
1

Signaling Free Localization of Node Failures in
All-Optical Networks

János Tapolcai, Lajos Rónyai, Éva Hosszu, László Gyimóthi, Pin-Han Ho, Suresh Subramaniam

Abstract—Network-wide local unambiguous failure localiza-
tion (NL-UFL) has been demonstrated as an interesting scenario
of monitoring trails (m-trails). It attempts to enable every node
to autonomously localize any failure event in the network in a
distributed and all-optical manner by inspecting a set of m-trails
traversing through the node. This paper investigates the m-trail
allocation problem under the NL-UFL scenario by taking each
link and node failure event into consideration. Bound analysis
is performed using combinatorial group testing (CGT) theory
and this is followed by the introduction of a novel heuristic on
general topologies. Extensive simulation is conducted to examine
the proposed heuristic in terms of the required cover length and
the number of m-trails to achieve NL-UFL.

Index Terms—monitoring trails, failure localization, node fail-
ures, all-optical networks

I. INTRODUCTION

Generalized Multi-Protocol Label Switching (GMPLS) has
served as a building block of Internet backbone control and
management. It supports automatic failure restoration mecha-
nisms in optical networks via a suite of signaling protocols,
referred to as GMPLS-based recovery. The following five
recovery phases [1] are defined as a standard sequence of
generic operations performed when an optical layer failure
event occurs: (1) failure detection, (2) failure localization
(isolation), (3) failure notification, (4) failure correlation, and
(5) service restoration. Phases (1)–(3) are also referred to as
fault management, which concerns with how the control plane
acquires the failure event information; phases (4)–(5) are for
the recovery of the affected working traffic from the failure
event. All the phases rely on electronic signaling via cross-
layer protocol operations. In general, the detection of a failure
event in the transport layer will trigger the control plane for
subsequent actions by way of the GMPLS signaling protocol
stacks.

Optical layer fault localization has been extensively studied
in the past, and it is positioned to facilitate GMPLS fault

J. Tapolcai, É. Hosszu, and L. Gyimothi are with MTA-BME Lendület
Future Internet Research Group, Budapest University of Technology and
Economics (BME), Budapest 1117, Hungary (e-mail: tapolcai@tmit.bme.hu).

L. Rónyai is with Computer and Automation Research Institute Hungarian
Academy of Sciences, Budapest 1111, Hungary, and also with Budapest
University of Technology and Economics (BME), Department of Algebra,
Budapest 1111, Hungary.

P. Ho is with Dept. of Electrical and Computer Engineering, University of
Waterloo, Canada.

S. Subramaniam is with Dept. of Electrical and Computer Engineering,
George Washington University.

The project was supported by Hungarian Academy of Sciences (MTA)
OTKA grants K108947, NK105645 and by High-Speed Networks Laboratory
(HSNLab).

The conference version of the paper is presented in IEEE Infocom’14.

management in phases (2) and (3) so that a fast and deter-
ministic failure localization can be achieved. Using multi-
hop supervisory lightpaths, referred to as monitoring trails
(m-trails), has been claimed as an effective approach for
reducing the dependence on the upper layer control signal-
ing mechanisms that otherwise serve as the main source of
complexity in achieving fast and all-optical failure restoration
[2]–[13]. Each m-trail is turned into the off state if it is
interrupted by a failure event (e.g., loss of light, loss of
signal, or any irregularity defined in the monitoring plane),
and the state changes of the interrupted m-trails are sensed
at some monitors and coordinated at a network controller for
the failure localization and notification tasks. Therefore, the
m-trail approach is expected to serve as a complement to the
existing electronic signaling approaches and enables an ultra-
fast and deterministic fault management process.

Local unambiguous failure localization (L-UFL) is a re-
cently reported development under the m-trail framework first
introduced in [11]. An L-UFL capable node is defined as
one that can determine the network failure status solely by
observing the on-off status of the m-trails traversing that
node. A distinguishing feature of the L-UFL framework is
that multiple nodes can share the on-off status of a common
m-trail traversing them via signal tapping. Based on L-UFL,
a number of research results have been reported, including
[2] that considered all nodes as L-UFL capable for single
link failures, referred to as network-wide L-UFL (NL-UFL);
[12] that studied multi-link shared risk link group (SRLG)
failure localization; [13] that explored the monitoring burst
(m-burst) architecture on multi-link SRLGs; and [14], [15]
that further integrated the failure localization mechanism with
failure restoration.

All the above-mentioned studies are on failures of link(s);
node failures have never been considered in the NL-UFL
scenario. Since a network node bears all the functions of
routing, signaling, monitoring and data/information relaying
and storage, the failure of a node certainly has a tremendous
impact upon network operation, particularly in the aspect of
control and management in the context of all-optical networks.
It is expected that the instant acquisition of node failure
statuses at a remote decision node can achieve significantly
better network capacity efficiency. For example the bandwidth
of all the connections terminating at a failed node can be
released1 and used by some protection paths corresponding
to the failure event2.

1It is also called stub release.
2We assume that if a node is down then every incident link is down.

2

In spite of its ultimate importance, research on node failure
localization, to the best of our knowledge, is a missing piece
of the state-of-the-art toward a complete solution plane for
all-optical failure restoration. Note that the L-UFL m-trail
allocation problem under node failures cannot be analyzed
by transforming the topology into a line graph3 and reusing
the reported results for link failures, because these approaches
only work in the scenarios where the considered failure events
affect a small number of links (see also Section IV for a
comprehensive analysis).

Motivated by the above observation, this paper presents
our research results on node failure localization using m-trails
for achieving NL-UFL. We require every node to be able to
determine any remote node failure by solely inspecting the on-
off status of the traversing m-trails with a target of minimizing
the number of m-trails deployed in the network. The paper
presents a series of bound analyses based on combinatorial
group testing (CGT) theory, followed by a novel heuristic
scheme that can efficiently determine the required m-trails
and the alarm code table (ACT) at each node for every
single link and node failure event. Extensive simulation is
conducted to examine the proposed heuristic in terms of cover
length and the number of m-trails, which is related to the
consumed wavelength channels and the required transponders
corresponding to the m-trail solution; it also demonstrates
the effectiveness of the proposed heuristic algorithm and the
performance impact of topology diversity.

Our contributions in this paper are summarized as follows.
• Although localizing single link failures under NL-UFL

was studied in [2] the developed theories and heuristic
schemes cannot be used in the node failure cases be-
cause a single node failure may affect many links. We
claim that this paper is the first attempt in approaching
this problem and gaining insights into the performance
through bounds.

• We show how the m-trail allocation problem of NL-
UFL under node failures is related to the Ahlswede-
Katona theory, which focuses on bounded test sets in
the context of combinatorial group testing (CGT) [16],
[17]. Our problem leads to a novel and quite general CGT
scenario. The notion of observatories allows us to capture
the characteristics of our problem, and allows us to give
a new lower bound on the number of tests. Somewhat
surprisingly, Shannon entropy seems to enter the picture.

• We show that the lower bound can be tight within a small
factor of about 1.23 by giving a special sparse network
structure with m-trails via a novel construction based on
Gray codes.

• We provide efficient constructions for the C1,2,3, C1,2

and C1,3 circulant graphs that solve the NL-UFL problem
under node failures.

• We provide a simple yet powerful heuristic that can solve
the NL-UFL m-trail allocation problem under node and
sparse SRLG failures on realistic network topologies.

The rest of the paper is organized as follows. Section II

3In the line graph L(G) each node represents an edge of G; two nodes of
L(G) are adjacent if and only if their corresponding edges are incident in G.

presents a literature review and presents the background
knowledge for the research. Section III defines the m-trail
problem. Section IV presents a bound analysis on the for-
mulated problem. Section V describes our constructions for
circulants and Section VI introduces the proposed heuristic
algorithm on general graphs. Section VII shows simulation
results which verify the proposed heuristic algorithm while
Section VIII concludes the paper.

II. BACKGROUND

Failure localization using multi-hop supervisory lightpaths
(m-trails) has been extensively studied in the past decade [2]–
[9]. L-UFL [2], [10]–[12] is an interesting implementation
of m-trails, aiming at signaling-free failure localization that
operates purely in the optical domain. With the set of m-trails
properly allocated, a node is L-UFL capable if the node can
unambiguously identify any link failure according to locally
available m-trail on-off status information.

[10] studied how to determine one or more monitoring
locations (MLs) in the network in order to collaboratively
identify the failed SRLGs according to the alarms collected
by the MLs. When only a single ML is required, the ML is
L-UFL capable. [11] extended [10] by exploring the scenario
where not only the terminating node but also an intermediate
node of an m-trail can obtain its on-off status via optical signal
tapping. The study allocated m-trails which enable a given
set of nodes as L-UFL capable via an integer linear program
and discovered the fact that the total length of the m-trails
scales very well with the number of L-UFL capable nodes,
mostly due to the sharing of on-off statuses among the nodes
traversed by a common m-trail. Motivated by the result, similar
ideas were explored in [12] and [2]. The former introduced
a heuristic approach for achieving L-UFL of a small set of
MLs under multi-link failures, while the latter investigated the
scenario that all the nodes are made to be L-UFL capable for
any single link failure. An efficient heuristic was developed for
allocating m-trails in the shape of a spanning tree via link code
swapping. [2] defines this scenario as Network-wide L-UFL
(NL-UFL).

To the best of our knowledge there is no research reported
on node failures, which are the main focus of this paper.
Fig. 1 shows an example of NL-UFL for any single-link and
node failures using 12 m-trails, T0, . . . , T11, in the SmallNet
topology. Each node can achieve single-link or -node L-
UFL by inspecting the locally available on-off statuses of the
traversing m-trails. For example, node v1 maintains an alarm
code table (ACT) on the columns T0, . . . , T4, T6 . . . , T11 of
the table on Fig. 1, where the on-off status of these m-trails
form an alarm code of 12 bits which uniquely identifies each
possible link or node failure event. If node v1 finds that T1
becomes suddenly off while all the remaining m-trails are still
on, link (v8, v9) is considered down and can be localized as
defined in the corresponding row of the ACT. Note that this
localization is achieved at node v1 by observing only the m-
trails traversing v1. The reader can convince himself that every
node can localize any single link or node failure using only
the on-off statuses of m-trails passing through that node.

3

T0

v9

v8

v7v6

v5

v4

v3

v2

v1

v0

T1 T2 T3

T4 T5 T6 T7

T8 T9 T10 T11

Failure T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

(v2, v3) 0 0 1 0 1 1 0 1 1 0 0 1
(v1, v3) 1 1 1 0 0 0 0 0 1 0 1 0
(v1, v2) 1 1 0 0 1 0 0 1 0 0 0 0
(v0, v3) 0 0 0 0 1 0 0 0 0 1 0 0
(v0, v2) 0 0 1 0 1 1 0 0 0 0 0 0
(v0, v1) 1 0 0 1 0 0 0 0 1 0 0 1
(v7, v3) 0 1 0 0 0 1 0 0 0 1 0 0
(v7, v0) 1 0 1 1 0 0 1 0 0 1 1 0
(v6, v3) 0 0 1 0 1 0 0 1 0 1 1 1
(v6, v2) 0 1 0 0 1 1 0 0 0 0 0 0
(v6, v7) 0 0 0 1 0 0 0 1 0 0 1 0
(v5, v2) 0 0 0 0 1 0 0 0 1 0 0 1
(v5, v6) 0 0 1 1 0 0 0 0 1 1 0 0
(v4, v2) 1 0 0 0 0 1 1 1 0 0 0 1
(v4, v1) 0 1 0 1 1 0 1 0 0 0 0 0
(v4, v5) 1 0 0 0 0 0 0 1 1 0 0 0
(v9, v1) 0 0 0 0 1 0 1 0 0 1 0 1
(v9, v0) 1 0 0 0 0 0 1 0 1 1 1 0
(v9, v4) 0 0 0 1 0 1 0 0 0 0 0 1
(v8, v0) 0 0 0 1 0 0 1 0 1 1 0 0
(v8, v7) 0 1 0 0 0 1 0 1 0 1 1 0
(v8, v9) 0 1 0 0 0 0 0 0 0 0 0 0
v9 1 1 0 1 1 1 1 0 1 1 1 1
v8 0 1 0 1 0 1 1 1 1 1 1 0
v7 1 1 1 1 0 1 1 1 0 1 1 0
v6 0 1 1 1 1 1 0 1 1 1 1 1
v5 1 0 1 1 1 0 0 1 1 1 0 1
v4 1 1 0 1 1 1 1 1 1 0 0 1
v3 1 1 1 0 1 1 0 1 1 1 1 1
v2 1 1 1 0 1 1 1 1 1 0 0 1
v1 1 1 1 1 1 0 1 1 1 1 1 1
v0 1 0 1 1 1 1 1 0 1 1 1 1

Fig. 1. An NL-UFL m-trail solution for SmallNet. As a comparison, see the solution for UFL with alarm code dissemination in [7].

The above example raises an interesting question that is
investigated in the rest of the paper: how should the m-trails be
routed to achieve NL-UFL of all single link and node failures?

III. PROBLEM DEFINITION

The problem input is a network topology modelled by a
2-connected undirected4 graph G = (V,E) with node set V
and link set E, where the number of nodes is denoted by
n = |V | and the number of links by m = |E|. An m-trail T is
a connected subgraph of G which corresponds to a supervisory
lightpath to be established in the network for failure localiza-
tion purposes. In the NL-UFL m-trail allocation problem the
goal is to find set of m-trails, denoted by T = {T1, . . . , Tb}
where b = |T | is the number of m-trails, such that b is minimal
and each node vj ∈ V can achieve L-UFL for single-link and
node failure according to the on-off status of m-trails in T j

- the subset of T containing the m-trails passing through vj .
Formally, in L-UFL at vj the set of m-trails T j traversing vj
must satisfy the following two requirements:

(R1): Every link e should be passed by a unique set of
m-trails in T j , such that every link and node has a
unique alarm code seen by vj .

(R2): Ti for 1 ≤ i ≤ b must be a connected subgraph of
G.

Refer to Table I for a list of notations used in the paper.

IV. BOUND ANALYSIS

In this section we derive lower bounds on the number
of m-trails required to satisfy the NL-UFL m-trail allocation
constraint. Note that an analytical study on single link failure

4We assume each link has two fibers for different directions.

TABLE I
NOTATION LIST

Notation Description
G = (V,E) undirected graph representation of the topology
n = |V | the number of nodes in G
m = |E| the number of links in G

b the number of m-trails
T = {T1, . . . , Tb} a solution with b (b)m-trails

Ti the ith (b)m-trail, which is a set of links in G
|Ti| number of nodes the ith m-trail traverses
C∗(n, k) minimum number of tests to localize a faulty

item among n using tests of average size k
H(p) the binary entropy function
bv number of tests containing node v
k∗v average size of tests at node v
δ average nodal degree
ae the alarm code of link e ∈ E
ae<i> the bitwise pair of ae at the ith position
ae,[j] the jth bit of the alarm code of link e ∈ E
||T ||E normalized cover length, see (20)

localization under NL-UFL was reported in [2], which takes
advantage of a suite of spanning trees. Thus a novel method
should be developed such that each node has a unique ACT
where every other node and link is traversed by a different set
of m-trails seen at the node.

The optimal length of each m-trail is of interest and should
be discussed first. The binary search or half-interval search
algorithm intuitively suggests that an ideal test should contain
half of the nodes. This is in contrast to the case of localizing
only link failures as considered in [2] where having each m-
trail to traverse all the nodes (via a spanning tree) is the most
efficient, as its on-off status is visible at every node.

4

A. Lower Bounds for Combinatorial Group Testing (CGT)

To obtain lower bounds on the number of necessary m-trails
for any single link and node failure, a simplified problem is
considered first. Let a network G = (V,E) contain n nodes
and m links; our goal is to localize a single node failure using
dedicated bi-directional m-trails. For better understanding, in
the first step we ignore link failures and just focus on single
node failures; it is clear that the derived lower bound will still
be a lower bound for the original problem.

We treat this simplified problem as a CGT problem where
there are items (i.e. nodes) and we need to define group tests
on the items to identify at most one faulty item. In this model
only nodes are considered. In particular, tests are subsets of
nodes.

The first problem we take is where the average size of
the group tests is restricted. A lower bound was proved by
Katona [16]. Let C(n, k) denote the smallest number of tests
needed to localize a faulty item among n items using tests
of size exactly k and C∗(n, k) using tests of average size k,
respectively. In [16], Theorem 5 gives a lower bound

log2 n

H(kn)
≤ C(n, k) , (1)

where H(p) denotes the binary entropy function,

H(p) = −p log2 p− (1− p) log2(1− p),

for p ∈ [0, 1] and k ≤ n
2 .

Ahlswede [17] proved5 that

log2 n

H(kn)
≤ C∗(n, k) . (2)

Next, suppose that we have a set of observatories in the
input, and each observatory knows the outcome of a given
subset of the group tests. We need to ensure that every
observatory can identify the faulty item according to the group
testing result of the given subset provided there is at most one
faulty item. This version of the problem is somewhat similar to
the case when a group test may give a false outcome. Basically
we need to ensure that a subset of the tests provides sufficient
information to identify the failed item.

An interesting special case is when there are b tests and
(
b
k

)
observatories, each seeing a different subset of b− k tests. In
this case the code of any two items should have a Hamming
distance of at least k + 1, because if there are two items
with a Hamming distance of at most k, the observatory that
can see exactly the complementary set of b − k tests cannot
distinguish the failure of these two items. In other words,
the items should be assigned with alarm codes that are error-
correcting in nature. In NL-UFL problem this special case is
only possible on complete graphs.

5Ahlswede proved the bound in Theorem 1 of [17] only for k ≤ n
2

and
for tests of average size at most k. The bound for C∗(n, k) and for arbitrary
0 ≤ k ≤ n follows by a slight modification of the proof in [17].

1

2

3

4

5

6

7

8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

g
(α

)

α

g(α) = 1
α ·

1
(1−α) log 1

1−α+α log 1
α

Fig. 2. A plot on g(α) for 0 < α < 1.

B. Localizing Node Failures

The NL-UFL problem for node failures has a recursive
nature, as node failures should be localized at nodes that tap
the m-trails traversing them. This is captured by the model
where each observatory corresponds to an item, and the set of
tests the observatory can see is the set of tests that contain the
corresponding item. Also, we require that every item hosts an
observatory.

We divide the cost of each test equally among the obser-
vatories (or equivalently, the number of nodes that an m-trail
traverses), and represent the cost in a matrix Ω which has n
rows and b columns, where

ωv,i =

{ 1
|Ti| the ith m-trail traverses node v,

0 otherwise,
(3)

where |Ti| denotes the number of nodes the test Ti passes
through. The total number of tests b can be expressed as

b∑
i=1

n∑
v=1

ωv,i =

b∑
i=1

1 = b , (4)

which can be reordered as

b =

b∑
i=1

n∑
v=1

ωv,i =

n∑
v=1

b∑
i=1

ωv,i =

n∑
v=1

 ∑
i|v∈Ti

1

|Ti|

 . (5)

Let k∗v denote the average size of the tests at node v,
formally

k∗v =

∑
i|v∈Ti |Ti|
bv

, (6)

where bv is the number of tests containing node v. Note that bv
is at least C∗(n, k∗v) because v is an observatory. The inequality
of harmonic and arithmetic means states that

bv∑
i|v∈Ti

1
|Ti|
≤
∑
i|v∈Ti |Ti|
bv

= k∗v . (7)

Let σv denote the inner sum in the right side in (5) for node
v, for which we have the following lower bound

σv =
∑
i|v∈Ti

1

|Ti|
≥ bv
k∗v
≥ C

∗(n, k∗v)

k∗v
. (8)

5

Using the bound in (2) we have

σv ≥
1

k∗v

log2 n

H(
k∗v
n)

. (9)

To simplify further computations we define α :=
k∗v
n , and

substitute it into (9) to get

σv ≥
1

αn

log2 n

H(α)
=

log2 n

n
· 1

αH(α)
=

log2(n)

n
g(α) , (10)

where g(α) := 1
αH(α) .

Fig. 2 shows g(α) for 0 ≤ α ≤ 1. Let G(α) = 1
g(α) =

αH(α). Finding the minimum of g(α) is equivalent to finding
the maximum of G(α) when 0 ≤ α ≤ 1. In order to find the
maximum of G(α) we take the derivative w.r.t. α and search
for the root.

d

dα
G(α) =

d

dα
αH(α) = H(α) + α · log2

1− α
α

. (11)

Simplification yields the following equation:

2α · log2

α

1− α
− log2

1

1− α
= 0 (12)

Let α∗ denote the solution of (12) for α. Solving (12)
numerically we get α∗ ≈ 0.7035 with g(α∗) ≥ 1.62088.

Substituting it back into (10) eventually gives for b:

b ≥
n∑
v=1

g(α)
log2(n)

n
= g(α) log2(n) ≥ 1.62088 log2(n).

(13)
We have the following:
Theorem 1: The number of tests necessary to localize any

single node failure at every node is at least

b ≥ d1.62088 log2 (n)e , (14)

where n is the number of items.
Tightness of the bound in Theorem 1: Next, we examine the

tightness of (14) by providing graphs with NL-UFL solutions
close to the bound in Theorem 1. We focus on the problem
where the task is to localize every single node failure at every
node and still ignore link failures. We construct a graph G∗ =
(V,E) and 2dlog2 |V |e + 1 m-trails that can localize every
node failure locally at every node, while the graph has only
nodes with degrees at most 4. This means that the gap for the
lower bound in Theorem 1 can be as low as 23% even on
realistic topologies.

The graph is a path with some extra links. It has node set
V = {v0, v1, . . . , vn−1}. First we assign codes to the nodes,
then the alarm code of each link e is computed as the bitwise
AND of the codes assigned to the two nodes incident to e.

The first b′ = dlog2 |V |e bits of the codes assigned to nodes
v0, v1, . . . , vn−1 are a series of unique binary codes, where two
successive values differ in only one bit (see also Fig. 3). We
consider these as column vectors. Using Gray codes, such a
node coding process is feasible since 2b

′ ≥ |V |. The next b′

bits of the node codes will be exactly the complements of the
first b′ bits allocated to the node. For example, if node vi has
the first bit as 0, then its (b′ + 1)-th bit should be 1, and so

0

0

0

1

1

1

1

0

0

1

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

0

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

1

1

0

1

0

1

0

1

1

0

0

0

1

1

1

Fig. 3. An example of the Gray-codes mapped to a graph with b′ = 3.

on. This results in the fact that the row corresponding to the
j-th bit position (denoted as Rj) is the complement of row
Rj+b′ , (1 ≤ j ≤ b′). Finally, the last bit of the node codes
is 1 for every node. With the 2b′ + 1 rows the construction is
complete.
G∗ has links (vi, vi+1) for i = 0, . . . , n− 2, which form a

path. Now we add some extra links. For each node vi we add
at most one extra link. Let j be the position 1 ≤ j ≤ b′, where
the i-th and (i+ 1)-th Gray codes differ. We add at most one
extra link (vi, vk) with k > i as follows. If vi[j] = 1 and
vi+1[j] = 0, then let k be the first index which is greater than
i and for which vk[j] = 1, provided that there is such a k.
Also, if vi[j] = 0 and vi+1[j] = 1, then let k be the first index
which is greater than i and for which vk[j] = 0, provided that
such k exists. These extra links are used to connect the disjoint
segments of the j-th and (b′ + j)-th m-trail, respectively.

The m-trails are edge sets. Trail Tj contains a path from vl
to vk iff vk[j] = vl[j] = 1 holds6. By construction every Tj
is connected. We assume in this model that if a node is down
then every link incident to it is down. In particular, a failure
of node v will be detected at every node along Tj , provided
that Tj is incident to v.

The constructions of G∗, the node-codes and the trails imply
that v ∈ V is incident to trail Tj if and only if the j-th bit
of the code of v is 1. To prove NL-UFL, we must verify that
every node w can correctly identify a single node failure. Let
H be the set of bit positions j where the code of w has value
1. It suffices to verify that the nodes have pairwise different
codes when restricted only to bit positions (rows) in H . We call
positions 1 ≤ i, j ≤ 2b complementary if |i − j| = b′ holds.
Now observe that H is big in the sense that any position i
or its complementary pair is in H . This implies that if the
code vectors for nodes u and v agree on positions belonging
to H , then they agree everywhere by complementation; this is
possible only when u = v. The last bit position ensures that
the no-failure state is recognized properly.

C. Lower Bound on the Number of M-trails

We now extend our results to single link and node failures.
We modify the above model as follows: the items are the nodes
and links, the observatories correspond to nodes, and the set
of tests the observatory can see is the set of tests that contain
the corresponding node. This is a simplified model, where a
test may contain any set of nodes and links. We ignore the

6Tj can be identified also with the set of nodes vk for which vk[j] = 1.

6

graph connectivity, and also the fact that an m-trail traversing
a link must traverse the adjacent nodes.

Each node must be traversed by at least dlog2(m+n+ 1)e
m-trails to have a unique alarm code for each failure state,
where n is the number of nodes and m is the number of links
in the network. This means (8) now becomes

σv ≥
1

k∗v
max {C∗(n, k∗v), dlog2(m+ n+ 1)e} . (15)

From this we have

σ ≥ max{g(α) log2 n/n,
log2(m+ n+ 1)

αn
}.

For fixed values m,n we can view the terms on the
right as functions of α. We can obtain a bound better than
g(α∗) log2 n/n if at α∗ the second term is larger than the first
one. In fact, in this case log2(m+n+1)

α′n } will be a lower bound,
where α′ > α∗ is the point where the two curves intersect.

Using the fact that α∗g(α∗) < 1.5, for n < m1.5 the second
term will be bigger than the first one. We obtain the following
result.

Theorem 2: If m > n1.5, then

b ≥ log2(m+ n+ 1)

α′
, (16)

where α′ ≥ α∗ is the solution of

H(α′) = log2 n/ log2(n+m+ 1).

V. CONSTRUCTIONS FOR CIRCULANT GRAPHS

In this section we describe our constructions for circulant
graphs. Circulants are a large family of graphs where the i-th
node is connected to the (i + j)-th and (i − j)-th nodes for
every j in a list l. A circulant graph is defined by the number
of vertices and the list of relative indices of the neighbours.
For instance, C10(1, 2, 3) represents a graph with 10 vertices
where each node is connected to its first, second and third
neighbour, see Fig. 4 for an illustration. Circulant networks
are often adopted when the network topology should preserve
simplicity, low cost, and scalability, while increasing the
robustness and speed of communication [18]. For example, all-
to-all routing in local area networks can be implemented with
optical chordal rings, which are often circulants as well [19],
[20]. In particular the Cn(1, 2) is 4-regular and commonly
referred to as a double loop network [18]. These LANs are
often designed for specialized application scenarios, such as
supercomputing [21], and on-board avionic communications
[22]. Moreover circulants, especially Cn(1, 2), Cn(1, 3) and
Cn(1, 2, 3) are similar to backbone network topologies, as in
all cases the connected nodes are relatively close to each other,
forming a large-diameter graph.

The construction utilizes Gray codes and Inverse Gray
codes, which are assigned to the nodes as alarm codes.
When necessary, the alarm code set is extended to ensure
connectivity; the ith m-trail Ti then consists of the nodes nodes
whose alarm code equals 1 at position i.

v0

v2v8

v6 v4

v7

v5

v3

v1v9
v0

v2v8

v6 v4

v7

v5

v3

v1v9
v0

v2v8

v6 v4

v7

v5

v3

v1v9

C10(1, 2) C10(1, 3) C10(1, 2, 3)

Fig. 4. 10-node circulant graphs

A. Construction for Cn(1, 2, 3)

The notion of Gray codes, and Inverse Gray codes [23],
[24] is necessary for the following construction. Gray codes7

are special sequences of unique binary codes, where two
consecutive codes differ only in a single digit, i.e. only one
bit. A Gray code is said to be cyclic, if the last and the first
binary code satisfy the one-bit difference rule. Inverse Gray
codes are sequences of unique, n-digit binary strings, where
the adjacent pairs differ in (n− 1) positions.

Inverse Gray codes provide sequences where the value
of each bit position changes with a very high frequency.
To be precise, the maximum length of a sequence of the
same binary value in a given bit position is 2. Formally, if
G = {S1, . . . , Sk} is an Inverse Gray code with length k,
where Si is the i-th binary string, then Eqs. (17) and (18)
cannot hold at the same time for any i and j. 8

Si−1[j] = Si[j] (17)

Si[j] = Si+1[j] (18)

This advantageous property of Inverse Gray codes can be
utilized in the case of Cn(1, 2, 3) graphs. Specifically, nodes
V = {v1, . . . , vn} can be assigned the binary strings of the
Gray codes {S1, . . . , Sn} of length dlog2 (n+ 1)e. The high
frequency change in each bit position ensures, that not only
the number of consecutive 0s, but also the consecutive 1s is
at maximum 2. This property implies that both the trail and
its complement are a connected subgraph in the Cn(1, 2, 3)
graph. An additional trail containing all the nodes is needed
in order to provide every node with the ability to distinguish
the faultless state from its complement pair’s failure For that
reason, NL-UNFL is attainable in Cn(1, 2, 3) graphs with b =
2 · dlog2(n+ 1)e+ 1 trails. The subsequent theorem follows.

Theorem 3: A Cn(1, 2, 3) topology can be covered with
b = 2dlog2(n + 1)e + 1 monitoring trails for ensuring single
node NL-UNFL.

B. Construction for Cn(1, 2) and Cn(1, 3)

The Inverse Gray code assignment can be used for con-
structing a logarithmic solution for both the Cn(1, 2) and the
Cn(1, 3) graphs. The problem with assigning the codewords
directly to the nodes in Cn(1, 2) is, that at certain positions of

7named after Frank Gray, physicist and researcher at Bell Labs
8Si[j] refers to the j-th bit in the i-th string in G

7

i 4 3 2 1
0 0 0 0 0
1 1 1 0 1
2 1 0 1 0
3 0 1 1 1
4 1 0 0 1
5 0 1 0 0
6 0 0 1 1
7 1 1 1 0
8 0 1 0 1
9 1 0 0 0

10 1 1 1 1
11 0 0 1 0
12 1 1 0 0
13 0 0 0 1
14 0 1 1 0
15 1 0 1 1

(a) Generation of 4-bit Inverse
Gray codes

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

1

0

1

1

1

0

1

1

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

0

1

1

1

1

0

0

1

1

1

1

0

1

1

1

0

1

1

0

1

1

1

1

1

0

1

1

1

1

0

1

1

1

0

1

1

0

1

T1 T10T11T
c
10T

c
11

(b) Codes

v1
v2

v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

v13

v14

v15

v16
v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

v13

v14

v15

v16

v1
v2

v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

v13

v14

v15

v16
v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

v13

v14

v15

v16

T10 T11

T c10 T c11

(c) Graphs

Fig. 5. Four m-trails generated from the last column of the table, and its implementation on C16(1, 3)

the trails there can be double 0s, meaning that two consecutive
nodes are both assigned the binary value of 0 in that given
trail. This is obviously a problem, since in case of Cn(1, 2)
the maximum length of a 0-block that the trail can bypass is
1.

The case of Cn(1, 3) is essentially very similar to Cn(1, 2).
In this case, however, the presence of two consecutive 0 values
does not imply a problem, since due to the edges that connect a
vertex with its third neighbour these 00-gaps can be bypassed
by the m-trail. On the other hand, 01010 sequences in a
given bit position do pose problems, as in these cases the
connectivity of the trail cannot be guaranteed.

In order to overcome these issues, instead of every trail
generated by the Inverse Gray code assignment, let’s create 2
trails, that are feasible for both topologies. The procedure is
the following:

(Step 1): Assign each node an Inverse Gray code of length
b0 = dlog2(n + 1)e and create two identical copies
of each resulting trail Ti: Ti0 and Ti1.

(Step 2): Flip every second 0-s in Ti0 starting from the
first 0, and every second 0-s in Ti1 starting from
the second 0. The resulting set of codes is denoted
by T ′.

(Step 3): Create the complement set of trails of T by taking
the complement of each trail Ti. Let’s denote the
derived code-set by T c = {T c1 , . . . , T cb0}.

(Step 4): Execute Step 1 and Step 2 on T c, resulting in
trails T ci0 and T ci1 for i = 1, . . . , b0. The created code
set is denoted by T c′.

(Step 5): Concatenate T ′ and T c′. The resulting set of
codes completed with a supplementary trail (for
nodes with complement codes) ensures NL-UNFL.

In Step 3 the initial set of codes T are used to generate
the complement set T c. However, because of the symmetry
properties of the Inverse Grey code generation, the trails of

T c also contain ”problematic” sequences of 00 and 01010.
Therefore the same steps have to be executed on T c as
previously performed on T before. The bitwise AND relation
of T ci0 and T ci1 for i = 1, . . . , b0 essentially carries the same
information as its corresponding trail Ti in the original set, T :

T c′i0 AND T c′i1 = Ti, (19)

so that the information carried by Ti is distributed to all the
vertices in the graph - either by the Ti0 and Ti1 , or by T ci0
and T ci1, for i = 1, . . . , b0. Altogether, for each monitoring
trail of the initial Inverse Gray code (that is used for the
centralized solution of Cn(1, 2, 3)), 4 trails are defined in order
to provide feasible solution for NL-UNFL on Cn(1, 2) and
Cn(1, 3) graphs. An illustrative example is provided on Fig.
5, presenting the newly created 4 trails from a given original
column taken from Fig. 5a.

The presented construction achieves NL-UNFL with b =
4 · dlog2(n+ 1)e+ 1 trails.

This can be stated as the following theorem.
Theorem 4: A Cn(1, 2) or a Cn(1, 3) topology can be

covered with b = 4 · dlog2(n + 1)e + 1 monitoring trails
for ensuring single node NL-UNFL, with a normalized cover
length value of ||T ||V = 3 · dlog2(n+ 1)e+ 1.

VI. THE HEURISTIC APPROACH

This section presents a novel heuristic algorithm to solve
the NL-UFL m-trail allocation problem for single node and
link failures. A failure scenario is defined as the failure of a
single link, a single node, or both.

Algorithm 1 gives the pseudo code of the proposed heuristic
algorithm. In Step (1) the initial number of m-trails b is
computed according to Theorem 1. Next, in Step (2), b random
trees with at most α|V | nodes are generated, where α is an

8

input parameter from the range [0.5, 0.95]. In our implemen-
tation the method of Aldous/Broder [25], [26] is adopted for
this purpose (See also Algorithm 2).

Algorithm 1: M-Trail Design Problem for L-UFL
Input: G(V,E), α
begin

1 Set bini as Theorem 1
for b := bini to n− 1 do

2 Generate b random trees of size α|V | with Alg. 2
3 Count χv the unique alarm codes seen at ∀v ∈ V
4 Count η̂e the number of code conflicts for ∀e ∈ E
5 Sort the alarm codes in descending order of η̂e

for j := 1 to jmax do
for iterate through the sorted links e do

for i := 1 to b do
6 if ae<i> gives no code conflict for e

then
7 change link code of e to ae<i>

if every link has unique alarm code then
8 return succeed

Algorithm 2: Aldous/Broder random tree generator
Input: G(V,E), α
begin

2.1 Start at a random node v.
while the tree has less than α|V | nodes do

2.3 Choose a random neighbor v∗ of v.
2.4 if v∗ is not part of the tree then

add edge (v∗, v) to the tree.
2.5 v := v∗

These trees, denoted as T ′ = [t1, t2, . . . , tb], are used to
determine the initial assignment of alarm codes for every link
e (denoted as ae), where the alarm code ae has the j-th bit as
1 if tj traverses through e, and 0 otherwise.

We define a collision of two codes at node v if the codes are
identical and used by at least two failure scenarios at a given
node v. Let χv denote the number of failure scenarios minus
the number of possible different codes seen at node v ∈ V
as a result of a single failure. If χv = 0 we have an L-UFL
solution at node n. Let χ =

∑
∀v∈V χv . If χ = 0 we have a

valid NL-UFL solution. For each failure scenario z we define
ηz which is the total number of nodes where z does not have
a unique code. Similarly, for each link e we define η̂e which
is the sum of ηz for all failure scenarios z having link e. We
call a failure scenario detectable at node v if it has a unique
alarm code at node v. Similarly, we say a failure scenario is
detectable if it has a unique alarm code at every node, i.e.,
ηz = 0. We say an alarm code is suitable for link e if η̂e = 0.

During the greedy random search our goal is to find suitable
alarm codes for each link in the network. In each greedy
step we try to remove all possible collisions by modifying
the collided codes, where the code modification operations
include adding and removing a link to and from an m-trail
(also referred to as bit-flipping). This can greatly simplify the

tracking of the consequences of modifications and eventually
help minimizing the computation in each step toward the final
result.

Let the bitwise pair at the i-th position of alarm code ae be
denoted as ae<i>, which is the code with all identical bits as
ae except for the i-th bit. For example, 011100 is the bitwise
pair for the third position of 010100. Bit-flipping of link e at
position i means its alarm code is changed from ae to ae<i>.
The following rules of thumb are adopted in the bit flipping
process:
• Only incident links to the m-trail can be added.
• Only leaf links are allowed to be removed from an m-

trail.
• If a leaf link with leaf node v is removed from an m-trail,

then the node v should be on at least dlog2(m+ n+ 1)e
m-trails.

We say that a link e at position i is flippable if changing
its alarm code from ae to ae<i> does not affect the code
uniqueness of the other nodes’ ACTs. Specifically, by taking
the links in descending order of η̂e, until η̂e > 0, Step
(7) attempts to remove the bit collision of e by checking
each bit-flipping possibility iteratively upon each bit position
i = 1, . . . , b, in order to search for any flippable bit along the
code of e. If such a code exists, the link code for e is changed
to ae<i> to resolve the code collision.

If there are no more flippable bits, the algorithm increases
b until it finds a valid solution in Step (9). We maintain a tabu
list to ensure that a code at a given position is not flipped
twice. To avoid infinite loops, the algorithm stops if Step (6-
8) is executed over jmax = 500 times; however, the heuristic
always terminated with a valid solution at Step (8) in our
evaluation.

To reduce computation time, an incremental update is
performed on an internal data structure that stores whether
a failure scenario has a conflicted code at a given node or not.
The set of failure scenarios stored in the internal data structure
contains every single link and every single node. The alarm
codes for each failure scenario at each node are stored in a
balanced binary search tree (e.g., std::map in C++), which
provides fast lookup and modification procedures. When a bit
i is swapped for link e, we need to update these trees at every
node involved in the m-trail Ti. For the end nodes of e we
may need to rebuild these trees, but for the rest of the nodes
involved in Ti we just need to modify the alarm codes of the
three failure scenarios with link e (e and the terminal nodes
of e).

VII. SIMULATION RESULTS

Simulations on some well-known network topologies taken
from [27] were conducted. The performance metrics of interest
are the number of m-trails, the normalized cover length of the
solution (a measure of the cumulative bandwidth of the m-
trails, formally defined in (20)) and the running time. Our
primary goal is to analyze the performance of the proposed
heuristic with the derived lower bounds on realistic network
topologies.

We consider three failure scenarios: (a) single link failures
(b) single node failures, and (c) single link and node failures.

9

TABLE II
RESULTS BY THE PROPOSED RSTA+GLS [2] FOR SINGLE LINK FAILURES ONLY, AND BY THE PROPOSED METHOD FOR SINGLE NODE AND SINGLE LINK

OR NODE FAILURES ON SOME WELL-KNOWN NETWORKS.

Network [27] Graph Theorem #m-trails ||T ||E Time [s]
key on Fig 6 n m diam. 1 2 Link Node Node&Link Link Node Node&Link Link Node Node&Link
Pan-European + 16 22 6 7 8 7 12 13 2.43 5.4 6.6 0.39 0.7 1.9

German 17 26 6 7 8 8 12 13 2.46 4.8 6.6 0.51 1.6 3.4
ARPA 21 25 7 8 8 6 14 16 2.80 7.9 11.3 0.36 1.3 4.4

European � 22 45 5 8 9 11 14 14 2.56 4.8 6.0 2.10 6.9 10.3
USA � 26 42 8 8 9 9 15 16 2.72 7.0 8.0 2.16 6.0 10.4

Nobel EU ◦ 28 41 8 8 10 7 16 16 3.02 7.9 8.8 0.87 5.3 11.7
Italian • 33 56 9 9 9 10 19 19 2.93 8.3 10.1 4.83 15.9 44.3

Cost 266 37 57 8 9 9 8 17 17 3.00 8.0 8.9 2.04 18.1 32.3
North Amer. 39 61 10 9 9 8 16 18 3.09 7.8 9.1 2.31 27.9 45.1

NSFNET � 79 108 16 11 11 9 23 26 3.51 13.1 15.7 6.05 129 289.61

To localize single link failures (a) we implemented RSTA+GLS
[2]. For (b) and (c) we launched the proposed heuristic with
different sets of failure scenarios.

Table II summarizes our results. The number of nodes, links,
and the diameter in hops of every topology graph is also
shown in the first three columns of the table. The next two
columns show the lower bound of the theorems in Section
IV. It is followed by the columns on the smallest number
of m-trails, denoted by b, obtained among 10 runs for each
failure scenario. The normalized cover length over the number
of links, denoted as ||T ||E is also shown in the table for each
failure scenario. ||T ||E is a measure of the average number of
monitoring wavelength channels (WLs) traversing each link,
formally

||T ||E =

∑b
i=1 |Ti|
m

. (20)

Note that the average values of ||T ||E and b are shown on
Fig. 6. Finally the average running time of the heuristics is
shown.

We have observed that localizing a single node failure
requires significantly more network resources in terms of
cover length and the number of m-trails than the localizing
a link failure. Nonetheless, it requires little additional network
resources to localize a link failure besides a node failure, even
if the number of links is much larger than the number of
nodes in the network. This demonstrates that localizing a node
failure requires significantly more resources than localizing a
link failure.

We have also investigated the impact on the heuristic
performance due to the assigned initial length of m-trails. We
observed a trend similar to our theoretical analysis in Fig. 2,
where the ideal size of m-trails was 0.7 |V | for both CGT and
realistic network topologies. This shows that the underlying
CGT bound introduced in Section IV dominates the solution
quality of the m-trail allocation problem.

Fig. 7(a) and (b) show the performance of the proposed
heuristic algorithm by using randomly generated network
topologies, aiming to gain some possible insight on perfor-
mance impact due to topology density. We used the random
graph generator [28] to generate planar 2-connected backbone
networks; it first generates nodes randomly with a uniform
distribution over the unit square then adds links with small
physical lengths to keep the graph planar with each facet of

an equal size.
By experimenting on 250 such random 50-node networks

with different nodal degrees, we found that the consumed
network resources by the heuristic are very high when the net-
work nodal degrees are low (e.g., 2.5 - 3) and decrease rapidly
as the networks are more densely connected. Nevertheless the
decrease almost stops and the curves become flat when the
nodal degrees became larger than 4, since the number of links
is significantly increased as well.

Note that the lower bounds on the number of m-trails
predicts 42%-64% of the obtained m-trail solutions, which
may be because the bounds are based purely on the CGT
problem and ignore the underlying graph structure.

The average number of WLs required for failure local-
ization is ∼10, which may sound expensive. However, the
latest technology available on the market for optical FlexGrid
transmission technology allows switching at 6.25 GHz channel
granularity at reconfigurable optical add-drop multiplexers
(ROADMs). This allows cheap launching of any lightpaths
with small bandwidth in the network, and makes real-time
monitoring systems cost-efficient. For example, allocating 60–
80Ghz in each optical fiber in the 1530–1560 nm range9

occupies just 1.5− 2% of the total bandwidth, while allowing
to launch up to 10-15 supervisory lightpaths for network
monitoring. Further, the WLs taken by the m-trails could be
reused as spare capacity for shared protection; this approach
is referred to as the monitoring resource hidden property [14],
where the consumed monitoring resources can be significantly
reduced.

Finally, the computation efficiency of the proposed heuris-
tics is examined. The heuristic should maintain a different
ACT for each node, which can be seen in the increase of
the computation time compared to RSTA+GLS where only a
single ACT is maintained. Nevertheless, the largest network
was solved in 5 minutes, which is a reasonable performance
for a network planning tool.

To summarize the simulation results above, the proposed
heuristic achieves the desired computation efficiency and per-
formance in handling realistic networks, and its feasibility
in the operation of future all-optical backbone is proved for
achieving NL-UFL under single node and link failures using
bi-directional m-trails.

9It is at least 4000Ghz.

10

10

15

20

25

30

35

40

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

#m
-t

ra
ils

α

(a) The average number of m-trails for different α parameter values.

10

15

20

25

30

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

||T
|| E

α

Pan-European
European

USA
Nobel EU

Italian
NSFNET

(b) The average normalized cover length for different α parameter values.

Fig. 6. The effect of parameter α on the performance of the algorithm. α defines the initial size of randomly generated m-trails. For each network of Table
II and α setting the algorithm was launched 20 times, and the 95% confidence intervals are the bars of each point on the figure.

0

5

10

15

20

25

30

35

2.48 3 4 5 6

#m
-t

ra
ils

Nodal degree

(a) The average number of m-trails for random networks.

2

4

6

8

10

12

14

16

18

20

22

24

2.48 3 4 5 6

||T
|| E

Nodal degree

avg. Node&Link
avg. Node

min Node&Link
min Node

Link

(b) The average normalized cover length for random networks.

Fig. 7. The effect of topology diversity on the performance of the algorithm. 250 random 50-node networks were generated with different nodal degree. For
each networks the algorithm was launched 5 times, and the 95% confidence intervals are the bars of each point on the figure.

VIII. CONCLUSIONS

The paper studied the monitoring trail (m-trail) allocation
problem for network-wide unambiguous failure localization
(NL-UFL) for single link and node failures. In particular, we
developed theoretical results based on combinatorial group
testing (CGT) that can give some analytical bounds for the
formulated problem. We provided constructions for a family
of circulant graphs, very similar to backbone networks in terms
of connectivity and diameter, that use a logarithmic number
of m-trails to solve the NL-UFL problem for node failures.
To solve the general problem in realistic networks, a novel
heuristic was developed. Simulation was conducted to examine
the performance of the proposed heuristic and to analyze the
formulated problem. Our conclusions are the following: (1)

The considered NL-UFL problem can be modeled by using
the Ahlswede-Katona theory which leads to a general CGT
scenario. (2) The lower bound was obtained via a novel
construction using Gray code, which was shown to be tight,
i.e., within a small factor of about 1.23. (3) We found that the
number of m-trails required to localize both node and link fail-
ures is only slightly larger than that necessary to localize node
failures alone, and could significantly larger than the number
required to localize single link failures only. (4) Simulation
results verified the proposed heuristic and demonstrated the
performance behavior of the considered problem in terms of
the required monitoring resources, the number of m-trails, and
the computation time.

11

REFERENCES

[1] E. Mannie and D. Papadimitriou, “Rfc 4427 - recovery (protection and
restoration) terminology for generalized multi-protocol label switching
(GMPLS),” Internet Requests for Comments, RFC 4427, March 2006.
[Online]. Available: http://www.rfc-base.org/rfc-4427.html

[2] J. Tapolcai, P.-H. Ho, L. Rónyai, and B. Wu, “Network-wide local
unambiguous failure localization (NWL-UFL) via monitoring trails,”
IEEE/ACM Transactions on Networking, 2012.

[3] H. Zeng, C. Huang, and A. Vukovic, “A Novel Fault Detection and Lo-
calization Scheme for Mesh All-optical Networks Based on Monitoring-
cycles,” Photonic Network Communications, vol. 11, no. 3, pp. 277–286,
2006.

[4] C. Li, R. Ramaswami, I. Center, and Y. Heights, “Automatic fault
detection, isolation, and recovery in transparentall-optical networks,”
IEEE/OSA J. Lightwave Technol., vol. 15, no. 10, pp. 1784–1793, 1997.

[5] Y. Wen, V. Chan, and L. Zheng, “Efficient fault-diagnosis algorithms for
all-optical WDM networks with probabilistic link failures,” IEEE/OSA
J. Lightwave Technol., vol. 23, pp. 3358–3371, 2005.

[6] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed
fault-management protocol for combating single-fiber failures in mesh
based DWDM optical networks,” in Proc. IEEE GLOBECOM, 2002, pp.
2676–2680.

[7] B. Wu, P.-H. Ho, and K. Yeung, “Monitoring trail: On fast link
failure localization in all-optical WDM mesh networks,” IEEE/OSA J.
Lightwave Technol., vol. 27, no. 18, pp. 4175–4185, 2009.

[8] J. Tapolcai, B. Wu, P.-H. Ho, and L. Rónyai, “A novel approach for
failure localization in all-optical mesh networks,” IEEE/ACM Trans.
Networking, vol. 19, no. 1, pp. 275 –285, feb 2011.

[9] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan, “Non-
Adaptive Fault Diagnosis for All-Optical Networks via Combinatorial
Group Testing on Graphs,” in Proc. IEEE INFOCOM, 2007, pp. 697–
705.

[10] S. Ahuja, S. Ramasubramanian, and M. Krunz, “Single link failure
detection in all-optical networks using monitoring cycles and paths,”
IEEE/ACM Trans. Networking, vol. 17, no. 4, pp. 1080–1093, 2009.

[11] B. Wu, P.-H. Ho, J. Tapolcai, and X. Jiang, “A novel framework of fast
and unambiguous link failure localization via monitoring trails,” in IEEE
INFOCOM WIP, San Diego, 2010, pp. 1–5.

[12] W. He, P.-H. Ho, B. Wu, and J. Tapolcai, “On identifying SRLG failures
in all-optical networks,” Elservier Journal on Optical Switching and
Networking (OSN), vol. 10, no. 1, pp. 77 – 88, jan 2013.

[13] M. Ali, P.-H. Ho, J. Tapolcai, and B. Shihada, “M-burst: A framework
of SRLG failure localization in all-optical networks,” IEEE/OSA Journal
of Optical Communications and Networking, vol. 4, no. 8, pp. 628–638,
2012.

[14] J. Tapolcai, P.-H. Ho, P. Babarczi, and L. Rónyai, “On signaling-free
failure dependent restoration in all-optical mesh networks,” IEEE/ACM
Transactions on Networking, 2013.

[15] ——, “On achieving all-optical failure restoration via monitoring trails,”
in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 380–384.

[16] G. Katona, “On separating systems of a finite set,” Journal of Combi-
natorial Theory, vol. 1, no. 2, pp. 174–194, 1966.

[17] R. Ahlswede, “Ratewise-optimal non-sequential search strategies under
constraints on the tests,” Discrete Applied Mathematics, vol. 156, no. 9,
pp. 1431–1443, 2008.

[18] N. Obradovic, J. Peters, and G. Ružić, “Reliable broadcasting in double
loop networks,” Networks, vol. 46, no. 2, pp. 88–97, 2005.

[19] L. Narayanan, J. Opatrny, and D. Sotteau, “All-to-all optical routing in
chordal rings of degree 4,” Algorithmica, vol. 31, no. 2, pp. 155–178,
2001.

[20] Y. Chen, H. Shen, and H. Zhang, “Routing and wavelength assignment
for hypercube communications embedded on optical chordal ring net-
works of degrees 3 and 4,” Computer Communications, vol. 34, no. 7,
pp. 875–882, 2011.

[21] J.-C. Bermond, F. Comellas, and D. F. Hsu, “Distributed loop computer
networks: a survey,” Journal of Parallel and Distributed Computing,
vol. 24, no. 1, pp. 2–10, 1995.

[22] D. Wang and J. McNair, “Circulant-graph-based fault-tolerant routing
for all-optical wdm lans,” in Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE. IEEE, dec. 2010, pp. 1–5.

[23] F. Gray, “Pulse code communication,” Mar. 17 1953, uS Patent
2,632,058.

[24] D. E. Knuth, “Generating all n-tuples,” in The Art of Computer Pro-
gramming. Boston: Addison-Wesley Professional, 2004, vol. 4.

[25] D. Aldous, “The random walk construction of uniform spanning trees
and uniform labelled trees,” SIAM Journal on Discrete Mathematics,
vol. 3, no. 4, pp. 450–465, 1990.

[26] A. Broder, “Generating random spanning trees,” in Annual Symposium
on Foundations of Computer Science. IEEE Computer Society, 1989,
pp. 442–447.

[27] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “Sndlib
1.0survivable network design library,” vol. 55, no. 3. Wiley Online
Library, 2010, pp. 276–286.

[28] B. Dezső, A. Jüttner, and P. Kovács, “Lemon–an open source c++ graph
template library,” pp. 23–45, 2011, http://lemon.cs.elte.hu.

János Tapolcai received his M.Sc. (’00 in Technical
Informatics), Ph.D. (’05 in Computer Science) de-
grees from Budapest University of Technology and
Economics (BME), Budapest, and D.Sc. (’13 in En-
gineering Science) from Hungarian Academy of Sci-
ences (MTA). Currently he is a Full Professor at the
High-Speed Networks Laboratory at the Department
of Telecommunications and Media Informatics at
BME. His research interests include applied mathe-
matics, combinatorial optimization, optical networks
and IP routing, addressing and survivability. He is an

author of over 110 scientific publications, he is the recipient of the Google
Faculty Award and Best Paper Award in ICC’06, in DRCN’11. He is a TPC
member of leading conferences such as IEEE INFOCOM (2012 - 2014), and
is a winner of MTA Momentum (Lendület) Program.

Lajos Rónyai is a research professor with the Infor-
matics Laboratory of the Computer and Automation
Institute of the Hungarian Academy of Sciences. He
leads a research group there which focuses on the-
oretical computer science and discrete mathematics.
He is also a full professor at the Mathematics Insti-
tute of the Budapest University of Technology and
Economics. He received his PhD in 1987 from the
Eötvös Loránd University, Budapest. His research
interests include efficient algorithms, complexity of
computation, algebra, and discrete mathematics.

Éva Hosszu earned her MSc in Applied Mathemat-
ics in 2012 from the Budapest University of Tech-
nology and Economics. She is currently pursuing her
PhD in Computer Science. Her research interests
include efficient failure localization in optical net-
works and combinatorial optimizatiion. Her current
research focuses on the applications of combinatorial
search in telecommunication networks.

László Gyimóthi earned his MSc in Electrical En-
gineering at the Budapest University of Technology
and Economics (BME) in 2015. He started his PhD
in the same year. His research interests include
efficient failure localization in optical networks,
combinatorial optimization and efficient algorithm
design.

12

Pin-Han Ho is a professor in the Department of
Electrical and Computer Engineering, University of
Waterloo, Canada. He is the author/co-author of
more than 300 refereed technical papers and book
chapters, and the co-author of two books on opti-
cal networking, survivability, and fault localization.
He is the recipient of the Distinguished Research
Excellence Award in the ECE Department at the
University of Waterloo, the Early Researcher Award
in 2005, the Best Paper Award at SPECTS ’02,
HPSR ’02, ICC ’05, and ICC ’08.

Suresh Subramaniam (S’95-M’97-SM’07-F?15)
received the Ph.D. degree in electrical engineering
from the University of Washington, Seattle, in 1997.
He is a Professor in the Department of Electrical
and Computer Engineering at the George Wash-
ington University, Washington, DC. His research
interests are in the architectural, algorithmic, and
performance aspects of communication networks,
with current emphasis on optical networks, cloud
computing, and data center networks. He has pub-
lished over 150 peer-reviewed papers in these areas.

Dr. Subramaniam is a co-editor of the 3 books on optical networking.
He has served on the program committees of several conferences including
Infocom, ICC, Globecom, and OFC, and as TPC Co-Chair for LANMAN
2014, INFOCOM 2013, ANTS 2008, and the optical networks symposia
at Globecom 2006 and ICC 2007. He is or has been on the editorial
boards of the IEEE/ACM Transactions on Networking, IEEE/OSA Journal
of Optical Communications and Networking, Elsevier Optical Switching and
Networking, Springer Photonic Network Communications, and KICS Journal
of Communications and Networks. He is a co-recipient of Best Paper Awards
at the ICC 2006 Symposium on Optical Systems and Networks, and at
the 1997 SPIE Conference on All-Optical Communication Systems. He is
a Fellow of the IEEE.

