64 research outputs found

    Low-Complexity Hybrid Beamforming for Massive MIMO Systems in Frequency-Selective Channels

    Get PDF
    Hybrid beamforming for frequency-selective channels is a challenging problem as the phase shifters provide the same phase shift to all of the subcarriers. The existing approaches solely rely on the channel's frequency response and the hybrid beamformers maximize the average spectral efficiency over the whole frequency band. Compared to state-of-the-art, we show that substantial sum-rate gains can be achieved, both for rich and sparse scattering channels, by jointly exploiting the frequency and time domain characteristics of the massive multiple-input multiple-output (MIMO) channels. In our proposed approach, the radio frequency (RF) beamformer coherently combines the received symbols in the time domain and, thus, it concentrates signal's power on a specific time sample. As a result, the RF beamformer flattens the frequency response of the "effective" transmission channel and reduces its root mean square delay spread. Then, a baseband combiner mitigates the residual interference in the frequency domain. We present the closed-form expressions of the proposed beamformer and its performance by leveraging the favorable propagation condition of massive MIMO channels and we prove that our proposed scheme can achieve the performance of fully-digital zero-forcing when number of employed phase shifter networks is twice the resolvable multipath components in the time domain.Comment: Accepted to IEEE Acces

    Algorithms for Efficient Communication in Wireless Sensor Networks - Distributed Node Coloring and its Application in the SINR Model

    Get PDF
    In this thesis we consider algorithms that enable efficient communication in wireless ad-hoc- and sensornetworks using the so-called Signal-to-interference-and-noise-ratio (SINR) model of interference. We propose and experimentally evaluate several distributed node coloring algorithms and show how to use a computed node coloring to establish efficient medium access schedules

    Generalized Superimposed Training Scheme In Cell-free Massive MIMO Systems

    Get PDF

    Free Probability based Capacity Calculation of Multiantenna Gaussian Fading Channels with Cochannel Interference

    Get PDF
    During the last decade, it has been well understood that communication over multiple antennas can increase linearly the multiplexing capacity gain and provide large spectral efficiency improvements. However, the majority of studies in this area were carried out ignoring cochannel interference. Only a small number of investigations have considered cochannel interference, but even therein simple channel models were employed, assuming identically distributed fading coefficients. In this paper, a generic model for a multi-antenna channel is presented incorporating four impairments, namely additive white Gaussian noise, flat fading, path loss and cochannel interference. Both point-to-point and multiple-access MIMO channels are considered, including the case of cooperating Base Station clusters. The asymptotic capacity limit of this channel is calculated based on an asymptotic free probability approach which exploits the additive and multiplicative free convolution in the R- and S-transform domain respectively, as well as properties of the eta and Stieltjes transform. Numerical results are utilized to verify the accuracy of the derived closed-form expressions and evaluate the effect of the cochannel interference.Comment: 16 pages, 4 figures, 1 tabl
    corecore