
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Computer Science Dissertations Department of Computer Science 

Spring 5-4-2021 

Detection and Prediction of Distributed Denial of Service Attacks Detection and Prediction of Distributed Denial of Service Attacks 

using Deep Learning using Deep Learning 

Christopher Freas 

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss 

Recommended Citation Recommended Citation 
Freas, Christopher, "Detection and Prediction of Distributed Denial of Service Attacks using Deep 
Learning." Dissertation, Georgia State University, 2021. 
doi: https://doi.org/10.57709/22612424 

This Dissertation is brought to you for free and open access by the Department of Computer Science at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by 
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/22612424
mailto:scholarworks@gsu.edu


Detection and Prediction of Distributed Denial of Service Attacks using Deep Learning

by

Christopher B. Freas

Under the Direction of Robert W. Harrison, Ph.D.

ABSTRACT

Distributed denial of service attacks threaten the security and health of the Internet.

These attacks continue to grow in scale and potency. Remediation relies on up-to-date and

accurate attack signatures. Signature-based detection is relatively inexpensive computation-

ally. Yet, signatures are inflexible when small variations exist in the attack vector. Attackers

exploit this rigidity by altering their attacks to bypass the signatures. The constant need

to stay one step ahead of attackers using signatures demonstrates a clear need for better

methods of detecting DDoS attacks.



In this research, we examine the application of machine learning models to real network

data for the purpose of classifying attacks. During training, the models build a representation

of their input data. This eliminates any reliance on attack signatures and allows for accurate

classification of attacks even when they are slightly modified to evade detection. In the course

of our research, we found a significant problem when applying conventional machine learning

models. Network traffic, whether benign or malicious, is temporal in nature. This results

in differences in its characteristics between any significant time span. These differences

cause conventional models to fail at classifying the traffic. We then turned to deep learning

models. We obtained a significant improvement in performance, regardless of time span. In

this research, we also introduce a new method of transforming traffic data into spectrogram

images. This technique provides a way to better distinguish different types of traffic. Finally,

we introduce a framework for embedding attack detection in real-world applications.

INDEX WORDS: Application Level Intelligence, Attack Detection, Deep Learning, De-
nial of Service, Distributed Denial of Service, Flow analysis, Machine
Learning, Networks, Security
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PART 1

INTRODUCTION

The Internet is an indispensable part of our social, economic, and political well-being.

Indeed, as Tim Berners-Lee, the father of the World Wide Web, put it, “There was a time

when people felt the Internet was another world, but now people realise it’s a tool that we

use in this world.”. Along with this success has come a threat in the form of denial of service

(DoS) attacks, where a malicious user attacks some resource to deny the service or services it

provides to other users. Denial of service attacks are generally either a “centralized” attack

where the malicious user attacks a target (or targets) from a single source, or a so-called

“distributed” denial of service (DDoS) attack, where the attacker can use many hundreds or

thousands of compromised computer systems to launch an attack. The focus of this research

is on attacks of the latter type. The magnitude of these attacks can range from benign

pranks to very costly down time. Though commercial and non-commercial solutions exist to

mitigate these attacks, they typically rely on attack signatures to mitigate known attacks.

Similar to computer malware and viruses, DDoS attacks tend to change over time in order

to defeat these signatures. This means that any system for mitigating them must be able to

cope with these changes in order to detect anomalous traffic behavior.

1.1 An Overview of Denial of Service Attacks

Fundamentally, a denial of service attack can be thought of as any attack on a resource

that is meant to deny other, legitimate use of that resource. Denial of service attacks

generally take one of two forms: a “centralized” attack where the malicious user attacks a

target (or targets) from a single source, or a so-called “distributed” denial of service (DDoS)

attack, where the attacker can use many hundreds or thousands of compromised computer

systems to launch an attack. In both methods, the attacker conceals his identity and location
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in order to maximize the lifetime of the attack. The following sections provide an overview

of each method.

1.1.1 Traditional Denial of Service Attacks

Traditional denial of service attacks can be thought of as an attack meant to disrupt

or crash a service. There are two general forms of DoS attacks: those that crash services

and those that flood services[2]. A buffer overflow attack is an attack in which the attacker

exploits code which does not properly sanitize the input given to it. The result is that the

bounds of a finite memory buffer are exceeded, allowing the attacker to crash the service

or simply take control of it. Examples of flooding services are a SYN1 attack, where the

attacker floods a target with TCP SYN packets in order to exhaust the target’s memory, the

ICMP2 “ping of death” attack, in which the attacker sends an extremely large payload in an

ICMP packet to crash operating systems that are unable to handle them, a Teardrop attack,

where the attacker sends fragmented packets whose fragment offsets overlap 3, to a simple

ping flood, where the attacker tries to consume the target’s bandwidth with large amounts

of ICMP packets. With the exception of the ping flood attack, all modern operating systems

have been patched against these sorts of attacks. The ping flood attack, when carried out by

a large number of attackers, can be particularly effective. In this scenario, it is considered

to be a distributed denial of service attack, and is discussed in the next section.

1.1.2 Distributed Denial of Service Attacks

When several attacking systems are coordinated and directed at a target, the attack is

known as a distributed denial of service attack. A DoS attack is shown in Figure 1.1 and a

DDoS attack is shown in Figure 1.2 for comparison.

1The SYN, or synchronize packet, is the first packet in the TCP “three-way handshake” and is used to
establish a connection to a remote system.

2ICMP is used for a variety of functions, including checking whether a system is reachable.
3Packet fragmentation is used when a packet is too large to be transmitted on one or more segments along

the path from its source to its destination. Fragment offsets allow the receiver to reassemble the received
fragments correctly.
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Figure 1.1. A DoS attack.

The DoS attack in Figure 1.1 is meant to be an abstraction - these types of attacks do

not necessarily require the attacker to send malicious packets to the target. In the case of a

buffer overflow attack, the attacker could even be a valid user on the target system!

The DDoS attack shown in Figure 1.2 is by definition reliant on the attackers sending

malicious packets to the target, however, the packets are not known a priori to be malicious.

Figure 1.2. A DDoS attack.

The coordination of attacking systems for these kinds of attacks can be managed by

a single attacker employing one of two known methods [3]. The first is the Agent-Handler

model where the attacking systems are compromised computers with agent software installed

to carry out the attack. The attacker controls and monitors the attacking systems via the
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handlers, which each control a subset of the attacking systems. The second is a so-called

“botnet”, which is a collection of compromised computers controlled by the attacker and

directed to attack a target [4]. Each of the attacking systems connects to a private IRC

channel created for the specific purpose of coordinating an attack. In both architectures,

the attacker issues commands to either a handler or directly to an agent on a compromised

system to launch an attack.

Amplification Attacks DDoS amplification attacks exploit the characteristics of cer-

tain packet types and protocols in order to provide volumetric increases in malicious attack

traffic in response to small amounts of legitimate query traffic. An example of an amplifica-

tion attack is shown in Figure 1.3.

Figure 1.3. A DDoS amplification attack.

In the figure, the attacking systems send a small payload consisting of a query of some

type to a set of systems running a service whose response traffic is known to be larger than

the query traffic. The query packets have forged IP destination address headers, which are

set to the target’s IP address. Depending upon the service running on the amplification

hosts, an amplification factor of several hundreds of times the size of the query traffic can be

achieved. In the case of DNS reflection, the amplification factor is 8x, meaning the attack

generates eight times more response traffic, which is then sent to the target, than query
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traffic. However, in the case of NTP and SNMP reflection, amplification can be over 200x

and 650x, respectively [5].

Perhaps the most well known amplification attack is the NTP reflection attack carried

out in 2014 against CloudFlare, a company that provides CDN services for popular websites.

As detailed in [5], the attackers exploited a flaw in NTP whereby an attacking system queries

an exposed NTP server for a list of systems that have recently queried the NTP server (called

a “MONLIST”) [6]. Because the size of the MONLIST is larger than the original query, the

response traffic has thus been “amplified”. The attack against CloudFlare was measured at

over 400 Gigabits per second (Gbps) with an amplification factor of 200x [5].

1.1.3 Impacts of Denial of Service Attacks

The impacts caused by a denial of service attack vary. For traditional DoS attacks,

the impact is usually a brief disruption for a single service. For DDoS attacks, the impact

is much greater. Because these attacks typically target large networks which host services

or users in a shared environment, when a single end host is targeted, it often takes down

services for other users sharing the environment. In extreme cases such as the CloudFlare

attack mentioned previously, entire networks can become unreachable for the duration of the

attack.

1.2 Research Outline

Throughout this document, a chronology of tools and information that details this

research will be presented. This project was born out of my many years of experience as

a professional network engineer and architect. I had several occasions where I had to help

remediate DDoS attacks and the lessons learned were invaluable. However, I lacked a deep

understanding of what is really needed for useful attack detection. This research intends to

fill that knowledge gap for myself and anyone that may be interested in DDoS attacks.

The most salient goal of this research is to develop a machine learning tool (or set

of tools) that can analyze network traffic in order to detect and even predict these sorts of
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attacks with a reasonable level of accuracy. The first goal is to develop a strong understanding

of DDoS attacks. The next goal is to develop a model of normal versus anomalous traffic

behavior. Various machine learning models will be evaluated against real traffic data sets.

This allows us to determine if machine learning is appropriate and which model or models

work best. Finally, we apply what we’ve learned to create a framework that can be applied

in real-world settings to detect malicious behavior.

1.3 Existing Approaches to Detection

Broadly, existing approaches to the detection of DDoS attacks can be placed in one

of two categories: network-based detection and application-level detection. These can

be further classified into centralized detection schemes and distributed detection schemes.

Application-level detection of DDoS attacks is not of interest for this research and is not

discussed further.

Chen et al. propose in [7] the Distributed Change Point (DCP) detection architecture,

which uses a system of distributed collection points to monitor traffic traversing several

networks. Once the traffic level exceeds a predefined router threshold, β, the traffic is

considered suspicious. This is performed using a metric called deviation from average (DFA),

a ratio of historical traffic averages and the current traffic level. DFA is defined formally as

the following:

DFAin(tm, i) =
Sin(tm, i)

X(tm, i)
(1.1)

In Equation 1.1, the values tm and i refer to the number of packets received by a router

at discrete time interval m on physical port i. The function X(tm, i) is then the historical

average number of packets received at discrete time interval m on physical port i. The

function Sin(tm, i) is the deviation from the average defined in X(tm, i).

This architecture performs well but is limited to the detection of so-called flooding

attacks. Additionally, it requires cooperation between several network operators residing in
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different autonomous systems4 for attack remediation. Speaking from practical experience,

network operators are frequently reluctant to add any additional software or hardware to

their networks based on security and operational concerns.

Similar statistical approaches exist, such as the D-WARD system proposed by Mirković

et al. in [8], which rate limits traffic considered to be non-compliant with a set of predefined

models for normal traffic. In contrast to DCP, D-WARD is placed only at the source of

traffic, and not egress points between networks. Several unanswered questions exist, namely

how to deal with the possibility of attacks within a network, updating the models of normal

traffic, and how to effectively deal with high speed routers (that is, terabit-capable routers).

Other purely statistical approaches, such as [9], rely on increasing or decreasing a rate

limit based on end system feedback, or modeling the TCP SYN arrival rate to detect attacks

[10].

In [11], Niyaz et al. use deep learning techniques as well as a software-defined networking

(SDN) approach for DDoS detection. For deep learning, a stacked autoencoder is used,

which, when trained, feeds data into a softmax5 classifier. For their SDN approach, a Traffic

Collector and Flow Installer (TCFI), Feature Extractor, and Traffic Classifier module are

used to automatically program remediation flows in the SDN controller. These modules rely

on the stacked autoencoder for detection. This approach achieves a 95.65% accuracy with a

false-positive rate of 5%. However, the authors chose to capture raw packet data as it arrives

instead of relying on a network flow collection protocol. Due to this, the application of this

approach will be limited to smaller networks.

Finally, in [12], Fiore et al. combine a discriminative RBM (DRBM) with feature-rich

training data. The discriminative RBM shows promise, however, it does suffer from long

training times and an inability to cope with data that is widely different than the network

data that training was performed on. This suggests that the DRBM may be overfitting the

4An autonomous system (AS) is a 32-bit integer value assigned to network operators by the IANA and
delineates all of the devices under the control of a single network operator, such as Google, Level3, and so
on.

5Softmax is the term for generalized multi-class classification using the sigmoid function discussed in
section 2.1.2.
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data. The authors acknowledge these issues and propose future research to determine a way

to generalize anomaly detection using a DRBM.

This small sample of existing literature is by no means comprehensive. It is merely meant

to provide a taste for the breadth of existing DDoS attack detection research. Additional

references to relevant literature will be made throughout the remainder of this dissertation

as appropriate.
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PART 2

ATTACK DETECTION USING CONVENTIONAL MACHINE LEARNING

MODELS

The detection of DDoS attacks fits well within the umbrella of big data. Big data

problems are characterized by five Vs: Volume, Velocity, Variety, Veracity, and Value [13].

Reliable estimation of the threat from a network attack requires rapid (Velocity) and accu-

rate (Veracity, Value) estimation of a non-homogeneous threat (Variety) in the presence of

terabytes of data (Volume). Forecasts on both the Volume and Velocity of network traffic

show a doubling in the next three years [14].

In this chapter, we examine the use of conventional machine learning models for clas-

sifying attacks on network flow data. The data contain a combination of benign traffic and

several types of malicious traffic. We applied the Decision Tree, Random Forest, and k-

nearest neighbors algorithms to the full data set. We then broke the data set into several

non-overlapping sets based on the time of collection to determine how the models would

perform with a time difference. The accuracy significantly deteriorates when attacks are

present in the test data but not the training data which demonstrates that the system is non-

stationary. Finally, we applied feature reduction techniques to determine the most relevant

features in the data. We then retested the models to observe the impact of a reduced feature

space. Since conventional machine learning algorithms converge poorly on non-stationary

data, we conclude that generalizing on network flow data requires more advanced machine

learning algorithms.

The next section provides a brief overview of machine learning. Readers with a back-

ground in machine learning can skip to Section 2.2 if desired.
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Size Color Texture Shape Name
Medium Red Firm Round Red Apple
Medium Orange Soft Round Orange
Small Purple Soft Round Grape
Large Yellow Firm Crescent Banana

Table 2.1. A sample labeled data set.

2.1 An Overview of Machine Learning

Machine Learning can be roughly defined as a set of methods and techniques that can

be used to help make sense of a set of data. Under this definition, machine learning is

almost indistinguishable from the related field of data mining. Indeed, many data mining

tool kits and software make heavy use of machine learning models1. A better definition

of machine learning as it relates the the field of artificial intelligence was coined in 1959

by machine learning pioneer Arthur Samuel: “Machine learning gives computers the ability

to learn without being explicitly programmed.”. This definition is, of course, not entirely

accurate since a computer can’t learn to drive a car by simply reading a book. Instead, a

learning algorithm is used with a set of data to make decisions, infer certain values, or group

the data in some meaningful way.

The most common way to make decisions using machine learning is with classification,

which is discussed in the next section. When the requirement is to infer future values based

on previous observations, regression is most commonly used. Together, classification and

regression are referred to as supervised learning, since the particular learning algorithm must

first be trained with a set of data containing labels for the correct output. During training,

the model builds an internal representation of the training data. Once the algorithm has been

trained (using a training data set), data with the same features (called a test or validation

data set) and no labels can be given to the algorithm and it will label the data.

If no labels exist in the data, unsupervised learning is used to gain some insight about

1A great example of this is the Apache Spark cluster computing framework. See the following link for
more information: https://spark.apache.org/.

https://spark.apache.org/
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the data (possibly for the purpose of adding labels!). The most common approach to unsu-

pervised learning is clustering, which is discussed in Section 2.1.3.

2.1.1 Classification

The goal of classification algorithms is to place an unknown piece of data into a known

category or class [15]. Table 2.1 shows an example data set. The columns provide the

features (sometimes referred to as attributes) for each row of data. Each feature describes

an aspect of the data that is considered the most relevant to the classification task at hand.

In the table, the features are Size, Color, Texture, and Shape. The last column provides the

label for each row, which is the category or class the particular row belongs to. Each row is

referred to as an instance. The labels are Apple, Orange, Grape, and Banana. This table

illustrates a data set used to train a learning algorithm. A sample (or test) data set would be

the same, but the Name column would not be present. Table 2.1 is an example of multiclass

classification. A simpler classification method, binary classification, is used to determine

membership in one of two classes. For DDoS detection, it would suffice to label the traffic

as either benign or not benign. Doing so provides the advantages of simpler models as well

as the ability to detect new attacks before they are recognized by signature-based systems

(so-called “zero-day” attacks).

Figure 2.1. A linearly separable set of points.
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For many machine learning models, the input data is mapped to some arbitrary n-

dimensional space. Figures 2.1 and 2.2 illustrate several properties of data mapped to a set

of points in Euclidean space. The set of points in Figure 2.1 can be easily separated by the

bold line, called the separating hyperplane, into two distinct classes (circles and squares in this

example). The points with dashed borders are are the closest to the separating hyperplane.

For models like the Support Vector Machine (SVM), these points are considered the support

vectors. The support vectors provide a “boundary” with which to classify instances from

a data set. An important concept with regards to support vectors is margin. The margin

is the distance from the closest point to the separating hyperplane. In Figure 2.1, the two

points at the bottom of the figure are the closest points to the separating hyperplane.

Figure 2.2. A set of points that is not linearly separable.

The points in Figure 2.2 are not linearly separable (at least not to a human observer).

However, most classification models have methods to cope with this. The SVM can make

use of a kernel for points that are not linearly separable. The kernel maps the points from

their two-dimensional Euclidean space to some other higher dimensional space so that the

SVM can classify the points [15]. The most common kernel used is the Gaussian radial basis

function, defined as [16]:
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k(−→x ) = exp

(
−||
−→x ||2

2σ2

)
(2.1)

In the equation, the σ variable influences the number of support vectors chosen for the

data set. A smaller σ requires more support vectors and a larger σ requires fewer. The net

effect of this is to change the resulting separating hyperplane.

Other examples of classification algorithms include k-nearest neighbors, decision trees,

naive Bayes, and gradient descent, to name a few. Of those, the decision tree is of most

interest to this research. A brief description of the decision tree follows.

Decision Trees The decision tree is a powerful, yet simple classifer that can be used

with numerical data as well as nominal data (such as the data in Table 2.1). Decision trees

work by creating rules for splitting nodes based on the features in the data. These rules

are analogous to asking a series of yes/no questions on the data. The predicted class of the

input data is that of the leaf node once reached.

Several algorithms exist for constructing a decision tree (e.g. ID3, C4.5, CART, etc...).

In this research we use the CART algorithm [17]. CART runs in logarithmic time and uses

Gini impurity on features to split nodes. Gini impurity is the probability of obtaining two

different output predictions for a given input. The Gini impurity of node t for j = {1, · · · , k}

possible classes is given by Equation 2.2:

1−
k∑

j=1

p2(j|t) (2.2)

The tree generated by the decision tree algorithm is easy to understand. This sim-

plicity makes decision trees very popular for many machine learning tasks. Effective attack

classification requires that the machine learning model generalize on the data.

It is possible to combine decision trees in order to improve accuracy and robustness.

Such a combination is called a Random Forest, and is part of a machine learning technique

called model ensembling. In an ensemble, the individual decision trees are called estimators.
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Two model ensemble techniques exist. The first combines and then averages the results of

the individual estimators. This method is called bagging, and in the case of decision trees, it

is called a Random Forest. The other method, boosting, places the estimators sequentially

with the goal of improving the performance of the combined estimator. In this chapter, we

make use of the Random Forest (bagging) to compare performance with single estimators.

2.1.2 Regression

Regression is used when unknown values need to be inferred from a data set. The

predicted values can be continuous, as in the case of linear regression. Other regression

techniques exist, including ordinary least squares, weighted, and non-linear regression, to

name a few. Logistic regression, which forms the basis of artificial neural networks (discussed

in section 3.1.1), is the most applicable to this research and is discussed in the next section.

Logistic Regression Like all regression methods, logistic regression finds the best-fit

coefficients for some function. In the case of logistic regression, this function is nonlinear

and is called the sigmoid (or logistic) function. The sigmoid function (so-named because of

its s-shaped graph) is expressed as the following:

f(x) =
1

1 + e−x
(2.3)

The output of this function is a real number between 0 and 1 that acts as a probability

estimate for the input. Logistic regression imposes a threshold whereby output over 0.5 is

classified as 1 and output below 0.5 is classified as 0. This enables logistic regression to take

both real-valued and discrete input values and perform binary classification on them.

The input to the sigmoid function is a vector −→x = w0x0 + w1x1 + ... + wnxn. Each

wixi ∈ −→x is a weight attached to a feature and the weights are determined by some opti-

mization function. The optimization function is chosen based on the objective (minimization

or maximization). Several optimization functions exist, however, the gradient descent algo-

rithm is the most commonly used in machine learning.
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Based on the input vector −→x , gradient descent finds the set of weights that minimizes

the error (or cost) between the features and their correct classification2 given a set of training

data. Once the error has been minimized, logistic regression is then able to classify data

from a sample data set. The gradient descent algorithm can be expressed in pseudocode as

shown in Algorithm 1.

Algorithm 1: Gradient Descent

Set all the weights in the weights vector to 1
while i < maxiterations do

Calculate the gradient of the entire data set
Update the weights vector with the current weights added to product of the step size
and the new gradient

end while
Return the weights vector

It is useful to imagine gradient descent performing a search for the function minimum

on a two-dimensional surface. For each iteration, a step size parameter (typically denoted

α) controls how quickly the gradient moves along the surface and the computed gradient

determines the direction that is taken along the surface. The value chosen for α is important;

if α is too small the algorithm could produce a value that is nowhere near the minimum since

the loop will be exited too early and if α is too large, it may pass right over the minimum.

The maxiterations value prevents the algorithm from oscillating indefinitely in the event it

gets stuck in a local minima.

Gradient descent suffers from performance problems when training on large data sets

containing a large number of features. Because it must compute the gradient for all the

points in the data set before updating the set of weights, the convergence time can be quite

large. An alternative algorithm, stochastic gradient descent, changes this by calculating the

gradient and updating the weights on a single instance at a time. Training using stochastic

gradient descent can be done in a fraction of the time compared to gradient descent. This

2Linear regression, which finds a best-fit line for a set of points, uses the squared error function
∑M

i=1(yi−
(mxi + b))2 for computing the error between the best fit line and the given set of points.
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technique of training as new instances arrive is called online learning since the set of weights

is adjusted incrementally instead of the all at once approach of gradient descent. That is,

the values of the weights are retained even as new training data arrive instead of simply

throwing them away and starting over.

Though we do not make use of the gradient descent algorithm in this chapter, it is

heavily used by artificial neural networks (ANN). We will explore several neural network

models in Chapter 3.

All of the machine learning techniques discussed so far share one common shortcoming:

they can only classify data given a set of known labels. Sometimes we would like to take a

set of unlabeled data (network flows) and give some meaning to it. Unsupervised learning

accomplishes this and can even classify unlabeled data using clustering, which is discussed

in the next section.

2.1.3 Clustering

Clustering is a type of unsupervised learning that automatically forms clusters (classes)

of similar things [15]. Many clustering algorithms exist, but the k-means algorithm is the

most relevant to this research and is discussed briefly in the next section.

k-means Clustering The k-means algorithm finds k clusters from a given data set,

where the value of k is provided as input. Each cluster is centered around a so-called centroid,

which is a point that lies at the center of the cluster. Pseudocode for k-means [15] is shown

in Algorithm 2.

Importantly, the distance metric used to calculate the distances between the points and

the centroids is arbitrary, so any metric space can be used. This also implies the use of

numeric values for distances; the development of a distance metric ∈ R which maps mostly

nominal network flow data values to a metric space is expected to be a crucial part of this

research work.

The k-means algorithm differs from the previously discussed learning algorithms since
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Algorithm 2: k-means clustering

Create k points for initial centroid point assignments
while any point has changed cluster assignment do

for all points in the data set do
for every centroid do

Calculate the distance between the centroid and point
Assign the point to the cluster with the lowest distance

end for
end for
for every cluster do

Calculate the mean of the points in that cluster
Assign the centroid to the mean

end for
end while

finding an optimal solution for k clusters3 in d dimensions is NP-hard [19]. Several heuristic

algorithms exist, such as Lloyd’s [20] algorithm. Additionally, dimensionality reduction

techniques such as principal component analysis can speed up the convergence time of k-

means [21] by retaining only the most important features in the data set.

2.2 Methodology

We explored the use of conventional machine learning approaches on experimental net-

work flow data in order to determine baseline performance as the first step to developing

better approaches. In particular, we analyzed the Intrusion Detection Evaluation Data set

published by Sharafaldin et al in [22]. This data set consists of 15 different attacks over a

week of collection. The data set also includes benign background traffic which mimics typical

user behavior. The Intrusion Detection Evaluation Data set is hereafter referred to as the

CIC-IDS data set.

We also examined the KDD ’99 network intrusion data set [23]. This data set is often

used for machine learning applications. The KDD and CIC-IDS data set differ in several

important ways:

3Determining the correct value for k is NP-hard; when k and d are fixed, k-means converges in polynomial
time [18].
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• The KDD data consists of connections between endpoints and not whole flows

• Much of the KDD data has connections with a duration of zero

• The KDD data has no source or destination Internet Protocol (IP) addresses

• The KDD data has no source ports

• The KDD data has destination ports, but they are the nominal service names instead

of numeric values

The most glaring difference between the data sets is that the KDD data set is much older.

There is a well known truism that “Attacks always get better; they never get worse.” [24]

Modern attacks and attack methods have evolved since the publishing of the KDD data set.

It is possible that the KDD data set may no longer represent common attacks. We included

this data set to show how well machine learning methods work for attack classification in

disparate data sets.

2.3 Experiment

Once we cleaned the two data sets, we applied the Decision Tree, Random Forest, and

kNN classifiers to the full data sets. We found excellent cross-validated accuracy when we

looked at the entire data set. When the data set was segmented by time to study the effect

of novel attacks the results were less impressive. We also looked at the effects of removing

various features from the data to determine the minimal set of features needed to achieve

high accuracy.

2.3.1 Accuracy of Machine Learning

Table 2.2 shows the performance of the decision tree for both data sets. We removed

the IP addresses from the CIC-IDS data for two important reasons. First, attackers spoof

IP addresses to hide themselves and defeat IP filtering systems. Second, the high variance of

the IP addresses “crowded out” the other attributes when applying feature reduction. This
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CIC-IDS
Split (train % / test %) Accuracy/Std Dev Precision Recall F1 Score

67/33 97.881/0.010 97.881 97.881 97.881
50/50 97.837/0.033 97.837 97.837 97.837
33/66 97.759/0.026 97.759 97.759 97.759

KDD
Split (train % / test %) Accuracy/Std Dev Precision Recall F1 Score

67/33 99.982/0.0004 99.982 99.982 99.982
50/50 99.981/0.001 99.981 99.981 99.981
33/66 99.973/0.008 99.973 99.973 99.973

Table 2.2. Cross-validated performance on the entire CIC-IDS and KDD data sets. The IP
addresses are excluded from the CIC-IDS data set. All scores are percentages.

complicates efforts to find a set of features that best characterize attacks. We applied k-fold

cross-validation with k = 3 in all cases. The accuracy scores shown are averages taken over

the folds. Table 2.3 shows the running time of the decision tree. The running times shown

are averages taken over the folds.

Though the results in Table 2.2 and Table 2.3 are appealing, they obscure a problem

we found with the data. Because the amount and type of traffic varies by day (for the CIC-

IDS data) and by connection (for the KDD data) the data are not stationary. This lack of

stationarity means that generalizing on the data is difficult. Traditional machine learning

algorithms such as decision trees, support vector machines, and so on will not work without

modifications because they expect the underlying data to have a stationary distribution.

To test this, we first trained a decision tree on the CIC-IDS Monday data set. We

then checked its accuracy on the rest of the week. We obtained scores of 96.897, 63.524,

99.517, and 71.172 for Tuesday, Wednesday, Thursday, and Friday, respectively. We tested

retrospective learning by training on Friday’s data. We then checked accuracy on Thursday,

Wednesday, Tuesday, and Monday and obtained scores of 95.264, 64.117, 96.811, 99.714,

respectively. We obtained similar results when we tested using a random forest with 10

estimators.

We further tested decision tree and random forest generalization on a power set of the

days of the CIC-IDS data. The decision tree result is shown in Table 2.4. The random forest

result is shown in Table 2.5. The average score is 84.407% and the standard deviation is
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CIC-IDS
Split (train % / test %) Train Time/Std Dev Test Time/Std Dev
67/33 25.259/2.651 0.093/0.002
50/50 16.176/2.234 0.067/0.002
33/66 10.422/1.783 0.042/0.007

KDD
Split (train % / test %) Train Time/Std Dev Test Time/Std Dev
67/33 10.439/0.797 0.175/0.029
50/50 6.712/1.264 0.120/0.0006
33/66 3.780/0.934 0.0869/0.0134

Table 2.3. Computational performance on the entire CIC-IDS and KDD data sets. The IP
addresses are excluded from the CIC-IDS data set. All times are in seconds.

8.530% for the decision tree. The average score is 85.289% and the standard deviation is

9.541% for the random forest.

We also tested classification using the kNN algorithm. Like the decision tree algorithm,

kNN is a supervised machine learning model. Many accuracy and speed improvements in

anomaly detection have come from the use of kNN for classification [25]. Figure 2.3 provides

a comparison between the three models we tested. The left side of the figure shows how the

decision tree and random forest compare as a function of kNN. The right side of the figure

shows how random forest and kNN compare as a function of the decision tree. Random forest

showed better generalization than the decision tree and kNN. The decision tree performed

better than random forest. kNN had the worst run time at over 660 seconds on average.

This run time is over 9 times longer than the decision tree, which was almost 4 times longer

than random forest.

2.3.2 Feature Reduction

Raw network data are quite verbose. Reducing the data to relevant features is critical for

obtaining high classification accuracy. This process comprises feature reduction techniques.

The idea is to drop features which do not provide adequate variance in the data. The

remaining features then provide enough variance to achieve reasonable classification accuracy.

There are benefits and drawbacks to feature reduction. Benefits include simpler models,

improved accuracy, and a reduction of the effects of high dimension data. High dimension
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Full Dataset Reduced Dataset
Training Days Test Days Score Score
Tue Wed, Fri, Mon, Thu 80.877 78.008
Wed Tue, Fri, Mon, Thu 88.927 85.649
Fri Tue, Wed, Mon, Thu 87.455 90.464
Mon Tue, Wed, Fri, Thu 79.509 79.509
Thu Tue, Wed, Fri, Mon 80.317 80.163
Tue, Wed Fri, Mon, Thu 85.924 85.383
Tue, Fri Wed, Mon, Thu 83.097 88.793
Tue, Mon Wed, Fri, Thu 75.356 75.082
Tue, Thu Wed, Fri, Mon 83.761 76.353
Wed, Fri Tue, Mon, Thu 97.38 94.021
Wed, Mon Tue, Fri, Thu 85.357 82.477
Wed, Thu Tue, Fri, Mon 85.525 84.445
Fri, Mon Tue, Wed, Thu 86.78 84.854
Fri, Thu Tue, Wed, Mon 84.747 87.733
Mon, Thu Tue, Wed, Fri 74.943 74.493
Tue, Wed, Fri Mon, Thu 96.635 95.410
Tue, Wed, Mon Fri, Thu 81.212 78.537
Tue, Wed, Thu Fri, Mon 81.822 81.738
Tue, Fri, Mon Wed, Thu 75.948 79.835
Tue, Fri, Thu Wed, Mon 79.997 84.532
Tue, Mon, Thu Wed, Fri 67.535 67.405
Wed, Fri, Mon Tue, Thu 96.674 93.566
Wed, Fri, Thu Tue, Mon 98.197 96.038
Wed, Mon, Thu Tue, Fri 79.075 78.537
Fri, Mon, Thu Tue, Wed 77.142 80.640
Tue, Wed, Fri, Mon Thu 92.343 92.620
Tue, Wed, Fri, Thu Mon 99.958 98.669
Tue, Wed, Mon, Thu Fri 68.913 69.368
Tue, Fri, Mon, Thu Wed 80.21 72.858
Wed, Fri, Mon, Thu Tue 96.613 93.392

Table 2.4. Generalization on the power set of per-day full and feature-reduced CIC-IDS data
sets using the decision tree. IP addresses are excluded from the full data set. All scores are
percentages.

data suffers from the so-called “curse of dimensionality” [26]. This problem affects machine

learning when the data lacks enough samples for combinations of all the features. Removing

unnecessary features eases the effects of an insufficient amount of samples. Feature reduction

can also enable the use of other machine learning models. Removing unnecessary features

can remove the noise from data, but can remove the signal as well. This can cause a close

grouping of the data, destroying the variance and reducing accuracy.

Reducing the size of the data set is a practical advantage of feature reduction. Net-
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Full Data set Reduced Data set
Training Days Test Days Score Score
Tue Wed, Fri, Mon, Thu 80.820 77.797
Wed Tue, Fri, Mon, Thu 88.279 86.399
Fri Tue, Wed, Mon, Thu 89.428 90.706
Mon Tue, Wed, Fri, Thu 79.509 79.509
Thu Tue, Wed, Fri, Mon 80.290 80.197
Tue, Wed Fri, Mon, Thu 86.265 86.010
Tue, Fri Wed, Mon, Thu 88.634 89.313
Tue, Mon Wed, Fri, Thu 75.341 75.343
Tue, Thu Wed, Fri, Mon 76.382 76.361
Wed, Fri Tue, Mon, Thu 98.760 95.674
Wed, Mon Tue, Fri, Thu 84.551 83.806
Wed, Thu Tue, Fri, Mon 87.385 84.629
Fri, Mon Tue, Wed, Thu 87.852 87.679
Fri, Thu Tue, Wed, Mon 92.390 88.274
Mon, Thu Tue, Wed, Fri 74.098 74.512
Tue, Wed, Fri Mon, Thu 99.686 98.333
Tue, Wed, Mon Fri, Thu 82.148 80.776
Tue, Wed, Thu Fri, Mon 83.580 82.038
Tue, Fri, Mon Wed, Thu 79.568 82.069
Tue, Fri, Thu Wed, Mon 86.313 84.840
Tue, Mon, Thu Wed, Fri 67.393 67.393
Wed, Fri, Mon Tue, Thu 95.620 95.392
Wed, Fri, Thu Tue, Mon 98.590 96.190
Wed, Mon, Thu Tue, Fri 78.830 78.508
Fri, Mon, Thu Tue, Wed 82.956 82.808
Tue, Wed, Fri, Mon Thu 99.656 97.864
Tue, Wed, Fri, Thu Mon 99.963 98.879
Tue, Wed, Mon, Thu Fri 69.378 69.629
Tue, Fri, Mon, Thu Wed 68.704 71.761
Wed, Fri, Mon, Thu Tue 96.316 93.523

Table 2.5. Generalization on the power set of per-day full and feature-reduced CIC-IDS data
sets using a random forest with 10 estimators. IP addresses are excluded from the full data
set. All scores are percentages.

work flow data can easily exceed gigabytes per day, and threat detection requires rapid and

accurate response to be useful. Therefore, minimizing the size of the data has important

practical effects.

We applied Principal Components Analysis (PCA) [27] and the entropy and information

gain metrics from the ID3 algorithm [28] to both data sets and were able to significantly

reduce the number of features while retaining the same level of accuracy. Applying PCA can

obscure the connection between the reduced data set and the original. PCA can also “load”
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Figure 2.3. Performance comparison for the different models. Random forest performs the
best, but only by a small margin.

the first principal component with the highest variance which makes the reduced data set

non-optimal. The remaining components thus no longer provide an accurate interpretation of

the original data. Measuring information gain is useful for working around these limitations.

In doing so, we can arrive at a set of features that are the most characteristic of attacks.

Table 2.6 shows the results of applying the ID3 entropy and information gain metrics

to varying sample sizes for both data sets. The KDD data does not show an interesting

result since the initial feature chosen is the same for all three sample sizes. Both algorithms

select the same initial feature for the first split. The CIC-IDS result varies as the sample

size increases until the initial feature is ultimately the same for all data sets.

Figure 2.4 shows the per-feature variance for all five days of the CIC-IDS data. All

features have been scaled to the range [0,1] so that the largest value of each feature is

scaled to unit size. It is obvious that many features have a small variance and can thus be
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Figure 2.4. The variance of all flow features. All values have been scaled to the range [0, 1].

eliminated. Further feature reduction could be based on a variance threshold or some other

criteria.

We applied PCA to the CIC-IDS data and reduced the number of features from 85

to 5. The largest eigenvalue corresponded with the Backward Inter Arrival Time (IAT)

Total feature. The second largest was Flow Bytes per second. The third largest was Flow

Duration. The fourth largest was Forward IAT Total. The last was Forward IAT Max. We

reduced the KDD data set from 41 features to 2. The largest eigenvalues corresponded with

the Source Bytes and Destination Bytes features. It is worth noting that the ID3 splitting

algorithm always chose Destination Bytes as the best feature to split on in Table 2.6.
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Data set 1,000 Samples 5,000 Samples 10,000 Samples

CIC-IDS Monday Flow Bytes/second Flow Bytes/second Flow Bytes/second

CIC-IDS Tuesday Flow Packets/second Source Port Flow Bytes/second

CIC-IDS Wednesday Source Port Source Port Flow Bytes/second

CIC-IDS Thursday Flow Bytes/second Flow Bytes/second Flow Bytes/second

CIC-IDS Friday Source Port Source Port Flow Bytes/second

CIC-IDS Full data set Fwd Packets/second Flow Bytes/second Flow Bytes/second

KDD Full data set Destination Bytes Destination Bytes Destination Bytes

Table 2.6. Feature reduction on the CIC-IDS and KDD data sets using the ID3 entropy and
information gain metrics. The given feature for each data set is the initial feature to split
on.

We retrained the decision tree on both reduced data sets. Table 2.7 shows the results

in a format comparable to Table 2.2. The accuracy on the CIC-IDS data set increased by

an average of 0.097% while the accuracy on the KDD data set decreased by an average of

2.79%.

CIC-IDS
Split (train % / test %) Accuracy/Std Dev Precision Recall F1 Score

67/33 98.005/0.020 98.005 98.005 98.005
50/50 97.929/0.014 97.929 97.929 97.929
33/66 97.828/0.032 97.828 97.828 97.828

KDD
Split (train % / test %) Accuracy/Std Dev Precision Recall F1 Score

67/33 97.176/0.044 97.176 97.176 97.176
50/50 97.182/0.031 97.182 97.182 97.182
33/66 97.203/0.048 97.203 97.203 97.203

Table 2.7. Cross-validated performance on the feature reduced CIC-IDS and KDD data
sets. The features used in the CIC-IDS data set are Bwd IAT Total, Flow Bytes/sec, Flow
Duration, Fwd IAT Total, and Fwd IAT Max. The features used in the KDD data set are
Source Bytes and Destination Bytes. All scores are percentages.

We then tested generalization on the reduced per-day CIC-IDS data set for the decision

tree and random forest. The rightmost column in Table 2.4 shows the decision tree results.

Accuracy decreased by an average of 0.72% with a standard deviation of 9.541%. The

rightmost column in Table 2.5 shows the random forest results. Accuracy decreased once

again, this time by an average of 0.74% and a standard deviation of 8.728%.



26

2.4 Conclusions

We’ve shown that decision trees provide good performance in estimating attacks. De-

cision trees can yield accuracy as high as 95% [29]. Like all machine learning models, deci-

sion trees are prone to overfitting [30]. To avoid this, we applied dimensionality reduction

techniques as discussed in Section 2.3.2. The lack of stationarity in the data means that

traditional machine learning models will not generalize well. This presents a problem when

an attack signal is present only in certain features. When using a decision tree, the result is

that features near the top of the tree for one day are lower down for other days. There are

two possible approaches to fixing this. The first is to increase the size of the training set to

more than a day and retrain the model after some time. This way, the model is aware of

malicious traffic and the structure of the tree can adapt. We observed this lack of awareness

when the accuracy on the model trained on the Monday data dropped from 96.897% for

Tuesday to 63.524% for Wednesday. The cause of this was the fact that Monday’s data were

all benign and no traffic for Wednesday was benign. We intend to explore ways of determin-

ing the optimal size of this training set. The second is to explore models that do generalize

well. Based on our previous work in [31], the Restricted Boltzmann Machine (RBM) is a

good choice.

Feature reduction provides a powerful means of reducing the data to the features that

are most characteristic of attacks. 85 features were reduced to 5 significant ones with this

data, which suggests that the data are highly redundant. This process must be applied

iteratively to the data. Doing so systematically eliminates high-variance features that do

not contribute to the discrimination between benign and malicious traffic.

The results shown in Table 2.7 suggest two possible findings related to our feature

reduction efforts. First, the reduced CIC-IDS data set features are close to those most

characteristic of attacks. Second, the reduction in features for the KDD data set was too

aggressive. It is obvious that both reduced data sets need further feature engineering. For

this paper, our goal was to show the effects of feature reduction. We intend to explore
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ways of adding useful features without adding redundancy and retaining the performance

improvement that comes with feature reduction.

The overall decrease in accuracy shown in Tables 2.4 and 2.5 compared to the increase

for cross-validated training on the entire data set (shown in Table 2.7) strongly suggests that

the non-stationarity affects the accuracy of the results. The changes of the accuracy in the

power set data between the reduced and full data sets are not uniform, sometimes increasing

and sometimes decreasing. This suggests a complicated interaction between feature selection

and stationarity. It may be interesting to explore this effect on larger and more complete

data sets in future work.
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PART 3

ATTACK DETECTION AND GENERALIZATION USING DEEP

LEARNING

In Chapter 2, we showed that conventional machine learning models are unable to cope

with the lack of stationarity in the network flow data. The relationship between time and

whether benign or attack traffic is present is a feature that is not explicitly present in the

data; that is, this feature exists in the latent space of the data. Conventional models are

able to learn latent features. However, as we showed in the previous chapter, these models

are unable to generalize on the data. Further, even applying feature reduction, a common

practice used to speed up training, provided no benefit. We concluded that more powerful

models are needed.

Deep learning makes use of Artificial Neural Networks (ANNs) and provides a powerful

way to learn from nearly any type of data imaginable. Deep learning models can work with

or without the notion of time. Recurrent neural networks (RNN) are a good model if the

recent past matters more than the distant past. This is useful when certain DDoS attacks

exhibit a “ramp up” period. A Convolutional Neural Network (CNN) is a good model if

specific attack attributes are more important than temporality. CNNs learn feature maps,

which are translation invariant. Once a CNN learns the features of benign traffic, detecting

malicious attack traffic is made easier.

In this chapter, we analyze the DDoS Evaluation Data set published by Sharafaldin

et al. in [1] (hereafter referred to as the CIC-DDoS data set). This data set consists of

13 different attacks over two days of collection. We also analyze the Intrusion Detection

Evaluation Data set published by Sharafaldin et al. in [22]. This data set consists of 15

different attacks over a week of collection. Both data sets include benign background traffic,

which mimics typical user behavior. The Intrusion Detection Evaluation Data set is hereafter
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referred to as the CIC-IDS data set.

Time series analysis is an important machine learning problem. When a variable is

measured sequentially in time over or at a fixed interval, the resulting data form a time

series [32]. Both the CIC-DDoS and CIC-IDS data sets are organized into time series data.

Time series data includes trends and seasonality. Trends are increases and decreases of the

observed variable over time. Seasonality is the presence of repeating patterns or cycles in

the data.

In this research, we found that a variety of attacks could be identified with high accuracy

compared to previous approaches. We show that a CNN can be implemented for this problem

that is suitable for large volumes of data while maintaining useful levels of accuracy. We

also propose a new technique for representing flow data that is suitable as input for a CNN.

The next section provides an overview of deep learning. Readers with a background in

deep learning can skip to Section 3.2 if desired.

3.1 An Overview of Deep Learning

All of the previously discussed machine learning algorithms and techniques are con-

sidered “shallow learning”, since they consist of a single algorithm which is used for clas-

sification, regression, or clustering. In contrast, in deep learning, networks of algorithms

(typically logistic regression units) are connected in a hierarchical structure where each sub-

sequent layer learns higher-level features from the data set. Several architectures for deep

learning exist, such as convolutional neural networks, deep belief networks, and recurrent

neural networks, to name a few.

Deep learning networks are functionally similar to existing artificial neural networks,

and an overview of artificial neural networks is provided in the following section.

3.1.1 Artificial Neural Networks

Artificial neural networks (commonly referred to simply as “neural networks” or “neural

nets” in the context of machine learning) are sets of computational units (neurons) which



30

form a connected network, similar to the structure of the human brain. A typical artificial

neural network is shown in Figure 3.1.

Figure 3.1. An Artificial Neural Network.

Several important properties of neural networks are shown in the figure. First, three

layers exist in the network, and are separated by the dashed boxes. These are, from the left

of the figure to the right, the input layer (sometimes called the “visible” layer), hidden layer,

and output layer. Note that the hidden layer contains two sets of hidden units; in larger

networks, it could contain thousands of hidden units. The second property of the network is

that no two neurons in the same layer are connected to each other. Thus, connections between

layers are bipartite graphs. Lastly, the bold arrows at the top and bottom of the figure

indicate the directions taken by forward propagation and back propagation, respectively.

Forward propagation is performed when data arrives at the input layer and is “fed” along

the network until it reaches the output layer. Back propagation is performed after an error
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measurement is taken between the output of the network and the training data set. In

this step, the outputs are fed backwards into the network towards the input layer until the

hidden neurons arrive at an acceptable error level. This is analogous to gradient descent,

but is performed in parallel on all hidden neurons until they can accurately represent the

input data.

The perceptron is the most basic unit in a neural network and consists of an input

vector, a weight vector, a bias, and a nonlinear activation function. An example of a simple

perceptron is shown in Figure 3.2.

Figure 3.2. A simple perceptron.

In the figure, the set of x1, ..., x4 denotes the input vector, the set of w1, ..., w4 denotes

the weight vector, and f(x) is the output of some nonlinear activation function, G. Not

shown in the figure are the biases attached to the input nodes. These perform the same

function as described in Section 2.1.2. The output of the perceptron is either 0 or 1, making

it a binary classifier for linear inputs. The perceptron uses the Heaviside step function as

an activation function. The perceptron is often referred to as a “single-layer” perceptron

to distinguish it from the more commonly used multilayer perceptron. The term multilayer

perceptron is a bit of a misnomer - it is not simply several single-layer perceptrons connected

together. Instead, an MLP is a network including an input layer, a hidden layer, and an

output layer that can perform classification or regression and can use any available activation

function. The sigmoid function is the most commonly used activation function and is the
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same function used in logistic regression as described in Section 2.1.2. Pictorially, the MLP

resembles Figure 3.1.

The model for a single-layer perceptron can be expressed as the following:

f(x) = G(W Tx+ b) (3.1)

In Equation 3.1, G is the activation function (the Heaviside step function), W T is the

transpose of the weight vector, and b is the bias. Importantly, the x variable is a vector, not

a single value.

3.1.2 Deep Learning Networks

As previously mentioned, several architectures for deep learning exist: convolutional

neural networks, deep belief networks, and recurrent neural networks, to name a few.

Convolutional neural networks modify the connectivity shown in Figure 3.1 so that

only contiguous neurons from a previous layer are connected to successive layers. This

arrangement is called a receptive field [33]. A receptive field of size 2 in Figure 3.1 would

then connect neurons Input 1 and Input 2 to Hidden 1, and Hidden 1 and Hidden 2

to Hidden 5, for example. The convolutional property of this deep learning network has

some application to this research and is expected to be featured in at least one publication.

Deep belief networks are a modification of restricted Boltzmann machines. The typical

RBM consists of a visible layer of neurons and a hidden layer of neurons which model the

joint distribution of both layers. A DBN modifies this by adding additional hidden layers

to the network. These new hidden layers serve as visible layer inputs to successive hidden

layers. As shown by Hinton, et. al in [34], these DBNs can more effectively reduce the

dimensionality in a set of data compared to techniques like principal components analysis.

This is important for this research since network flow data has a large number of features

and it is desired to eliminate those that don’t contribute to accurate anomaly detection.

Recurrent neural networks are well suited for processing sequential data such as time

series data. This makes them a natural fit for processing network flow data, which is inher-
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ently sequential and time series-based. RNNs differ from traditional deep learning networks

since they do not use the back propagation algorithm. Instead, a feedback loop from the

previous layer affects the output of the current layer [35]. This feature is paired with a type

of memory called Long Short-Term Memory. This differs from the forward propagation in

typical networks since LSTM is dynamic and lives outside the network, whereas forward

propagation is a part of the network and produces a static representation of the data [35].

It is expected that RNNs will be a part of this research due to their capability to model

sequential data.

3.2 Methodology

In this research, we show that deep learning achieves far greater accuracy compared to

shallow models. We show that contemporary deep learning models can be trained on large

data sets in a reasonable amount of time. We show that attack detection accuracy improves

in some situations when using a per-destination classifier. We introduce a new technique

to turn individual traffic flows into images for 2D CNNs. This technique provides a way to

better distinguish different types of traffic. This technique helps detect even low rate attacks.

Low rate attacks can go undetected by conventional mitigation systems, yet they remain a

valid threat. We show that DDOS attacks can be recognized in advance (forward prediction)

with robust high accuracy. The general IDS problem still remains difficult, probably because

of the complexity of the attacks and the relatively small volume of each IDS attack.

Our goal is not to compare our work with the state of the art in deep learning. Rather,

we aim to show that deep learning models significantly outperform shallow models while

still performing well enough to handle huge volumes of data. Deep learning models and

techniques learn powerful representations of their input data. This includes relationships

that may exist outside the explicit feature space. We conclude that intrusion and DDoS

detection using shallow models is impractical.
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3.3 Experiment

The CIC-DDoS data set contains several comma-separated value (CSV) files spanning

two days of collection. The training set consists of traffic captured on January 12th, 2019.

The validation set consists of traffic captured on March 11th, 2019. A taxonomy of the

attacks present in the data is shown in Figure 3.3.

Figure 3.3. A taxonomy of the attacks present in the CIC-DDoS data set [1]
.

A number of issues were present in the data that required fixes before applying machine

learning. We dropped two columns, “Unnamed: 0” and “SimillarHTTP”, from the data

since they did not contain useful information. In some cases, columns such as “Flow Bytes/s”

and “Flow Packets/s” contained a few non-numeric values with floating point values for the

remaining data. The March 11th “UDP.csv” and “UDPLag.csv” files seemed to be corrupted

and were omitted from all testing. We applied similar techniques to clean and prepare the

CIC-IDS data set. Since we used binary classifiers, we changed the class name of any attack

flows to “attack”. The flows with a class name of “benign” were not changed.

We created three different sample data sets with data drawn from both the CIC-DDoS

data set and CIC-IDS data set. Each sample data set was further broken down into training
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Name Sample Size Purpose

DDoS-Random 1,600,000 Random data from all attack types, sources, and destinations

DDoS-Single-Destination 1,600,000 Attacks aimed at a specific target

DDoS-Multiday 2,100,000 Generalization across multiple capture days

IDS-Random 700,000 Random data from all attack types, sources, and destinations

IDS-Single-Destination 645,592 Attacks aimed at a specific target

IDS-Multiday 2,100,000 Generalization across multiple capture days

Table 3.1. Sample data sets for the CIC-DDoS and CIC-IDS data sets. For each source
CSV file, 100,000 random samples were taken without replacement.

and testing data sets. The first data set consists of random samples drawn from all collection

days with no replacement. The second data set consists of all flows with the most common

destination IP address. For the CIC-DDoS data set, the IP address is 192.168.50.1. For the

CIC-IDS data set, the IP address is 192.168.10.3. The third data set consists of data from

different days. All three sample data sets are intended to assess the generalization power of

the deep learning models. The third data set in particular presents a test of temporality.

Details of the evaluation data sets are shown in Table 3.1.

3.3.1 Neural Network Details

We created four different neural network models for testing: A feed-forward Artificial

Neural Network (ANN), a RNN, a 1-dimensional CNN (1D CNN), and a 2-dimensional CNN

(2D CNN). These models are adept at learning different characteristics of the input data.

Table 3.2 provides a summary of the common hyperparameters used by all models.

The ANN learns the global characteristics of the entire training data set. That is,

specific representations of the data are extracted at each layer. The loss function allows the

network to learn which features are relevant. Shallow learning techniques, by comparison,

typically require feature engineering before machine learning is applied. Our ANN model

is comprised of three densely connected layers. The first two layers have 128 neurons each.

The last layer serves as the output layer, where a classification decision is made. The ANN

serves as the baseline for performance comparisons. By using the ANN as a baseline, the

utility of the other models is established. This justifies the added complexity and run time
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of the other models.

ANNs, although simple compared to other models, are still quite powerful for DDoS

detection. NG et al. approach the identification of DoS and DDoS attacks by ANN feature

learning using the radial basis function [36]. In this approach, errors from layers of ANN are

computed on the fixed number of network flow features as an additional regulator on the

radial loss function.

Parameter Value

Batch Size 128

Neurons Per Layer 32-512 depending on model

Optimizer RMSProp

Hidden Layer Activation Function ReLU

Output Layer Activation Function Sigmoid

Loss Function Binary Cross Entropy

Training Epochs 5

Train/Test data split 66% / 33%

Table 3.2. Hyperparameters common to all models.

The RNN is desirable for sequence classification and time-series prediction. Our RNN

model consists of four layers. The first layer is an embedding layer. It embeds the input

vectors into a Euclidean space. Similar vectors tend to lie closer while dissimilar vectors are

more distant. The next two layers consist of Long Short-Term Memory (LSTM) cells. We

compared the performance of LSTM cells to Gated Recurrent Unit (GRU) cells. We were

specifically interested in whether the vanishing gradient problem (described in [37]) might

appear. We found no difference in performance between LSTM and GRU. The last layer

serves as the output layer.

The 1D CNN consists of eight layers. The first layer is an embedding layer similar to the

one used by the RNN described previously. The next two layers consist of a 1D convolution

layer and pooling layer. The convolution layer uses a kernel size of 5 for generating feature

maps. In our testing, kernel sizes between 5 and 7 worked best. Smaller values caused a

decrease in accuracy and larger values showed negligible improvements in accuracy. The

pooling layer sub-samples the filters produced by the 1D convolution layer. The next two
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layers consist of similar convolution and pooling layers. The next layer performs regulariza-

tion using dropout at a 50% dropout rate. As before, the last layer serves as the output

layer.

The 2D CNN consists of twelve layers. The first eight layers are 2D convolution and

pooling layers, respectively. The convolution layers use 3 × 3 kernels for generating feature

maps. The pooling layers use a pool size 2 × 2. The next layer flattens the output of the

pooling layer into 1D vectors. The next layer is a densely connected layer consisting of

512 neurons. The next layer performs regularization using dropout at a 50% dropout rate.

Finally, the last layer serves as the output layer.

For all models, the sigmoid activation function is used at the last layer for binary

classification. All models use the Root Mean Square Propagation (RMSProp) optimizer.

The densely connected layers use Rectified Linear Unit (ReLU) activations. The loss function

is binary cross entropy. The cross entropy function [38] is defined in Equation 3.2.

CE = −
N∑
i

tilog(si)

t ∈ {i, 1− i}

s ∈ {̂i, 1− î}

(3.2)

In Equation 3.2, t is the set of ground-truth labels and s is the set of predictions. The

sum is over N classes.

3.3.2 Spectrogram-based Flow Representation

Spectrograms provide a visualization of the frequencies contained in a signal over time.

The most common way to generate a spectrogram is by using the fast Fourier transform

(FFT). The resulting image can be thought of as a heat map of the signal magnitude over

time. The heat map provides a visual representation of the frequency space (or spectrum)

of the input signal.

The underlying discrete Fourier transform (DFT) provides better output for periodic
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signals. This is due to the assumption of periodicity in the resulting basis functions. We first

tried generating spectrogram images with no modifications to the flow data. The resulting

images were difficult to distinguish. This was due to the small frequency domain represented

by the real-valued feature columns in the flow data. We thus introduced artificial periodicity

by repeating the flow data for each flow. Introducing artificial periodicity does not expand

the resulting frequency domain. Instead, it provides a larger sample space from which to

derive the frequency domain. A spectrogram image was generated from the resulting flow.

The conversion process is detailed in Algorithm 3.

Algorithm 3: Flow Conversion to Spectrogram Image

1 D ←− read input flow data
2 train split ←− d0.66×Drowse
3 test split ←− d0.33×Drowse
4 Fs = 200.0 /* the sampling frequency */

/* This loop is run on the training and test data */

5 for i←− 0 to train split do
6 row ←− Di

7 S ←− smooth the data in row using exponential smoothing
8 Sneg ←− flip the signs on the data in S
9 S ←− concatenate S and Sneg

10 NFFT ←− length of S
11 S′ ←− repeat S twice
12 Sout ←− spectrogram of S′ using NFFT data points sampled at Fs

13 Save Sout as an image with a unique file name (a version 4 UUID value) under a
directory with the flow’s label

The algorithm works as follows. For each sample data set listed in Table 3.1 the sizes of

the training and test data sets are computed. The sampling frequency is set at 200 samples

per second. Each row in the training and test data sets has several transformations applied.

The data in the row is first smoothed. A copy of the row is made and the signs of each

value are flipped to introduce artificial periodicity (i.e. to approximate a periodic signal).

The original row and negated row are concatenated together. The sample size (NFFT) is

computed from the concatenated result. The concatenated result is repeated twice to create

a larger input signal. A spectrogram image is generated on the result. This image is given
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a unique file name and saved under a directory named with the flow’s class name (either

“benign” or “attack”).

Figure 3.4. A Spectrogram Image of Good Traffic

We generated 150x150 pixel spectrogram images from the sample data sets listed in

Table 3.1. Each image represents a single unique traffic flow from the data. A sample of

“good” and “bad” traffic flows is shown in Figures 3.4 and 3.5, respectively.

Figure 3.5. A Spectrogram Image of Bad Traffic

Images of the same class showed minor differences in appearance. A few of the images
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in different classes showed some common features. Most had very distinct features, an

important quality for the 2D CNN. The resulting image data for the CIC-DDoS and CIC-

IDS data sets was over 100 Gigabytes in size.

3.4 Results

Figure 3.6. A summary of model performance on the CIC-DDoS sample data sets. For
the multiday samples, (fwd) refers to predictive learning and (rev) refers to retrospective
learning.

We applied the neural networks described in Section 3.3.1 to the text and image sample

data sets (as described in Table 3.1) as appropriate. We found that each model began

overfitting each of the sample data sets after only a few training epochs. We therefore ran

each model for five epochs as a single “iteration”. Each model was run for 10 iterations.

All models achieved at least 90% training accuracy on all the sample data sets with some

achieving 100% accuracy.

A summary of per-model performance on the CIC-DDoS data set is shown in Figure

3.6. A summary of per-model performance on the CIC-IDS data set is shown in Figure 3.7.
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The CIC-DDoS results show that the binary baseline accuracy is met and exceeded by

the other models, justifying their additional complexity.For the ANN, a global representation

is learned. The RNN learns relationships between items in a sequence. Finally, the CNN

learns local features (so-called “feature maps”). Our use of more complex models is to

determine whether a more granular representation of the data yields better performance.

The ANN runtimes are the lowest compared to the other models. This is expected since it

is the least complex model.

The CIC-IDS results also show that the baseline accuracy is exceeded by all classifiers.

The runtimes for all models are similar to the CIC-DDoS results.

3.4.1 Class percentages

Figure 3.7. A summary of model performance on the CIC-IDS sample data sets. For the
multiday samples, (fwd) refers to predictive learning and (rev) refers to retrospective learn-
ing.

The performance discrepancies between the CIC-DDoS results and CIC-IDS results were

concerning. The same models and methods were used on both sample data sets. We would
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thus expect to see similar results.

We investigated the distribution of classes in all of the sample data sets. For the

CIC-DDoS samples, the “syn” attack comprises 37.4% of the total traffic, followed by the

“netbios” attack at 21%. The percentage of “benign” class traffic (less than 1% of the total

traffic) is extremely low relative to the other classes. We conclude from this that the models

do not have sufficient training data to learn the “benign” class. Therefore, classification

performance suffers.

The class distribution in the CIC-IDS samples is more balanced. The “benign” class

comprises 83% of all traffic. This gives all models sufficient samples to create a representation

of benign versus attack traffic. The “portscan” attack was the second most prevalent at 10%

of the total traffic. Most of the remaining attack classes have low percentages. Others, such

as the “web attack” classes, have no samples. These conditions are more representative of

real world conditions since they can represent low volume and ramp-up attack traffic.

3.4.2 Accuracy comparisons using the Matthews Correlation Coefficient

Training on the unbalanced data will result in a classifier that is skewed towards the

majority class. The Matthews correlation coefficient (MCC) attempts to remedy this [39].

The MCC is a good alternative to F1 scores and ROC curves for comparing training quality

[40]. It provides a more concise measure of a classifier’s performance compared to a confusion

matrix. The MCC value is the normalized determinant of the confusion matrix. The MCC

measure is expressed in Equation 3.3.

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(3.3)

We captured the MCC values for all the models on all of the sample data sets. The

results are shown in Figure 3.8 and Figure 3.9. For the CIC-DDoS data set, the ANN

and RNN provide the best classifications, respectively. For the CIC-IDS data set, the RNN

significantly outperforms the other models. These results provide a very different perspective

compared to the other measures. The class imbalances between the data sets described in
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Figure 3.8. Matthews correlation coefficients for all models on the CIC-DDoS sample data
sets. Higher values are better. For the multiday samples, (fwd) refers to predictive learning
and (rev) refers to retrospective learning.

Section 3.4.1 are less of a factor in the MCC results.

3.4.3 Generalization

How well a given model generalizes to new and unseen data is important. This is

especially true for new attack types. The MCC results in Section 3.4.2 provide some insights

into how each model performs. Table 3.3 shows more granular per-sample and per-model

performance results.

For each data set sample and model, the training accuracy, loss, and runtime are shown.

We also captured multiday performance values for each data set (denoted as “M.D.”). These

values show how well each model handles the temporal nature of the attack data. This aspect

of the data is important since network traffic patterns tend to vary based on time and day.

The multiday results capture both predictive and retrospective (denoted by fwd and rev,
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Figure 3.9. Matthews correlation coefficients for all models on the CIC-IDS sample data
sets. Higher values are better.

respectively) learning.

For the CIC-DDoS data set samples, the average predictive accuracy for all models is

90.8%. For retrospective learning, the accuracy drops to 85.5%. For the CIC-IDS data set

samples, the average predictive accuracy for all models is 91.4%. For retrospective learning,

the accuracy is slightly increased to 91.6%. We therefore conclude that the models are

capable of generalizing on the data.

These results are far better than our previous work using shallow learning methods [41],

where in some cases, accuracy dropped by 30% or more. Dimensionality reduction caused a

further loss of generalization accuracy which showed that the effects were due to an inability

of the shallow algorithms to capture the essential features of the data.
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ANN RNN

Sample Name Acc. Loss Train Time Acc. Loss Train Time

DDoS-Rand 84.8 27 1102 99.4 29 34853

DDoS-S.D. 99.4 26 1060 100.0 0 34954

DDoS-M.D. (fwd) 99.6 49 1440 99.9 0 50593

DDoS-M.D. (rev) 94.0 61 1001 95.7 60 24791

IDS-Rand 82.3 53 469 91.5 51 15172

IDS-S.D. 73.7 34 423 86.9 50 14186

IDS-M.D. (fwd) 83.8 43 1692 88.1 63 50276

IDS-M.D. (rev) 80.5 25 1779 85.7 44 56411

1D CNN 2D CNN

Sample Name Acc. Loss Train Time Acc. Loss Train Time

DDoS-Rand 77.3 53 1481 90.6 51 79237

DDoS-S.D. 100.0 0 1482 100.0 10 79671

DDoS-M.D. (fwd) 99.9 21 2021 99.4 15 15712

DDoS-M.D. (rev) 91.5 39 1410 92.6 39 17948

IDS-Rand 91.1 55 629 83.8 30 28941

IDS-S.D. 83.6 31 580 75.9 36 26321

IDS-M.D. (fwd) 87.4 58 2333 85.1 50 49793

IDS-M.D. (rev) 86.9 60 2508 80.8 32 54929

Table 3.3. Performance results for the CIC-DDoS and CIC-IDS sample data sets. Accuracy
and loss are expressed in percent. Training time is expressed in seconds.

3.4.4 Low Rate Attacks

Low rate attacks are carried out by sending malicious packets at a much lower rate

than a typical high rate attack. The attacker’s goal is to carry out the attack while avoiding

detection. Attackers use a variety of techniques in low rate attacks. Examples include

opening partial connection requests or sending small packets to maintain open connections,

to name a few.

We examined the “Flow Packets per second” column present in both the CIC-DDoS

and CIC-IDS data set samples. For each attack, we computed the average of the Flow

Packets per second. Packets per second (pps) is a good measure of the sending rate since it

is independent of the packet size. For the CIC-DDoS data set samples, the NTP attack had

the lowest average pps rate at 186,061. All of the attacks in the CIC-IDS data set samples

had an average pps value of 1,209,995. Due to this, only the CIC-DDoS data set samples

were considered.
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Table 3.4 shows the MCC values for the NTP attack for all models and all sample data

sets. All models show reasonable performance since there are no negative MCC values. The

ANN outperforms the other models, especially with the multiday samples. The RNN pro-

vides the second best result in all cases. The 1D CNN provides good multiday performance,

suggesting that the NTP attack does not vary significantly over time. The 2D CNN shows

average performance. This suggests that while the spectrogram approach works, the NTP

images are not distinct enough from the other classes. Further refinement of Algorithm 3

could yield better distinction between classes.

lightgray Data set Model MCC

DDoS-M.D. (rev)

ANN 0.666
CNN1D 0.332
CNN2D 0.000

RNN 0.518

DDoS-M.D. (fwd)

ANN 0.993
CNN1D 0.603
CNN2D 0.001

RNN 0.814

DDoS-Rand

ANN 0.197
CNN1D 0.003
CNN2D 0.002

RNN 0.162

DDoS-S.D.

ANN 0.189
CNN1D 0.000
CNN2D 0.003

RNN 0.168

Table 3.4. MCC values for each model and each sample DDoS data set for the low rate
NTP attack. Higher values are better. For the multiday samples, (fwd) refers to predictive
learning and (rev) refers to retrospective learning.

3.5 Conclusions

We showed that a variety of neural networks provide good classification performance

against network attack data. The generalization capabilities of neural networks exceed those

of shallow learning methods. Each of the models outperformed the shallow models in our

previous work.
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Figure 3.8 shows that DDOS attacks can be recognized prior to observing samples of

the individual attack. This suggests that there is a common temporal or structural feature

to DDOS attacks which can be learned and used to effectively protect networks from DDOS.

Figure 3.9 shows that the general IDS problem is more difficult. While reasonable

accuracy can be obtained, shown in figure 3.7, the classifier over predicted IDS resulting in

a poor Matthew’s correlation coefficient. Still, as shown in figure 3.9 IDS Multiday (rev),

the classifiers were able to learn to identify attacks they had seen before.

We introduced a new data representation technique in using spectrograms. The 2D

CNN that makes use of these images performed well in most tests. Further refinement of the

conversion process detailed in Algorithm 3 could yield additional performance improvements.

CNNs are finding more utility in anomaly detection. In [42], Doriguzzi-Corin et al. also

use a CNN for attack detection. The CNN is combined with a data preprocessing algorithm

that transforms traffic flows into an embedding space. The embedding space is based on

traffic attributes. By transforming the input data, resource utilization and attack detection

times are decreased. Their resulting model is called LUCID. Cheng et al. use network flow

binary images combined with deep CNNs to predict DDoS attacks in [43]. Creation of the

grayscale images used as input to the CNN is based on extraction rules. The result is called a

Grayscale Matrix Feature (GMF). Their model obtains high accuracy and low false positive

and error rates.

We validated the generalization capabilities of our models using predictive and retro-

spective learning. We also tried using a bidirectional RNN to achieve a similar result, but the

performance difference was negligible. Generalization for all of the neural network models

outperformed the shallow models.

Binary classification is better suited for real-world scenarios. Multiclass classification

requires that all possible classes are known a priori. Such a requirement limits the effective-

ness of the classifier since new or unknown attacks may mimic some properties of known

attacks. Additionally, low volume attacks may exhibit characteristics similar to other at-

tacks. As demonstrated in Section 3.4, an imbalance of classes can significantly affect model
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performance.

All of the models we tested were sequential neural networks. Other topologies, such as

multi-input or multi-output models, could provide additional capabilities. Model ensembling

could improve performance. The 1D CNN, whose runtime was only slightly longer than the

ANN, could be used to preprocess the data before feeding it to the RNN. In doing so, the

higher level features learned by the CNN are fed as input sequences to the RNN. The short

runtime for the 1D CNN means that it is suitable for implementation on large volumes of

data. Generative learning is another possibility.

The CIC-DDoS and CIC-IDS data sets we tested had very different properties. The

most prominent is the class imbalance between them. Most real world networks will have

network traffic patterns similar to the CIC-IDS data set. However, it is quite possible that

an attack detection framework deployed on live network traffic will encounter an irregular

distribution of network traffic that it must cope with. It may be interesting to explore even

more powerful models that are capable of handling such unfavorable environments.
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PART 4

A FRAMEWORK FOR ATTACK DETECTION

The research presented in Chapters 2 and 3 demonstrates conclusively the feasibility

of detecting DDoS attacks using machine learning. In particular, Chapter 2 showed that

conventional machine learning models can learn to discriminate between benign traffic and

traffic containing a DDoS attack. However, the inability to generalize necessitated the use

of deep learning models, which was discussed in Chapter 3.

This chapter takes the knowledge obtained from the previous chapters and attempts

to create intelligent threat detection agents. These agents can be integrated into the in-

frastructure at the network level on up to the application level. In order to distribute the

intelligence of the agents, we propose a peer-to-peer network in which agents participate and

share threat information.

4.1 Methodology

This research explores the factors required to create intelligent distributed threat de-

tection agents. These agents are capable of performing the roles of the hardware appliances

at the application level. They are tightly integrated into the various components of the web

application stack. They distribute valuable information on attacks as they are mitigated.

The agents integrate modern machine learning into web servers and web applications.

We describe several web-based attacks to provide context to our proposed solution.

We discuss two popular Python-based machine learning frameworks. These frameworks

can be used to build intelligent threat detection agents. We propose a distributed threat

detection model for the contemporary web application stack. Finally, we discuss the potential

challenges of such a model.
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Figure 4.1. A SQL injection attack. The attacker sends a crafted payload and obtains
privileged access to the back end database.

4.2 Threat Analysis

It is important to understand common threats to understand the potential use of dis-

tributed intelligence. The number of web-based attacks is numerous and growing, so we

describe a few common attacks here.

One of the most common web attacks leverages improper or altogether missing form

validation in a web application. A number of potent attacks are possible when form inputs

are not properly validated [44]:

• Injection of SQL code, which enables an attacker to run arbitrary SQL commands on

the backend database of the website

• Cross-site scripting, which enables an attacker to post arbitrary data to a website

• Header injection, which allows an attacker to exploit forms in order to send spam

An illustration of a SQL injection attack is shown in Figure 4.1. To carry out the

attack, the attacker includes valid SQL code in the form submission. The result of the

attack depends on the payload. The attacker could corrupt the database. Sensitive data
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Figure 4.2. A CSRF attack. The attacker embeds a malicious payload into the website.
When the user logs in, their web browser automatically executes the malicious query. The
attacker obtains the result.

could be stolen. The attacker could gain privileged access to carry out further attacks. Form

validation restricts the type of data that can be entered into a form. Input checks ensure

the input data is valid for what is being requested in a given form field. Research into the

prevention of such attacks is active [45] [46].

Another common attack is a Cross-Site Request Forgery (CSRF) attack. CSRF attacks

are a type of confused deputy attack. The forged requests leverage the authentication and

authorization of the victim [47]. A CSRF attack adds extra commands to a user’s request.

The extra commands perform any actions for which the user is authorized. Attacks can

change the user’s credentials. If the current user has sufficient privileges, other users can be

impersonated. These actions are performed without the user’s knowledge or consent.

Figure 4.2 shows a generalized CSRF attack. The attacker first embeds a malicious
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payload into the website’s Hypertext Markup Language (HTML) code. The code could be

as trivial as adding a password change request query as the source to an HTML image tag.

Once logged in, the victim’s web browser fetches the contents of the image tag. The victim’s

password is changed to the password specified by the attacker in the query. The victim has

no knowledge that this has occurred. The victim is a valid user so the password change

request appears legitimate from the perspective of the website.

There are many defenses against CSRF attacks [48]. The most common is to embed a

secret validation token in any requests. If a request is missing the token or the token does

not match the expected value, the server rejects the request.

These two brief examples share a caveat with the hardware appliances mentioned before.

Because the mitigations work only with known attacks, any unknown attack is likely to

succeed. The use of machine learning can help to mitigate known and unknown attacks.

4.3 Using Machine Learning Frameworks

Machine learning at the application layer can reduce many of the drawbacks of hardware

and software solutions. Security can be moved from the network perimeter to host systems.

The software solutions described in Section 4.2 gain greater protection. Training application-

layer security against application layer threats improves the quality of the decisions.

Host-based application-layer security can substantially reduce license and operational

costs for hardware appliances. The physical footprint of the network can thus be scaled down.

Throughput scaling becomes less of a concern since host systems perform traffic inspection.

Constant signature updates on security devices is reduced or eliminated altogether. However,

our proposed model requires updates to traffic that is considered benign. Generative machine

learning models such as the restricted Boltzmann machine (RBM) are a solution to this.

Application throughput is thus limited to the host system’s bandwidth.

Many popular Open Source frameworks exist and are compatible with the application

layer. We briefly describe two popular frameworks.

Scikit-learn supports many supervised and unsupervised machine learning models.
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Figure 4.3. An intelligent threat mitigation model for a web application. The dashed lines
indicate the distribution of threat intelligence. User traffic is permitted while attacker traffic
is not.

Other supporting functionality includes data preparation and model validation. Scikit-learn

provides a Python API and is easy to learn. The use of Graphics Processing Units (GPU) is

not supported. CPU-optimized versions of the Numpy library can provide some performance

gains. Limited support for basic neural networks is available. Neural networks are not the

main focus of the library.

TensorFlow was released by the Google Brain team in 2015. In contrast to Scikit-

learn, TensorFlow operates with or without a GPU. Using the GPU results in significant

speedups in learning. Tensorflow is intended to be a general-purpose numerical computation

library. Like Scikit-learn, TensorFlow can execute “shallow learning” tasks. Support for all

major neural network models is included.

4.4 A Mitigation Model

Intelligent agents can be incorporated into any component of the web application infras-

tructure. Figure 4.3 illustrates intelligent agents in multiple layers of the web application

infrastructure. The intelligent agents run on each of the components. The dashed lines
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indicate the distribution of threat intelligence among the components. Note that there is

no inter-component communication. Different components face different threats. Threat de-

tection models thus protect specific components. A compromise of any single component’s

agents does not affect the agents for other components.

The inclusion of multiple component clusters highlights the distributed nature of the

model. This enables a geographically dispersed infrastructure for sharing threat information.

The next sections describe intelligent agents for specific web application components.

The use of the Python-based frameworks mentioned in Section 4.3 make the serialization of

object instances (i.e. “pickling an object”) trivial. Mitigation systems using either of the

frameworks could be updated asynchronously while still running.

Training and validation of machine learning models could be carried out in a non-

production environment, and the updated models supplied to the applications. It will be

necessary to sign the updates to ensure security. Python libraries exist that support modern

digital signature algorithms.

4.4.1 Flask

Flask is a Python-based web framework used to build APIs, websites, and more. In the

model shown in Figure 4.3, an instance of Flask would run on every web server. Building an

intelligent agent using either of the two frameworks in Section 4.3 is trivial. An intelligent

agent need only check incoming requests to see if they’re potentially malicious. Requests

with suspicious content are dropped and an error is returned to the user. This results in just

two classes of requests and a linear model on which to learn.

Stochastic gradient descent (SGD) is a simple binary classification model that uses

convex optimization as a loss function. SGD outperforms models such as Support Vector

Machines (SVM), especially on large data sets. The intelligent agent is first trained using

SGD. Once trained, it transforms an incoming request into a feature vector, classifies it, and

returns the result. If the feature vector belongs to the malicious class, the request is dropped

and an error is returned to the user.
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4.4.2 Databases

The database intelligent agent checks incoming SQL queries before running them. Un-

usual or never-before-seen queries are potentially malicious. For example, if no user man-

agement exists in the web application, the agent should never receive queries against such

tables. Queries of this type are malicious and are dropped.

Building an intelligent agent for the database component using either of the two frame-

works in Section 4.3 would require more effort. The agent would receive incoming SQL

queries, classify them, then pass along queries classified as benign to the SQL database. The

intelligent agent thus acts as a reverse proxy between the client applications (e.g. the web

servers in Figure 4.3) and the database.

The number of possible requests is small relative to those seen by the Flask component.

As a result, most database queries are benign. In this case, the use of an SVM is appropriate.

As before, the intelligent agent is first trained. Once trained, it transforms an incoming SQL

query into a feature vector, classifies it, and returns the result. If the feature vector belongs

to the malicious class, the SQL query is not passed along to the database and an error is

returned to the user.

4.4.3 Web servers

Web servers are the most outward facing component of the web application. Protecting

them against attacks is vitally important. Attacks against web servers tend to focus on the

web server itself instead of the content it serves. Fuzzing is a common technique where invalid

or unexpected data is provided to an application and the result is observed [49]. Attackers

combine fuzzing and known vulnerabilities into attack tool kits. Automated scanners and

bots use these tool kits to exploit known and unknown vulnerabilities.

Web servers are typically written in languages such as C to maximize performance.

Python-based frameworks such as Flask typically use library functions, written in C and

integrated into Python, to optimize performance by speeding up critical bottlenecks to per-

formance. Therefore integrating a Python-based machine learning package, one that also
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uses low-level C libraries, into a Python-based web-server is fully viable.

An intelligent agent could either be integrated into the web server software itself or act

as a reverse proxy like the database model. An agent acting as a reverse proxy only checks

incoming Hypertext Transfer Protocol (HTTP) requests. An integrated agent would need to

check incoming network packets as well since attacks might target lower level functionality

of the web server.

The attack surface of the web server could be quite large depending on how the agent

is integrated. In both cases, SGD would be a good fit for a machine learning model.

4.4.4 Web browsers

The focus of this paper is on the web application infrastructure. We mention web

browsers only briefly here to provide a more thorough discussion of the web application

ecosystem. A web browser presents a large attack surface on the user’s device. This is due

to the complexity of modern web browsers. They parse HTML and Javascript code, render

audio and visual content, cope with third party extensions, and talk securely to web sites.

Most contemporary web browsers include protections for users. While this paper focuses on

Python frameworks, machine learning frameworks exist for Javascipt, including TensorFlow

[50] and mljs [51].

• Tracking protection prevents a user from being profiled

• Protection against dodgy downloads prevents the user from installing malware

• Blocking pop-up windows protects the user against potentially malicious advertise-

ments

• Disabling third party cookies prevents some user tracking and CSRF attacks

• Private browsing sandboxes the user’s session and prevents user cookies from being

stolen
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Figure 4.4. A DHT for distributing threat intelligence.

Even with the above protections, web browsers still have drawbacks. The above features

mostly guard against known attacks. New attacks can wreak havoc until the browser vendor

updates the software. Web browsers offer no protection against potentially malicious content

in web pages. A good example of this is the CSRF attack detailed in Section 4.2. A web

browser agent would see the unusual content in the image tag and refuse to execute it.

Modern firewalls block all communication by default. Trusted communication, defined by

policy, may pass through. Web browsers allow all communication by default until the user

configures content blocking.

4.5 Distributing the Intelligence

Trained models can be easily distributed using peer-to-peer (P2P) network technology.

Modern P2P networks implement a distributed hash table (DHT). This provides robust,

fault-tolerant, distributed delivery of resources [52] [53]. However, some environments need

strict security controls. In such environments, a private bootstrap host can be used to

connect the private peers to each other.

A DHT for distributing threat intelligence is shown in Figure 4.4. The intelligent agents

discussed in Section 4.4 are depicted in the figure. The DHT can serve several functions. It

can distribute signed trained model data. It can distribute the public keys used to validate
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the signed training data. Potential threats that agents have seen but could not correctly

classify can be distributed and analyzed.

The types of threats that could be handled using the DHT depend on the placement of

the intelligent agents. In the model shown in Figure 4.3, each layer of components runs a

separate DHT. In general, any anomalous behavior can be identified and remediated. The

default response of the components should be to drop the anomalous traffic. Requests that

could not be clearly identified could be quarantined similar to the model seen in email spam

filtering. The anomalous request is moved to a secure sandbox until an administrator can

identify it. Once identified, the request becomes part of the training data and shared with

the agents via the DHT.

4.6 Challenges

From a software engineering and implementation viewpoint, the use of integrated ma-

chine learning at the application level is attractive. Several challenges remain.

Obtaining training data, and especially labeled training data, is problematic. A combi-

nation of honeypots, monitoring software, and unsupervised classification could be used to

find classes of data. The data would then require evaluation to see if it is malicious or benign.

Partially trained models could be used to “bootstrap” a system by flagging suspicious, but

uncertain, data for further evaluation.

User adoption is another major challenge. It will be necessary to make the addition of

the models to existing systems as seamless as is possible and to convincingly demonstrate that

the systems provide real benefits to the users. Since, even with advanced machine learning,

the problem of deciding what code actually does without executing it, being isomorphic to

the stopping problem is formally undecidable, it is critical to tune the machine learning to

give a small number of false positives without giving too many false negatives. A system

that “cries wolf” too often will inhibit security as users will learn to ignore it.

Another challenge is the validation and update of training models. Distributed and

custom training on individual machines may seem an ideal model, but it introduces the
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possibility of a “false oracle” attack where the adversary spoofs the machine learning until it

ignores real threats while focusing on noise. Therefore, training probably should be separate

from the online application so that the training can be supervised and performed in a secure

and reliable manner. The models themselves would need to be updated, asynchronously

and securely, to the users. ClamAV [54] is an example of an open-source anti-virus program

which demonstrates that this is an achievable goal.

4.7 Conclusions

This research has examined the factors needed to integrate machine-learning into appli-

cation level security. While technical challenges remain, there is no fundamental architectural

reason why this could not be done. What remains to be demonstrated is that this can be

achieved with a useful level of accuracy while not degrading computational performance.
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PART 5

CONCLUSIONS

This research has shown that detecting DDoS attacks using deep learning models and

techniques is not only feasible, but can achieve high accuracy with reasonable training times.

Importantly, we showed how time affects the accuracy of conventional machine learning

models. The lack of stationarity in the data means that more powerful models are needed

to achieve good classification performance. This relationship between time and whether the

traffic is malicious exists outside of the explicit feature space in the so-called latent space.

We also showed how such an attack detection framework could be applied in real-

world settings using intelligent agents and a peer-to-peer network for distributing threat

intelligence. These agents can be embedded in any part of the network including into the

network devices themselves. By sharing the threat intelligence among agents, the need to

retrain individual agents is reduced since the learned representation can be updated as new

threats appear and existing threats evolve.

5.1 Future Research

Though many other deep learning models and techniques exist, we wanted to show that

contemporary models are more than capable of good performance.

We intend to explore the many unanswered questions this research has generated. One

important open question is how the network flow data could be turned into a metric space.

Flow data can be quite verbose. Defining a distance function to convert flows into a spatial

representation could yield performance improvements and open new research possibilities.

Generative models are useful for sampling from the latent space of the data they’re

given. Such models could be used for generating new training data and even predicting

what new attacks could look like.
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More powerful models and techniques could improve performance. Multi-input and

multi-output models can allow for deeper analysis of the flow data. We alluded to this in

Chapter 3 but it’s worth repeating here: it’s possible to use the 1D CNN as a layer in a

larger model. The fast training times mean that a meaningful representation (in the form of

feature maps) can be generated by the CNN and used by the larger model.

Word embedding models could be another approach. Word2Vec is a very popular em-

bedding algorithm and could provide a more meaningful representation of the flow data.

The spectrogram-based approach described in Chapter 3 provided some interesting re-

sults. The algorithm used to generate the images can certainly be improved. Certainly other

spectral analysis techniques could be applied.

Another unanswered question is how well the classifiers described in Chapter 3 hold

up against adversarial techniques. This is a crucial issue since the lack of attack signatures

means that the classifiers must be robust and general enough to not mistake deceptive inputs

as benign so as to fool the model.

Finally, how deep learning for DDoS detection might be applied in real-world settings

is yet to be answered. There are many papers in the literature that attempt to answer

this. However, the problem remains that any real-world solution must be able to analyze

the data at extremely high rates. Network hardware at Internet scale is rapidly expanding

in capacity and performance. Contemporary Internet routers make heavy use of interfaces

capable of 100 Gigabits per second throughput. This means that a typical Internet Service

Provider can potentially have usable capacity more than 10 times greater, or in the Terabits

per second range. Further, development of 1,000 Gigabit per second, that is, 1 Terabit per

second, network interfaces is proceeding quickly. These speeds suggest that any attack de-

tection models must be embedded into the hardware they run on. This can be accomplished

using application-specific integrated circuits (ASICs) and field programmable gate arrays

(FPGAs).
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PART 6

PUBLICATIONS

This chapter includes publications that I had a role in, but were not related to this

research. For each publication, a brief description is provided.

6.1 Fuzzy Restricted Boltzmann Machines

In [31], we developed a deterministic RBM training algorithm and showed how to use

that algorithm to automatically derive fuzzy membership classes. RBMs are inherently

fuzzy and well suited for situations where only one class is well-formed. We modified several

aspects of the conventional RBM. First, we replaced the typical binary values in the visible

layer with -1 and 1. Doing so simplifies gradient and energy calculations. Next, we replaced

the gradient calculation (typically done using contrastive divergence [55]) with an analytic

approximation. This analytic approximation is able to train much faster since it is not

iterative.

Fuzzy training extends the standard RBM by adding a belief function to each layer.

The layer with the best reconstruction ratio is selected during classification and the most

likely value (if discrete) or expected value (if continuous) for the class assignment is returned

along with an accuracy estimate.

6.2 Analysis of drug resistance in HIV protease

In [56], we combined dimensionality reduction techniques and generative machine learn-

ing (using an RBM) to predict drug resistance profiles from genomic data. Generative ma-

chine learning models trained on one inhibitor could classify resistance from other inhibitors

with varying levels of accuracy. Generally, the accuracy was best when the inhibitors were

chemically similar. Restricted Boltzmann Machines are an effective machine learning tool for
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classification of genomic and structural data. They can also be used to compare resistance

profiles of different protease inhibitors.

6.3 Evolution of drug resistance in HIV protease

In [57], we evolved the techniques described in the previous paper (namely, developing

models for predicting the resistance to single inhibitors) to techniques for predicting the

resistance to multiple inhibitors. The previous paper showed that there was significant

cross-prediction accuracy where models trained on one inhibitor predict the response to other

inhibitors. This suggests that there are commonalities in resistance mechanisms and the first

step to studying these commonalities is to build a machine learning model that describes

them. This model can then be used to select sequences for expression, characterization, and

structural analysis. We developed a method of using minimum spanning trees (MST) to

estimate the evolutionary properties of HIV response to drugs.

6.4 Illicit Activity Detection in Large-Scale Dark and Opaque Web Social Net-

works

In this research [58], we used natural language processing (NLP) techniques to detect

illicit activity on the so-called “dark net”. We examined conversations on the Telegram

network, since many criminal networks exist there. Importantly, we attributed conversations

to users even when their ”handle” changes (as often happens as a way to try to remain semi-

anonymous). We found that we could classify illicit activity, advertisements, and bot activity

with high accuracy when using as little as 10% of the words from the corpus. We further

tested our model by using it to determine whether a message came from Telegram or Twitter

and again obtained high accuracy.
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