2,723 research outputs found

    Signaling Free Localization of Node Failures in All-Optical Networks

    Get PDF

    Signaling Free Localization of Node Failures in All-Optical Networks

    Get PDF

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    On Signaling-Free Failure Dependent Restoration in All-Optical Mesh Networks

    Get PDF
    Failure dependent protection (FDP) is known to achieve optimal capacity efficiency among all types of protection, at the expense of longer recovery time and more complicated signaling overhead. This particularly hinders the usage of FDP in all-optical mesh networks. As a remedy, the paper investigates a new restoration framework that enables all-optical fault management and device configuration via state-of-the-art failure localization techniques, such that the FDP restoration process. It can be implemented without relying on any control plane signaling. With the proposed restoration framework, a novel spare capacity allocation problem is defined, and is further analyzed on circulant topologies for any single link failure, aiming to gain a solid understanding of the problem. By allowing reuse of monitoring resources for restoration capacity, we are particularly interested in the monitoring resource hidden property where less or even no monitoring resources are consumed as more working traffic is in place. To deal with general topologies, we introduce a novel heuristic approach to the proposed spare capacity allocation problem, which comprises a generic FDP survivable routing scheme followed by a novel monitoring resource allocation method. Extensive simulation is conducted to examine the proposed scheme and verify the proposed restoration framework

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Soft failure localization during commissioning testing and lightpath operation

    Get PDF
    In elastic optical networks (EONs), effective soft failure localization is of paramount importance to early detection of service level agreement violations while anticipating possible hard failure events. So far, failure localization techniques have been proposed and deployed mainly for hard failures, while significant work is still required to provide effective and automated solutions for soft failures, both during commissioning testing and in-operation phases. In this paper, we focus on soft failure localization in EONs by proposing two techniques for active monitoring during commissioning testing and for passive in-operation monitoring. The techniques rely on specifically designed low-cost optical testing channel (OTC) modules and on the widespread deployment of cost-effective optical spectrum analyzers (OSAs). The retrieved optical parameters are elaborated by machine learning-based algorithms running in the agent’s node and in the network controller. In particular, the Testing optIcal Switching at connection SetUp timE (TISSUE) algorithm is proposed to localize soft failures by elaborating the estimated bit-error rate (BER) values provided by the OTC module. In addition, the FailurE causE Localization for optIcal NetworkinG (FEELING) algorithm is proposed to localize failures affecting a lightpath using OSAs. Extensive simulation results are presented, showing the effectiveness of the TISSUE algorithm in properly exploiting OTC information to assess BER performance of quadrature-phase-shift-keying-modulated signals, and the high accuracy of the FEELING algorithm to correctly detect soft failures as laser drift, filter shift, and tight filtering.Peer ReviewedPostprint (published version

    On Integrating Failure Localization with Survivable Design

    Get PDF
    In this thesis, I proposed a novel framework of all-optical failure restoration which jointly determines network monitoring plane and spare capacity allocation in the presence of either static or dynamic traffic. The proposed framework aims to enable a general shared protection scheme to achieve near optimal capacity efficiency as in Failure Dependent Protection(FDP) while subject to an ultra-fast, all-optical, and deterministic failure restoration process. Simply put, Local Unambiguous Failure Localization(L-UFL) and FDP are the two building blocks for the proposed restoration framework. Under L-UFL, by properly allocating a set of Monitoring Trails (m-trails), a set of nodes can unambiguously identify every possible Shared Risk Link Group (SRLG) failure merely based on its locally collected Loss of Light(LOL) signals. Two heuristics are proposed to solve L-UFL, one of which exclusively deploys Supervisory Lightpaths (S-LPs) while the other jointly considers S-LPs and Working Lightpaths (W-LPs) for suppressing monitoring resource consumption. Thanks to the ``Enhanced Min Wavelength Max Information principle'', an entropy based utility function, m-trail global-sharing and other techniques, the proposed heuristics exhibit satisfactory performance in minimizing the number of m-trails, Wavelength Channel(WL) consumption and the running time of the algorithm. Based on the heuristics for L-UFL, two algorithms, namely MPJD and DJH, are proposed for the novel signaling-free restoration framework to deal with static and dynamic traffic respectively. MPJD is developed to determine the Protection Lightpaths (P-LPs) and m-trails given the pre-computed W-LPs while DJH jointly implements a generic dynamic survivable routing scheme based on FDP with an m-trail deployment scheme. For both algorithms, m-trail deployment is guided by the Necessary Monitoring Requirement (NMR) defined at each node for achieving signaling-free restoration. Extensive simulation is conducted to verify the performance of the proposed heuristics in terms of WL consumption, number of m-trails, monitoring requirement, blocking probability and running time. In conclusion, the proposed restoration framework can achieve all-optical and signaling-free restoration with the help of L-UFL, while maintaining high capacity efficiency as in FDP based survivable routing. The proposed heuristics achieve satisfactory performance as verified by the simulation results
    • …
    corecore