9 research outputs found

    First experimental results for a WiFi-based passive forward scatter radar

    Get PDF
    In this paper we investigate the potentiality to exploit a passive forward scatter radar (PFSR) based on WiFi transmissions for vehicle classification. In particular, a procedure to extract the vehicle signatures from the received signal is presented. The preliminary results obtained by means of an experimental setup developed and fielded at University of Rome "La Sapienza" show that different targets yield quite different signature shapes that can be fruitfully exploited by a classification stage according to a reasonable strategy

    Simultaneous data collection of small maritime targets using multistatic radar and forward scatter radar

    Get PDF
    Radar detection of small maritime targets is of great interest in the context of coastal and port security for prevention of activities such as smuggling and piracy. Multistatic radar and forward scatter radar offer detection advantages compared with conventional monostatic systems, such as advantageous multi-perspective target view for the former and target radar cross-section enhancement for the latter. In this study, experimental results are presented to characterise simultaneous measurements investigating the detection of a small inflatable boat by a multistatic radar and a forward scatter radar. These results are believed to be the first example of simultaneous experimental comparison of such systems

    Passive multifrequency forward-scatter radar measurements of airborne targets using broadcasting signals

    Get PDF
    This paper demonstrates the feasibility and effectiveness of forward-scatter radar (FSR) target detection based on the signals of opportunity made available by standard radio and TV broadcast transmission stations. This passive FSR (P-FSR) operation is obtained by means of a simple and robust correlation process based on self-mixing. This is shown to be very effective in extracting the characteristic FSR modulation produced by airborne targets, from the signals received from frequency modulated, digital audio broadcasting, and digital video broadcasting transmitters of opportunity. Target detectability is discussed as a function of the carrier frequency, the target size, and its height at the baseline crossing. Experimental results are shown using a wide variety of sources of opportunity, target types, baselines, and receiver configurations. The target signatures obtained from the different illuminators are compared and ways of extracting the kinematic parameters of the aircraft are discussed. This validates the claimed effectiveness and robustness of the P-FSR with the presented processing scheme

    Maritime forward scatter radar

    Get PDF
    This thesis is dedicated to the study of forward scatter radar (FSR) in the marine environment. FSR is a class of bistatic radar where target detection occurs at very large bistatic angle, close to the radar baseline. It is a rarely studied radar topology and the maritime application is a completely novel area of research. The aim is to develop an easily deployed buoy mounted FSR network, which will provide perimeter protection for maritime assets—this thesis presents the initial stages of investigation. It introduces FSR and compares it to the more common monostatic/bistatic radar topologies, highlighting both benefits and limitations. Phenomenological principles are developed to allow formation of forward scatter signal models and provide deeper understanding of the parameters effecting the operation of an FSR system. Novel FSR hardware has been designed and manufactured and an extensive measurement campaign undertaken. The outcome of this was the creation of the first comprehensive maritime FSR target and clutter signal database—results from which have been shown with preliminary analysis. Alongside experimental work, a sea surface model has been produced in order to estimate the effects of wave blocking in high sea states and assess FSR performance in these conditions

    Advanced signal processing techniques for WiFi-based Passive Radar for short-range surveillance

    Get PDF
    In this work, advanced signal processing techniques for a Passive Radar (PR) based on WiFi transmissions are considered. The possibility to exploit such a ubiquitous and accessible source is shown to be an appropriate choice for the detection, localization and imaging of vehicles, people and aircrafts within short ranges in both outdoor and indoor environments

    Forward scatter radar: innovative configurations and studies

    Get PDF
    This thesis is dedicated to the study of innovative forward scatter radar (FSR) configurations and techniques. FSR is a specific kind of bistatic radar having bistatic angle equal or close to 180Ëš. The goal of this PhD project is to investigate techniques and configurations which would improve FSR performance, making it a more appealing system. This thesis proposes an initial radar overview with deep focus on forward scatter capabilities. FSR principles, radar cross section and target signature are widely discussed. Thus, numerous innovative studies done during this PhD project are presented. FSR passive mode, MIMO geometry and moving transmitter/ moving receiver configurations are here investigated for the first time. Numerous experimental campaigns have been undertaken and a big quantity of data has been collected. Comprehensive analyses on measured and simulated results are presented. Moreover, various novel techniques to estimate target motion parameters have been developed and tested on real and simulated data. Results show a good match between measured and estimated kinematic information. Finally, clutter in moving ends FSR is discussed. In fact, the innovative moving ends configuration is affected by Doppler shift and clutter Doppler spread. Thus, it is important to understand how this issue limits the system performance

    Maritime forward scatter radar: data collection and clutter analysis

    Get PDF
    This thesis is the result of study into development, experimental testing and clutter analysis in a Forward Scatter Radar (FSR) designed to detect low reflectivity maritime targets at low grazing angles. The concept of such kind of maritime system is presented; its advantages for surveillance applications are described. Scattering of Electromagnetic (EM) Waves over the sea surface at different radar configurations is outlined with the focus made on forward scattering and appropriate sea clutter models. Phenomenology of the signals in FSR is examined and explained. The development of an experimental FSR hardware operating in X- and K- frequency bands for target detection and clutter analysis and its performance are described in details. It follows with the comprehensive analysis on the measured sea clutter which includes study of influence of a large number of parameters of the radar and sea conditions on the clutter spectral and statistical properties. Finally preliminary analysis of radio frequency (RF) target signatures made with the prototype radar is presented

    Detection and motion parameters estimation techniques in Forward Scatter Radar

    Get PDF
    Forward scatter Radar systems designed to take advantage of the greater radar cross section, that is robust to Radar Absorbing Material and other stealth technology, and of the long integration times, due to the little phase and amplitude fluctuations, are attractive for a variety of applications. Many of which fit well with the needs of augmentation of the surveillance capabilities of low-observable targets that may have a small backscatter RCS when observed with the conventional radar systems. This thesis reports on research into this field of radar systems with additional contributions to target detection and motion parameters estimation. Particularly, the first part of the thesis deals with the detection of moving targets that follow a linear trajectory in a single node FSR configuration. The detection scheme based on a square-law detector followed by an appropriate matched filter, here addressed as Crystal Video Detector (CVD) following the traditional terminology (Crystal Video Receiver), has already been put forward in the literature. Performance prediction and FSR system design were key motivator to analytically characterize the detection performance of CVD in terms of both, probability of false alarm and probability of detection. The derived closed-form expressions were validate from Monte Carlo simulations under different geometrical conditions and from experimental data acquired by a passive FSR based on FM signals. Furthermore, new detection schemes based on the CVD ensuring the constant false alarm rate (CFAR) condition were devised and analytically characterized. The performance analysis showed quite small losses of the CFAR-CVD detectors compared to the fixed threshold CVD. The second part of the thesis still handles the problem of target detection through the derivation of innovative detection schemes based on the Generalized Likelihood Ratio Test (GLRT). A comparison with the detection performance of the CVD has proven the better performance of the GLRT-based detectors. In most cases the improvement has an upper bound of 3 dB. However, there are specific circumstances where the standard FSR detector shows significant losses while the GLRT schemes suffer a much smaller degradation. Moreover the possibility to have a set of secondary data assumed target free, drove to the devising of new GLRT schemes. The results demonstrated a non-negligible further improvement over the previous GLRT schemes when the operation conditions get close to the near field transition point. The detection performance of the derived detectors without and with secondary data were analytically characterized. This analytical performance allowed to derive simplified equivalent SNR expressions that relate the GLRT detection performance to the main system and target parameters. These expressions showed to be useful for the design of effective FSR geometries that guarantee desired detection performance for specific targets. In the third part of the thesis the focus is moved to the motion parameters estimation through both, a single baseline and a dual baseline FSR configuration. Accordingly, the Doppler signature extracted from the Crystal Video based scheme is exploited. Following motion parameters estimation approaches already introduced in the literature, a two dimensional filter bank technique was proposed. The main target parameters encoding Doppler rate, main lobe width and crossing time instant were estimated from such technique. The accuracy of the proposed technique was investigated from a theoretical point of view through the derivation of simplified closed-form expression of the Cramer Rao Lower Bound (CRLB). The analysis proved that unbiased estimates of the desired target parameters can be obtained that approach the derived CRLB in the high SNR region. After the dependence of the kinematic parameters on the parameters estimated from the bank was exploited. The cross baseline velocity in a single baseline configuration was estimated under the assumption that the baseline crossing point is known. Meanwhile the dual baseline configuration ensures the possibility to estimate also the baseline crossing point without a priori knowledge on the other target kinematic parameters. Once more, the CRLB of the target motion parameters for both reference scenarios was derived. The analysis proved that unbiased estimates of the target motion parameters can be obtained with high accuracy even for low SNR conditions. The effectiveness of the proposed approach was also shown from experimental data acquired by a passive FSR based on FM signals
    corecore