1,399 research outputs found

    Bit-interleaved coded modulation in the wideband regime

    Full text link
    The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied. The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-noise ratio (SNR) is derived and used to determine the corresponding expansion for the BICM capacity. Simple formulas for the minimum energy per bit and the wideband slope are given. BICM is found to be suboptimal in the sense that its minimum energy per bit can be larger than the corresponding value for coded modulation schemes. The minimum energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a simple formula and shown to approach -0.34 dB as M increases. Using the low SNR expansion, a general trade-off between power and bandwidth in the wideband regime is used to show how a power loss can be traded off against a bandwidth gain.Comment: Submitted to IEEE Transactions on Information Theor

    Capacity Maximizing Constellations

    Get PDF
    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacit

    The bit interleaved coded modulation module for DVB-NGH: enhanced features for mobile reception

    No full text
    International audienceThis paper describes the main features of the DVB-NGH Bit-Interleaved Coded Modulation (BICM) module. This latter is derived from a sub-set of DVB-T2 BICM components with additional features intended to first lower receiver complexity and power consumption and then to increase receiver robustness over mobile reception. Therefore, the long code block size was removed, a different range of coding rates was chosen, non-uniform constellations were adopted in order to provide shaping gain, and the principle of signal space diversity was extended to four-dimensional rotated constellations. Moreover the structure of the time interleaver offers the possibility to significantly increase the interleaving depth, a feature required for mobility over terrestrial and satellite links

    Signal Constellations for Multilevel Coded Modulation with Sparse Graph Codes

    Get PDF
    A method to combine error-correction coding and spectral efficient modulation for transmission over channels with Gaussian noise is presented. The method of modulation leads to a signal constellation in which the constellation symbols have a nonuniform distribution. This gives a so-called shape gain which can be as high as e 6 (1:5 dB). A sparse graph code is constructed which is based on a LDPC code and includes the method of modulation. An efficient decoding algorithm can be derived for this sparse graph code. Simulation results show that the performance of the code is quite good compared\ud to other coded modulation schemes proposed in literature
    • …
    corecore