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Abstract
Breast, lung, prostate, and stomach cancers are the most frequent cancer types globally. Early-stage detection and diagnosis 
of these cancers pose a challenge in the literature. When dealing with cancer patients, physicians must select among vari-
ous treatment methods that have a risk factor. Since the risks of treatment may outweigh the benefits, treatment schedule is 
critical in clinical decision making. Manually deciding which medications and treatments are going to be successful takes a 
lot of expertise and can be hard. In this paper, we offer a computational solution to predict the mortality of various types of 
cancer patients. The solution is based on the analysis of diagnosis, medication, and treatment parameters that can be easily 
acquired from electronic healthcare systems. A classification-based approach introduced to predict the mortality outcome 
of cancer patients. Several classifiers evaluated on the Medical Information Mart in Intensive Care IV (MIMIC-IV) dataset. 
Diagnosis, medication, and treatment features extracted for breast, lung, prostate, and stomach cancer patients and relevant 
feature selection done with Logistic Regression. Best F1 scores were 0.74 for breast, 0.73 for lung, 0.82 for prostate, and 
0.79 for stomach cancer. Best AUROC scores were 0.94 for breast, 0.91 for lung, 0.96 for prostate, and 0.88 for stomach 
cancer. In addition, using relevant features, results were very similar to the baseline for each cancer type. Using less features 
and a robust machine-learning model, the proposed approach can be easily implemented in hospitals when there are limited 
data and resources available.
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Introduction

Cancer is a broad term that encompasses a wide range of 
illnesses that can affect any region of the body. Malignant 
tumors and neoplasms are also another terminology for 
that. Cancer develops when normal cells are transformed 
into tumor cells in a multi-stage process that usually evolves 
from a pre-cancerous lesion to a malignant tumor. One of 
the hallmarks of cancer is the rapid emergence of anoma-
lous cells that grow beyond their normal bounds, allowing 
them to infect other sections of the body and spread to other 
organs; this is known as metastasis. The most common cause 
of death among cancer patients is widespread metastasis [1].

In 2020, there were an anticipated 18.1 million cancer 
cases worldwide [2]. Breast and lung cancers were the most 
frequent cancers globally in 2020, accounting for 12.5% 
and 12.2% of all new cases, respectively. Prostate and stom-
ach cancer were the fourth and fifth most frequent cancers, 
accounting for 7.8% and 6.0% of all new cases diagnosed in 
2020, respectively [2]. Breast cancer was the most common 
cancer with 2,261,419 new cases in 2020, 684,996 mortali-
ties [3]. Followed by lung cancer, with 2,206,771 new cases 
in 2020, it had 1,796,144 mortalities [4]. With the fourth 
most, prostate cancer had 1,414,259 new cases in 2020 and 
375,304 mortalities [5]. Followed by stomach cancer, with 
1,089,103 new cases in 2020, it had 768,793 mortalities [6]. 
As can be seen from the case statistics, the mortality rate of 
these cancer types is very high.

Early-stage detection of cancer is crucial in order to 
decrease the mortality rate of patients [7–9]. For physicians 
and researchers, detection and diagnosis of cancer pose a 
challenge in the literature. Detection of cancerous cells is 
mainly done by medical imaging and laboratory tests [10, 
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11]. These procedures are time consuming and require a 
huge workforce.

When dealing with cancer patients, physicians must 
select among various treatment methods, each of which has 
a significant risk. The existing therapies for patients with 
late-stage cancer disease can only provide a small survival 
chance. In addition, therapies have side effects, which can be 
worse than the symptoms that are being treated or prevented 
[12]. The results of some treatments can take up to 3 months 
to manifest, while adverse effects can appear sooner and 
last up to 6 weeks. Since the risks of therapy may outweigh 
the benefits, therapy schedule is critical in making treat-
ment decisions. Overtreatment should be avoided in order to 
minimize unnecessary toxicities or collateral damage [13]. 
With the numerous treatment approaches, a timely selected 
one can increase the treatment’s rate of resolution. Precision 
medicine [14–16] has also come forward since susceptibility 
to drugs may vary for each patient. Like drug response, a 
patient’s comorbidities may affect in-hospital mortality since 
comorbidities also alter medication and treatment choices.

Manually deciding which medication and treatment 
will be used to cure cancer takes a lot of time and can be 
problematic for physicians. One solution to aid physicians 
in the assessment of cancer patients is machine-learning 
approaches. Recent studies [7, 8, 10, 11, 17–39] focused 
mainly on machine-learning approaches to recognize the 
main characteristics of cancer patient data since they showed 
that they have a deep impact on early-stage mortality pre-
diction. Machine-learning methods can analyze and extract 
key knowledge from patient data. In addition, they can learn 
from data, and predict desired results much more rapidly. 
Because of these advantages, machine-learning approaches 
gained popularity in the cancer research area.

Although machine-learning approaches are quicker 
than manual decision making, as the number of features 
increases, computation time and the resources that the model 
requires expand as well. Therefore, in order to overcome this 
issue, the number of features that go into models needs to be 
small. It should be small enough to reduce dimensionality in 
a reasonable manner and still produce adequate results to be 
used in prediction tasks.

It has been mentioned in many studies that comorbidities, 
medication, and treatments of a patient are very important 
features to assess whether a cancer patient can survive or 
not [12–16, 40–47]. These features can easily be retrieved 
from the hospital’s electronic health database. Since other 
data, like laboratory measurements or microbiology events, 
mostly have missing data, require additional preprocessing, 
and are time consuming to collect, they were not considered 
in this work.

There are no prior studies on mortality prediction with 
cancer cases in the MIMIC-IV dataset. The first contribu-
tion of this work is studying with these cancer types for 

mortality prediction on MIMIC-IV dataset. Therefore, the 
main approach in this work is finding easily acquirable fea-
tures that can be used with machine-learning approaches 
while keeping the prediction rate as high as possible for in-
hospital mortality prediction on various cancer patients. To 
this end, several machine-learning classifiers with various 
feature sets have been evaluated. Our approach also inves-
tigates how well these features act together with machine-
learning approaches for limited amounts of data.

A classifier framework reduces the burden on doctors 
and effectively uses easily accessible electronic health data 
designed. In this work, using patient’s comorbidities, medi-
cations, and procedures from MIMIC-IV dataset, the most 
significant features are selected with Logistic Regression for 
in-hospital mortality prediction on various cancer patients. 
Several experiments are done with different machine-learn-
ing models. These are Logistic Regression, Decision Tree, 
Random Forest, Support Vector Machine, and Multi-Layer 
Perceptron models. Mortality prediction capabilities of 
machine-learning models are evaluated with the F1 Macro-
Average and AUROC score metrics.

Related Work

There are many studies in the literature for cancer-related 
detection solutions. Currently, there are no prior studies on 
mortality prediction with cancer cases on the MIMIC-IV 
dataset. “Related work” contains machine-learning appli-
cations on various cancer types that uses different datasets 
than MIMIC, other cancer-related works on MIMIC-III and 
MIMIC-IV-related studies.

Xie et al. [7] put effort on finding diagnostic biomark-
ers for lung cancer from Chinese patients’ plasma metabo-
lites. The dataset they used is from Hubei Taihe Hospital 
which consists of 110 lung cancer patients and 43 healthy 
individuals. Combination of six metabolic biomarkers was 
found to be worthy for stage I lung cancer patients with 
high AUC. They recommend Naive Bayes for early lung 
tumor prediction. Raoof et al. [10] analyzed lung cancer 
patients with Naive Bayes, Support Vector Machine, Logis-
tic Regression, and Artificial Neural Network methods for 
early detection and mortality prediction. Using UCI MLDb 
data, collected data from various hospitals, and CT images, 
they discussed the cause of lung cancer and compared these 
methods. They pointed out mostly that the reason of mortal-
ity from lung cancer resulted from smoking cigarette and 
radon gases. Several other studies [11, 17–21] used various 
machine-learning methods to predict lung cancer and sur-
vival prediction.

Shalini et al. [22] showed hidden patterns with Support 
Vector Machine, K-Nearest Neighbor, and Decision Tree for 
breast cancer. Wisconsin breast cancer dataset from UCI has 
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been used. They also used Deep Learning methods for auto-
matic feature selection and prediction. BI_RADS assess-
ment, tumor size, and shape found related features. Naveen 
et al. [23] predicted breast cancer by applying feature scal-
ing, cross-validation, and various ensemble machine-learn-
ing methods. Coimbra dataset from UCI was used. With 
Decision Tree and K-Nearest Neighbor, they achieved high-
est accuracy on training set. They discussed results on confu-
sion matrix and classification report. Other studies [24–30, 
48] conducted diverse machine-learning methods to predict 
breast cancer and survival prediction. Feature selection has 
been made [31] for breast cancer patients.

For prostate cancer, Revett et al. [32] investigate rough 
sets using decision table in order to classify patients. On 
502 prostate patients, they achieved 90% accuracy with 
91% sensitivity and specificity. Stage, treatment, age, Pf, 
Hx, Sbp, Dbp, Hg, tumor size, and bone metastases features 
were taken into account.

Danilatou et al. [8] conducted experiments on in-hospital 
and after-discharge mortality prediction using machine-
learning methods. 2468 venous thromboembolism patients 
in ICU from MIMIC-III database were used in their study. 
Using automated machine-learning platform JADBIO and 
Random Forest, they got highest AUC for early mortality. 
1471 features were extracted. Other conducted studies on 
MIMIC-III dataset were mainly on early mortality prediction 
for several cancer patients [33–36]. Other papers [37–39] 
focused on diagnoses of breast cancer using physician’s text 
notes of electronic health records on MIMIC-III.

Nowroozilarki et  al. [49] presented survival analysis 
method for real-time mortality warning system with the help 
of the information conveyed by the time-varying EHR data. 
Developed method was BoXHED 2.0 and they used MIMIC-
IV dataset. AUC-PRC of 0.41 and AUC-ROC of 0.83 results 
were achieved. Meng et al. [50] conducted analyses on inter-
pretability, dataset representation, and prediction fairness of 
deep learning models for in-hospital mortality. They used 
MIMIC-IV dataset. Using Long Short-Term Memory, they 
got highest AUROC score.

As previous studies have shown, multiple machine-learn-
ing algorithms have been used to predict cancer and used 
in mortality prediction for cancer patients. However, for 
the MIMIC-IV dataset, there are no studies that investigate 
mortality prediction for these cancer types with this set of 
features.

Materials and Methods

General Framework

An open access healthcare dataset called Medical Informa-
tion Mart for Intensive Care IV (MIMIC-IV) was used. In 

this dataset, diagnosis, medication, and treatment features 
were extracted for breast, lung, prostate, and stomach cancer 
patients. This framework takes multiple features and uses a 
classification model to predict mortality. A typical model for 
supervised classification of problems was employed, which 
consists of training and testing phases (Fig. 1). Primarily, 
patients’ diagnosis, medication, and treatment data were 
extracted from the dataset and labeled with patient’s mortal-
ity status. Next, at the preprocessing stage, null values were 
excluded, while others were trimmed down and formatted 
as lowercase in order to group features correctly. These fea-
ture vectors have been trained with a classifier. As a result, 
from the trained data, a machine-learning model have been 
deployed. Furthermore, a test sample is given to model to 
predict the mortality event. Lastly, using multiple metrics for 
classification evaluation, the comparison results is reported.

Medical Information Mart in Intensive Care (MIMIC) 
IV Dataset

In this work, the largest publicly available healthcare data-
set from the Medical Information Mart for Intensive Care 
IV (MIMIC-IV v1.0) containing over 500,000 ED visits 
between 2008 and 2019 was used. It contains real hospital 
stays for patients admitted to a tertiary academic medical 
center of Beth Israel Deaconess Medical Center (BIDMC) in 
Boston, Massachusetts. The MIMIC-IV dataset is an updated 
and enhanced version of the MIMIC-III dataset created in 
2016. MIMIC-IV is divided into three modules: core, hosp, 
and icu. These components are designed to emphasize their 
intended function and provenance. The core module holds 
patient tracking information that is required for any MIMIC-
IV data analysis. The data in the hosp module come from 
the hospital’s EHR system. The icu module includes data 

Fig. 1  Proposed framework mortality prediction
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from the BIDMC's MetaVision clinical information system 
(iMDSoft) [51].

There are many tables existing in aforementioned dataset. 
These tables are populated with different kinds of data for 
each patient. Following dataset tables are selected as base 
features for this study: diagnoses_icd, emar, procedures_icd, 
and admissions. Table diagnoses_icd contains all diagnoses 
of patients during their hospital stay, which are determined 
by medically trained persons. Table emar holds administra-
tion records of given medicine to an individual patient, and 
they are populated by bedside nursing staff. The Electronic 
Medicine Administration Record (eMAR) is barcode scan-
ning of medications at the time of administration. Table 
procedures_icd holds all procedures a patient was billed for 
during their hospital stay. Table admissions contain unique 
hospital visits of a patient.

Data Preparation and Inclusion Criteria

Cohort is selected from distinct patients who have either 
breast, lung, prostate, or stomach cancer. There are 3321 
diagnoses and 2065 distinct patients for breast cancer, 6677 
diagnoses and 3364 distinct patients for lung cancer, 3112 
diagnoses and 1971 distinct patients for prostate cancer, and 
1146 diagnoses and 583 distinct patients for stomach cancer, 
either with ICD versions 9 or 10.

Only the first diagnosis has been taken into account, 
except for the one that the patient was dead on the same 
day as the hospital admission (Fig. 2). Using the admissions 
table, this narrows down the numbers to 2037 breast, 3134 
lung, 1927 prostate, and 557 stomach cancer patients. No 
enclosure criteria have been further applied. For this cohort, 
overall deceased patient numbers are: 92 for breast, 335 for 
lung, 121 for prostate, and 63 for stomach cancer.

Selected Classifiers for Proposed Framework

In this proposed framework, with parametric and nonpara-
metric models, supervised learning was used in order to 
solve a typical binary classification problem. Parametric 
models are made up of function sets that are used to esti-
mate a set of parameters using training data. Nonparametric 
models are those whose parameters are determined by the 
training set, a subset of which are in use during prediction. 
Supervised learning infers a function from labeled training 
data and a set of training instances. Binary classification is 
a task that predicts the class label for a given case as true 
or false [52–55]. The following classifiers are used in this 
study: Logistic Regression, Decision Tree, Random Forest, 
Support Vector Machine, and Multi-Layer Perceptron.

Logistic Regression is a probabilistic-based statisti-
cal model that is commonly used to handle classification 
challenges in machine learning. It uses a defined sigmoid 

function and a fixed threshold in order to estimate the prob-
ability of a class. It works well when the dataset can be 
divided linearly and suffers from overfitting with high-
dimensional datasets [52, 53]. The reason for choosing 
Logistic Regression in this study is that it defines the rela-
tionship between variables and can predict the probability 
of its existence.

Decision Tree is a handy nonparametric supervised learn-
ing method that can find complex nonlinear relationships in 
the data. It classifies the data by sorting down the tree from 
the root node to a few leaf nodes. On the branch, respected 
attribute instances are categorized by verifying the attribute 
defined by that node. The most prominent criteria for split-
ting are “gini” which is used for Gini impurity and “entropy” 
which is used for information gain [53, 54]. In this study, 
the Decision Tree is chosen because of its low cost and high 
classification accuracy.

Random Forest is an ensemble optimization strategy that 
fits many Decision Tree classifiers simultaneously on a sub-
set of features. By combining majority voting with bootstrap 
aggregation, it reduces overfitting and improves prediction 

Fig. 2  Admission inclusion criteria chart
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accuracy. Since feature selection is randomized, it is usu-
ally more accurate than a single Decision Tree [54, 55]. In 
this case, the Random Forest is chosen because the training 
phase is fast and it does not memorize the data.

Support Vector Machine constructs a set of hyper-planes 
from data and separates differences. Mainly, the hyper-plane 
creates a significant separation by having the maximum 
distance from the closest training data points of a class. 
Although it performs classification, regression, and outlier 
detection, it is highly sensitive to noise data [52, 54]. The 
reason for choosing the Support Vector Machine in this 
study is that it is flexible with different kernel methods and 
is effective in cases where there are many attributes, such 
as health data.

Multi-Layer Perceptron is an artificial neural network 
which has the feed-forward architecture from deep learn-
ing. It consists of fully connected hidden layers between the 
input and output layer that classifies with neurons’ calculated 
weights due to some activation functions. While creating the 
model, it adjusts the internal weights with backpropagation 
approach [53, 55]. In this study, the Multi-Layer Perceptron 
is chosen because it has a flexible structure that can work 
well with big data and can give fast predictions.

Feature Extraction and Selection

The following features have been used as binary flags in 
this work.

It has been stated that using the comorbidity (e.g., hypox-
emia, acidosis, and sepsis) of a patient for in-hospital mor-
tality, cancer survival, treatment selection, and usage in clin-
ical applications are highly related [40–43]. With that stated, 
diagnosis data (i.e., distinct values of icd_code for diagnosis) 
from the diagnoses_icd (Billed ICD-9/ICD-10 diagnoses 
for hospitalizations) table are used. Diagnose numbers are 
80,855 for breast, 158,653 for lung, 93,738 for prostate, and 
30,141 for stomach cancer patients as comorbidity.

Recent studies also point out that using medication 
(e.g., Morphine Sulfate, Cefazolin, and Pilocarpine) as a 
feature in drug response prediction, cancer survival, and 
precision medicine is vital [14–16, 44, 45] in cancer cases. 
In light of these, medication data from the emar table (The 
Electronic Medicine Administration Record) are used. The 

number of medications is 392,227 for breast, 775,811 for 
lung, 442,399 for prostate, and 205,390 for stomach cancer 
patients.

It has been shown that for preventing futile treatment 
strategy, cancer survival, clinical decision making, and 
treatment (e.g. closed biopsy, venous catheterization, and 
bronchoscopy) selection play an immense role [12, 13, 46, 
47]. Taking these into consideration, procedures data (i.e., 
distinct values of icd_code for procedures) from the proce-
dures_icd (billed procedures for patients during their hospi-
tal stay) table are used. The number of procedures is 10,250 
for breast, 20,160 for lung, 11,084 for prostate, and 5421 for 
stomach cancer patients as treatment.

Rather than using a specific subset of features like the 
examples given above, they are grouped and considered as 
feature groups. These are diagnosis, medication, and treat-
ment. These features did not discriminate against a specific 
cancer type. In fact, they were suitable and common for 
all cancer types. These features also hold discrete values. 
Features were handled as binary variables, whether they 
occurred or not, for that cancer type. Steps of this approach 
are explained in following paragraphs. As a result, no con-
tinuous data type has been used. Extended subset of features 
is given as “Supplementary Information 1” in their relevancy 
order.

For each cancer type, all these features have been 
grouped by, which results in a unique number of feature 
lists (Table 1).

It has been seen that, especially in medication data, simi-
lar values have been written in different formats. The same 
value has been noted down either in camel case, all capitals, 
all small, or with white spaces at the end. For diagnosis and 
treatments, between versions of ICD-9 and ICD-10 spellings 
were different with the same reason explained earlier, which 
was resulting false grouping outcome of features. In order 
to group features correctly, following data cleaning and for-
matting procedures have been applied: first, null data were 
excluded; second, data were trimmed down by removing 
unnecessary white spaces either at the end or at the begin-
ning; and lastly, data were formatted as lowercase. Since 
diagnoses and procedures use similar ICD codes, in order 
to prevent confusion, diag-, med-, and pro- prefixes have 
been added to diagnose, medication, procedure features’ 

Table 1  Cohort summary # Of patients # Of 
deceased 
patients

# Of diagnoses # Of eMAR’s # Of procedures # Of total 
input fea-
tures

Breast 2037 92 5625 992 1686 8303
Lung 3134 335 6529 1106 2307 9942
Prostate 1927 121 5684 982 1802 8468
Stomach 557 63 3193 659 991 4843
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headers, respectively. No other preprocessing operation has 
been applied than these (Fig. 3).

For all patients, every feature encountered put into a map, 
creating a unique feature dictionary for that type of can-
cer. Then, by assigning these features as columns for each 
patient, the frequency of that feature is set if it occurred for 
that patient; otherwise, it is set to 0.

It has been stated that in order to reduce computational 
load, feature data can be transformed to binary encoding 
before feeding the model. In addition, it has been shown that 
one-bit representation of the data results in rapid outcomes 
and low resource costs [56, 57].

Therefore, in order to reduce the computational cost and 
time spent on model training, the following feature extrac-
tion method is applied: if a feature occurred for that patient, 
its value updated to 1. Lastly, the class variable (i.e., depend-
ent variable or result) in this problem is mortality, which 
is dead or alive. If that patient deceased, the result set as 1 
otherwise 0. With that, the final dataset is created.

In order to clarify the preprocessing steps in Fig. 3, 
first, text-formatting procedures are applied to group 
same terms. Second, feature prefixes are added in order to 

prevent confusion for same term codes for different feature 
set. Third, all subsets of features for that cancer type are 
used as column and patients as row. Then, if that feature 
occurred for that patient, the intersection is set to 1. Lastly, 
the mortality status of that patient is added as a result 
column in order to find out the final data.

Due to its natural way of working, Logistic Regression 
is an effective feature selector. Feature weighting inter-
prets model coefficients by their relevancy. It not only 
shows how important the coefficient is, but also depicts 
its direction of relation as positive or negative. This fea-
ture selection approach has been adopted by many studies 
[58–61]. It has been shown that with Logistic Regression, 
less important features were eliminated in a study that 
focuses on breast cancer [58]. Logistic Regression also 
used for biomarker selection, and relevant gene selection 
in lung cancer studies [59, 60, 62].

In Logistic Regression, the classification result is 
determined by a probability value between 0 and 1. The 
coefficient (β) shows the change in the logarithm of the 
probability of the result along with the direction and size 
of the relationship. When calculating the coefficient, the 
weighted sum is converted into a probability by the logis-
tic function. The term in the ln() function is the probability 
of an event divided by the probability of it is not happen-
ing, and as a whole these are called log rates [52]:

When one of the x attributes is changed by 1 unit, the 
exp() function is applied to each side in order to under-
stand how the estimation changes. To maximize log proba-
bility, the regression coefficients are iteratively reweighted 
until classification is complete [54]. In Logistic Regres-
sion, the exponent of positive values produces a coefficient 
greater than 1, while a coefficient with a value of zero 
produces an exp(β) equal to 1, indicating that the feature 
does not affect the probability of the result [58].

In this work, feature selection is made with Logistic 
Regression for each cancer type. It is seen that irrelevant 
features’ weights stay around 0. In addition, some features 
are positively related, which is when that feature occurs, it 
affects the result in an enhancing way. Negatively related 
ones are affecting result in a decreasing way yet are still 
related. After relevancy marked, Logistic Regression 
weights need to be in order, so that relevant features can 
be fed to models early. Features are ordered according to 
weight; negative ones appear at the end.

(1)

ln

(

P(y = 1)

1 − P(y = 1)

)

= log

(

P(y = 1)

P(y = 0)

)

= �
0
+ �

1
x
1
+⋯ + �pxp

Fig. 3  Data preprocessing phases for MIMIC-IV data
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Results

Training and Evaluation Setup

For all cancer types, stated machine-learning algorithms are 
used. Test size has been chosen as 30%, and training size has 
been chosen as 70%. The created dataset is fed to the model 
with a fixed random state value in order to reproduce the 
results again, creating a base result.

The area under the receiver-operating characteristic curve 
(AUROC) and the F1 Macro-Average is used as evaluation 
metrics for binary classification. The ROC is the true-posi-
tive rate versus the false-positive rate. Specificity is the ratio 
of negative instances that are correctly classified as negative. 
Sensitivity is the ratio of negative instances that are falsely 
classified as positive. Thus, the ROC curve plots sensitivity 
versus 1 − specificity. The F1 score is the harmonic (bal-
anced) mean of recall and precision. The F1 Macro-Average 
score is the unweighted mean of all the F1 scores per class 
[52]:

There are four possible outcomes given a classifier and an 
instance. A true positive (TP) is defined as a positive occur-
rence that is classified as positive; a false positive (FP) is 
defined as a negative instance that is identified as positive. 
A true negative (TN) is defined as a negative occurrence that 
is classified as negative; a false negative (FN) is defined as 
a positive instance that is identified as negative. True posi-
tive rate is referred as sensitivity, and true negative rate is 
referred as specificity [52]:

Empirical Results

In this part, the stated methods have been analyzed in three 
ways. First, using all features, the BASE results are col-
lected. BASE corresponds to the baseline results which are 
compared against. They documented using all features in 
all methods. With that, baseline performance of models is 
extracted. Second, the same procedures are followed with 
set of features starting at 100 to number of possible fea-
tures for that type of cancer by adding the next 100 features 
each time. After collecting all results, if that result either 

(2)
F
1
=

TP

TP +
(

FN+FP

2

)

(3)Sensitivity =
TP

TP + FN

(4)Specif icity =
TN

TN + FP

surpasses the BASE result or is as close as possible, it is 
marked as a candidate. Among candidates, the minimum 
number of features formed the BEST X result, where X 
denotes the number of features that creates this best result 
for that cancer type with that model. Finally, ordered with 
Logistic Regression by their relevancy, the best 100 features 
is chosen. Then, using only these features, the FIRST 100 
results are noted. This is to show how well the methods per-
form with only the minimum feature set.

Results are divided into two as the comparison of F1 
Macro-Average and as AUROC. The performance of all 
methods performed in this work is shown in Tables 2, 3, 4, 
and 5. For the following tables, rows show the used models 
grouped by that specific cancer type. As columns, there are 
three types of result set. “BASE (ALL) Features” shows the 
baseline performance results with all features for that model. 
“BEST X Features” shows the best performance results com-
pared to its baseline result. Number of X is also shown here 
in order to depict the feature number that is in use. Lastly, 
“FIRST 100 Features” shows the result of first 100 features 
which is the possible minimum feature set. All colored cells 
indicate that compared with other models, they are the local 
best result for that cancer type in that feature group.

As can be seen in Table 2, using BASE features, Deci-
sion Tree method gave the best results with breast, lung, 
and prostate cancer. For stomach and lung cancer, Logistic 
Regression gave the best results. Among all types, prostate 
cancer gave the highest score which is 0.82. For all cancer 
types, FIRST 100 features results were generally close to the 
BASE results for all methods. Random Forest and Multi-
Layer Perceptron methods’ results surpassed their respected 
BASE results for breast and lung cancer. Random Forest 
and Support Vector Machine methods’ results also surpassed 
their respected BASE results for prostate and stomach cancer 
with FIRST 100 features. It can be seen that FIRST 100 fea-
tures’ results were close to BASE results by approximately 
90% (Table 2).

BEST X features can be employed in cases where com-
putational load and memory resources can be coped. Mor-
tality prediction results using BEST X features can be seen 
in Table 3. For breast cancer, using approximately 20% of 
all features, score was close to BASE result using Decision 
Tree model. With 18% of all features, the same result as 
with BASE was achieved using Logistic Regression. For 
lung cancer, with 10% of all features, BASE result was 
outperformed using Logistic Regression. With approxi-
mately 12% of all features, the score was close to BASE 
result using Decision Tree. For prostate cancer, with 8% of 
all features, BASE result was outperformed using Logistic 
Regression. With 14% and 1% of all features, scores were 
close to BASE results using Decision Tree and Multi-Layer 
Perceptron, respectively. For stomach cancer, with 12% of 
all features, BASE result was outperformed using Logistic 
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Table 2  F1 Macro-Average 
results of “BASE (ALL) 
Features” and “FIRST 100 
Features”

BASE (ALL) features FIRST 100 features

Cancer Model F1 Macro Avg F1 Macro Avg
Breast Logistic Regression 0.70 0.67

Decision Tree 0.76 0.63
Random Forest 0.53 0.61
Support Vector Machine 0.63 0.62
Multi-Layer Perceptron 0.60 0.62

Lung Logistic Regression 0.71 0.68
Decision Tree 0.71 0.67
Random Forest 0.49 0.63
Support Vector Machine 0.67 0.66
Multi-Layer Perceptron 0.62 0.64

Prostate Logistic Regression 0.76 0.74
Decision Tree 0.82 0.76
Random Forest 0.53 0.67
Support Vector Machine 0.70 0.75
Multi-Layer Perceptron 0.68 0.65

Stomach Logistic Regression 0.72 0.63
Decision Tree 0.64 0.62
Random Forest 0.48 0.60
Support Vector Machine 0.57 0.61
Multi-Layer Perceptron 0.69 0.61

Table 3  F1 Macro-Average results of “BEST X Features”

Cancer Model BEST X features

# of X F1 Macro Avg

Breast Logistic Regression 1500 0.70
Decision Tree 1900 0.74
Random Forest 100 0.61
Support Vector Machine 400 0.72
Multi-Layer Perceptron 100 0.62

Lung Logistic Regression 1000 0.73
Decision Tree 1400 0.70
Random Forest 200 0.66
Support Vector Machine 600 0.72
Multi-Layer Perceptron 1100 0.68

Prostate Logistic Regression 700 0.82
Decision Tree 1000 0.79
Random Forest 100 0.67
Support Vector Machine 100 0.75
Multi-Layer Perceptron 100 0.65

Stomach Logistic Regression 600 0.79
Decision Tree 700 0.62
Random Forest 100 0.60
Support Vector Machine 200 0.63
Multi-Layer Perceptron 100 0.61

Table 4  AUROC scores of “BASE (ALL) Features” and “FIRST 100 
Features”

Cancer Model BASE (ALL) 
features

FIRST 
100 
features

AUC AUC 

Breast Logistic Regression 0.75 0.85
Decision Tree 0.77 0.65
Random Forest 0.89 0.90
Support Vector Machine 0.92 0.79
Multi-Layer Perceptron 0.78 0.73

Lung Logistic Regression 0.77 0.86
Decision Tree 0.70 0.67
Random Forest 0.88 0.88
Support Vector Machine 0.82 0.78
Multi-Layer Perceptron 0.68 0.72

Prostate Logistic Regression 0.74 0.93
Decision Tree 0.79 0.77
Random Forest 0.94 0.93
Support Vector Machine 0.84 0.78
Multi-Layer Perceptron 0.58 0.77

Stomach Logistic Regression 0.80 0.65
Decision Tree 0.73 0.60
Random Forest 0.84 0.84
Support Vector Machine 0.85 0.68
Multi-Layer Perceptron 0.69 0.50
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Regression. With 14% and 2% of all features, scores were 
close to BASE results using Decision Tree and Multi-Layer 
Perceptron, respectively.

In order to increase comprehension, the final F1 Macro-
Average results are also shown in Fig. 4 for full comparison.

AUROC scores of the experiments can be seen in Table 4. 
On AUROC scores, using BASE features, Support Vec-
tor Machine method gave the best results with breast and 
stomach cancer, and Random Forest method gave the best 
results with lung and prostate cancer. Among all types, pros-
tate cancer gave the highest score, which is 0.94. Logistic 

Regression method result surpassed their respected BASE 
result for breast cancer. Logistic Regression and Multi-Layer 
Perceptron methods’ results also surpassed their respected 
BASE results for lung and prostate cancer with FIRST 100 
features. It can be seen that FIRST 100 features’ results 
were close to BASE results by approximately 98% among 
all results (Table 4). In addition to AUROC scores, ROC 
curves are drawn to demonstrate how base and 100 features 
behaved in mortality prediction. As can be seen in Fig. 4, for 
all cancer types, FIRST 100 features results were generally 
close to the BASE results for all methods.

AUROC results for BEST X features and machine-learn-
ing models can be seen in Table 5. For breast cancer, with 
approximately 8% of all features, BASE result was outper-
formed using Random Forest. With approximately 5% of all 
features, the score was close to BASE result using Multi-
Layer Perceptron. With 23% of all features, the same score as 
BASE was achieved using Decision Tree. With 1% and 18% 
of all features, BASE results are outperformed by Logistic 
Regression and Support Vector Machine, respectively. For 
lung cancer, with 5% of all features, BASE result was out-
performed using Random Forest. With 14% of all features, 
the same score as BASE was achieved using Decision Tree. 
With 1%, 6%, and 2% of all features, BASE results are out-
performed by Logistic Regression, Support Vector Machine, 
and Multi-Layer Perceptron, respectively. For prostate can-
cer, with approximately 3% of all features, BASE result was 
outperformed using Random Forest. With 1%, 12%, 4%, and 
1% of all features, BASE results are outperformed by Logis-
tic Regression, Decision Tree, Support Vector Machine, and 
Multi-Layer Perceptron, respectively. For stomach cancer, 
with 6% of all features, BASE result was outperformed using 
Random Forest. With 14% and 18% of all features, scores 
were close to BASE results using Decision Tree and Multi-
Layer Perceptron, respectively. With 12% and 22% of all 
features, BASE results are outperformed by Logistic Regres-
sion and Support Vector Machine, respectively.

Table 5  AUROC scores of “BEST X Features”

Cancer Model BEST X Features

# of X AUC 

Breast Logistic Regression 100 0.85
Decision Tree 1900 0.77
Random Forest 700 0.94
Support Vector Machine 1500 0.94
Multi-Layer Perceptron 400 0.76

Lung Logistic Regression 100 0.86
Decision Tree 1400 0.70
Random Forest 500 0.91
Support Vector Machine 600 0.84
Multi-Layer Perceptron 200 0.72

Prostate Logistic Regression 100 0.93
Decision Tree 1000 0.81
Random Forest 300 0.96
Support Vector Machine 400 0.93
Multi-Layer Perceptron 100 0.77

Stomach Logistic Regression 600 0.83
Decision Tree 700 0.68
Random Forest 300 0.88
Support Vector Machine 1100 0.86
Multi-Layer Perceptron 900 0.59

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Breast Lung Prostate Stomach

BASE FIRST 100 BEST

Fig. 4  F1 Macro-Average results’ comparison



 SN Computer Science           (2023) 4:264   264  Page 10 of 14

SN Computer Science

In order to increase comprehension, the final AUROC 
results are also shown in Fig. 5 for full comparison.

An AUROC score is a representation of how well a binary 
classification model performed on the positive class. The 
ideal fraction of accurate positive class predictions would 
be 1. This demonstrates that the top-left of the plot is the 
best feasible classifier and reaches perfect competence. A 
classifier will generate a diagonal line if it lacks the ability 
to distinguish between positive and negative classifications. 
Due to its lack of bias toward either the majority or minority 
class, it is a well-liked diagnostic tool for classifiers on both 
balanced and imbalanced binary prediction problems [52].

The results below can be compared in two ways. The 
first is holding one cancer type and feature group constant 
and comparing different types of machine-learning models. 
For example, for breast cancer and BASE features, it can be 
clearly seen that SVM classifies better than LR since SVM 
has more area under the ROC. The second is holding one 
cancer type and one machine-learning method constant and 
comparing different types of feature groups. For example, 
for lung cancer and Logistic Regression method, it can be 
seen that FIRST 100 features have better score than BASE 
features with 0.86–0.77 (Fig. 6).

Conclusion and Discussion

Cancer is the most threatening disease in the world. Breast, 
lung, prostate, and stomach cancers are the most frequent 
ones globally. Early-stage detection and diagnosis of these 
cancers pose a great challenge in the literature. When deal-
ing with cancer patients, physicians must select among vari-
ous treatment methods that have a risk factor. Since the risks 
of treatment may outweigh the benefits, treatment schedule 
and treatment selection are critical in clinical decision mak-
ing. Manually deciding which medications and treatments 
are going to be successful, takes a lot of expertise and can 

be hard. Furthermore, early-stage detection of cancer is cru-
cial in order to decrease the mortality rate of patients. As a 
result, computerized mortality detection with least required 
features will help physicians to overcome these limitations 
and issues.

Although machine-learning approaches are more quick 
than manual decision making, as the number of features 
increases, computation time and the resources that the 
model requires expand as well. The main problem that was 
addressed in here is: finding the least required features while 
keeping the prediction rate as high as possible for in-hospital 
mortality prediction on various cancer patients in order to 
help physicians. In addition, no other study was found for 
this purpose on the MIMIC-IV dataset.

Using various machine-learning methods and patients’ 
diagnoses, medications, and treatment features, a compara-
tive analysis of these methods was conducted. Machine-
learning methods are Logistic Regression, Decision Tree, 
Random Forest, Support Vector Machine, and Multi-Layer 
Perceptron. For feature extraction, patient data are repre-
sented as one-bit flags in order to reduce computational 
cost and time that spend on model training. with Logistic 
Regression, the most significant features are identified and 
selected. These features are fed to models in multiples of 
100 in search of similar or preferably, better results than 
using all features.

With a smaller set of features, results were promising and 
mainly surpassed their baseline scores. F1 Macro-Average 
scores were: 0.74 for breast, 0.73 for lung, 0.82 for prostate, 
and 0.79 for stomach. AUROC scores were: 0.94 for breast, 
0.91 for lung, 0.96 for prostate, and 0.88 for stomach. It can 
be seen that this set of features is much more suitable and 
has more generalization opportunities for prostate cancer 
than other cancer types.

The proposed approach has several contributions. First, 
our approach uses less features while maintaining the same 
prediction performance as using all available features. 

Fig. 5  AUROC results’ comparison
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Fig. 6  ROC curve for models for all cancer types (BASE and FIRST 100 Features)
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Second, by converting feature sets to binary flag values, 
the memory footprint of feature vectors becomes smaller. 
Third, it is the only study that explores cancer mortality 
in the MIMIC-IV dataset. Finally, in our study, we identi-
fied which machine-learning models work well with which 
cancer type in predicting mortality. When a result class 
has a majority in one sample, which is also called class 
distribution [52], this creates an imbalanced dataset. The 
data that we used in this study have a 90/10 life-to-death 
ratio. Since the cancer data here are imbalanced, the model 
results were highly sensitive to class distribution instance 
numbers and also possibly mislabeled noisy data. But as 
can be seen from the results, our approach can cope with 
a limited amount of data using relevant feature sets and 
efficient machine-learning algorithms. In future works, tra-
ditional features such as age, gender, and lab values can 
be added and can be refollowed the same procedures. In 
addition, other similar publicly available datasets can be 
considered to validate our approach. Finally, this problem 
was not applicable to deep learning methods due to low 
number of data available [63, 64]. In order to thrive, deep 
learning architectures require large sample sized datasets. 
To solve that issue, methods that increase sample sizes 
can be considered for future studies [65]. For the next 
steps, deep learning frameworks [66] can be considered 
for future approaches when there are more patient data 
available.
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