13,426 research outputs found

    A Unified multilingual semantic representation of concepts

    Get PDF
    Semantic representation lies at the core of several applications in Natural Language Processing. However, most existing semantic representation techniques cannot be used effectively for the representation of individual word senses. We put forward a novel multilingual concept representation, called MUFFIN , which not only enables accurate representation of word senses in different languages, but also provides multiple advantages over existing approaches. MUFFIN represents a given concept in a unified semantic space irrespective of the language of interest, enabling cross-lingual comparison of different concepts. We evaluate our approach in two different evaluation benchmarks, semantic similarity and Word Sense Disambiguation, reporting state-of-the-art performance on several standard datasets

    Distributional Measures of Semantic Distance: A Survey

    Full text link
    The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little attention. Even though they have traditionally performed poorly when compared to WordNet-based measures, they lay claim to certain uniquely attractive features, such as their applicability in resource-poor languages and their ability to mimic both semantic similarity and semantic relatedness. Therefore, this paper presents a detailed study of distributional measures. Particular attention is paid to flesh out the strengths and limitations of both WordNet-based and distributional measures, and how distributional measures of distance can be brought more in line with human notions of semantic distance. We conclude with a brief discussion of recent work on hybrid measures

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis

    Improving Hypernymy Extraction with Distributional Semantic Classes

    Full text link
    In this paper, we show how distributionally-induced semantic classes can be helpful for extracting hypernyms. We present methods for inducing sense-aware semantic classes using distributional semantics and using these induced semantic classes for filtering noisy hypernymy relations. Denoising of hypernyms is performed by labeling each semantic class with its hypernyms. On the one hand, this allows us to filter out wrong extractions using the global structure of distributionally similar senses. On the other hand, we infer missing hypernyms via label propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that processing of automatically extracted hypernyms using our approach improves the quality of the hypernymy extraction in terms of both precision and recall. Furthermore, we show the utility of our method in the domain taxonomy induction task, achieving the state-of-the-art results on a SemEval'16 task on taxonomy induction.Comment: In Proceedings of the 11th Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japa

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    SensEmbed: Learning sense embeddings for word and relational similarity

    Get PDF
    Word embeddings have recently gained considerable popularity for modeling words in different Natural Language Processing (NLP) tasks including semantic similarity measurement. However, notwithstanding their success, word embeddings are by their very nature unable to capture polysemy, as different meanings of a word are conflated into a single representation. In addition, their learning process usually relies on massive corpora only, preventing them from taking advantage of structured knowledge. We address both issues by proposing a multifaceted approach that transforms word embeddings to the sense level and leverages knowledge from a large semantic network for effective semantic similarity measurement. We evaluate our approach on word similarity and relational similarity frameworks, reporting state-of-the-art performance on multiple datasets

    NASARI: a novel approach to a Semantically-Aware Representation of items

    Get PDF
    The semantic representation of individual word senses and concepts is of fundamental importance to several applications in Natural Language Processing. To date, concept modeling techniques have in the main based their representation either on lexicographic resources, such as WordNet, or on encyclopedic resources, such as Wikipedia. We propose a vector representation technique that combines the complementary knowledge of both these types of resource. Thanks to its use of explicit semantics combined with a novel cluster-based dimensionality reduction and an effective weighting scheme, our representation attains state-of-the-art performance on multiple datasets in two standard benchmarks: word similarity and sense clustering. We are releasing our vector representations at http://lcl.uniroma1.it/nasari/
    corecore