6,638 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Damage to Association Fiber Tracts Impairs Recognition of the Facial Expression of Emotion

    Get PDF
    An array of cortical and subcortical structures have been implicated in the recognition of emotion from facial expressions. It remains unknown how these regions communicate as parts of a system to achieve recognition, but white matter tracts are likely critical to this process. We hypothesized that (1) damage to white matter tracts would be associated with recognition impairment and (2) the degree of disconnection of association fiber tracts [inferior longitudinal fasciculus (ILF) and/or inferior fronto-occipital fasciculus (IFOF)] connecting the visual cortex with emotion-related regions would negatively correlate with recognition performance. One hundred three patients with focal, stable brain lesions mapped onto a reference brain were tested on their recognition of six basic emotional facial expressions. Association fiber tracts from a probabilistic atlas were coregistered to the reference brain. Parameters estimating disconnection were entered in a general linear model to predict emotion recognition impairments, accounting for lesion size and cortical damage. Damage associated with the right IFOF significantly predicted an overall facial emotion recognition impairment and specific impairments for sadness, anger, and fear. One subject had a pure white matter lesion in the location of the right IFOF and ILF. He presented specific, unequivocal emotion recognition impairments. Additional analysis suggested that impairment in fear recognition can result from damage to the IFOF and not the amygdala. Our findings demonstrate the key role of white matter association tracts in the recognition of the facial expression of emotion and identify specific tracts that may be most critical

    X-ray Phase-Contrast Tomography: Underlying Physics and Developments for Breast Imaging

    Get PDF
    X-ray phase-contrast tomography is a powerful tool to dramatically increase the visibility of features exhibiting a faint attenuation contrast within bulk samples, as is generally the case of light (low-Z) materials. For this reason, the application to clinical tasks aiming at imaging soft tissues, as e.g., breast imaging, has always been a driving force in the development of this field. In this context, the SYRMA-3D project, which constitutes the framework of the present work, aims to develop and implement the first breast computed tomography system relying on the propagation-based phase-contrast technique at the Elettra synchrotron facility (Trieste, Italy). This thesis finds itself in the \u2018last mile\u2019 towards the in-vivo implementation, and the obtained results add some of the missing pieces in the realization of the project. The first part of the work introduces a homogeneous mathematical framework describing propagation-based phase contrast from the sample-induced X-ray refraction, to detection, processing and tomographic reconstruction. The original results reported in the following chapters include the implementation of a pre-processing procedure dedicated for a novel photon-counting CdTe detector; a study, supported by a rigorous theoretical model, on signal and noise dependence on physical parameters such as propagation distance and detector pixel size; hardware and software developments for improving signal-to-noise ratio and reducing the scan time; and, finally, a clinically-oriented study based on comparisons with clinical mammographic and histological images. The last part of the thesis attempts to widen the experimental horizon: first, a quantitative image comparison of the synchrotron-based setup and a clinically available breast-CT scanner is presented and then a practical laboratory implementation is detailed, introducing a monochromatic propagation-based micro-tomography setup making use on a high-power rotating anode source

    Feature Extraction and Classification of Automatically Segmented Lung Lesion Using Improved Toboggan Algorithm

    Full text link
    The accurate detection of lung lesions from computed tomography (CT) scans is essential for clinical diagnosis. It provides valuable information for treatment of lung cancer. However, the process is exigent to achieve a fully automatic lesion detection. Here, a novel segmentation algorithm is proposed, it's an improved toboggan algorithm with a three-step framework, which includes automatic seed point selection, multi-constraints lesion extraction and the lesion refinement. Then, the features like local binary pattern (LBP), wavelet, contourlet, grey level co-occurence matrix (GLCM) are applied to each region of interest of the segmented lung lesion image to extract the texture features such as contrast, homogeneity, energy, entropy and statistical extraction like mean, variance, standard deviation, convolution of modulated and normal frequencies. Finally, support vector machine (SVM) and K-nearest neighbour (KNN) classifiers are applied to classify the abnormal region based on the performance of the extracted features and their performance is been compared. The accuracy of 97.8% is been obtained by using SVM classifier when compared to KNN classifier. This approach does not require any human interaction for lesion detection. Thus, the improved toboggan algorithm can achieve precise lung lesion segmentation in CT images. The features extracted also helps to classify the lesion region of lungs efficiently

    Gaussian mixture model based probabilistic modeling of images for medical image segmentation

    Get PDF
    In this paper, we propose a novel image segmentation algorithm that is based on the probability distributions of the object and background. It uses the variational level sets formulation with a novel region based term in addition to the edge-based term giving a complementary functional, that can potentially result in a robust segmentation of the images. The main theme of the method is that in most of the medical imaging scenarios, the objects are characterized by some typical characteristics such a color, texture, etc. Consequently, an image can be modeled as a Gaussian mixture of distributions corresponding to the object and background. During the procedure of curve evolution, a novel term is incorporated in the segmentation framework which is based on the maximization of the distance between the GMM corresponding to the object and background. The maximization of this distance using differential calculus potentially leads to the desired segmentation results. The proposed method has been used for segmenting images from three distinct imaging modalities i.e. magnetic resonance imaging (MRI), dermoscopy and chromoendoscopy. Experiments show the effectiveness of the proposed method giving better qualitative and quantitative results when compared with the current state-of-the-art. INDEX TERMS Gaussian Mixture Model, Level Sets, Active Contours, Biomedical Engineerin

    Content based retrieval of PET neurological images

    Get PDF
    Medical image management has posed challenges to many researchers, especially when the images have to be indexed and retrieved using their visual content that is meaningful to clinicians. In this study, an image retrieval system has been developed for 3D brain PET (Position emission tomography) images. It has been found that PET neurological images can be retrieved based upon their diagnostic status using only data pertaining to their content, and predominantly the visual content. During the study PET scans are spatially normalized, using existing techniques, and their visual data is quantified. The mid-sagittal-plane of each individual 3D PET scan is found and then utilized in the detection of abnormal asymmetries, such as tumours or physical injuries. All the asymmetries detected are referenced to the Talairarch and Tournoux anatomical atlas. The Cartesian co- ordinates in Talairarch space, of detected lesion, are employed along with the associated anatomical structure(s) as the indices within the content based image retrieval system. The anatomical atlas is then also utilized to isolate distinct anatomical areas that are related to a number of neurodegenerative disorders. After segmentation of the anatomical regions of interest algorithms are applied to characterize the texture of brain intensity using Gabor filters and to elucidate the mean index ratio of activation levels. These measurements are combined to produce a single feature vector that is incorporated into the content based image retrieval system. Experimental results on images with known diagnoses show that physical lesions such as head injuries and tumours can be, to a certain extent, detected correctly. Images with correctly detected and measured lesion are then retrieved from the database of images when a query pertains to the measured locale. Images with neurodegenerative disorder patterns have been indexed and retrieved via texture-based features. Retrieval accuracy is increased, for images from patients diagnosed with dementia, by combining the texture feature and mean index ratio value

    The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations
    • …
    corecore