5,921 research outputs found

    Anticipating and Coordinating Voltage Control for Interconnected Power Systems

    Get PDF
    This paper deals with the application of an anticipating and coordinating feedback control scheme in order to mitigate the long-term voltage instability of multi-area power systems. Each local area is uniquely controlled by a control agent (CA) selecting control values based on model predictive control (MPC) and is possibly operated by an independent transmission system operator (TSO). Each MPC-based CA only knows a detailed local hybrid system model of its own area, employing reduced-order quasi steady-state (QSS) hybrid models of its neighboring areas and even simpler PV models for remote areas, to anticipate (and then optimize) the future behavior of its own area. Moreover, the neighboring CAs agree on communicating their planned future control input sequence in order to coordinate their own control actions. The feasibility of the proposed method for real-time applications is explained, and some practical implementation issues are also discussed. The performance of the method, using time-domain simulation of the Nordic32 test system, is compared with the uncoordinated decentralized MPC (no information exchange among CAs), demonstrating the improved behavior achieved by combining anticipation and coordination. The robustness of the control scheme against modeling uncertainties is also illustrated

    Pseudo-gradient Based Local Voltage Control in Distribution Networks

    Full text link
    Voltage regulation is critical for power grids. However, it has become a much more challenging problem as distributed energy resources (DERs) such as photovoltaic and wind generators are increasingly deployed, causing rapid voltage fluctuations beyond what can be handled by the traditional voltage regulation methods. In this paper, motivated by two previously proposed inverter-based local volt/var control algorithms, we propose a pseudo-gradient based voltage control algorithm for the distribution network that does not constrain the allowable control functions and has low implementation complexity. We characterize the convergence of the proposed voltage control scheme, and compare it against the two previous algorithms in terms of the convergence condition as well as the convergence rate

    Clustering of the K<sup>+</sup> channel GORK of Arabidopsis parallels its gating by extracellular K<sup>+</sup>

    Get PDF
    GORK is the only outward-rectifying Kv-like K&lt;sup&gt;+&lt;/sup&gt; channel expressed in guard cells. Its activity is tightly regulated to facilitate K&lt;sup&gt;+&lt;/sup&gt; efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward-rectifying K&lt;sup&gt;+&lt;/sup&gt; channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GORK, its distribution and traffic in vivo. We have used transformations with fluorescently-tagged GORK to explore its characteristics in tobacco epidermis and Arabidopsis guard cells. These studies showed that GORK assembles in puncta that reversibly dissociated as a function of the external K&lt;sup&gt;+&lt;/sup&gt; concentration. Puncta dissociation parallelled the gating dependence of GORK, the speed of response consistent with the rapidity of channel gating response to changes in the external ionic conditions. Dissociation was also suppressed by the K&lt;sup&gt;+&lt;/sup&gt; channel blocker Ba&lt;sup&gt;2+&lt;/sup&gt;. By contrast, confocal and protein biochemical analysis failed to uncover substantial exo- and endocytotic traffic of the channel. Gating of GORK is displaced to more positive voltages with external K&lt;sup&gt;+&lt;/sup&gt;, a characteristic that ensures the channel facilitates only K&lt;sup&gt;+&lt;/sup&gt; efflux regardless of the external cation concentration. GORK conductance is also enhanced by external K&lt;sup&gt;+&lt;/sup&gt; above 1 mM. We suggest that GORK clustering in puncta is related to its gating and conductance, and reflects associated conformational changes and (de)stabilisation of the channel protein, possibly as a platform for transmission and coordination of channel gating in response to external K&lt;sup&gt;+&lt;/sup&gt;

    The More Cooperation, the More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling

    Get PDF
    Market coupling in Belgian and Dutch markets would permit more efficient use of intercountry transmission, 1) by counting only net flows against transmission limits, 2) by improving access to the Belgian market, and 3) by eliminating the mismatch in timing between interface auctions and the energy spot market. A Cournot market model that accounts for the region’s transmission pricing rules and limitations is used to simulate market outcomes with and without market coupling. This accounts for 1) and 2). Market coupling improves social surplus in the order of 108 €/year, unless it encourages the largest producer in the region to switch from a price-taking strategy in Belgium to a Cournot strategy due to a perceived diminishment of the threat of regulatory intervention. Benefit to Dutch consumers depends on the behavior of this company. The results illustrate how large-scale oligopoly models can be useful for assessing market integration
    corecore