106 research outputs found

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    NetFPGA-based firewall solution for 5G multi-tenant architectures

    Get PDF
    Future fifth-generation (5G) mobile networks entails architectural and network changes, mainly motivated by the idea of sharing resources between different network operators, which implies a reduction of the costs, thanks to the deployment of virtualised scenarios in shared infrastructures, and an improvement of the network usability. These architectural changes should guarantee that security and 5G Key Performance Indicators (KPIs) are achieved in 5G multi-tenant scenarios. The deployment of advanced architectures and network scenarios for the emerging 5G networks involves a renovation of the elements that compose them. Nowadays, there is no hardware solution which ensures the protection in 5G edge to core multi-tenant scenarios, therefore this paper proposes a fully functional 5G firewall based on a Field Programmable Gate Array (FPGA) that allows effective detention of cyber-attacks in 5G multi-tenant scenarios with user mobility support. The prototyped 5G firewall has been empirically evaluated to validate new capabilities in a 5G edge-to-core scenario. Moreover, an extensive performance and scalability test of the prototyped system has been carried out in a realistic testbed

    Situation Assessment for Mobile Robots

    Get PDF

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Ensemble learning with discrete classifiers on small devices

    Get PDF
    Machine learning has become an integral part of everyday life ranging from applications in AI-powered search queries to (partial) autonomous driving. Many of the advances in machine learning and its application have been possible due to increases in computation power, i.e., by reducing manufacturing sizes while maintaining or even increasing energy consumption. However, 2-3 nm manufacturing is within reach, making further miniaturization increasingly difficult while thermal design power limits are simultaneously reached, rendering entire parts of the chip useless for certain computational loads. In this thesis, we investigate discrete classifier ensembles as a resource-efficient alternative that can be deployed to small devices that only require small amounts of energy. Discrete classifiers are classifiers that can be applied -- and oftentimes also trained -- without the need for costly floating-point operations. Hence, they are ideally suited for deployment to small devices with limited resources. The disadvantage of discrete classifiers is that their predictive performance often lacks behind their floating-point siblings. Here, the combination of multiple discrete classifiers into an ensemble can help to improve the predictive performance while still having a manageable resource consumption. This thesis studies discrete classifier ensembles from a theoretical point of view, an algorithmic point of view, and a practical point of view. In the theoretical investigation, the bias-variance decomposition and the double-descent phenomenon are examined. The bias-variance decomposition of the mean-squared error is re-visited and generalized to an arbitrary twice-differentiable loss function, which serves as a guiding tool throughout the thesis. Similarly, the double-descent phenomenon is -- for the first time -- studied comprehensively in the context of tree ensembles and specifically random forests. Contrary to established literature, the experiments in this thesis indicate that there is no double-descent in random forests. While the training of ensembles is well-studied in literature, the deployment to small devices is often neglected. Additionally, the training of ensembles on small devices has not been considered much so far. Hence, the algorithmic part of this thesis focuses on the deployment of discrete classifiers and the training of ensembles on small devices. First, a novel combination of ensemble pruning (i.e., removing classifiers from the ensemble) and ensemble refinement (i.e., re-training of classifiers in the ensemble) is presented, which uses a novel proximal gradient descent algorithm to minimize a combined loss function. The resulting algorithm removes unnecessary classifiers from an already trained ensemble while improving the performance of the remaining classifiers at the same time. Second, this algorithm is extended to the more challenging setting of online learning in which the algorithm receives training examples one by one. The resulting shrub ensembles algorithm allows the training of ensembles in an online fashion while maintaining a strictly bounded memory consumption. It outperforms existing state-of-the-art algorithms under resource constraints and offers competitive performance in the general case. Last, this thesis studies the deployment of decision tree ensembles to small devices by optimizing their memory layout. The key insight here is that decision trees have a probabilistic inference time because different observations can take different paths from the root to a leaf. By estimating the probability of visiting a particular node in the tree, one can place it favorably in the memory to maximize the caching behavior and, thus, increase its performance without changing the model. Last, several real-world applications of tree ensembles and Binarized Neural Networks are presented

    Detection and Prediction of Distributed Denial of Service Attacks using Deep Learning

    Get PDF
    Distributed denial of service attacks threaten the security and health of the Internet. These attacks continue to grow in scale and potency. Remediation relies on up-to-date and accurate attack signatures. Signature-based detection is relatively inexpensive computationally. Yet, signatures are inflexible when small variations exist in the attack vector. Attackers exploit this rigidity by altering their attacks to bypass the signatures. The constant need to stay one step ahead of attackers using signatures demonstrates a clear need for better methods of detecting DDoS attacks. In this research, we examine the application of machine learning models to real network data for the purpose of classifying attacks. During training, the models build a representation of their input data. This eliminates any reliance on attack signatures and allows for accurate classification of attacks even when they are slightly modified to evade detection. In the course of our research, we found a significant problem when applying conventional machine learning models. Network traffic, whether benign or malicious, is temporal in nature. This results in differences in its characteristics between any significant time span. These differences cause conventional models to fail at classifying the traffic. We then turned to deep learning models. We obtained a significant improvement in performance, regardless of time span. In this research, we also introduce a new method of transforming traffic data into spectrogram images. This technique provides a way to better distinguish different types of traffic. Finally, we introduce a framework for embedding attack detection in real-world applications

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    • …
    corecore