5,459 research outputs found

    A77 GHz on-chip dipole antenna with etched silicon substrate

    Get PDF
    In this paper, a 77 GHz microstrip dipole antenna is integrated on a layered 11.4 m SiO2 and a silicon substrate with thickness of 670 m. The unbalanced microstrip line is balanced by using a lumped LC circuit balun to feed both of the dipole arms. To decrease the substrate loss and hence increase the antenna gain, Localized Backside Etch (LBE) module offered by IHP is utilized to etch the area under the dipole antenna. For mechanical robustness, two walls of silicon substrate are left at the end of the dipole arms inside the etched area. The simulation results show a 3.2 dBi gain and 15 GHz bandwidth at 77 GHz

    Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform

    Get PDF
    Surface Enhanced Raman Spectroscopy (SERS) is a well-established technique for enhancing Raman signals. Recently photonic integrated circuits have been used, as an alternative to microscopy based excitation and collection, to probe SERS signals from external metallic nanoparticles. However, in order to develop quantitative on-chip SERS sensors, integration of dedicated nanoplasmonic antennas and waveguides is desirable. Here we bridge this gap by demonstrating for the first time the generation of SERS signals from integrated bowtie nanoantennas, excited and collected by a single mode waveguide, and rigorously quantify the enhancement process. The guided Raman power generated by a 4-Nitrothiophenol coated bowtie antenna shows an 8 x 10^6 enhancement compared to the free-space Raman scattering. An excellent correspondence is obtained between the theoretically predicted and observed absolute Raman power. This work paves the way towards fully integrated lab-on-a-chip systems where the single mode SERS-probe can be combined with other photonic, fluidic or biological functionalities.Comment: Submitted to Nature Photonic

    Thin Flexible Radio Frequency Identification Tags And Subsystems Thereof

    Get PDF
    Embodiments according to the present invention comprised RFID tags comprised of components disposed on a flexible conformal substrate. The substrate may be substantially transparent or opaque and the components may be comprised of organic electronic components. Components and circuits may be manufactured using thin-film deposition processes or by deposition of metal-containing inks using inkjet technology. Exemplary use of an embodiment according to the present invention is as a component in an on-vehicle radio-frequency (RF) automated toll system.Georgia Tech Research Corporatio

    On the design of 60 GHz integrated antennas on 0.13 µm SOI technology

    Get PDF
    International audienceThis work presents the performance of 0.13 µm Silicon on insulator technology in the design of 60 GHz fully integrated antennas. Three different types of antennas are considered and designed in order to study their ability to radiate efficiently at this frequency using specific IC technology in order to obtain good matching and higher radiation efficiency. A conductor backed coplanar waveguide is used to feed these antennas. The planar inverted F antenna, the slot antenna and the interdigitated dipole antenna show a good return loss and simulated radiation efficiency of 45%, 55% and 88% respectively. Backside substrate metallization has been used to improve radiation properties

    Microfluidics for Soft Electronics

    Get PDF
    Microfluidics- based soft electronic systems have the potential to assist conventional rigid devices and circuits to achieve extreme levels of elasticity in wearable electronics and other applications. The goal of employing microfluidics-based approach among other existing methods is to enhance users comfort through fulfillment of wearable’s mechanical performance requirements such as flexibility, twistability, and stretchability. This chapter presents a brief survey of different solutions for developing elastic electronics and a thorough review of the progress in microfluidics-based approaches. This chapter mainly focuses on the description of the fabrication process, design, and measurement steps of different antennas and complex systems realized using microfluidic interconnects

    Elastomeric Electronics: A Microfluidic Approach

    Get PDF
    corecore