6 research outputs found

    Quantized Compressive K-Means

    Full text link
    The recent framework of compressive statistical learning aims at designing tractable learning algorithms that use only a heavily compressed representation-or sketch-of massive datasets. Compressive K-Means (CKM) is such a method: it estimates the centroids of data clusters from pooled, non-linear, random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the sketching procedure initially defined in Compressive K-Means to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a Quantized Compressive K-Means procedure, a variant of CKM that leverages 1-bit universal quantization (i.e. retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performances, as illustrated by numerical experiments

    Memory and Computation-Efficient Kernel SVM via Binary Embedding and Ternary Model Coefficients

    Full text link
    Kernel approximation is widely used to scale up kernel SVM training and prediction. However, the memory and computation costs of kernel approximation models are still too high if we want to deploy them on memory-limited devices such as mobile phones, smartwatches, and IoT devices. To address this challenge, we propose a novel memory and computation-efficient kernel SVM model by using both binary embedding and binary model coefficients. First, we propose an efficient way to generate compact binary embedding of the data, preserving the kernel similarity. Second, we propose a simple but effective algorithm to learn a linear classification model with ternary coefficients that can support different types of loss function and regularizer. Our algorithm can achieve better generalization accuracy than existing works on learning binary coefficients since we allow coefficient to be 1-1, 00, or 11 during the training stage, and coefficient 00 can be removed during model inference for binary classification. Moreover, we provide a detailed analysis of the convergence of our algorithm and the inference complexity of our model. The analysis shows that the convergence to a local optimum is guaranteed, and the inference complexity of our model is much lower than other competing methods. Our experimental results on five large real-world datasets have demonstrated that our proposed method can build accurate nonlinear SVM models with memory costs less than 30KB

    Mortality Prediction of Various Cancer Patients via Relevant Feature Analysis and Machine Learning

    Get PDF
    Breast, lung, prostate, and stomach cancers are the most frequent cancer types globally. Early-stage detection and diagnosis of these cancers pose a challenge in the literature. When dealing with cancer patients, physicians must select among various treatment methods that have a risk factor. Since the risks of treatment may outweigh the benefits, treatment schedule is critical in clinical decision making. Manually deciding which medications and treatments are going to be successful takes a lot of expertise and can be hard. In this paper, we offer a computational solution to predict the mortality of various types of cancer patients. The solution is based on the analysis of diagnosis, medication, and treatment parameters that can be easily acquired from electronic healthcare systems. A classification-based approach introduced to predict the mortality outcome of cancer patients. Several classifiers evaluated on the Medical Information Mart in Intensive Care IV (MIMIC-IV) dataset. Diagnosis, medication, and treatment features extracted for breast, lung, prostate, and stomach cancer patients and relevant feature selection done with Logistic Regression. Best F1 scores were 0.74 for breast, 0.73 for lung, 0.82 for prostate, and 0.79 for stomach cancer. Best AUROC scores were 0.94 for breast, 0.91 for lung, 0.96 for prostate, and 0.88 for stomach cancer. In addition, using relevant features, results were very similar to the baseline for each cancer type. Using less features and a robust machine-learning model, the proposed approach can be easily implemented in hospitals when there are limited data and resources available.publishedVersionPeer reviewe
    corecore