue. Hence the normal
which best fits the cutting plane to the four intersection points is chosen to be this eigen-
vector. The corresponding eigenvalue problem is solved using the iterative Gauss-Seidel
method.
Case: double-intersected edgesAnother special intersectionpatternwhichhas tobe consid-
ered with immersed geometries having a curved surface, is the case of double-intersected
edges. Such an intersection pattern is shown in Fig. 13. In the figure, a curved geometry
(blue) immersed in a non-visible backgroundmesh intersects a selected tetrahedron from
the background mesh (green) in six points, whereas the top edge of the tetrahedron is
intersected twice. The situation is conceptually sketched in Fig. 14a.
From the sketch it can be seen, that an approximation of the immersed boundary based

ona set of four signeddistance values is onlypossible for the left element.The right element
does not have enough intersection points to define a proper cutting plane. Therefore, the
part of the geometry immersed in the right element must be neglected. Also the left
element is problematic since the double-intersected edge does not allow for a unique
definition of the cutting plane. As a solution to this problem, the immersed boundary
is approximated by a plane which minimizes the distances to all the intersection points.
This is the same strategy as already applied in the case of four intersection points. Only
the number of intersection points increases this time. Correspondingly the cutting plane

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 18 of 40

a b

Fig. 14 Approximation strategy for immersed geometries that are slightly curved and lead to
double-intersected edges. a Conceptual illustration of the problem. b Conceptual illustration of the solution
strategy

is defined through a base point PA, which averages all n intersection points:

PA = 1
n

n∑
i=1

Pi, (15)

and a surface normal n, which corresponds to the eigenvector associated to the smallest
eigenvalue of the following matrix A:

A = PTP =
⎡
⎢⎣

PA − P1
...

PA − Pn

⎤
⎥⎦
T ⎡

⎢⎣
PA − P1

...
PA − Pn

⎤
⎥⎦ . (16)

The solution strategy to determine a cutting plane for immersed geometries which are
slightly curved or which lead to double-intersected edges is conceptually illustrated in Fig.
14b.
Having presented strategies to approximate the cutting plane in case curved geometries
are immersed into a backgroundmesh, the resulting approximation quality shall be inves-
tigated in the following. Test example is a sphere positioned into a box-shaped background
mesh. The background mesh corresponds to the one which was already used for the pla-
nar test case shown in Fig. 11a. By construction, the sphere intersects the background
mesh such that all of the above cases appear (i.e., there are background elements with
three and four intersection points, and there are elements with double-intersected edges).
The testing process is as follows: first the elemental distances are computed as described
in “Computation of elemental distances” section, whereas curved surfaces are treated as
introduced above. Then, the hereby approximated surface is reconstructed and visual-
ized following the approach introduced in “Visualization of the approximated immersed
geometry” section. The resulting approximation of the immersed sphere is presented in
Fig. 15a, b for two different resolutions of the background mesh.
As can be qualitatively observed in the figure, the spherical geometry is well captured

by the algorithm and there are no visible defects along the reconstructed surface. Fur-
thermore, the curvature may be adequately resolved depending on the refinement of the
backgroundmesh. It is worthwhile to note, that if just one of the above introduced special
cases was not considered here, the approximated sphere would have visible defects due

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 19 of 40

Fig. 15 Surface approximation of a sphere immersed into a background mesh. a Reconstruction of
immersed boundary (�A) given a coarse background mesh. b Reconstruction of �A given a fine background
mesh. c Reconstruction of �A without considering double-intersected edges

a b

Fig. 16 Conceptual illustration of intersection patterns with sharp edges inside single background elements.
a Case: intersection points uniquely define a plane. b Case: approximation by a plane requires fitting

to a locally unsuccessful approximation of the cutting plane (see Fig. 15c). From the pre-
vious results, one can conclude, that the presented algorithm is able to handle immersed
geometries with slight curvatures.

Approximation of surfaces with sharp edges

The description of sharp edges within single background elements is generally not pos-
sible since in the present approach only one cutting plane can be defined per element.
However, this situation appears frequently unless the immersed geometry is completely
smooth. Hence a proper approximation of sharp edges has to be found. To find such an
approximation, two different intersection patterns shall be distinguished. Both patterns
are conceptually illustrated in Fig. 16.
The main difference between both patterns is the number of intersection points.

Whereas in Fig. 16a the background element has exactly as many intersection points
as necessary to uniquely define an approximate cutting plane (i.e., three in the three-
dimensional case), the scenario in Fig. 16b exhibits more intersection points than neces-
sary, so that a single cutting plane can only be defined through a fitting procedure. To
handle both situations, the following procedure is proposed: In the first case, one defines
the cutting plane directly based on the given intersection points and chooses as normal
direction a unit vector which averages the normals of the connecting surfaces. This results
in a chamfered representation of the edge. The second case is similar to the case of curved
geometries intersecting an element in four points. Correspondingly, a best-fit procedure,

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 20 of 40

a b

Fig. 17 Strategies to approximate sharp edges within single background elements. a Case: intersection
points uniquely define a plane. b Case: approximation by a plane requires fitting

Fig. 18 Surface approximation of a cube immersed into a coarse background mesh to demonstrate the
implicit description of sharp edges (feature lines are hidden)

as already described in “Approximation of curved surfaces” section, is followed in this
case. The two solution strategies are conceptually illustrated in Fig. 17.
Having presented strategies to approximate sharp edges within single background ele-

ments, the resulting approximation quality shall be investigated in the following. Test
example is a cube positioned into a box-shaped background mesh. The background mesh
corresponds to the one which was already used for the planar test case shown in Fig. 11a.
The testing process is as follows: First the elemental distances are computed as described
in “Computation of elemental distances” section, whereas sharp edges and planar sur-
faces are treated as introduced above and in “Approximation of planar surfaces” section.
Then, the hereby approximated surface is reconstructed and visualized following the
approach introduced in “Visualization of the approximated immersed geometry section”.
The resulting approximation of the immersed cube is presented in Fig. 18.
As shown in the figure, the cube is well approximated along the planar areas. However,

as expected from both our approximation strategies, also irregularly chamfered edges
are observed. This indeed is a very rough representation of the actual geometry, but
still the best possible in the context of the present level-set approach. Luckily, however,
the corresponding approximation error may be effectively reduced by means of mesh
refinement, as is shown in “Refinement strategies to improve the approximation quality”
section.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 21 of 40

a b

Fig. 19 Improper / misaligned approximation of cutting plane in case several boundaries are intersecting a
single background element. a Several boundaries intersecting a single element. bWrong approximation of
cutting plane following a best-fit approach

Approximation in case several boundaries are intersecting

Since a specific background element can per definition just have one cutting plane, the
only possible approximation, in case of several intersecting boundaries, is a plane. This
plane replaces all boundaries by a single one and is determined following a fitting criterion.
In doing so, it must be accepted that all information about the single boundaries is lost.
This loss of information, however, is not necessarily a bad characteristic. As a matter of
fact, it allows to properly describe immersed geometries even if they are badly modeled
and contain overlaps or duplicated geometries. More precisely, when several boundaries
within one intersected background element are replaced by a single one, overlaps or dupli-
cated geometries are simply “overseen” and therefore do not cause any further problems.
i.e., a robust treatment of such “dirty geometries” is an inherent property of the pre-
sented approach. The specific strategy to approximate several immersed boundaries by
one cutting plane is described in the following:
Consider the conceptual illustration of the problem in Fig. 19a. The figure visualizes

a case where two distinct immersed boundaries are traversing the same elements of the
backgroundmesh. The corresponding intersection pattern is characterized by the fact that
there are more than three intersection points and double-intersected edges. Therefore,
an obvious way to approximate the immersed boundary by a cutting plane would be again
a best-fit approach, much like it was already proposed in the previous sections for similar
intersection patterns. However, if one actually approximates the immersed boundaries
by a single plane determined through a best-fit procedure, it is possible to obtain an
approximation of the geometry as depicted in Fig. 19b. As can be seen from the figure, the
best-fit approachmay result in an approximated cutting plane which indeed is “optimally”
placed between the intersection points, but its orientation is clearly wrong. Instead, one
would expect the cutting planes to be aligned with the two opposite surfaces.
Therefore, in order to obtain a properly aligned approximation in case a background

element is intersected by two or more immersed boundaries, it is not advisable to follow a
best fit approach. Instead, it is recommended that both, base point and surface normal of
the cutting plane is determined by an averaging approach. In this an averaging approach,
the base point of the cutting plane is defined to average all intersection points, see Eq.
(15). And its surface normal is computed as mean vector over the m surface normals at
all intersection points of the background element under consideration:

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 22 of 40

Fig. 20 Approximation of a properly aligned cutting plane for the case of multiple boundaries crossing
single background elements

a b

Fig. 21 Problematic intersection pattern with the approximation of a wing in a background mesh. aWing
model. b Element with several immersed boundaries at the sharp edge of the wing

n = 1
m

m∑
i=1

ni, (17)

To avoid cancellation in case individual surface normals point in opposite directions,
meaning their enclosed angle exceeds 90◦, all vectors are firstly aligned to the first in the
sum. I.e., iff ni · n1 < 0, then ni = −ni. The final approach is illustrated in Fig. 20.
As alreadymentioned above, such a solution for the approximation of several immersed

boundaries by a single cutting plane is advantageous if immersed objects containmodeling
errors. However, it also plays an important role in cases where thin or tapered structures
are immersed into a background mesh. As an example, consider the wing shown in Fig.
21a. Putting this wing into an arbitrary tetrahedral background mesh, there will be most
likely a lot of elements around the sharp edge, which are intersected by several immersed
boundaries (see Fig. 21b). Therefore, a proper treatment of these cases is decisive for the
overall approximation quality. The achievable approximation quality for the presented
wing is discussed in “Refinement strategies to improve the approximation quality” section
in the context of mesh refinement.

Summarized strategy to determine local cutting planes

In the previous subsections it was described how to determine the local cutting plane in
case of planar geometries, curved geometries and geometries with sharp edges or bound-
aries intersecting background elements twice. In all cases, the base point and the normal
vector of the corresponding cutting plane were defined either directly from the intersec-
tion points or by following an averaging, respectively a best-fit procedure. The approach

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 23 of 40

Fig. 22 Strategy to determine the cutting plane for a given intersected background element. Determination
requires a base pointPA and a normal vector n.Pi denotes the intersection points

which was chosen in the individual case, was depending on the number of intersection
points as well as the local intersection pattern. Figure 22 summarizes the proposed overall
strategy to determine the cutting plane for a given intersected background element.

Refinement strategies to improve the approximation quality
In the context of immersed methods, the size of the elements in the background mesh
generally defines a length scale up towhich geometric details of the immersedobject canbe
resolved. Consequently every detail smaller than this length scale is simply neglected. The
approximation quality is hence directly depending on the resolution of the background
mesh and, if necessary, may be controlled by means of refinement strategies. Note that
the dependency of the approximation quality on the resolution of the background mesh
may be actually seen as a very beneficial characteristic since it inherently allows to handle
flaws in the description of the immersed geometry (like gaps, overlaps, etc.) and it allows
to exploit a multiresolution analysis in the case of complex investigation scenarios.
In case the approximation quality must be improved, an adaptive mesh refinement in

two steps is proposed: first, in a loop over all elements of the background mesh, ele-
ments that satisfy a specified refinement criterion are tagged. Then, in a second loop over
the elements, all tagged elements are refined using the algorithm described in [19]. As
refinement criterion, the local approximation quality is utilized, i.e., only those elements
shall be tagged, which cause problems in the approximation of the immersed geometry.
Within this paper, three of such problematic cases are considered. They are conceptually
summarized in Fig. 23.
The first problematic case is identified when an element of the background mesh is

intersected by the immersed geometry such, that it contains an edge which is cut twice
(see Fig. 23a). In order to properly approximate the immersed geometry in this case, the
corresponding element has to be refined until the two opposite surfaces fall into different
elements of the background mesh.
Second indicator for a problematic case is a possible change of the surface normal of the

immersed object within a single background element (see Fig. 23b). If the object is only

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 24 of 40

a b c

Fig. 23 Problematic cases to be tagged for refinement. a Double-intersected edges. b High change in
curvature. c Elements with no cutting plane

slightly curved or even planar, the change of normal vectors is small, i.e., no refinement
is necessary. But if the curvature is large or the object changes its direction within an
element, the element needs to be refined. Therefore, in case the normal orientation of the
immersed geometry changes within a single background element, every pair of surface
normals at the intersection points, n1 and n2, is compared. If the corresponding angular
change exceeds an adjustable limit of α, the element is also tagged for refinement.
As third and last indicator, consider the case in which a background element is just

slightly touched by the immersed object such that no cutting plane can be approximated
(e.g., only one edge of the element is cut, see Fig. 23c). As pointed out earlier in “Geometri-
cal representation of immersed objects using a discontinuous distance function” section,
elementswhereno cutting plane canbe approximated are simply ignored.As thiswill obvi-
ously introduce an error in the approximation of the immersed geometry, a refinement
shall be triggered here. Note, that unlike in the previous two cases, a refinement will in this
case not completely cure the problem as there will be always one element at the very edge
of the immersed geometry. But by refinement, this problemmay be reduced to a negligible
influence. The final adaptive mesh refinement algorithm in pseudocode reads as follows:

//1 Tag problematic elements to be refined

for Element in BackgroundMesh do
DetermineCuttingPattern()
if ncut_edges < 3 or ndouble_intersected_edges > 0 or � (n1,n2) > α then:

TagElement()
end if

end for

// 2. Refine all tagged elements

for Element in BackgroundMesh do
if Element.IsTagged() then:

RefineElement()
end if

end for

To test the proposed algorithm, the wing geometry from Fig. 21 is placed into an initial
background mesh with a coarse discretization including 4.0e5 elements. “Coarse” dis-
cretization in the present context means, that the size of the elements of the background

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 25 of 40

Fig. 24 Model setup to test the proposed refinement strategy with regard to possible improvements in the
approximation of immersed objects. a Overall model setup with wing placed into a background mesh. b
Section view through the background mesh around the wing for a size comparison

mesh is large compared to the characteristic dimensions of the immersed object. For a
size comparison, refer to Fig. 24, which shows the overall setup as well as a section view
around the wing.
The resulting approximation of the wing without any refinement of the background

mesh and following the procedure discussed in “Geometrical representation of immersed
objects using a discontinuous distance function” section is presented in Fig. 25a. As can be
seen, without any refinement, the surface of the wing is quite porous and the leading and
the trailing edge is not well approximated. However, already after applying one refinement
iteration (α = 30◦), the results can be improved significantly, as shown in Fig. 25b. Further
refining the background mesh finally results in a continuously better resolved geometry,
see Fig. 25c, d.After five levels of refinement already a very good surface quality is obtained.
With regard to the backgroundmesh, the number of elements hardly increases after the

first three levels of refinement. This is because additional elements are only introduced
around critical areas, i.e., mostly along the edges and regions with a low geometry reso-
lution. This quickly fixes large surfaces and repairs comparably slower the edges. Only if
one wants to further resolve geometric details, such as the sharp edges here, more levels
of refinement are necessary. In the present case this leads to 2.2e6 elements after five
repetitions of the proposed refinement strategy.
As amatter of fact, being able to resolve sharp edges is an important characteristic of the

proposed approach. This becomes particularly relevant in cases where edges play a domi-
nant role (e.g., in an immersed CFD analysis of bluff bodies). To highlight this feature, Fig.
26 shows the surface approximation of a simple cube immersed into a refined background
mesh containing 2.3e6 elements. The setup correspond to the test case for sharp edges
introduced in “Approximation of surfaces with sharp edges” section. The resulting surface
approximation for a non-refined background mesh is presented in Fig. 18. In contrast to
that, Fig. 26b shows the resulting surface approximation for a six times refined background
mesh. Comparing both figures, it can be seen, that without any refinement, the edges of
the approximated cube are significantly chamfered. By means of mesh refinement, how-
ever, these edges can be well captured and a very good overall approximation quality can
be obtained.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 26 of 40

Fig. 25 Approximation of an immersed wing geometry within a background mesh after different levels of
refinement. a No refinement (4.0e5 elements). b 1 level of refinement (4.4e5 elements). c 3 levels of
refinement (6.2e5 elements). d 5 levels of refinement (2.2e6 elements)

Fig. 26 Approximation of a cube immersed into a refined background mesh. a Section view of the refined
background mesh with immersed cube (nodes of the entire background mesh are highlighted). b Resulting
surface approximation within the refined background mesh

Again note, that only critical regions of the background mesh, i.e., mostly around the
cube edges, are refined. Other regions not affecting the approximation quality remain
unchanged. Figure 26a visualizes this adaptive refinement by highlighting all nodes of the
background mesh. As can be seen from the figure, the originally regular distribution of
nodes is interrupted by an accumulation of nodes mostly around the edges. This accumu-

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 27 of 40

102 103 104 105 106 107

number of background elements

10-4

10-3

10-2

10-1

er
ro

r

adaptive refinement

102 103 104 105 106 107

number of background elements

10-4

10-3

10-2

10-1
uniform refinement

102 103 104 105 106 107

number of background elements

10-4

10-3

10-2

10-1

er
ro

r

uniform refinement

Fig. 27 Quantitative study of the approximation error for a sphere immersed into a continuously refined
background mesh (The dots indicate six levels of refinement following two different strategies)

lation around the edges is due to the additional elements, which were introduced into the
background mesh during the refinement.
After the previous focus onqualitative aspects, a quantitative evaluation of the geometric

approximation quality is presented in the following. As a precisely defined test case, a
sphere with the radius r = 0.4 is positioned into a box-shaped background mesh, which
then is refined several times, both uniformly at every intersection and adaptively using
the above presented algorithm with α = 1◦ (i.e., if the surface normal of the immersed
geometry within a single intersected background element changes by more than one
degree, the corresponding element is refined). For everymesh, the following errormeasure
is evaluated:

ε = ||r − r̃i||max (18)

In this equation, r̃i represents the approximated radius at the i-th node of the approxi-
mated sphere, and || · ||max the maximum norm. Figure 27 summarizes the results of this
study.
From the figure it can be seen, that with both refinement strategies (adaptive and uni-

form) the error continuously reduceswith increased level of refinement. The lowest values
are thereby of the order 1e−4,meaning the approximated radius deviates from the analytic
one by only 0.025%. The difference in both cases is the number of elements introduced
to obtain such an accuracy. The best accuracy with the uniform refinement is obtained
with 1e6 elements, whereas the adaptive refinement yields an even better approximation
with only around one third of the elements. Note, that this is because elements are only
refined if they show one of the three problematic intersection cases mentioned above. In
the first four levels of refinement the mesh is coarse compared to the sphere dimensions,
so basically all elements are considered problematic. As a consequence, the results of the
uniform and the adaptive refinement are similar. However, after the fourth refinement
iteration there are less and less problematic background elements, such that an adaptive
refinement quickly pays off. Note also, that refining non-problematic elements, might

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 28 of 40

locally result in problematic elements again, which explains the sudden error increase in
the last iteration of the uniform strategy.
From all the previous results in this section, it can be concluded, that the proposed com-

bination of adaptive mesh refinement and implicit geometry description results in high
quality surface approximations with amanageable number of elements in the background
mesh.

Identification of closed regions using a continuous distance function
For the special case that closed geometries shall be described implicitly within a given
background mesh, an algorithm is presented in the following, which allows to distinguish
regions inside the closed domain from regions outside of it. The approach relies on a
continuous distance function which is formulated based on the discontinuous distance
function presented in “Geometrical representation of immersed objects using a discon-
tinuous distance function” section. The continuous distance function is constructed such
that it assigns each node of the backgroundmesh a unique negative distance value if it lies
inside the immersed geometry, and a unique positive distance value else. The proposed
algorithm consists of the following three basic steps:

1. Calculate elemental distances: Calculate for each intersected element separately the
nodal distances following the above introduced discontinuous distance calculation.

2. Determine absolute nodal distances: Determine for each node of the background
mesh a unique distance value by finding the smallest distance value associated to this
node in all intersected neighbor elements.

3. Determine signs: Determine for each node if it lies inside or outside the closed region
using a specially tailored ray casting algorithm.

The first step recalls the techniques introduced in “Geometrical representation of
immersed objects using a discontinuous distance function” section and the second step
corresponds to a straightforward operation. Thus, in the following, the focus is on the last
step. In this last step, it has to be determined whether a given node lies inside or outside
the closed geometry. This operation is known in literature as the point-in-polygon (PIP)
problem [35–37].
There are several algorithms to solve the PIP problem. Many of them rely on watertight

boundaries or a proper orientation of surface normals. However, in case of complicated
geometries or models from practice, none of these two characteristics can be guaranteed.
Correspondingly, an approach is proposed in the following, which does not utilize such
information. Instead, an algorithmbased on ray casting is elaborated.Note, that a common
alternative to this ray casting would be an approach based on voxelization, see e.g. [38,39].
However, such an algorithm strongly depends on the voxel size for non-clean geometries,
which is why this alternative was avoided.

Basic ray casting

The ray casting algorithm was first developed by Arthur Appel for rendering purposes in
1968 [40]. Since then it has been generalized for various different applications in which
the analysis of intersection points between a ray and given 3D objects or geometries is
of interest. A common use of the technique is to solve the PIP problem. Among several

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 29 of 40

Fig. 28 Concept of ray casting to identify inside and outside of a closed geometry: Start from outside and
determine the status of a given node by following the status of the ray, which changes after each intersection
with the boundaries

existingmethods, a classical approach is the ray intersectionmethod [35]. In thismethod, a
random ray is emitted from the point of interest and the resulting number of intersections
between this ray and the surface contours of the given 3D object is counted. If the number
is even, the point is outside the 3D object. If it is odd, the point is considered inside.
A slightly modified version of this method is used within the current work to solve the
problem of assigning signs to the nodal distance values. The modifications are mainly
introduced to increase the algorithm’s robustness in case of deficient (“dirty”) geometries.
One modification is the following: Instead of starting from the point of interest, the

ray is always shot from a point outside of the domain to a node of interest within the
background mesh, and from there to a point outside again. In doing so, the ray is aligned
to the Cartesian directions. The latter improves the efficiency of the intersection search
and the fact that it starts and ends outside may be later used for the purpose of ray
validation. Given such a ray, all intersections between the immersed geometry and the ray
are determined, whereas in direction of the ray, every intersection causes a change of its
status (inside or outside the immersed geometry). That is, starting from a point outside,
the first intersection indicates that the ray entered the inside of the immersed geometry.
Another intersection then indicates that the ray is outside again, and so forth. The position
of the actual node of interest is then determined by the current status of the crossing ray.
Finally, a positive sign is assigned to the node’s distance value if the ray indicates a region
outside and a negative value else. A 2D example of the approach is illustrated in Fig. 28.
Further modifications of the ray casting algorithm are discussed in the following sections.

Improvements for non-watertight geometries

The ray casting technique has a deterministic behavior for clean geometries so that one
ray is enough to univocally determine whether a node is inside or outside. However, for
non-watertight geometries there aremany possibilities for which the basic technique fails.
Considering the non-watertight geometry with gaps and overlaps depicted in Fig. 29, the
failure cases are:

1. The ray passes exactly through a gap (see Fig. 30a). In this case the ray will not
make any intersection with the boundaries and continues as it was still outside of the
geometry.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 30 of 40

Fig. 29 A non-watertight geometry with gaps and overlaps

Fig. 30 Errors in the modeled geometry, which lead to an erroneous coloring (wrong identification of inside
/ outside status). a Situation with gaps. b Situation with overlaps

2. The ray passes through an overlapped part (see Fig. 30b). In this situation, the ray
would detect two intersection points when entering the geometry leading to the
wrong conclusion that after the second intersection it is again outside.

To deal with these problems, it proposed to use several rays for a specific node of
interest, i.e., one ray for every coordinate direction, and decide on the nodes position
by voting. The concept is adopted from an approach to simplify and repair polygonal
models [41]. In the three-dimensional case for example, if one ray passes through a gap
or overlapped region, the other two rays would vote for a correct result. Hence the node’s
position can be determined correctly. Figure 31 conceptually illustrates the approach for
the two-dimensional case with two rays. From the experience of the authors, this simple
idea works well in practice and can handle the majority of modeling errors by the cost of
an increased ray casting time. However, the latter is negligible compared to the rest of the
algorithm presented in this paper.
While the proposed mechanism of voting works well in practice, there is still the lit-

tle possibility that two or even all rays are passing conflicting areas leading to wrong
conclusions. To this end several improvements are included:

1. Ray validation: Since a ray by construction starts outside and also has to end there,
the ray can be validated. That is, if a ray has ended but still is colored as inside, it is
clearly invalid. Hence this ray is not considered in the voting. An example where an

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 31 of 40

Fig. 31 Concept of voting: two rays vote whether a certain node is inside or outside. Then a decision is made
based on the votes. Here, one ray is voting for outside and the other for inside. Note that in 3D, there is one
more ray, so that a draw is not possible

Fig. 32 Improvements for on increased robustness of the ray casting algorithm. a Exclusion of an invalid ray
from voting. b Local ray casting

exclusion of an invalid ray prevents false conclusions with respect to a node position
is given in Fig. 32a.

2. Collapse adjacent hits: If a ray detects two intersections that are very close (in com-
parisonwith the element size), they are collapsed in order to better dealwith overlaps.

3. Local ray casting : Invalidating rays may result in situations where all rays are con-
sidered invalid or where two valid ones give different results. In such cases, a local
ray casting from neighbor nodes with known color (inside/outside status) will be
performed. Therefore, local rays are sent from these neighbors to the one node to be
colored. Then the final color is decided by voting again. The concept is illustrated in
Fig. 32b.

It should be remarked, that the concept of voting and all the other above improvements
do not reduce the theoretical possibility of failure to zero. But in practice, they yield a very
robust algorithm to determine the sign of all distance values respectively all inside and
outside areas.

Cases that include double-sided geometries

One of the main advantages of the implicit geometry description presented in this cur-
rent work is to deal with double-sided geometries (like for example membranes). These
geometries do not represent a volume and their boundary is not explicitly defined by a
closed surface. If such an object is positioned into a background mesh together with a
closed geometry, then the above ray casting approach can not be readily applied to deter-

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 32 of 40

Fig. 33 Combination of closed (solid line) and double-sided structures (dashed line): double-sided structure
is marked by a flag and then simply ignored in the ray casting algorithm

mine inside or outside areas since the ray will also count hits with the double-sided object.
To this end, a previous mark-up is introduced. That is, in cases where both, double-sided
geometries and closed volume bodies are immersed into the same background mesh, the
double-sided geometries are flagged prior to the ray casting. Hits with flagged geometries
will then simply be neglected in the actual ray casting afterwards. Hence inside and outside
areas may again be properly defined. The concept is illustrated in Fig. 33.

Examples of immersed geometries with different features and challenges
In this chapter, the implicit description of geometry within a background mesh using the
above presented strategy is tested for several geometries with varying complexity. The
goal is to demonstrate its capabilities and its applicability in conjunction with complex 3D
geometries. Therefore, three test cases from different fields of application are considered.
The first one is a sail model representing the general case of a surface geometry immersed
into a computational background mesh. The second case represents a section model
of an inflatable hangar with which the situation for closed volume geometries shall be
investigated. The last test case comprises a complete racing car and hence combines all
the aforementioned cases to a complex problem, as it has to be expected for industrial
examples.
The testing procedure is as follows: first, the geometry under consideration is placed

into a simple block-shaped domain which is meshed with equally distributed tetrahedral
elements as it may be obtained from any meshing software within a short period of
time. Then, the complete algorithm, as presented in this paper and as outlined in Fig.
4, is applied to implicitly describe the immersed geometry with respect to the given
background mesh. Finally, the implicit description of the geometry is used to reconstruct
a surface approximation (see “Visualization of the approximated immersed geometry”
section), which in a last step is then compared to the original model. Note, that in the
following, a visualization of the background mesh is omitted to avoid clutter.

Surface geometries

In the following, the algorithm is tested for a surface geometry immersed into a regular
block-shaped computational mesh discretized by 800,000 tetrahedrons. The geometry
itself represents a sail setup with three membranes of different sizes. The corresponding
model is shown in Fig. 34. Goal is to represent these sails implicitly within the given

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 33 of 40

Fig. 34 STL model of sails to be represented within a background mesh

background mesh, whereas the particular focus is on how well the curved surface areas
and free edges are approximated.
Applying the presented algorithm to implicitly describe the sails within the given back-

groundmesh, the surface approximation presented in Fig. 35a is obtained. From the latter
one can see, that the curved surface regions are approximated very well such that the
three different sails clearly form out without any unexpected approximation errors. At
the free edges or sharp corners, however, there are striking defects that do not resolve
the actual edge sufficiently. As a matter of fact, these defects arise from the special inter-
section patters between geometry and background mesh at the free edges and can be
considered as a problem of mesh refinement. Applying adaptive refinement as introduced
in “Refinement strategies to improve the approximation quality” section, the quality of
the approximation can be significantly improved up to a point where the free edges are
accurately captured, see Fig. 35b. It is worthwhile to mention, that this test case includes
a point where different geometric entities (two sails) touch each other such that a G0-
continuous connection forms out. As can be seen from Fig. 35b, also the area in the direct
vicinity of this connection point is accurately resolved, which can be traced back to the
advantages of the discrete distance function that identifies the immersed boundary in a
purely local operation.

Closed volume geometries

In this section the presented algorithm is tested for the case that a closed geometry is
immersed into a regular block-shaped computational mesh. Goal is to see firstly, whether
the implicit representation of the geometry also shows the closed shape, and secondly,
whether it is correctly distinguished between inside and outside the geometry. To this end,
a model section of an inflatable hangar is chosen, see Fig. 36a. Regions that are difficult
to represent accurately in this case are the bottom sections, where large surfaces locally
connect to sharp edges which by themselves are curved.

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 34 of 40

Fig. 35 Reconstructed surface approximation of sails immersed into a block-shaped background mesh. a
Without adaptive refinement of background mesh (∼800,000 elements). bWith four levels of adaptive
refinement (ca. 4.5 Mio. elements)

Fig. 36 Section of an inflatable hangar model and its implicit representation in a background mesh. a STL
model. b Reconstruction of approximated geometry without refinement of background mesh (∼800,000
elements). c Reconstruction of approximated geometry after adaptive refinement (∼9 Mio. elements). d A
look inside the approximated geometry

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 35 of 40

Applying the presented algorithm to implicitly describe the hangar section within a
background mesh of initially 800,000 tetrahedrons, the surface approximation presented
in Fig. 36b is obtained. Even though the tubes and surface regions are clearly forming out
as expected, there are striking defects around the sharp edges on the ground. Similarly
as in the previous section, this is mostly because of the low resolution of the background
mesh, which yields very difficult intersection patterns for areas with rapidly changing
geometric characteristics such as the sharp edges. The defects can be resolved by an
adaptive refinement of the background mesh, see Fig. 36c. Moreover, the refinement
leads to a proper capturing of the hangar’s closed regions, see Fig. 36d.
Apart from the pure approximation of the immersed geometry, also inside and out-

side regions were identified following the approach described in “Identification of closed
regions using a continuous distance function” section. Figure 37 shows the corresponding
results for an arbitrary cross-section of the hangar. From the figure it may be seen, that
only the nodes inside the geometric boundaries, so the nodes that are part of the pressur-
ized volume, are tagged with a negative signed distance, whereas all the others obtain a
positive sign. The signs allow for a clear distinction of the different parts in the computa-
tional mesh. The corresponding information may for example be utilized in an immersed
CFD simulation where the interior and the exterior flow need to be treated differently.
It is worthwhile to mention, that this distinction was performed without referring to the
surface normals of the geometry. By doing so, any problems related to misaligned nor-
mals, as they often occur in practical applications, are avoided. From the previous results
it is evident, that a combination of discontinuous and continuous distance function, as
proposed in this paper, can be utilized effectively to represent closed geometries within a
background mesh.

Combined arbitrarily complex geometries

Having tested both, closed and double-sided geometries individually, the presented algo-
rithm is in this section applied to a large-scale example, which includes both cases. The
model under consideration represents a complete racing car and contains rather sim-
ple as well as very complex geometric features on various length-scales ranging from
large-spanned surface areas to detailed geometric objects. The corresponding geometry is
depicted in Fig. 38. As a reference discretization, again a block-shaped tetrahedral mesh is
used, whereas this time, the initial discretization is intentionally chosen to be very coarse
(only 40,000 elements). Starting from that coarse discretization, the background mesh is
gradually refined, and in each case the corresponding implicit surface representation is
evaluated.
Since the model under consideration contains a lot of details, an improper representa-

tion has to be expected from the initial coarse discretization. This in fact can be observed
when looking at the resulting approximation depicted in Fig. 39a. In order to be able
to capture the geometry in all its detail, a significant refinement of the reference mesh
is required. However, to avoid an explosion of the number of elements, it is of utmost
importance to concentrate the refinement around spots where it is actually necessary.
It, e.g., is not constructive to massively refine elements around plane or slightly curved
surfaces. Instead, a concentration of elements around complex details is crucial. Key to
success here is a powerful adaptive refinement strategy. Applying the adaptive refinement
proposed above in a successive process, it is finally possible to represent the racing car

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 36 of 40

Fig. 37 Sign of nodal distances at a cross-section of the hangar (a positive sign indicates a node outside the
tubes and a negative sign a node inside). a Position of cross-section. b Sign of nodal distance values

Fig. 38 STL model of a racing car representing a complex geometry including surface and volume areas at
different length-scales

in all its details within the background mesh, see Fig. 39b, c. The resulting number of
elements (1.6 · 106) thereby remains in an acceptable range. Particularly interesting to see
is, that hollow regions at the air ducts and the driver cabin as well as the flat spoiler and
undertray parts are generally detected and resolved.
Note, that the displayed feature lines and the hence related discretization seen in Fig.

39 is not used for any computation but is only a consequence of the reconstruction of the
racing car based on the implicit geometry description within the background mesh (refer
to “Visualization of the approximated immersed geometry” section about visualization of

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 37 of 40

Fig. 39 Surface approximation of racing car with different refinements of the background mesh. a No
refinement (4.0e4 fluid elements). b 2 levels of refinement (9.5e4 fluid elements). c 5 levels of refinement
(1.6e6 fluid elements). d Close-up after last refinement

the immersed geometry). As a result an accumulation of feature lines or reconstructed
elements indicates indirectly regions where the adaptive refinement actually refined the
background mesh. Knowing the meaning of the feature lines, one can conclude from Fig.
39c, that spots on the race car with a complex geometry and difficult intersection patterns
(spoiler, undertray, edges) are refined much more than wide surface areas or planar parts.
This has to be expected from the adaptive refinement strategy.
Despite all the refinement so far, there are still local approximation errors on a small

scale,mostly around edges (see close-up in Fig. 39d). These local approximation errors still
appear because the model contains very small details compared to its overall dimensions,
i.e., the resolution of the background mesh is locally still too coarse. In fact, these errors
can not be avoided completely, however, by further refinement of the background mesh,
they may be reduced down to a scale where their impact is acceptable. In this context, Fig.
40 shows the best surface approximation, which was obtained for the racing car within
the present work.

Conclusion
The paper presented a robust algorithm to implicitly describe triangulated geometries
within a tetrahedral background mesh. The algorithm is based on a level-set approach
and combines a discontinuous with a continuous distance function. Because of that, it
allows to describe both, double-sided and closed geometries within a single background
mesh, and without special requirements on the discretization. Given that a closed geom-
etry is involved, a ray casting approach was suggested to distinguish inner from outer
regions. This allows to treat the individual regions separately in a subsequent computa-

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 38 of 40

Fig. 40 Surface approximation of racing car after massive refinement of background mesh (9e6 elements). a
Iso-view. b Front-view

tional operation. Improvements with respect to robustness of the basic ray casting were
introduced so that complex cases may be handled in practice.
The overall algorithm relies on a local definition of cutting planes. In this context,

the most important intersection patterns have been identified and a solution for their
approximation has been proposed. To detect actual intersections, an octree-based search
algorithm was proposed. It was shown, that a local description by a cutting plane in the
majority of the cases can properly approximate the immersed boundary. However, cases
were elaborated, in which a proper approximation of the immersed boundary by a single
cutting plane is impossible due to the inherent dependency on the resolution of the back-
ground mesh. To overcome these problems and to increase the general approximation
quality, an adaptive mesh refinement was proposed and integrated into the overall algo-
rithm. With several test examples it was shown, that systematic mesh refinement may be
effectively applied to reduce the remaining approximation errors to an acceptable level.
A unique feature of the proposed algorithm is the ability to handle arbitrary shapes,

several geometries within a single background mesh, and common modeling errors like
gaps, overlaps or duplicated objects. This flexibility and robustness is a consequence of the

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 39 of 40

discontinuous distance formulation, the local reduction of the cutting pattern to only one
cutting plane, and the ray casting, which was formulated to not be dependent on surface
normal information. Particular advantage of the algorithm is therefore its applicability
with practical problems, even in case of present modeling errors. Several geometries
including a complete racing car were demonstrated and discussed in this context.
In summary, the proposed algorithm shows to be a solid basis whenever geometry is to

be described implicitly within a background mesh. A typical application would be within
the scope of an immersed CFD analysis of objects with complex geometries. In that, it may
circumvent the time-consuming or even impossible creation of a body-fitted mesh by the
cost of a reduced accuracy. Furthermore, it is worthwhile to note, that the algorithmmay
not just be used to describe geometry, but also to track geometric changes. Therefore,
other fields of application are conceivable, such as in fluid-structure interaction analysis
of ultra-lightweight structures or in shape optimization involving big shapemodifications.
All of the aforementioned applications will be topic of future research.

Abbreviations
CFD: computational fluid dynamics; CAD: computer-aided design; MPI: message passing interface; NURBS: non-uniform
rational B-splines; STL: stereolithography; PIP: point-in-polygon.

Authors’ contributions
All authors have prepared the manuscript. All authors have read and approved the final manuscript.

Author details
1Technische Universität München, Arcisstr. 21, 80333 München, Germany, 2International Center for Numerical Methods in
Engineering (CIMNE), Technical University of Catalonia, Campus Norte UPC, 08034 Barcelona, Spain.

Acknowledgements
The authors gratefully acknowledge the support of the European commission through the projects NUMEXAS (FP7-ICT
611636) and uLites (FP7-SME-2012 GA-314891).

Competing interests
The authors declare that they have no competing interests.

Availability of data andmaterials
The used software is [22] and freely available under the BSD license.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 January 2018 Accepted: 4 July 2018

References
1. Si H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw. 2015;41(2):11–11136.

https://doi.org/10.1145/2629697.
2. Schöberl J. NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci.

1997;1(1):41–52. https://doi.org/10.1007/s007910050004.
3. The Computational Geometry Algorithms Library. 2017. www.cgal.org. Accessed 28 Dec 2017.
4. OpenFOAM V5 user guide: mesh generation with snappyHexMesh. 2017. https://cfd.direct/openfoam/user-guide/

snappyhexmesh/. Accessed 28 Dec 2017.
5. Coll A. Advances in the generation of nonstructured meshes. Ph.D. Thesis, UPC BarcelonaTech 2014.
6. Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech. 2005;37:239–61.
7. Peskin CS. The immersed boundary method. Acta Numer. 2002;11:479–517.

https://doi.org/10.1145/2629697
https://doi.org/10.1007/s007910050004
www.cgal.org
https://cfd.direct/openfoam/user-guide/snappyhexmesh/
https://cfd.direct/openfoam/user-guide/snappyhexmesh/

Baumgärtner et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:21 Page 40 of 40

8. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR. An immersogeometric
variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods
Appl Mech Eng. 2015;284:1005–53.

9. Codina R, Baiges J. Approximate imposition of boundary conditions in immersed boundary methods. Int J Numer
Methods Eng. 2009;80(11):1379–405. https://doi.org/10.1002/nme.2662.

10. Hansbo P. Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen.
2005;28(2):183–206. https://doi.org/10.1002/gamm.201490018.

11. Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential
equations. Int J Numer Methods Eng. 2014;104(7):472–501. https://doi.org/10.1002/nme.4823.

12. Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations of flow in complex geometries. J
Comput Phys. 2001;171(1):132–50. https://doi.org/10.1006/jcph.2001.6778.

13. Parvizian J, Düster A, Rank E. Finite cell method. Comput Mech. 2007;41(1):121–33. https://doi.org/10.1007/
s00466-007-0173-y.

14. Düster A, Parvizian J, Yang Z, Rank E. The finite cell method for three-dimensional problems of solid mechanics.
Comput Methods Appl Mech Eng. 2008;197(45–48):3768–82. https://doi.org/10.1016/j.cma.2008.02.036.

15. Belytschko T, Parimi C, Moës N, Sukumar N, Usui S. Structured extended finite element methods for solids defined by
implicit surfaces. Int J Numer Methods Eng. 2003;56(4):609–35. https://doi.org/10.1002/nme.686.

16. Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger KU. Analysis in computer aided design: nonlinear
isogeometric B-Rep analysis of shell structures. Comput Methods Appl Mech Eng. 2015;284:401–57. https://doi.org/
10.1016/j.cma.2014.09.033.

17. Breitenberger M. CAD-integrated design and analysis of shell structures. Ph.D. Thesis, Technische Universität
München 2016.

18. Philipp B, Breitenberger M, D’Auria I, Wüchner R, Bletzinger K-U. Integrated design and analysis of structural
membranes using the isogeometric B-Rep analysis. Comput Methods Appl Mechanics Eng. 2016;303:312–40.

19. Rossi R, Cotela J, Lafontaine NM, Dadvand P, Idelsohn SR. Parallel adaptive mesh refinement for incompressible flow
problems. Comput Fluids. 2013;80:342–55.

20. Dadvand P, Rossi R, Oñate E. An object-oriented environment for developing finite element codes for
multi-disciplinary applications. Arch Comput Methods Eng. 2010;17(3):253–97. https://doi.org/10.1007/
s11831-010-9045-2.

21. Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E. Migration of a generic multi-physics
framework to HPC environments. Comput Fluids. 2013;80(Supplement C):301–9. https://doi.org/10.1016/j.
compfluid.2012.02.004.

22. KRATOS-Multiphysics. 2018. https://github.com/KratosMultiphysics. Accessed 4 Jan 2018.
23. Ausas R, Sousa F, Buscaglia G. An improved finite element space for discontinuous pressures. Comput Methods Appl

Mech Eng. 2010;199:1019–31.
24. Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. In: Applied mathematical sciences.

(Springer-Verlag New York Inc.). New York: Springer; 2003.
25. Ericson C. Real-time collision detection. In: The Morgan Kaufmann series in interactive 3D technology. San Francisco:

Morgan Kaufmann; 2005. https://doi.org/10.1016/B978-1-55860-732-3.50001-2.
26. Löhner R. The empty bin: a data structure for spatial search of time-varying data. Commun Numer Methods Eng.

2006;23(12):1111–9. https://doi.org/10.1002/cnm.959.
27. Munjiza A, Andrews KRF. NBS contact detection algorithm for bodies of similar size. Int J Numer Methods Eng.

1998;43(1):131–49.
28. Munjiza A, Rougier E, John NWM. MR linear contact detection algorithm. Int J Numer Methods Eng. 2006;66(1):46–71.
29. Bentley JL. Multidimensional binary search trees used for associative searching. Commun ACM. 1975;18(9):509–17.

https://doi.org/10.1145/361002.361007.
30. Mehta DP, Sahni S, Handbook Of data structures and applications. In: Chapman & Hall/Crc computer and

information science series. New York: Chapman & Hall/CRC; 2004.
31. Samet H. Foundations of multidimensional and metric data structures. San Francisco: Morgan Kaufmann; 2006.
32. Frisken SF, Perry RN. Simple and efficient traversal methods for quadtrees and octrees. J Graph Tools. 2002;7(3):1–11.

https://doi.org/10.1080/10867651.2002.10487560.
33. Teschner M, Heidelberger B, Müller M, Pomeranets D, Gross M. Optimized spatial hashing for collision detection of

deformable objects. In: Proceedings of the vision, modeling, visualization conference (VMV), vol. 3. Munich; 2003. p.
47–54.

34. Akenine-Möllser T. Fast 3D triangle-box overlap testing. J Graph Tools. 2001;6(1):29–33. https://doi.org/10.1080/
10867651.2001.10487535.

35. Nordbeck S, Rystedt B. Computer cartography point-in-polygon programs. BIT Numer Math. 1967;7(1):39–64.
https://doi.org/10.1007/BF01934125.

36. Huang C-W, Shih T-Y. On the complexity of point-in-polygon algorithms. Comput Geosci. 1997;23(1):109–18.
37. Schirra S, How reliable are practical point-in-polygon strategies? In: proceedings of the 16th annual European

symposium on algorithms, Berlin, Heidelberg: Springer; 2008. p. 744–755.
38. Ishida T, Takahashi S, Nakahashi K. Efficient and robust cartesian mesh generation for building-cube method. J

Comput Sci Technol. 2008;2:435–46. https://doi.org/10.1299/jcst.2.435.
39. Huang J, Yagel R, Filippov V, Kurzion Y. An accurate method for voxelizing polygon meshes. In: IEEE symposium on

volume visualization. pp. 119–126 (1998). https://doi.org/10.1109/SVV.1998.729593.
40. Appel A. Some techniques for shading machine renderings of solids. In: Proceedings of the spring joint computer

conference, New York: ACM, April 30–May 2 1968. p. 37–45. https://doi.org/10.1145/1468075.1468082.
41. Nooruddin FS, Turk G. Simplification and repair of polygonal models using volumetric techniques. IEEE Trans Visual

Comput Graph. 2003;9(2):191–205. https://doi.org/10.1109/TVCG.2003.1196006.

https://doi.org/10.1002/nme.2662
https://doi.org/10.1002/gamm.201490018
https://doi.org/10.1002/nme.4823
https://doi.org/10.1006/jcph.2001.6778
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1016/j.cma.2008.02.036
https://doi.org/10.1002/nme.686
https://doi.org/10.1016/j.cma.2014.09.033
https://doi.org/10.1016/j.cma.2014.09.033
https://doi.org/10.1007/s11831-010-9045-2
https://doi.org/10.1007/s11831-010-9045-2
https://doi.org/10.1016/j.compfluid.2012.02.004
https://doi.org/10.1016/j.compfluid.2012.02.004
https://github.com/KratosMultiphysics
https://doi.org/10.1016/B978-1-55860-732-3.50001-2
https://doi.org/10.1002/cnm.959
https://doi.org/10.1145/361002.361007
https://doi.org/10.1080/10867651.2002.10487560
https://doi.org/10.1080/10867651.2001.10487535
https://doi.org/10.1080/10867651.2001.10487535
https://doi.org/10.1007/BF01934125
https://doi.org/10.1299/jcst.2.435
https://doi.org/10.1109/SVV.1998.729593
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1109/TVCG.2003.1196006

	A robust algorithm for implicit description of immersed geometries within a background mesh
	Abstract
	Introduction
	Implicit geometry representation by means of a level-set approach
	Octree-based spatial search to determine intersections
	Geometrical representation of immersed objects using a discontinuous distance function
	Computation of elemental distances
	Visualization of the approximated immersed geometry
	Determination of cutting planes for different intersection patterns
	Approximation of planar surfaces
	Approximation of curved surfaces
	Approximation of surfaces with sharp edges
	Approximation in case several boundaries are intersecting
	Summarized strategy to determine local cutting planes

	Refinement strategies to improve the approximation quality
	Identification of closed regions using a continuous distance function
	Basic ray casting
	Improvements for non-watertight geometries
	Cases that include double-sided geometries

	Examples of immersed geometries with different features and challenges
	Surface geometries
	Closed volume geometries
	Combined arbitrarily complex geometries

	Conclusion
	Acknowledgements
	References

