The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian
channels is studied. The Taylor expansion of the coded modulation capacity for
generic signal constellations at low signal-to-noise ratio (SNR) is derived and
used to determine the corresponding expansion for the BICM capacity. Simple
formulas for the minimum energy per bit and the wideband slope are given. BICM
is found to be suboptimal in the sense that its minimum energy per bit can be
larger than the corresponding value for coded modulation schemes. The minimum
energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a
simple formula and shown to approach -0.34 dB as M increases. Using the low SNR
expansion, a general trade-off between power and bandwidth in the wideband
regime is used to show how a power loss can be traded off against a bandwidth
gain.Comment: Submitted to IEEE Transactions on Information Theor