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Generalized Superimposed Training Scheme In
Cell-free Massive MIMO Systems

Navneet Garg, Member, IEEE and Tharmalingam Ratnarajah, Senior Member, IEEE.

Abstract—Regular pilots in a massive multi-input multi-output
(MIMO) system with large number of users suffer from the
pilot contamination effect due to limited training time. In this
paper, for a cell-free massive MIMO system, we have proposed
a generalized superimposed pilot (GSP) scheme, where the
available number of pilots are equal to the coherence time slots,
and the transmitting data symbols are spread over the coherence
time with the help of simple precoding. Further, in order to
keep the system scalable, a low complexity and distributed
time processing approach is employed, and the corresponding
rate components are analyzed. It is shown that with careful
design of precoding matrix and number of data symbols, the
GSP symbols can provide much better channel estimation and
data detection performance, as compared to the regular pilot
scheme and the conventional superimposed scheme. These results
have been verified via simulations. It is also inferred that
centralized processing in cell free system improves the data
detection performance than localized processing. Iterative data
detection at the central node also improves the MSE of data
estimates. The pilot contamination effect, is significantly reduced
due to availability of larger number of pilots, as compared to
regular pilots transmission.

Index Terms—cell-free; channel estimation; massive MIMO;
pilot training; superimposed pilot.

I. INTRODUCTION

In the recent years, cell-free massive multi-input multi-
output (CF-mMIMO) systems have gained considerable at-
tention, since it is able to achieve all merits of traditional
distributed large-scale MIMO and network MIMO systems
with simple linear decoding schemes [1]–[5]. These merits
include tremendous macro-diversity and coverage ratio, high
spectral and energy efficiencies, low interference and path
fading [6], [7]. In such systems, spatial data detection and
system capacity heavily depends on the CSI quality. To
improve the channel estimation performance in CF-mMIMO
system and to make the system scalable to the number of
users and access points, low complexity matched filter based
approaches are investigated in [8]. However, as the number
of user equipments (UEs) exceeds the number of available
pilots, the reuse of pilots among UEs gives rise to the pilot
contamination, which bottlenecks both the channel estimation
and data detection, and does not vanish even in the asymptotic
regime L → ∞ [9], where L denotes the number of access
points (APs). To minimize the pilot contamination, several
pilot assignment (PA) methods have been studied, including
random PA, greedy PA, Tabu-search-based PA [10], structured
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search Council (EPSRC) under Grant EP/T021063/1. Authors are with Insti-
tute of digital communications, School of engineering, The University of Ed-
inburgh, Edinburgh, UK, EH9 3FG. Emails: {ngarg, t.ratnarajah}@ed.ac.uk.

PA based on geographical locations [11], graph coloring based
PA [12]. Dynamic cooperation clustering has also been used
to reuse the pilots in an efficient way in [8]. In [13], sparse
channel matrix estimates are improved using deep neural
networks for mmWave systems. In [14], [15], pilot power
control is proposed to reduce the pilot contamination using
convex approximation approach, whereas the rate-optimized
power allocation is considered in [16], [17] via geometric pro-
gramming. Energy efficiency maximization for power control
is investigated for mmWave system in [18].

Note that the above works employ regular pilots (RPs)
transmission, where the pilot and data symbols are sent
separately in the coherence interval (T = Tp + Td), where
Tp and Td are the number of time slots used for pilot and
data transmission. The value of Tp decides the number of
available pilots in the system, which in turn decide the strength
of pilot contamination. In contrast to RPs, the transmission
of superimposed pilots (SPs) has been investigated to have
interesting features in traditional large-scale MIMO systems
[6]. In SP scheme, the pilot and data symbols are transmitted
simultaneously over a coherence time block. Particularly, the
SP scheme benefits from suppressing pilot contamination by
reducing the possibility of pilot reuse, since T pilots are
available and T > Tp. However, the correlation between pilot
and data symbols reduces the quality of channel estimation
and deteriorates the data detection process. This performance
analysis has been verified via the asymptotic and closed-
form analytical expressions of sum rate for an uplink massive
MIMO system [19]. In spite of the performance degradation,
the above works indicate that the SP scheme outperform the
RP scheme in terms of the achievable sum rate. Interestingly,
to improve the SP scheme’s performance, a generalized SP
(GSP) framework has been proposed in our previous work [9],
where instead of sending the same number of data symbols
as the number of pilots (T ), the number of data symbols
is reduced and optimized, and further precoded to avoid the
possible pilot contamination in both the channel estimation
and the data detection. The GSP scheme achieves significantly
better performance than the conventional SP scheme, in terms
of both the channel estimation mean-squared error (MSE) and
the sum rates. In the CF-mMIMO system, the work on SP
schemes is limited [6], to the best of author’s knowledge.
Therefore, in such a system, it will be interesting to compare
the performances of RPs, SPs and general SPs.

Related work on precoded superimposed training: In [20],
[21], precoder and pilots are optimized under the condition
T ≥ K + d and found to be proportional to the sub-discrete
Fourier transform (DFT) matrix. In addition to that, authors
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in [22] provide orthogonal precoder and pilot design using
the Cramer-Rao lower bound of the channel estimation error,
whereas they compare joint and individual data & channel
estimations via mutual information bounds in [23]. Precoder
and pilots should be orthogonal, is proved in [24] for frequency
selective channels. Similar orthogonal precoder-pilot design is
obtained via an iterative algorithm in [25]. Five criterion for
data identification is given in [26], including proportionality to
DFT matrix; same magnitude of entries; orthogonal columns;
orthogonal to pilots; and periodic auto-correlation function
of columns of precoder. Authors in [27], [28] select square
precoder matrix (e.g., Hadamard), and analyzes the channel
estimation performance.

Related work on iterative detection: In [29]–[31] with con-
ventional SP scheme, alternative least squares for joint channel
and data estimates is used for improvement and to reduce
the computation time, while utilizing maximum likelihood
based data detection (Viterbi algorithm). In an orthogonal-
frequency-division-multiplexing (OFDM) based amplify-and-
forward (AF) cooperative system with partial data-dependent
superimposed training [32], an iterative method is obtained
based on the variational inference approach by formulating
a free-energy function. In [33] for an OFDM system with
AF relay, after getting channel estimates obtained via MMSE,
iterative demodulation and decoding is performed using turbo
detection and variational Bayesian approximation. A similar
iterative process based on generalized approximate message
passing is used for data detection in underwater acoustics
communications [34], [35].

It can be noted in above works that either channel estimates
or the data detection parts have been exercised to be improved
individually. Together as a whole including optimal pilot
design and iterative detection has not been well investigated
in literature, especially for CF-mMIMO system. Towards that,
in this paper, we analyze orthogonal precoder-pilot design,
followed by iterative estimation.

Relation to our previous work [9]: For the superimposed
symbol, the pilot allocation in this work is the generalization of
[9], which had considered a specific suboptimal pilot scheme.
Moreover, in the channel estimation, pilot reuse was not con-
sidered, that is, only 0 ≤ K ≤ T case was analyzed, whereas
the present work also includes the case K > T . In addition
to that, there were no-connection to local and centralized
processing for CF-mMIMO system, nor [9] includes details
about iterative and distributed-time processing.

A. Contributions

In this paper, a CF-mMIMO system is considered with
multiple users, where the access points (APs) are connected
via a central processing unit (CPU) [7]. For the proposed
GSP scheme, we consider two scenarios, viz., centralized and
distributed processing, and analyze the mean-squared error
(MSE) of channel estimation and sum rates. Further, the
estimates are improved using iterative data detection scheme
with distributed time processing. Note that these scenarios
correspond to the cooperation levels L4 (full-cooperation)
and L1 (no-cooperation) of [7]. For the SP/GSP scheme,

the performance of levels L2 and L3 (relaxed cooperation
versions of L4) is similar to L4. With the same transmit
power constraint, the channel and data estimates of RPs and
conventional SPs are obtained. Simulation results verify the
expressions and shows significant gains for general SPs, as
compared to RPs, and around 54% improvement in sum rates
over conventional SPs for the case of T < K + d, where d
is the number of data symbols for transmission. Contributions
of the article can be summarized as follows.

1) The GSP scheme: Instead of choosing the same number
of data symbols as the number of pilots in the conventional
SP scheme, the GSP scheme is proposed, where any number
(from 1 to T − 1) of data symbols can be used for reliable
communication. Moreover, the data symbols are precoded,
making the channel estimation and data detection less sus-
ceptible to pilot contanimations.

2) Analysis for CF-mMIMO system: For both the central-
ized and distributed processing scenarios, the MSEs of channel
estimates, the powers of self-interference (SI) and cross-
interference (CI), and the sum rates are derived to evaluate
the general SP scheme. The analysis shows that the centralized
operation with CPU can improve the rates significantly, and
asymptotically for large number of APs, signal-to-interference-
plus-noise-ratio (SINR) can be seen to be improved at least
by a factor of L.

3) Iterative estimation: To avoid large computations at
the end of coherence time block, distributed time processing
approach is presented, where the received symbols can be
processed as they arrive, and the final detection will be
decided when all symbols are received. Further, to improve the
data detection for low complexity matched filter processing,
a iterative algorithm is presented, which is demonstrated to
converge in a few iterations.

4) Comparison and simulations: For the same transmit
power constraint as in the GSP scheme, the estimates of
channels and data for both the centralized and distributed
scenarios are obtained. In simulations with the verified analyti-
cal expressions, the different performance indicators show the
improved performance of the GSP scheme for CF-mMIMO
system.

B. Organization

Section II describes the details the cell-free system and
the GSP scheme. The analysis for centralized and distributed
processing for both channel estimation and data detection
are given in Section III. Section IV provides the iterative
estimation. Regular pilot and conventional superimposed pilot
schemes are compared in Section V, followed by simulations
and conclusion in Section VI and VII, respectively.

C. Notations

Scalars, vectors and matrices are represented by lower
case (a), lower case bold face (a) and upper case bold face
(A) letters, respectively. Conjugate, transpose and Hermitian
transpose of a matrix are denoted by (·)∗, (·)T and (·)H , re-
spectively. CN (µ,R) represents a circularly symmetric com-
plex Gaussian random vector with mean µ and covariance
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Figure 1. APs, users, and the CPU in the CF-mMIMO system.

matrix R. The notations ‖ · ‖2 and ‖ · ‖F denote the l2
norm and Frobenious norm, respectively. BD(Ai) denotes a
block diagonal matrix with matrices Ai as its block diagonal
components. The Kronecker delta δkj = 1, when k = j, and is
0 otherwise. Notations mod(a, b), dae and 1a∈A respectively
denote the remainder of a/b, ceil value of a, and the indicator
function.

II. SYSTEM MODEL AND THE GSP SYMBOL

Consider L access points (APs) distributed in a given area
as shown in Figure 1, serving K single antenna users. Without
loss of generality, each AP is assumed to have M antennas.
The received signal at the lth BS can be written as

Yl =
∑
k

hlkx
H
k + Wl = HlX

H + Wl, (1)

where l = 1, . . . , L and xk is the T × 1 transmitted vector
from the kth user, for each k = 1, . . . ,K. The details of the
transmitted vector is given in the next section. The quantity
hkl is the M × 1 channel vector between kth user and the lth

cell. We assume the Rayleigh fading channel model as

hlk ∼ CN (0, βlkIM ) , (2)

where βlk denotes the path loss of the corresponding channel
link. The matrix Wl is the M ×T additive Gaussian noise at
the lth BS with zero mean and σ2 variance across its each en-
try. The matrices Hl = [hl1, . . . ,hlK ] and X = [x1, . . . ,xK ]
are obtained by concatenating the respective vector entries.

A. The GSP symbol

At the kth user, the transmitted superimposed symbol for
both the channel estimation and data transfer can be given as

xk =
√
P
(
pk
√
λ+ Zksk

√
1− λ

)
, (3)

where P is the transmit power per user user per time slot;
λ ∈ [0, 1] is the pilot power allocation factor; pk is the T ×
1 pilot vector; Zk is a T × d orthogonal precoder matrix;
and sk denotes the d × 1 data vector having zero mean and
covariance as E

{
sks

H
k

}
= 1

dId. The pilot and precoder matrix
can be chosen as follows. Let F = [f1, . . . , fT ] be the T × T

orthogonal matrix such that fHi fj = Tδij . Then, each pilot
can be selected as

pk = fk,∀k = 1, . . . ,K, (4)

where k = mod(k−1, T )+1, assigning the available T pilots
in a round robin manner, when pilots are reused (K > T ). Let
Ci denote the set of users who use the ith pilot (i = 1, . . . , T ).

Precoding matrix: The precoding matrix for the kth trans-
mitting user (Zk) can be chosen orthogonal to the pilot pk
as

ZHk pj
T

=

{
0, (k, j) ∈ Z̄,
e(kj), (k, j) ∈ Z,

(5)

where Z = {1, . . . ,K}2 \ Z̄; Z̄ ={
(k, j) : j ∈ Ck,∀k = 1, . . . ,K

}
; e(kj) is a vector of

zeros and ones. Let qkj =
∥∥e(kj)∥∥2. For further usage, we

define Zj be the projection of Z in the second dimension,
i.e.,

Zj =
{
k : ZHk pj 6= 0,∀k 6= j

}
,

which shows that the sets Ck \ {k} and Zk are disjoint by
construction, and k /∈ Zk ⊆ {i : ∀i 6= k}. For example,
with T = 2, K = 3 and d = 1, we have p1 = p3 =
f1 = Z2, Z1 = Z3 = p2 = f2. Then, C1 = {1, 3} and
Z1 =

{
k : ZHk p1 6= 0,∀k 6= 1

}
= {2}. The above allocation

distributes the data symbols over the whole coherence time
when more users are present, i.e., T − K < d; and for
T − K ≥ d, data symbols are spread over only T − K
dimensions in order to provide the accurate channel estimation
with pilot contamination. If T −K ≥ d and M ≥ K, the data
symbols can be estimated in a much better and reliable manner.
The two other products can be defined as pHk pj = Tδkj and

ZHk Zl
T

=

{
J[kl], k 6= l,

Id, k = l,
(6)

where Jn is a rank-n permutation matrix with n-ones. The
transmit power constraint at the k-th user can be given as

E‖xk‖2 = P · E‖pk
√
λ+ Zksk

√
1− λ‖2

= P ·
[
‖pk‖2λ+ E‖Zksk‖2 (1− λ)

]
= PT,

where ‖Zk‖2F = Td. The product of precoder matrix and the
superimposed vector can be defined as

R
[Z]
k,ij = E

ZHk xi

T
√
P

xHj Zk

T
√
P

= λekie
T
kj +

1− λ
d

δijJ[ki]J
T
[kj], (7)

and cki = tr(R
[Z]
k,ii).

III. CHANNEL AND DATA ESTIMATION IN CF-MMIMO
SYSTEM

In the cell free system, APs are connected via fronthaul
connections to a CPU that has higher computational resources.
Hence, the APs can cooperate to provide the better perfor-
mance to UEs. The lth AP receives the signal, and can use
the available channel estimaties to detect the data signals
locally, or fully delegate the data detection to the CPU, which



4

can combine the inputs from all APs to provide superior
performance [7]. In the following, we first provide the analysis
of localized processing based channel estimation and data
detection. Thereafter, the CPU based centralized processing
is analyzed.

A. Localized processing

To get the meaningful channel or data estimates, the re-
ceived signal equation in (1) should satisfy the necessary
condition that the number of equations (MT ) must be at least
equal to the number of variables, that is,

MK +Kd ≤MT, (8)

where MK and Kd stand for number of channel and data
variables, e.g., for K = 3 and T = 6, d ≤M

(
T
K − 1

)
= M .

If the above condition is not satisfied, it leads to pilot and data
contamination.

1) Channel estimation: At the lth cell, the channel esti-
mates can be obtained using least squares (LS) method as

ĥlk = arg min
hlk

∥∥∥Yl −
√
Pλhlkp

H
k

∥∥∥2
F

(9)

=
Ylpk

T
√
Pλ

= hlk + ∆lk, (10)

where the estimation error ∆lk is given as

∆lk =
1

T
√
Pλ

∑
i 6=k

hlix
H
i pk +

Wlpk

T
√
Pλ

=
∑

i∈Ck\{k}

hli +

√
1− λ
λ

∑
i∈Zk

hlis
∗
(ik) + wlk,

with s∗(ik) = sHi e(ik) and wlk = Wlpk
T
√
Pλ
∼ CN

(
0, σ2

PTλIM

)
.

The factor σ2

PTλ denotes the inverse value of the pilot SNR
over T time slots. Since the channel vectors are zero mean, the
error ∆lk has zero mean with the variance defined as E‖∆lk‖22

(a)
=

∑
i∈Ck\{k}

E‖hli‖22 +
1− λ
λ

∑
i∈Zk

E‖hli‖22
qik
d

+ E‖wlk‖22

(b)
=

∑
i∈Ck\{k}

βliM +
1− λ
λ

∑
i∈Zk

βliMqik
d

+
σ2M

PTλ

(c)
= Mαlk

where in (a), the facts that E
∣∣sHi e(ik)

∣∣2 = qik
d , and CSI and

noise vectors are independent are used; in (b), E‖hli‖22 =
βliM ; in (c), the variable αlk is given as

αlk =
∑

i∈Ck\{k}

βli +
1− λ
λd

∑
i∈Zk

βliqik +
σ2

PTλ
. (11)

The above factor shows that as the portion of data in the GSP
symbol is decreased, the MSE decreases. The computational
complexity is linear in terms of M and T .

2) Data detection: Towards the data estimates at the lth AP
for the kth user, the data estimates via LS can be expressed
as

ŝlk = arg min
sk

∥∥∥Yl −
√
P (1− λ)ĥlks

H
k ZHk

∥∥∥2
F

= ZHk YH
l

ĥlk

‖ĥlk‖22
· 1

T
√
P (1− λ)

(12)

= ZHk

[∑
i

xih
H
li

]
ĥlk

‖ĥlk‖22
· 1

T
√
P (1− λ)

= sk + sk

(
hHlkĥlk

‖ĥlk‖22
− 1

)
︸ ︷︷ ︸

:=slk,SI

+
∑
i 6=k

ZHk xi

T
√
P

hHli ĥlk

‖ĥlk‖22

1√
1− λ︸ ︷︷ ︸

:=slk,CI

+
ZHk WH ĥlk

‖ĥlk‖22
· 1

T
√
P (1− λ)

, (13)

which respectively consists of desired signal term (sk), self-
interference (SI) term (slk,SI ), cross-interference (CI) term
(slk,CI) and noise vector. The SI term depends on the accuracy
of the channel estimates, that is, for perfect channel estimation,
slk,SI = 0. The CI terms depend on both the channel
estimation of the desired channel and the transmission from
other users. To analyze the effect of these terms, the following
result has been derived. Note that for simplicity, the factor
‖ĥlk‖22 is multiplied to both sides in the above equation.

Theorem 1. For localized processing at the lth AP, the power
of desired signal, SI, CI and noise for the kth user can be
obtained as

Plk,S = (αlk + βlk)
2

(M2 +M), (14)

Plk,SI = α2
lkM

2

(
1 +

1

M
+

βlk
Mαlk

)
, (15)

Plk,CI =
M

1− λ
∑
i 6=k

ckiβli (βlk + αlk +Mβliζik) , (16)

Plk,N =
σ2Md

TP (1− λ)

[
βlk + αlk +

σ2(M + 1)

T 2Pλ

]
, (17)

where ζjk = 1j∈Ck\{k} + 1−λ
λd 1j∈Zk .

Proof: Proofs are given in the Appendix-A.
It can be seen that the desired signal and SI power increases

proportional to M2. If the necessary condition in (8) is
satisfied or T ≥ K + d, ζik = 0 and CI power vanishes
as compared to SI power. The M2 factor in the noise power
arises due to channel estimation errors. The corresponding
rate expression can be written as Rlk = log2 (1 + SINRlk),
where SINRlk =

Plk,S
Plk,SI+Plk,CI+Plk,N

. Asymptotically, for
M →∞, we have

lim
M→∞

SINRk →
(αlk + βlk)

2

α2
lk + 1

1−λ
∑
i6=k ckiβ

2
liζik + σ4d

T 3P 2(1−λ)λ
,

(18)
where only the interference terms is present, that can be
reduced with successive or iterative cancellation scheme, de-
scribed in the next section.
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B. Centralized processing

For meaningful channel and data estimates at the CPU, the
system should satisfy the necessary condition, that is,

MLT ≥ KML+Kd, (19)

where MLT are the number of observations, and the KML
and Kd correspond to channel and data estimates of K users.
E.g., for K = 3 and T = 6, d ≤ ML

(
T
K − 1

)
≤ ML. It

shows that CPU based processing can increase the allowable
number of data symbols per user in the system by a factor of
L.

1) Channel estimation : In this level, all L APs forward
their received signals to the CPU, which performs both the
channel estimation and the data detection. At the CPU, the
combined received signal can be written as

Y1

...
YL


︸ ︷︷ ︸
:=Y

=
∑
k

h1k

...
hLk


︸ ︷︷ ︸
:=hk

xHk +

W1

...
WL


︸ ︷︷ ︸
:=W

, (20)

where hk ∼ CN (0,Bk) with Bk=BD (β1kIM , . . . , βLkIM ).
The corresponding channel estimates can be written as ĥHk :=[
ĥH1k, . . . , ĥ

H
Lk

]
= Ypk

T
√
Pλ

= hHk + ∆H
k , with ∆H

k :=[
∆H

1k, . . . ,∆
H
Lk

]
expressed as

∆k =
∑

i∈Ck\{k}

hi +

√
1− λ
λ

∑
i∈Zk

his
∗
(ik) +

Wpk

T
√
Pλ

. (21)

This leads to the channel uncertainty covariance matrix as

Ak = E
[
∆k∆H

k

]
=

∑
i∈Ck\{k}

Bi +
1− λ
λd

∑
i∈Zk

Biqik +
σ2ML

TPλ

= BD
(
E
[
∆1k∆H

1k

]
, . . . ,E

[
∆Lk∆H

Lk

])
= BD (α1kIM , . . . , αLkIM ) ,

which provides the MSE coefficient as

αk :=
E ‖∆k‖2

ML
=

1

L

L∑
l=1

E∆H
lk∆lk

M
=

1

L

L∑
l=1

αlk

=
∑

i∈Ck\{k}

βi +
1− λ
λd

∑
i∈Zk

βiqik +
σ2

TPλ
,

with βi =
∑L
l=1

βli
L .

2) Data detection : Towards the data detection, the data
estimates via LS can be expressed as

ŝk = arg min
sk

∥∥∥Y −√P (1− λ)ĥks
H
k ZHk

∥∥∥2
F

= ZHk YH ĥk

‖ĥk‖22
· 1

T
√
P (1− λ)

(22)

= ZHk

[∑
i

xih
H
i

]
ĥk

‖ĥk‖22
· 1

T
√
P (1− λ)

(23)

= sk + sk

(
hHk ĥk

‖ĥk‖22
− 1

)
︸ ︷︷ ︸

:=sk,SI

+
∑
i 6=k

ZHk xi

T
√
P

hHi ĥk

‖ĥk‖22

1√
1− λ︸ ︷︷ ︸

:=sk,CI

+
ZHk WH ĥk

‖ĥk‖22
· 1

T
√
P (1− λ)

, (24)

wherein the desired signal term (sk), SI term (sk,SI ), CI term
(sk,CI) and noise vector have similar affects as in (13), and
the strength of these terms is derived in the following lemma.

Theorem 2. For centralized processing at the CPU, the power
of desired signal, SI, CI and noise for the kth user can be
obtained as

Pk,S = M2L2 (αk + βk)
2

+ML

L∑
l=1

(αlk + βlk)
2

L
, (25)

Pk,SI = α2
kM

2L2

(
1 +

1

Lα2
k

L∑
l=1

βlkαlk
ML

+
1

ML

L∑
l=1

α2
lk

Lα2
k

)
,

(26)

Pk,CI =
ML

1− λ
∑
i6=k

cki
∑
l

βli
L

(
βlk + αlk +ML

β2
i

βli
ζik

)
,

(27)

Pk,N =
σ2MLd

TP (1− λ)

[
βk + αk +

σ2(ML+ 1)

T 2Pλ

]
, (28)

Proof: Proofs are derived in the Appendix-B.
As compared to the localized processing, all the terms are

proportional to L, the number of APs. The rate expression
for the kth user can be given as Rk = log2 (1 + SINRk),
where SINRk =

Pk,S
Pk,SI+Pk,CI+Pk,N

. To get further insights
with respect to L, for ML→∞, we have

SINRk →
(αk + βk)

2

α2
k + 1

1−λ
∑
i 6=k ckiβ

2
i ζik + σ4d

T 3P 2λ(1−λ)
. (29)

It shows that the main factor limiting the SINR is the channel
estimation errors, which is controlled using the power alloca-
tion factor λ. In other words, the factor λ can be optimized to
get better data estimates and the SINRs.

C. Cooperation overhead and distributed time processing

In this GSP scheme, each AP forwards the received signals
Yl to the CPU. Note that the received signal matrix Yl spans
for T time slots. Thus, instead of forwarding at the end of
T slots. They can be forwarded from the first time slot. Let
Yl = [yl(1), . . . ,yl(T )], where yl(t) be the tth column of
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Yl. Then, we can write the channel estimation equation at the
end of time slot T as

ĥlk(T ) =
Ylpk

T
√
Pλ

=
1

T
√
Pλ

T∑
i=1

yl(i)pk(i), (30)

where pk(i) is the ith entry of the pilot vector pk. For
distributed time processing at the CPU, we can update the
estimate as

ĥlk(t+ 1) =
1

T
√
Pλ

t+1∑
i=1

yl(i)pk(i)

=

∑t
i=1 yl(i)pk(i) + yl(t+ 1)pk(t+ 1)

T
√
Pλ

(31)

= ĥlk(t) +
yl(t+ 1)pk(t+ 1)

T
√
Pλ

, (32)

which significantly reduces the computational requirements at
the end. Similarly, for the data estimates, we have

ŝlk(T ) = ZHk YH
l

ĥlk(T )

‖ĥlk(T )‖22
· 1

T
√
P (1− λ)

=

T∑
i=1

zk(i)yHl (i)
ĥlk(T )

‖ĥlk(T )‖22
· 1

T
√
P (1− λ)

(33)

=

[
Ulk(T − 1) + zk(T )yHl (T )

]
ĥlk(T )

‖ĥlk(T )‖22T
√
P (1− λ)

, (34)

where ZHk =
[
zHk (1), . . . , zHk (T )

]
; Ulk(t) =∑t

i=1 zk(i)yHl (i). The relation between the central
and distributed data estimates can be given as
ŝk =

∑
l
‖ĥlk‖22∑
l ‖ĥlk‖22

· ŝlk.

IV. ITERATIVE ESTIMATION FOR THE GSP SCHEME

From the above equations, it can be observed that channel
and data estimates depend on each other. Therefore, an iter-
ative channel and data estimation scheme can be employed
to improve the bit error rate performance. Given the data
and channel estimates

(
ŝk, ĥlk

)
, the channel estimates can

be updated from (30) as

ĥlk ←
Ỹlkpk

T
√
Pλ

, (35)

where Ỹlk = Yl −
∑
i6=k ĥlix̂

H
i = [ỹlk(1), . . . , ỹlk(T )]. The

corresponding update at the time slot t can be written as

ĥlk(t)← ĥlk(t− 1) +
ỹlk(t)pk(t)

T
√
Pλ

, (36)

where based on Ỹlk, we have

ỹlk(t) = yl(t)−
∑
i 6=k

ĥkix̂
∗
i (t), (37)

x̂k(t) =
√
P
(
pk(t)

√
λ+ zHk (t)ŝk

√
1− λ

)
. (38)

Similarly, for Ỹk = Y−
∑
i 6=k ĥix̂

H
i =

[
ỸT

1k, . . . , Ỹ
T
Lk

]T
,

the data estimates at CPU can be updated as ŝk ←

∑
l
‖ĥlk‖22∑
l ‖ĥlk‖22

ŝlk, where ŝlk ← ZHk ỸH
lk

ĥlk
‖ĥlk‖22

· 1

T
√
P (1−λ)

; the

respective update in the time slot t can be given from (34) as

ŝk(t)←
∑
l

‖ĥlk(t)‖22∑
l ‖ĥlk(t)‖22

ŝlk(t) (39)

=
∑
l

[
Ulk(t− 1) + zk(t)ỹHlk(t)

]
ĥlk(t)

T
√
P (1− λ)

∑
l ‖ĥlk(t)‖22

. (40)

The above distributed time processing and iterative estima-
tion procedure at the CPU is summarized in the Algorithm
1, where Nmax be the maximum number of iterations. This
process divides the final iterative processing at the end of T
time slots to over T time slots, which can result into faster
processing of superimposed symbols. It can be seen from
the literature [29]–[31] and the simulations that the iterative
algorithm converges in few iterations subject to certain condi-
tions, which are the necessary conditions mentioned in Table
I. Due to less number of iterations, that is, counting Nmax as
a constant, the computational overhead is approximately the
same as O (MKT ).

Algorithm 1 Iterative algorithm distributed time processing at
the CPU.

1: Initialize ĥlk(0) = 0, ŝlk(0) = 0,∀l, k.
2: for t = 1, . . . , T do
3: receive observations from APs yl(t),∀l
4: for iter = 1, . . . , Nmax do
5: compute and update ỹlk(t) via (37) and (38).
6: update channel estimates ĥlk(t) via (36).
7: update data estimates ŝk(t) via (39).
8: end for
9: end for

A. Optimization for λ and d
There are two factors that can be optimized for rate maxi-

mization. It can be seen from simulation results that the rate is
a concave function with respect to λ, and linear with respect
to d. Thus, for a specified d, there exist an optimum value of
λ, that maximizes the rates. Based on the necessary conditions
in (8) and (19), the rate optimization is given as follows.

For localized processing, the sum rate maximization prob-
lem for λ and d can be cast as

arg max
λ∈[0,1],d∈{1,...,T−1}

∑
lk

Rlk. (41)

Similarly, for the centralized processing, the sum rate opti-
mization can be written as

arg max
λ∈[0,1],d∈{1,...,T−1}

∑
k

Rk. (42)

Note that the above problems for fixed d, are concave. Thus,
they can be solved via a convex solver, such as CVX. Note
that λ and d are system design variables. Therefore, the
optimum value of d can be obtained by searching linearly
in the set

{
1, . . . ,

⌈
M
(
T
K − 1

)⌉}
for localized estimation or{

1, . . . ,
⌈
ML

(
T
K − 1

)⌉}
for centralized estimations, where

the upper bound is obtained from the condition (8) and (19),
respectively.
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V. COMPARISON OF SP AND RP SCHEMES

In this section, we compare with the conventional SP and
RP schemes and with other cooperation schemes. Thus, in the
following, first SP and RP schemes are provided in brief for
the present system model.

A. Conventional SP scheme

In the conventional superimposed schemes the
data and pilots are added together, i.e., xk =√
P
(
pk
√
λ+
√

1− λFsk
)

, where the size of sk is
matched to the size of pk, that is, d = T . This leads to
unnecessary data contamination and severe channel estimation
errors. However, for the purpose of comparison, the analysis
is as follows. First, the transmit power constraint can be
verified as E

{
xHk xk

}
= P (Tλ+ T (1− λ)) = PT, where

E
{
sks

H
k

}
= 1

T IT . Next, from the received signal equation in
(1), the local channel estimates can similarly be computed as
in (9), where the estimation error ∆lk for this case is obtained
as ∆lk =

∑
i∈Ck\{k} hli +

√
T 1−λ

λ

∑
i 6=k hlis

H
i pk + Wlpk

T
√
Pλ
.

The error ∆lk has zero mean with the variance factor given
as

αlk =
∑

i∈Ck\{k}

βli + T
1− λ
λ

∑
i 6=k

βli +
σ2

PTλ
, (43)

where E
∣∣sHi pk

∣∣2 = trpHk
(
EsksHk

)
pk = 1

T p
H
k pk = 1. It can

be seen that the data term in the channel estimation error is
increased from 1

d in (11) to T , that is, the increment factor is
Td, which is significantly large.

1) Localized processing: For reasonable estimates, the sys-
tem should follow the necessary condition MT ≥ KM+KT.
The local data estimates via LS can be calculated as ŝlk =(

YH
l ĥlk

‖ĥlk‖22
−
√
Pλpk

)
· 1√

TP (1−λ)
.

2) Centralized processing: For the centralized channel es-
timation, the channel errors and the corresponding covariance
matrices can similarly be defined as in section III-B1, i.e.,
αk = 1

L

∑L
l=1 αlk with αlk defined above in (43). Towards

the data detection, the data estimates via LS can be expressed
as ŝk =

(
YH ĥk
‖ĥk‖22

−
√
Pλpk

)
· 1√

TP (1−λ)
.

Similar to the GSP scheme, the above equation shows the
limiting SINR for the large number of antennas. However, the
SINR is influenced greatly by channel estimation error αlk or
αk.

B. RP scheme

In the conventional non-superimposed schemes, the whole
coherence time is divided into two parts, viz., training phase
and data estimation phase. Let T = Tp+Td, where Tp and Td
denote the durations of the training phase and data estimations
phases, respectively. For K users in the system, to avoid the
pilot contamination, we must have Tp ≥ K. If K > Tp, this
causes pilot reuse in the system deteriorating the channel and
consecutively the data estimation due to pilot contamination.
In simulations, we shall review both cases with and without
pilot contamination.

1) Channel estimation: In this phase, each user transmits a
Tp × 1 vector xk = pk

√
λTP
Tp

satisfying the power constraint

E‖xk‖22 = λTP , where pHk pj = Tpδkj ,∀k, j. The received
signal at the lth AP can be written as

Yp,l =
∑
k

hlkp
H
k

√
λTP

Tp
+ Wp,l.

The channel estimates via LS can be given as ĥlk =
Yp,lpk

Tp
√
λTP
Tp

= hlk+∆lk,where ∆lk =
∑
i∈Ck\{k} hli+

Wp,lpk

Tp
√
λTP
Tp

.

The error ∆lk has zero mean with the variance given as

E‖∆lk‖22 =
∑

i∈Ck\{k}

E‖hli‖22 + E‖ Wp,lpk

Tp
√

λTP
Tp

‖22 (44)

=

 ∑
i∈Ck\{k}

βli +
σ2

PTλ


︸ ︷︷ ︸

αlk

M. (45)

To get the channel estimates at the CPU, there are two
options. Each AP can forward either the M × Tp received
signal matrix Yp,l,∀l, or directly the M×1 estimated channel
vectors ĥlk,∀l for K users. If Tp = K, then both approaches
are equivalent, else if Tp > K, forwarding channel estimates
is a better choice. Thus, at the CPU, from III-B1, we can
write the channel error vector and its variance factor as ∆k =∑
i∈Ck\{k} hi +

Wppk

Tp
√
λTP
Tp

and αk =
∑
i∈Ck\{k}

∑L
l=1

βli
L +

σ2

PTλ .
2) Localized processing: In the data estimation phase, with-

out loss of generality (to fairly compare with the superimposed
schemes), let each user transmit d data streams over Td time
slots. Then, the transmitted signal from each kth user is given
in form of a Td × 1 vector as

xk =
√
PT (1− λ)Vksk, (46)

where Vk is a Td × d precoding matrix such that ‖Vk‖2F =
d, and E

{
sks

H
k

}
= 1

dId. The transmit power constraint can
be verified as E

{
xHk xk

}
= PT (1 − λ) · trEVksks

H
k VH

k =

PT (1− λ)
‖Vk‖2F
d = PT (1− λ).

The received signal at the lth AP can be written from
(1), where we have MTd equations and dK variables. For
meaningful estimation, MTd ≥ dK or d ≤ MTd

K , i.e., per user
data streams should be less than the value MTd

K . Least squares
estimates can be given as ŝlk = VH

k YH
l

ĥlk
ĥHlkĥlk

· 1√
PT (1−λ)

.

3) Centralized processing: The received signal at the CPU
can be written as in (20), where we have MLTd equations
and dK variables. For meaningful data estimates, the system
should satisfy the condition, MLTd ≥ dK or d ≤ MLTd

K , i.e.,
per user data streams should be less than this number MLTd

K .
That is, the CPU based estimation can increase the data rate
significantly. The data estimates using least squares can be
obtained as

ŝk = VH
k YH ĥk

ĥHk ĥk
· 1√

PT (1− λ)
=
∑
l

ĥHlkĥlk∑
l ĥ

H
lkĥlk

ŝlk.
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× × Conditions

GSP L d ≤M
(

T
K

− 1
)

C d ≤M
(

LT
K

− 1
)

SP L K ≤ MT
M+T

, d = T

C K ≤ MLT
M+T

, d = T

RP L Tp > K, d ≤M
(

T
K

− Tp
K

)
C Tp > K, d ≤M

(
LT
K

− LTp
K

)
Table I

COMPARISON OF NECESSARY CONDITIONS FOR DIFFERENT
TRANSMISSION SCHEMES.

It can be noted that this limiting case is not affected by the
transmitted power. It is rather influenced by the number of
data streams for transmission. When the number of streams
is equal to the number of available slots, SINR reduces to a
constant, which is due to the channel estimation errors.

C. Comparison of GSP with RP and SP schemes

These schemes can be compared in terms of sum rate and
the estimation delay for localized and centralized processing.
For localized processing, the delay for RP schemes is lower as
compared to SP and GSP, in which data decoding requires to
wait for T time slots. Therefore, SP/GSP schemes are useful
for fast fading channels with small coherence time or can be
utilized at the starting portion of the coherence time frame.
Table I shows the different condition for meaningful channel
and data estimation for different schemes.

The information rate corresponds to number of data symbols
successfully communicated over the wireless channel. In terms
of sum rate, GSP provides superior performance to both SP
and RP, since GSP communicates more number of reliable data
symbols. Regarding the computational overhead, all schemes
bear the similar overhead.

D. Comparison with other cooperation scenarios from [7]

Cooperation levels L1-L4 are adopted from [7]. Level 4 is
fully centralized processing case, where all the observations
from APs are forwarded to CPU without any local processing.
Levels 3 and 2 are gradually relaxed versions of L4. In L3,
local channel and data estimates are computed and sent to
the CPU, whereas in L2, only data estimates are forwarded.
Lastly, for L1, neither any estimate nor observation is sent to
CPU; each AP decodes one user’s channel and data estimates,
treating the others’ transmission as noise.

1) Level 3: local processing and large scale fading decod-
ing: From the level 4 processing, the data estimates can be
written in terms of local channel estimates as

ŝk = ZHk YH ĥk

‖ĥk‖22
· 1

T
√
P (1− λ)

=

L∑
l=1

‖ĥlk‖22∑L
l=1 ‖ĥlk‖22

· ZHk YH
l

ĥlk

‖ĥlk‖22
· 1

T
√
P (1− λ)

=

L∑
l=1

wlk · ŝlk,

where ŝlk = ZHk YH
l

ĥlk
‖ĥlk‖22

· 1

T
√
P (1−λ)

denotes locally pro-

cessed data estimate. The above equation denotes that the
central estimate is a linear sum of local estimates with weights
wlk =

‖ĥlk‖22∑L
l=1 ‖ĥlk‖22

. It means that the data estimates can be
locally calculated and forwarded to the CPU for the final
estimation. In this case, the SINR expression remains the same,
since the coefficients of linear sum are the same.

2) Level 2: Local processing and centralized decoding: To
further relax the cooperation requirements, the linear combin-
ing can be relaxed simple averaging with wlk = 1

L(βk+αk)
,

where it is assumed that CC knows the locations of the users
and APs to compute βk and αk. In this case, each lth AP can
send the value ŝlk

‖ĥlk‖22
M = ZHk YH

l
ĥlk
M , instead of ŝlk as

ŝ
[L2]
k =

1

ML(βk + αk)

L∑
l=1

ŝlk‖ĥlk‖22 = ŝk
‖ĥk‖22

ML(βk + αk)
,

which tends to ŝk as ML → ∞. In this case, SINR also
remains unaltered, since a scalar is multiplied in both desired
signal term and interference-noise terms.

VI. SIMULATION RESULTS

A. Simulation settings

We consider L = 32 APs with each AP having M = 2
antennas and T = 6. Simulations are averaged over 104 runs.
Locations of APs are selected via uniform distribution within
a 2D area [−500, 500]

2
m2. The minimum distance between

APs is set to be 50m. An urban environment setup is chosen
with 3GPP microcell pathloss model at 2GHz frequency as

βlk(in dB) = −30.5− 36.7 log10Dkl + Flk, (47)

where Dlk is the distance between the lth AP and the kth user;
and Flk ∼ N

(
0, 42

)
represents shadowing [7]. For the RPs,

the training time Tp = dmin (K, 0.25T )e is set to be 25% of
coherence time slots. Transmit power is set to be P0 = 100
mW, ρ = 0.9, and the noise power is σ2 = −126 dB.

Note that simulations for the GSP scheme have been verified
with the theoretical results. However, for the simplicity of the
presentation, the analytical results are omitted in the following
figures. The following results present the scenario of pilot
contamination and data detection error rates.

B. Channel estimation

Figure 2 plots the MSE for the channel estimates with
respect to the pilot power fraction (λ) for three pilot schemes
with different K and d. It can be observed that MSE changes
in RP with λ are negligible, since for K ≥ 2, we have
Tp = 2, which causes pilot contamination, that is, the pilot
reuse (when Tp < K) affects the strength of estimates than
the SNR. RP yields less MSE than SP schemes at very
low value of pilot power (around λ = 0.1), whereas for
higher λ, RP has around 10 times higher MSE than SP and
GSP schemes. It can be seen that the MSE of conventional
SP scheme is also (approximately 92%, 30% and 13% at
K = 4, 5, 8 respectively) higher than that of the GSP scheme.
However, as the number of users are increased in the system,
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Figure 2. Averaged MSE 1
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estimation versus the pilot power allocation factor, when T < K + d for
the GSP scheme, and d = Td for the RP scheme.
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Figure 3. Averaged MSE 1
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∑
k αk of the channel estimation for the GSP

scheme versus the number of data symbols (d) at λ = 0.5.

the gap between them disappears due to larger strength of pilot
contamination.

For the GSP scheme, the number of data symbols also
affects the channel estimation. Thus, Figure 3 plots the MSE
of channel estimates versus the number of data symbols (d)
with λ = 0.5 for the case of βlk = 1,∀l, k. It can be noted
that the MSE increases as d is increased. MSE is close to
zero (of the order of 10−12) for the cases of T ≥ K + d. For
T < K+d, MSE increases per symbol increase in d. For large
number of users, MSE increases to larger values. For per user
increase with d = 6 (between K = 2, . . . , T ), approximately
0.4 MSE value increase can be seen.

C. Interference powers and sum rates

For the localized processing, Figure 4 plot the average pow-
ers of SI 1

LK

∑
l,k Plk,SI , and CI 1
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Figure 5. For the localized processing, the average sum rate 1
L

∑
l,k Rlk

versus the data power fraction (1− λ) for T = 6.

right axes respectively, and the average sum rates 1
L

∑
l,k Rlk

are plotted in Figure 5. Note that these performance measures
are averaged over the number of APs in the system. In these
figures, the RP performs worse, since Tp < K provides poor
channel estimates; and as the number of users, K, is increased,
the performance gets worse.
• From Figure 4, as the data power fraction is increased,

the self interference increases, which is intuitive as the
SI term for the kth user arises due to its own channel
imperfections. Since the GSP provides better channel
estimates, the SI power of the same is lower than that of
the conventional SP scheme. The gap between the GSP
and the SP scheme gets lower, as the number of users or
the number of data symbols is increased.

• Figure 4 shows the convex behavior for the CI power
when T < K + d with K = 5, that is, there exists an
optimal value of λ, which can minimize the strength of
CI. This convex behavior arises due to the data symbol
terms in the channel estimation error. The more the data
symbols in the channel estimates, the more the CI power
variations with λ. The gap between the GSP and SP
scheme follows the similar behavior similar as for the
SI power.

• Figure 5 reflects the concave behavior of the averaged
sum rates with respect to λ. It shows that there exists an
optimum value of λ that maximizes the sum rates. This
optimum point shifts to the right as the number of users
are increases, which is due to the fact that the existence of
more users provides more data symbols in the system, and
thus, to get higher rates, the power fraction for the data
symbols should be increased. For K = 3 and λ = 0.5,
around 58% of rate improvement can be observed with
respect to the SP scheme.

For centralized processing, the power of SI & CI and the
sum rate is plotted in Figures 6 and 7 respectively. It can be
seen that due to the accumulated signals at the CPU from
APs, the powers of SI and CI is higher than that in case of
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Figure 6. For the centralized processing, the powers of SI (left) and the CI (right) versus the data power fraction (1− λ) for T = 6.
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Figure 7. For the centralized processing, the average sum rate 1
L

∑
k Rk

versus the data power fraction (1− λ) for T = 6.

localized processing. Regarding the trend with respect to K
and d for different schemes, similar points can be drawn as
in Figures 4-5. In addition to that, it can be seen that for CI
power, the λ-value for minimum CI shifts to left as compared
to Figure 4, which is due to the reason that CI term consists
of interfering terms, and at the CPU, more observations are
present to estimate better. Thus, to minimize CI power, less
power (λ) is required for CPU based processing. In terms
of rate, for λ = 0.5 and K = 3, 4, 5, improvements of
respectively 360%, 172% and 54% are present for the GSP
scheme over the SP scheme.

D. MSE of data estimates with iterative cancellation

Figure 8 plots the MSE of data estimates at CPU, aver-
aged across all users at different steps of iterative procedure
described earlier. It can be seen that the iterative procedure
improves the bit rates as iteration progresses. However, due to
higher amount of self and cross interference powers incurred
in low complexity processing (instead of using inverse via zero
forcing), the MSE values converge in few iterations. It can also
be seen that as with respect to the power of data transmission,
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Figure 8. For the centralized processing, the average MSE of data estimates
versus the data power fraction (1− λ) at different iterations.

the MSE shows convex behavior, which occurs due to worse
channel estimation at (1− λ)→ 1.

VII. CONCLUSION

In this paper, we have proposed generalized superimposed
training scheme with low complexity processing instead of em-
ploying zero forcing. We have analyzed the channel estimation
MSE and sum rates components for localized and centralized
scenarios, and obtained the necessary condition to avoid pilot
contamination and successful data detection. Further, we have
discussed with other cooperative scenarios and compared with
regular pilot scheme and conventional superimposed scheme.
Simulation results have shown the superior performance of
proposed superimposed scheme both in terms of channel esti-
mation and data detection. It has also demonstrated reduction
in interference powers, when centralized processing is used.

APPENDIX

A. Localized processing with GSP symbols

1) Signal power: The signal power can be derived as

Plk,S = E
∥∥∥‖ĥlk‖22sk∥∥∥2

2
= E‖ĥlk‖42 · E ‖sk‖

2
2 (48)

= E‖hlk + ∆lk‖42 = (αlk + βlk)
2

(M2 +M). (49)

2) Power of self-interference: The power of self-
interference component can be computed as

Plk,SI = E
∥∥∥sk (hHlkĥlk − ĥHlkĥlk

)∥∥∥2
2

(a)
= E

∥∥−∆H
k (hlk + ∆lk) sk

∥∥2
2

(50)
(b)
= E

∣∣∆H
lk (hlk + ∆lk)

∣∣2 (c)
= E

∣∣∆H
lkhlk

∣∣2 + E
∣∣∆H

lk∆lk

∣∣2
(d)
= βlkαlkM +

(
M2 +M

)
α2
lk (51)

= α2
lkM

2

(
1 +

1

M
+

βlk
Mαlk

)
, (52)

where in (a), ĥHlk = hlk + ∆lk is substituted; in (b) and (c),
the facts that the CSI error ∆lk and hlk are independent and

zero mean, are used; in (d), E
∣∣∆H

lkhlk
∣∣2 = βlkE∆H

k ∆k =
βlkαlkM , and the second moment value α2

lk

(
M2 +M

)
of

Chi-squared distribution ∆H
lk∆lk ∼ αlk

2 χ2
2M (0) is used.

3) Power of cross-interference: The power of CI term can
be derived as

Plk,CI =
1

1− λ
E

∥∥∥∥∥∥
∑
i 6=k

ZHk xi

T
√
P
hHli ĥlk

∥∥∥∥∥∥
2

2

=
1

1− λ
∑
i 6=k

∑
j 6=k

trE

[
ZHk xi

T
√
P

xHj Zk

T
√
P

ĥHlkhljh
H
li ĥlk

]
(53)

(a)
=

1

1− λ
∑
i 6=k

E
∥∥∥∥ZHk xi

T
√
P

∥∥∥∥2
2

E
∣∣∣hHli ĥlk∣∣∣2

(b)
=

1

1− λ
∑
i 6=k

cki
(
βliβlkM + βliαlkM + ζikM

2β2
li

)
(54)

=
M

1− λ
∑
i 6=k

ckiβli (βlk + αlk + ζikMβli) , (55)

where in (a), the fact that hlj and hli are zero mean and
uncorrelated vectors for all i 6= j is used; in (b), the value

from (7) is used, and E
∣∣∣hHli ĥlk∣∣∣2 = E

∣∣hHli hlk∣∣2+E
∣∣hHli ∆lk

∣∣2
with E

∣∣hHli hlk∣∣2 = βliβlkM is used. For (d), the second term

ζljk is obtained for j 6= k as E
∣∣∣hHlj∆lk

∣∣∣2=

E
∣∣∣ ∑
i∈Ck\{k}

hHljhli +

√
1− λ
λ

∑
i∈Zk

hHljhlis
∗
(ik) +

hHljWpk

T
√
Pλ

∣∣∣2
=

∑
i∈Ck\{k}

E
∣∣hHljhli∣∣2 +

1− λ
λd

∑
i∈Zk

qikE
∣∣hHljhli∣∣2

+ E

∣∣∣∣∣hHljWpk

T
√
Pλ

∣∣∣∣∣
2

=
∑

i∈Ck\{k}

βliβljM +
1− λ
λd

∑
i∈Zk

qikβliβljM + βlj
σ2M

TPλ

+M2β2
lj

(
1j∈Ck\{k} +

1− λ
λd

1j∈Zk

)
= βljαlkM +M2β2

ljζjk,

where ζjk = 1j∈Ck\{k} + 1−λ
λd 1j∈Zk ; the indicator function

denote that ones of the disjoint sets, Ck \ {k} and Zk, may
contain the index j. For j = i, the value can be given as

E
∣∣∣hHljhlj∣∣∣2 =

(
M2 +M

)
β2
lj , where M2β2

lj is used in the
indicator function.
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4) Noise power: The noise power can be calculated as

Plk,N × T 2P (1− λ) = E
∥∥∥ZHk WH

l ĥlk

∥∥∥2
2

= E‖ZHk WH
l

×
(∑
i∈Ck

hli +
Wlpk

T
√
Pλ

+

√
1− λ
λ

∑
i∈Zk

hlis
∗
(ik)

)
‖22

=
∑
i∈Ck

E
∥∥ZHk WH

l hli
∥∥2
2

+
1− λ
λd

∑
i∈Zk

qikE
∥∥ZHk WH

l hli
∥∥2
2

+ E
∥∥∥∥ZHk WH

l Wlpk

T
√
Pλ

∥∥∥∥2
2

=
∑
i∈Ck

βliσ
2MdT +

1− λ
λ

∑
i∈Zk

qikβliσ
2MT

+
1

T 2Pλ
σ4MTd (T +M + 1)

= σ2MTd

[
βlk +

∑
i∈Ck\{k}

βli +
1− λ
λd

∑
i∈Zk

qikβli

+
σ2

TPλ

(
1 +

M + 1

T

)]

= σ2MTd

[
βlk + αlk +

σ2(M + 1)

T 2Pλ

]
, (56)

where the first and second term is simplified as

E
∥∥ZHk WH

l hlk
∥∥2
2

= βlktr
[
ZHk E

{
WH

l Wl

}
Zk
]

= tr(ZHk Zk)σ2Mβlk = βlkσ
2MdT,

and the third term is given for (say) W? = [w̄1, . . . , w̄T ] and[
WH

? W?

]
i,j

= w̄H
i w̄j as

E
∥∥ZH∗ WH

? W?p∗
∥∥2
2

= trE
[
WH

? W?Z∗Z
H
∗ W

H
? W?p∗p

H
∗
]

=
∑
i,j,k,l

E
[[
WH

? W?

]
i,j

[
Z∗Z

H
∗
]
j,k

[
WH

? W?

]
k,l

[
p∗p

H
∗
]
l,i

]
=
∑
i,j,k,l

E
[
w̄H
i w̄j

[
Z∗Z

H
∗
]
j,k

w̄H
k w̄l

[
p∗p

H
∗
]
l,i

]
=

∑
i=j,k=l,i6=k

E
[
w̄H
i w̄i

[
Z∗Z

H
∗
]
i,l
w̄H
l w̄l

[
p∗p

H
∗
]
l,i

]
+

∑
j=k,i=l,l 6=k

E
[
w̄H
i w̄jw̄

H
j w̄i

[
Z∗Z

H
∗
]
j,j

[
p∗p

H
∗
]
i,i

]
+

∑
i=j=k=l

E
[
w̄H
i w̄iw̄

H
i w̄i

[
Z∗Z

H
∗
]
i,i

[
p∗p

H
∗
]
i,i

]
= σ4M2

∑
i,l

[
Z∗Z

H
∗
]
i,l

[
p∗p

H
∗
]
l,i

+ σ4M
∑
i,j

[
Z∗Z

H
∗
]
j,j

[
p∗p

H
∗
]
i,i

+ σ4(M2 +M)
∑
i

[
Z∗Z

H
∗
]
i,i

[
p∗p

H
∗
]
i,i

= σ4M2tr
(
Z∗Z

H
∗ p∗p

H
∗
)

+ σ4Mtr
[
Z∗Z

H
∗
]
tr
[
p∗p

H
∗
]

+ σ4(M2 +M)tr(Z∗Z
H
∗ D

(
p∗p

H
∗
)
)

= σ4M · Td (T +M + 1) ,

with D
(
p∗p

H
∗
)

= IT .

B. Centralized processing with GSP symbols

1) Signal power: The signal power can be derived as

E
∥∥∥‖ĥk‖22sk∥∥∥2

2
= E‖ĥk‖42 · E ‖sk‖

2
2 = E‖hk + ∆k‖42

=

L∑
l=1

L∑
m=1

E‖hlk + ∆lk‖22‖hmk + ∆mk‖22 (57)

=

L∑
l=1

L∑
m=1,m6=l

E‖hlk + ∆lk‖22 · E‖hmk + ∆mk‖22

+

L∑
l=m=1

E‖hlk + ∆lk‖42 (58)

=

L∑
l=1

L∑
m=1,m6=l

M2 (αlk + βlk) (αmk + βmk)

+

L∑
l=1

(αlk + βlk)
2

(M2 +M) (59)

=

L∑
l=1

L∑
m=1

M2 (αlk + βlk) (αmk + βmk)

+

L∑
l=1

(αlk + βlk)
2
M (60)

= M2L2 (αk + βk)
2

+ML× 1

L

L∑
l=1

(αlk + βlk)
2
. (61)

2) Power of self-interference term: The power of self-
interference component can be computed as

Pk,SI = E
∥∥∥sk (hHk ĥk − ĥHk ĥk

)∥∥∥2
2

(a)
= E

∥∥−∆H
k (hk + ∆k) sk

∥∥2
2

(b)
= E

∣∣∆H
k (hk + ∆k)

∣∣2
(c)
= E

∣∣∆H
k hk

∣∣2 + E
∣∣∆H

k ∆k

∣∣2 (62)

(d)
=

L∑
l=1

βlkαlkM +M2L2α2
k +M

L∑
l=1

α2
lk (63)

= α2
kM

2L2

(
1

L

L∑
l=1

βlkαlk
MLα2

k

+ 1 +
1

ML

L∑
l=1

α2
lk

Lα2
k

)
, (64)

where in (a), ĥHk = hk + ∆k is substituted; in (b) and (c), the
fact that the zero-mean vectors ∆k and hk are independent,
is used; in (d), E

∣∣∆H
k hk

∣∣2 = trEBk∆k∆H
k = tr (BkAk) =∑L

l=1 βlkαlkM , and the second moment value αlk
(
M2 +M

)
of Chi-squared distribution ∆H

lk∆lk ∼ αlk
2 χ2

2M (0) is used, that

is, similar to (61), we get E
∣∣∆H

k ∆k

∣∣2 = M2
(∑L

l=1 αlk

)2
+

M
∑L
l=1 α

2
lk with αk = 1

L

∑
l αlk.
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3) Power of cross-interference term: The power of CI term
can be derived as

Pk,CI =
1

1− λ
E

∥∥∥∥∥∥
∑
i 6=k

ZHk xi

T
√
P
hHi ĥk

∥∥∥∥∥∥
2

2

=
1

1− λ
∑
i6=k

∑
j 6=k

trE

[
ZHk xi

T
√
P

xHj Zk

T
√
P

ĥHk hjh
H
i ĥk

]
(65)

(a)
=

1

1− λ
∑
i 6=k

E
∥∥∥∥ZHk xi

T
√
P

∥∥∥∥2
2

E
∣∣∣hHi ĥk

∣∣∣2 (66)

(b)
=

M

1− λ
∑
i 6=k

cki
∑
l

βli

(
βlk + αlk +ML

β2
i

βli
ζik

)
, (67)

where in (a), the fact that hj and hi are zero mean and
uncorrelated vectors is used; in (b), the value from (7) is used,

and E
∣∣∣hHi ĥk

∣∣∣2 = E
∣∣hHi hk

∣∣2+E
∣∣hHi ∆k

∣∣2 with E
∣∣hHi hk

∣∣2 =∑
l βliβlkM is used. The term ζik is obtained for j 6= k as

E
∣∣hHj ∆k

∣∣2 =

E

∣∣∣∣∣ ∑
i∈Ck\{k}

hHj hi +

√
1− λ
λ

∑
i∈Zk

hHj his
∗
(ik) +

hHj Wpk

T
√
Pλ

∣∣∣∣∣
2

=
∑

i∈Ck\{k}

E
∣∣hHj hi

∣∣2 +
(1− λ)

λd

∑
i∈Zk

qikE
∣∣hHj hi

∣∣2
+ E

∣∣∣∣∣hHj Wpk

T
√
Pλ

∣∣∣∣∣
2

=
∑

i∈Ck\{k}

∑
l

βliβljM +
1− λ
λd

∑
i∈Zk

qik
∑
l

βliβljM

+
∑
l

βlj
σ2M

TPλ
+M2L2β2

j

(
1j∈Ck\{k} +

1− λ
λd

1j∈Zk

)
=
∑
l

βljαlkM +M2L2β2
j ζjk,

where ζjk = 1j∈Ck\{k} + 1−λ
λd 1j∈Zk ; the indicator function

denote that ones of the disjoint sets, Ck \ {k} and Zk, may
contain the index j. Thus, for j = i, the value can be given as
(similar to (61)) E

∣∣hHj hj
∣∣2 = M2L2β2

j + M
∑
l β

2
lj , where

the first value term M2L2β2
j is mentioned with the indicator

function in the previous equation.

4) Noise power: The noise power can be calculated as

Pk,N × T 2P (1− λ) = E
∥∥∥ZHk WH ĥk

∥∥∥2
2

= E‖ZHk WH

×
(∑
i∈Ck

hi +

√
1− λ
λ

∑
i∈Zk

his
∗
(ik) +

Wpk

T
√
Pλ

)
‖22

=
∑
i∈Ck

E
∥∥ZHk WHhi

∥∥2
2

+
1− λ
λd

∑
i∈Zk

qikE
∥∥ZHk WHhi

∥∥2
2

+ E
∥∥∥∥ZHk WHWpk

T
√
Pλ

∥∥∥∥2
2

(68)

=
∑
i∈Ck

L∑
l=1

βikσ
2MdT +

1− λ
λ

∑
i∈Zk

qik

L∑
l=1

βikσ
2MT

+
1

T 2Pλ
σ4MLTd (T +ML+ 1) (69)

= σ2MLTd

[
L∑
l=1

βlk
L

+
∑

i∈Ck\{k}

L∑
l=1

βli
L

+
1− λ
λd

∑
i∈Zk

qik

L∑
l=1

βli
L

+
σ2

TPλ

(
1 +

ML+ 1

T

)]

= σ2MLTd

[
βk + αk +

σ2(ML+ 1)

T 2Pλ

]
, (70)

where the first and second term is simplified as

E
∥∥ZHk WHhk

∥∥2
2

= tr
[
ZHk E

{
WHBkW

}
Zk
]

= tr(ZHk Zk)tr(Bk)σ2 =

L∑
l=1

βlkσ
2MdT,

and the third term can be obtained in a similar manner as in
(56), E

∥∥ZHk WHWpk
∥∥2
2

= σ4ML · Td (T +ML+ 1).
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