1,194 research outputs found

    Advances in Multistatic Sonar

    Get PDF

    The GLINT10 field trial results

    Get PDF
    Autonomous underwater vehicles (AUVs) have gained more interest in recent years for military as well as civilian applications. One potential application of AUVs is for the purpose of undersea surveillance. As research into undersea surveillance using AUVs progresses, issues arise as to how an AUV acquires, acts on, and shares information about the undersea battle space. These issues naturally touch on aspects of vehicle autonomy and underwater communications, and need to be resolved through a spiral development process that includes at sea experimentation. This paper presents a recent AUV implementation for active anti-submarine warfare tested at sea in the summer of 2010. On-board signal processing capabilities and an adaptive behavior are discussed in both a simulation and experimental context. The implications for underwater surveillance using AUVs are discussed

    AUV SLAM and experiments using a mechanical scanning forward-looking sonar

    Get PDF
    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods

    Demonstration of passive acoustic detection and tracking of unmanned underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2018In terms of national security, the advancement of unmanned underwater vehicle (UUV) technology has transformed UUVs from tools for intelligence, surveillance, and reconnaissance and mine countermeasures to autonomous platforms that can perform complex tasks like tracking submarines, jamming, and smart mining. Today, they play a major role in asymmetric warfare, as UUVs have attributes that are desirable for less-established navies. They are covert, easy to deploy, low-cost, and low-risk to personnel. The concern of protecting against UUVs of malicious intent is that existing defense systems fall short in detecting, tracking, and preventing the vehicles from causing harm. Addressing this gap in technology, this thesis is the first to demonstrate passively detecting and tracking UUVs in realistic environments strictly from the vehicle’s self-generated noise. This work contributes the first power spectral density estimate of an underway micro-UUV, field experiments in a pond and river detecting a UUV with energy thresholding and spectral filters, and field experiments in a pond and river tracking a UUV using conventional and adaptive beamforming. The spectral filters resulted in a probability of detection of 96% and false alarms of 18% at a distance of 100 m, with boat traffic in a river environment. Tracking the vehicle with adaptive beamforming resulted in a 6.2±5.7 ∘ absolute difference in bearing. The principal achievement of this work is to quantify how well a UUV can be covertly tracked with knowledge of its spectral features. This work can be implemented into existing passive acoustic surveillance systems and be applied to larger classes of UUVs, which potentially have louder identifying acoustic signatures.Support from the National Defense Science and Engineering Graduate Fellowship and Draper Labs Fellowship, as well as DARPA for the support of the Bluefin Sandshark unmanned underwater vehicle. This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    The contribution of Geomatics to increase safety and security in ports

    Get PDF
    AbstractIn this paper, the advantages achievable from the use of two prototype systems that are being developed to increase safety and security in ports are shown. Both systems start by monitoring environmental parameters in harbors, and then process data acquired. The first system has been conceived to be helpful to port communities (port authorities, pilots) to optimize harbor waterside management (ship's navigation and cargo, dock performances, boat moorings, refloating of stranded ships, water quality control). By monitoring and processing sea level and atmospheric pressure in port areas, it can help port communities, e.g., to choose the best time when a ship with a certain draft can enter or leave a harbor, or to plan the best route inside the basin for that vessel (port safety). The second system, instead, has been designed for port protection purposes: by monitoring and processing the Earth's magnetic field below the sea surface in harbors (where the natural field is disturbed by a high artificial component), it is able to detect the possible presence of intruders (e.g., divers) swimming underwater in prohibited areas (port security). Here, the results of monitoring and processing activities of the two systems performed in Livorno and La Spezia harbors are shown (Italy). The processing procedures and the graphical interfaces of the systems are based on applications under development by the research team the author belongs to, by using C# and C++ languages; Matlab environment has been employed for simulations
    corecore