141 research outputs found

    Excluding Kuratowski graphs and their duals from binary matroids

    Full text link
    We consider some applications of our characterisation of the internally 4-connected binary matroids with no M(K3,3)-minor. We characterise the internally 4-connected binary matroids with no minor in some subset of {M(K3,3),M*(K3,3),M(K5),M*(K5)} that contains either M(K3,3) or M*(K3,3). We also describe a practical algorithm for testing whether a binary matroid has a minor in the subset. In addition we characterise the growth-rate of binary matroids with no M(K3,3)-minor, and we show that a binary matroid with no M(K3,3)-minor has critical exponent over GF(2) at most equal to four.Comment: Some small change

    Fixing numbers for matroids

    Full text link
    Motivated by work in graph theory, we define the fixing number for a matroid. We give upper and lower bounds for fixing numbers for a general matroid in terms of the size and maximum orbit size (under the action of the matroid automorphism group). We prove the fixing numbers for the cycle matroid and bicircular matroid associated with 3-connected graphs are identical. Many of these results have interpretations through permutation groups, and we make this connection explicit.Comment: This is a major revision of a previous versio

    Infinite Matroids and Determinacy of Games

    Full text link
    Solving a problem of Diestel and Pott, we construct a large class of infinite matroids. These can be used to provide counterexamples against the natural extension of the Well-quasi-ordering-Conjecture to infinite matroids and to show that the class of planar infinite matroids does not have a universal matroid. The existence of these matroids has a connection to Set Theory in that it corresponds to the Determinacy of certain games. To show that our construction gives matroids, we introduce a new very simple axiomatization of the class of countable tame matroids

    Constructing internally 4-connected binary matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2013 ElsevierIn an earlier paper, we proved that an internally 4-connected binary matroid with at least seven elements contains an internally 4-connected proper minor that is at most six elements smaller. We refine this result, by giving detailed descriptions of the operations required to produce the internally 4-connected minor. Each of these operations is top-down, in that it produces a smaller minor from the original. We also describe each as a bottom-up operation, constructing a larger matroid from the original, and we give necessary and su fficient conditions for each of these bottom-up moves to produce an internally 4-connected binary matroid. From this, we derive a constructive method for generating all internally 4-connected binary matroids.This study is supported by NSF IRFP Grant 0967050, the Marsden Fund, and the National Security Agency

    Towards a splitter theorem for internally 4-connected binary matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2012 ElsevierWe prove that if M is a 4-connected binary matroid and N is an internally 4-connected proper minor of M with at least 7 elements, then, unless M is a certain 16-element matroid, there is an element e of E(M) such that either M\e or M/e is internally 4-connected having an N-minor. This strengthens a result of Zhou and is a first step towards obtaining a splitter theorem for internally 4-connected binary matroids.This study is partially funded by Marsden Fund of New Zealand and the National Security Agency

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition
    corecore