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ABSTRACT 
This thesis is dedicated to the study of forward scatter radar (FSR) in the marine 

environment.  FSR is a class of bistatic radar where target detection occurs at very large 

bistatic angle, close to the radar baseline.  It is a rarely studied radar topology and the 

maritime application is a completely novel area of research.  The aim is to develop an easily 

deployed buoy mounted FSR network, which will provide perimeter protection for maritime 

assets—this thesis presents the initial stages of investigation.  It introduces FSR and compares 

it to the more common monostatic/bistatic radar topologies, highlighting both benefits and 

limitations. Phenomenological principles are developed to allow formation of forward scatter 

signal models and provide deeper understanding of the parameters effecting the operation of 

an FSR system.  Novel FSR hardware has been designed and manufactured and an extensive 

measurement campaign undertaken.  The outcome of this was the creation of the first 

comprehensive maritime FSR target and clutter signal database—results from which have 

been shown with preliminary analysis.  Alongside experimental work, a sea surface model has 

been produced in order to estimate the effects of wave blocking in high sea states and assess 

FSR performance in these conditions.      
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1   INTRODUCTION 
Currently many systems may be used for the remote monitoring of the sea surface, 

each system with its own distinct capabilities and limitations. Installations fixed to the shore 

or offshore (e.g. oil rigs) are generally limited by the local horizon. Over-the-horizon HF 

radar operate against medium to large sized targets and require a large antenna installation.  

Air and ship-borne radars allow the surveillance of remote oceanic regions, however, 

permanent coverage of any large area is expensive and highly weather dependent. Radar 

imaging from satellites is an extremely powerful tool but suffers from lengthy revisit times.  

Electro-optical systems offer effective identification but are essentially weather dependent. 

Thus it is unlikely that any one system is able to solve all the issues related to the monitoring 

of the ocean with a resolution sufficient to permit the detection and automatic identification of 

small objects. It is envisaged that the general solution lies in a combination of systems, which 

can complement each other by providing additional information for data fusion. It is for this 

reason that the introduction of new tools, specifically those that are capable of filling the gaps 

in the existing security systems should be investigated.   

This is where the introduction of forward scatter radar (FSR) comes into play—which 

is the topic of this thesis.  FSR is a very rarely studied radar topology and the maritime 

application is a completely novel area of research.  As will be explained within, FSR is a class 

of bistatic radar which has certain advantages over conventional radar.  These include a 

dramatically increased cross section in the forward direction and long target coherent 

visibility times.  FSR lends itself to the detection of low profile, small, generally low speed 

maritime targets in the high clutter maritime environment — targets such as inflatable boats, 

jet-skis and even semi-submerged objects such as lost shipping containers, which pose great 

hazards in shipping lanes.   
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The goal of the full term of this research topic, of which the work contained here is a 

contribution, is the development of a buoy mounted maritime FSR network.  The network 

should form persistent perimeter protection for maritime structures of interest, such as 

harbours, wind farms and oil rigs and therefore be easily deployable both near to the coast and 

far off-shore.  The maritime FSR concept is shown in Figure 1.1-1.  

 

Figure 1.1-1.  Example of buoy mounted maritime forward scatter radar network.  Yellow lines show 
potential FSR baselines. 

The network consists of multiple FSR baselines formed between buoys, shown by yellow 

lines.  The configuration of the buoys and baselines in the figure is purely for illustrative 

purposes; this is in itself a whole area of study dedicated to determination of the optimum 

configuration for a given objective.  The investigation of the network should start with 

consideration of a single baseline, one transmitter and one receiver system only.  The 

performance of this single FSR link should be examined thoroughly and broken down itself 

into three stages: 

1) Initially the scenario of stationary antennas spanning an area of sea surface should be 

studied.  This is the simplest scenario to test (especially from a hardware/practical 

viewpoint) and should provide the reference performance for the maritime FSR 

system.  
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2) Investigation of single moving end.  One stage higher in complexity than the 

stationary antenna case—transmitter or receiver should be mounted on a floating 

platform. 

3) Transmitter and receiver both mounted on floating platforms.   

Each stage above will inform the next.  In general the main themes of research for each 

should be:  

• Development of signal and simulation models based on phenomenological and 

physical principles of FSR. 

• Design and creation or modification of test hardware to perform experimental 

trials. 

• Use of measured data to verify or adapt models.  

• Identification of parameters which may improve performance, an ongoing theme 

which may lead to further model and hardware development. 

• Signal processing aspects 

o Using modelled and measured data to estimate and verify radar detection 

performance. 

o Development of target tracking and kinematic parameter estimation. 

o Development of processing methodologies for target identification and 

ultimately classification. 

In due time, considerations should be made regarding the network aspect of the system, how 

it may be practically achieved and what performance benefits may be derived from it.  
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As this is the first investigation into the Maritime use of a relatively unstudied radar 

topology, we are essentially starting from the beginning.  There is a fundamental lack of 

literature, experimental data and verified signal models. 

 The research undertaken and presented in this thesis aims to change this situation and 

lay the groundwork for continued study and development of maritime FSR.  As such, at 

present this study relates to the condition of stationary antenna platforms.  The research aims 

and outcomes within this thesis are summarised as follows: 

1) Develop and understand the relationship between more traditional bi/monostatic 

radar topologies and FSR and thus understand the benefits and compromises of 

using an FSR system. 

2) Develop a deeper understanding of the phenomenological principles of FSR and 

experimentally investigate them in controlled conditions.  This is required to 

formulate target signature, power budget models and simulation methodologies. 

3) Formulate signal models, such that future research can focus on verification and 

improvement of these using collected experimental data.  Models may then be 

used (alongside real data) to estimate radar performance. 

4) Design and build prototype forward scatter radar to enable experimental 

investigation.  

5) Undertake an FSR measurement campaign to collect the first comprehensive 

database of measured maritime target and clutter signatures recorded in many 

conditions.  This significant aspect of the research will provide a novel and unique 

dataset.  Initially it will serve to prove if FSR is at least feasible in the maritime 

environment; in the future it will be used to verify the proposed signal models and 

provide data for estimation of radar performance.  
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6) Perform an initial analysis of results of the measurement campaign. This includes 

clutter analysis and qualitative analysis for a selection of representative target data, 

in order to relate results to what may be expected in FSR.   

7) Develop a sea surface model and simulation strategy to begin to assess the 

functionality of the FSR system in high sea states and deep sea conditions.  This 

has been done in order to substantiate the continued development of the buoy 

mounted system. 

  As such, the structure of this thesis is as follows.  The thesis begins by explaining 

basic radar principles and terminologies related to the traditional monostatic and bistatic 

radars; concepts are introduced that are used later in the thesis.  Forward scatter radar is then 

introduced and the related radar principles explained in the context of FSR.  Next, in order to 

gain a deeper insight into forward scatter radar and allow the development of signal models, a 

section on forward scatter phenomenology is included.  This discusses the forward scattering 

effect/ mechanism in the context of physical optics.  A description of the power budget model 

for targets follows this, covering two propagation modes, free space and the two-ray path to 

incorporate important multi-path effects.   Following this, a description of the maritime FSR 

network concept and experimental equipment design and fabrication is presented.  This also 

describes more recent additions to the hardware that will be used for future studies, and the 

reasons behind these additions.  A description of the trial methodologies is given and results 

are then presented, sea clutter analysis is summarised and measurement trial results are shown 

for a selection of collected maritime target signatures.  The trial results are discussed 

qualitatively and some suggestions are given as to how to further the analysis into the area of 

target detection.  The final section shows the results of a sea surface model used to estimate 

target line of sight visibility time in a buoy mounted maritime forward scatter radar.  Finally a 
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summary and conclusions are presented and proposed areas of future work derived from the 

research are explained.    

 

Appendix A includes a list of the author’s publications referred to in this thesis.  All 

contributions to this thesis from these publications represent the author’s work and 

contributions to these publications (unless otherwise stated) and are highlighted within the 

text (and Appendix A). 
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2   RADAR PRINCIPLES   
This chapter provides an overview of radar principles in general, describing the 

common radar topologies of monostatic and bistatic radar, defining the most relevant 

principles and aspects of these topologies in relation to the content of this thesis.  Following 

this, a description of the less common topology (which is the main subject of this thesis) of 

Forward Scatter Radar (FSR) is given along with a comparative discussion of the previously 

defined principles, but now placed in the context of FSR.   

The monostatic and bistatic radar principles are mostly presented through basic 

definitions with little derivation, as generally much of the content is now commonplace 

knowledge to radar experts and has been frequently reproduced in general radar texts.  The 

references drawn on here include such well-known texts as [1]–[4]. 

2.1 MONOSTATIC AND BISTATIC RADAR 
The two main radar configurations are monostatic radar and bistatic radar.  Monostatic 

radar can be further sub-divided into quasi-monostatic, where transmit and receive antennas 

are located in essentially the same position with regards to the point of view of the target and  

true monostatic radar which utilises the same or at least co-located antennas for both transmit 

and receive functions.  In bistatic radar the transmitter and receiver are separated by a much 

larger relative distance (usually of the order of the distance to a target) [2].  The two 

topologies are pictured in Figure 2.1-1. 
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Figure 2.1-1.  Bistatic  (a) and monostatic (b) radar topologies. 

In bistatic radar, Figure 2.1-1(a), there are two paths to consider.  The transmitter (Tx) 

to target (Tgt) path with range tR and the return path from target (Tgt) to the receiver (Rx) 

with range rR .  These paths and the baseline D  specify a plane in 3-D space, this is the 

bistatic plane (or triangle).  There are three relevant angles on this plane, tθ  and rθ , which are 

the transmitter and receiver look angles, t r180 ( )β θ θ= − +  is the bistatic angle.  Also shown, 

but discussed later in Section 2.7 are the bistatic bisector and the angle δ  between this and 

the target velocity vector tgtv .     

The monostatic radar case of Figure 2.1-1(b) can be seen as a contraction of the 

bistatic situation, where the baseline 0D =  and hence 0β =  with t r mR R R= =  , where mR  is 

the monostatic target range (one way). Again, also shown but discussed later is the angle vθ , 

which is the angle between the target velocity vector tgtv  and the line joining antenna to target. 

2.2 ANTENNA PARAMETERS 
One of the key elements of any radar is the antenna. The radiation pattern of an 

antenna is a normalised far-field description of how the antenna distributes the radiated signal 

power in space, normally given as a function of azimuth and elevation angles, 𝜙𝜙 and 𝜃𝜃, with 
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respect to the plane of the antenna, as shown in Figure 2.2-1(a).  An example of an antenna 

radiation pattern in one of the principle planes (𝜙𝜙 = 0) is shown in Figure 2.2-1(b).   

 

Figure 2.2-1.  Co-ordinate system for antenna azimuth and elevation (a) and principle plane (elevation) 
antenna pattern (b). 

The main lobe is the angular region in which the antenna provides the most directionality, 

from this the beam width 𝜃𝜃B can be measured – shown here as the full width at half maximum 

(FWHM) power, also referred to as the -3dB pattern.  There are other subsidiary lobes in the 

structure; side lobes, minor lobes and the back lobe; commonly these are sought to be 

minimised. Side lobe reduction is accomplished in general through weighting of the antenna 

aperture.  This is accomplished through the antenna design process, by producing a field 

distribution which is tapered (non-uniform) across the aperture.  In the case of array antennas, 

where the antenna is formed from an array of radiating elements, tapering is performed across 
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the combined array aperture as discussed in [5] and references therein.  The reduction in side 

lobes is however generally at the expense of a broadened main lobe and a compromise 

between beam width, gain (discussed below) and side lobe level must be made.    

The directive gain (or directivity) 𝐷𝐷(𝜙𝜙′,𝜃𝜃′) of an antenna is defined as 

 ( ) ( )
( ) ( ) ( )

av tot

, 4,  ,  
, ,

U
D U

U P
φ θ πφ θ φ θ
φ θ φ θ
′ ′

′ ′= ′=′  . (2.2.1) 

Where U(ϕ′, θ′) is the radiation intensity of the antenna [power/steradian] in a particular 

direction (ϕ′, θ′) and U(ϕ,θ)av is the average radiation intensity over the full 4π steradians of 

the sphere, which is equal to the total power radiated, divided by 4π.  P(𝜙𝜙,𝜃𝜃)tot can be found 

by integrating the volume under the full 3D radiation pattern.  

More commonly the power gain, 𝐺𝐺, is used, which rather than normalising to total 

radiated power, normalises to the antenna input power, 𝑃𝑃ant
in  and thus accounts for losses in the 

antenna itself.  It can be defined as, 

 ( ) ( )in
ant

4, ,  G U
P
πφ θ φ θ′ ′ ′= ′  . (2.2.2) 

Relating to the directive gain,  

 rG Dr=   (2.2.3) 

where 𝜌𝜌r is the antenna radiation efficiency factor.  Occasionally when mentioning the gain, 

what is actually implied is the maximum gain/directionality of the antenna, thus 𝑈𝑈(𝜙𝜙′,𝜃𝜃′) can 

be replaced with 𝑈𝑈(𝜙𝜙,𝜃𝜃)max. 
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The above descriptions for determining gain are true definitions; in commonplace 

scenarios where absolute accuracy is not required, some simplified rules can be followed.  

The maximum gain of the antenna can be estimated using [6], 

 eff
max 2

B B

4 4
r

AG π πr
λ θ f

= ≈  . (2.2.4) 

This relates the gain through the effective antenna area 𝐴𝐴eff  at a wavelength 𝜆𝜆  or 

alternatively to the approximate ‘beam area’, 𝜃𝜃B𝜙𝜙B, where 𝜃𝜃B and 𝜙𝜙B are the -3dB antenna 

beam widths in the principle planes (in radians).  This beam width could indeed be measured 

or estimated from the further approximation for aperture type antennas (which are relevant for 

future sections of this thesis) [7], 

 B / Dθθ λ≈ ò  , (2.2.5) 

 B / Dφφ λ≈ ò  . (2.2.6) 

Where λ is the wavelength in meters, D is the antenna size in meters (for a particular principle 

plane) and 𝜖𝜖  is a coefficient which depends on a particular antenna type, but in the first 

approximation 𝜖𝜖 = 1.  The antenna patterns for aperture antennas (i.e. antennas which emit 

electromagnetic radiation through an opening) are generally calculated using the field 

equivalence principle and simplified by calculation in the far field region [8] - for non-infinite 

ground planes, edge diffractive effects then need to be accounted for.  However, at small 

angles about the antenna boresight, these patterns can be approximated by the Fourier 

transform/Fraunhoffer diffraction pattern of the aperture function (where polarisation is 

neglected, but assumed constant) [9]–[11].  For simple apertures these patterns are well 

known analytic functions and can be calculated relatively easily.  The cases of rectangular and 

elliptical apertures will be discussed here without derivation.  For apertures which are large in 
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relation to wavelength, much of the energy is concentrated in the small angle region and the 

approximation works well; it should be noted the solutions only provide patterns for the 

forward direction. 

2.2.1 RECTANGULAR APERTURE ANTENNA 
A rectangular aperture antenna with uniform aperture field intensity distribution has a 

pattern described by [10]–[12]: 

 ( )

2 2

sin sin sin sin
2 2,
sin sin

2 2

ka kb

I ka kb

θ φ
θ φ

θ φ

      
            =

   
   
   

 , (2.2.7) 

with 𝑘𝑘 being the wave number of the radiation, and 𝜃𝜃, 𝜙𝜙, 𝑎𝑎 and 𝑏𝑏 as described in Figure 2.2-2.   

 

Figure 2.2-2.  Rectangular aperture antenna definitions. 

Taking one of the principle planes, i.e. the elevation plane, 𝐼𝐼(𝜃𝜃,𝜙𝜙 = 0), the pattern is then 

given by,  
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 ( )

2

sin sin
2

sin
2

ka

I ka

θ
θ

θ

  
    =

 
 
 

 (2.2.8) 

which is shown (in dB) in Figure 2.2-3, with respect to the argument,  

 sin
2
kax θ=   (2.2.9) 

 

 

Figure 2.2-3.  Approximate pattern from rectangular aperture antenna. 

As for the most common patterns, the half power points and side lobe levels are tabulated in 

the literature [10], in the case of the rectangular aperture, the half power (-3 dB) points can be 

found by solving numerically, 

 
( )sin1

2
x

x
=  , (2.2.10) 

resulting in 𝑥𝑥 = 1.39, as shown by the red dashed lines in Figure 4 and thus the -3 dB beam 

width, 𝜃𝜃B (rads) is given (from (2.2.9)) by, 
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 B 2sin
2

x x
ka a

θ λ
π

= =   (2.2.11) 

 
B

B Bsmall  
2arcsin 0.44 0.88  

a aθ

ll θ θ ⇒ = → = 
 

. (2.2.12) 

Which relating back to (2.2.5), gives a value of 𝜖𝜖 of 0.88. 

The side-lobe levels of the pattern can be found from the roots of the derivative of the pattern 

function, and the level of the first side-lobes are found to be approximately -13 dB with 

respect to the main lobe peak. In practically used antennas with a rectangular aperture the first 

side-lobe usually -16 to -20 dB order – this can be achieved with non-uniform/tapered 

illumination at the expense of a wider main lobe [7].  

2.2.2 ELLIPTICAL AND CIRCULAR APERTURE ANTENNAS  
For an elliptical aperture, the intensity pattern takes the form of [13], 

 ( )
( )

2
2 2 2 2

1

2 2 2 2

2 sin sin
,

sin sin

J k a b
I

k a b

θ φ
θ φ

θ φ

 +
 =  +  

.  (2.2.13) 

Where 𝑘𝑘 is the wave number, a is the radius of the aperture and  𝐽𝐽1is the Bessel function of 

first kind and first order.  𝑎𝑎 is the semi-axis in the elevation plane and 𝑏𝑏 in the azimuth plane, 

the angles are defined as in Figure 2.2-4. 
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Figure 2.2-4.  Elliptical aperture antenna definitions. 

Taking for example the elevation principle plane, where 𝜙𝜙 = 0, it can be seen that the pattern 

for an elliptical aperture reduces to, 

 ( ) ( ) 2
12 sin

sin
J ka

I
ka

θ
θ

θ
 

=  
 

  (2.2.14) 

 

which is the same as that of the ‘principle plane’ intensity pattern of a circular aperture of 

radius 𝑎𝑎.  Indeed as a sanity check, it is useful to see that if the values of the semi-axes for the 

ellipse are set equal, the we retrieve the pattern for a circular aperture, thus with 𝑎𝑎 = 𝑏𝑏 in 

(2.2.13) then, 

 ( )
( )

2
2 2

1

2 2

2 sin sin
,

sin sin

J ka
I

ka

θ φ
θ φ

θ φ

 +
 =  +  

  (2.2.15) 

and from the geometry of Figure 2.2-4, it can be seen that  

 0 0 0sin  ;sin ;sin  x y
z z z

ρφ θ α= = =   (2.2.16) 
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and 

 2 2
0 0 0x yρ = + ,  (2.2.17) 

thus 

 2 2sin sin sinα θ φ= +   (2.2.18) 

Substituting (2.2.18) into (2.2.15) gives, 

 ( ) ( ) 2
12 sin

sin
J ka

I
ka

a
a

a
 

=  
 

  (2.2.19) 

which is the well-known Airy disc pattern for the circular aperture originally derived in [14], 

with 𝛼𝛼 being the angle between boresight and the point in question .  The principle plane 

pattern of (2.2.13) with the substitution 𝑥𝑥 =  𝑘𝑘𝑘𝑘 sin𝜃𝜃, gives the plot in Figure 2.2-5. 

 

 

Figure 2.2-5. Elliptical antenna pattern approximation. 
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The half power point is at 𝑥𝑥 = 1.62 (solved numerically - dashed red line in Figure 6), which 

for small angles, gives the -3 dB beam width (rads) (from 𝑥𝑥 =  𝑘𝑘𝑘𝑘 sin𝜃𝜃) as,   

 B 0.51
a
λθ =   (2.2.20) 

Remembering that 𝑎𝑎 is half of the full aperture dimension, thus for the full dimension 𝑑𝑑 of the 

aperture in that specific plane,  

 B 1.02
d
λθ =   (2.2.21) 

Again relating back to the beam width approximation of (2.2.5) for this aperture type, 

1.02ε = .  The first side lobe position is at 𝑥𝑥 = 5.14 [12], and has an intensity of -17.6 dB 

with respect to the main lobe maxima (dashed green line in Figure 2.2-5).  
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2.3 TARGET RADAR CROSS SECTION 
The radar cross section (RCS) of a target 𝜎𝜎 is a measure of how the target redistributes 

incident power into surrounding space and as such, it can be defined generally in a way 

similar to that of antenna directivity/gain, as:  

 ( ) ( )RR

D D

4 4
PU R

P P
β

σ β π π= = . (2.3.1) 

𝑅𝑅 is the range from the target to the receiver in the far field (this is sometimes emphasised by 

the introduction of a limit as R → ∞ in (2.3.1).   UR is the radiation intensity at the receive 

antenna, 𝑃𝑃R the power density at the receiver, and PD is the power density of the intercepted 

signal.  (2.3.1) is actually a general case applicable to bistatic or monostatic radar, dependent 

on the bistatic angle 𝛽𝛽.  The scenario for both situations is shown in Figure 2.3-1.  

 

Figure 2.3-1.  Target RCS definition geometry. 

In bistatic radar, the received power density is a function of the bistatic angle, in monostatic 

radar 𝛽𝛽 = 0.  The appropriate ranges are also defined, 𝑅𝑅 = 𝑅𝑅ms/bs for either the monostatic or 

bistatic case.  The significance of the rotation angle 𝛼𝛼tgt is to emphasise that in all cases, the 

RCS is a function of the aspect under which the target is illuminated (except for example, a 
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sphere).  In general, the RCS is also a function of the transmitted and received wave 

polarisation and can (if required) be presented as a RCS scattering matrix: 

 HH VH

HV VV

σ σ
σ σ
 
 
 

σ = .  (2.3.2) 

Where for example HVσ is the cross section for transmitted horizontal polarisation and vertical 

receive.  The RCS has dimensions of m2 (dBm2 or more commonly denoted dBsm on a 

logarithmic scale) and can be seen as a fictional area that intercepts and re-radiates the 

transmitted energy.  The RCS is defined over all 4π steradians of a sphere (centred on the 

target) for a given illumination direction. 

Only a few ‘simple’ shapes have an analytic RCS.  An informative, well used example 

is that of the sphere, which can be calculated by a Mie series [15] and the result is found in 

many texts e.g. [16]. Figure 2.3-2 shows the monostatic RCS mss  for a perfect electrically 

conducting sphere of radius sa  normalised to the physical area of the sphere as a function of 

the radius normalised to the wavelength 2 saπ
λ

.  The main scattering regions are highlighted, 

Rayleigh ( 𝜆𝜆 ≫ target dimension ), which shows an RCS dependence 4λ∝ , the 

Mie/Resonance region (𝜆𝜆 ≈ target dimension) where the RCS fluctuates about the mean and 

Optical (𝜆𝜆 ≪ target dimension) where the RCS becomes independent of the wavelength of 

illumination.  For simulation of more complex targets computer packages such as CST Studio 

Suite (Microwave Studio) [17] are available, which use a number of numerical solving 

techniques.  The technique used depends largely on the electrical size of the object under 

simulation and its material composition, in general RCS simulations tend to be of objects of 

larger electrical size (i.e. upper Mie and optical scattering regimes).  Therefore full volume 

3D meshing of a target object to use, for instance, finite difference based techniques to solve 
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Figure 2.3-2. Normalised monostatic RCS for PEC sphere. 

Maxwell’s equations become highly computationally expensive and time consuming.  

Approximate techniques which only require electromagnetic calculation on the objects 

surface are then used, these include methods such as: integral equation solvers using the 

Method of Moments and Multilevel Fast Multipole Methods, Physical Optics solvers, 

Shooting Bouncing Ray and Geometric Optics solvers; which may all be used for metallic and 

dielectric structures.  Uniform theory of diffraction solvers may be used for very large 

perfectly conducting structures.    

2.3.1 RADAR CROSS SECTION FLUCTUATIONS 
A target with complex shape, may be regarded as being composed of multiple point 

scatterers. The resulting field at a distance from the target and indeed therefore the RCS 

depends on the addition of the relative phases of the field scattered from each point.  Targets 

and radar in many practical cases are moving relevant to each other, so over any reasonable 

time we may expect target rotation with respect to the view of the radar.   As the result target 

RCS is not constant, but fluctuates.  There are many models and descriptions of the 
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fluctuations in RCS, well known versions are the ‘Swerling Cases’ [18], [19].  To highlight 

the dependencies related to the fluctuation in cross section, a simple example of a two point 

scatterer target is shown in Figure 2.3-3.  

 

Figure 2.3-3.  A target composed of two point scatterers.  (a) Path lengths 1 and 2 are the same, leading to 
constructive interference at the receiver, (b) rotation of the target causes a phase difference in the paths, 

producing fluctuation in the RCS. 

In Figure 2.3-3(a) it can be seen that there is no difference in the path length of path 1 and 

path 2 and so in the far field the received waves will add in phase.  In (b), due to target 

rotation angle of rθ , the path length of both path 1 and path 2 will be altered by p∆   from the 

original un-rotated scatterers, where: 

 rsin
2
tgtl

p θ∆ = ,  (2.3.3) 

tgtl  is the separation of the point scatterers, or ‘target length’.  This can be written in terms of 

the phase difference between the two paths φ∆ , in which each path is traversed twice, there 

and back in the monostatic case, thus: 

 tgt r
4 sinlπφ θ
l

∆ =   (2.3.4) 
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If this phase difference is an integer number of 2π then constructive interference will occur.  

However it can be seen that for a moving target with changing aspect, this phase term will 

fluctuate over time, with the fluctuation speed and therefore spectrum depending on 

wavelength, target size and the angular rotation rate.  The time over which the radar returns 

may be integrated (summed up) effectively to improve the signal-to-interference ratio, is 

called the coherent analysis time, this is determined by the phase fluctuation.  The fluctuation 

spectrum bandwidth mrf∆  and coherent analysis time mrτ∆ for monostatic radar are related by 

[1]: 

 tgt
mr mr mrand 1

l
f f

t
f t

l
  ∆ ∆ ≈ ∆ = ∆  ∆  

.  (2.3.5) 

In which tgtl is the characteristic target length and tφ∆ ∆ is the rate of change of 

aspect angle with respect to the Tx/Rx.  The  

2.4 THE RADAR EQUATION 
Now that the parameters of antenna gain and RCS have been specified, it is now 

possible to introduce the radar equation. The radar equation is a power balance equation for 

the radar system which gives an indication of the range performance of the radar.  The 

equation itself can be written in many forms of varying complexity depending on how 

specifically the losses and gains of the system are defined.  A simple form of the bistatic radar 

equation in can be written as below, 

 
( )

2
T T R BS

R 3 2 2
T R BS4

P G GP
R R L
σ λ

π
= .  (2.4.1) 
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Where: 

• 𝑃𝑃R is the peak power at the input to the receiver. 
• 𝑃𝑃T is the transmitter peak power into the antenna. 
• 𝐺𝐺T is the gain of the transmitting antenna. 
• 𝐺𝐺R is the gain of the receiving antenna. 
• 𝜎𝜎BS is the bistatic RCS. 
• 𝜆𝜆 is the frequency of the radar signal. 
• 𝑅𝑅T is the transmitter to target range. 
• 𝑅𝑅R is the receiver to target range. 
• 𝐿𝐿BS is a general loss term (>1). 

  

From this a maximum detection range product can be defined, if a minimum detectable signal 

power is chosen 𝑆𝑆MIN, then: 

 
( )

2
T T R BS

R MIN 3 2 2
T R BS4

P G GP S
R R L
σ λ

π
= =   (2.4.2) 

 
( )

2
T T R BS

T R MAX 3
MIN BS

( )
4

P G GR R
S L
σ λ

π
⇒ =   (2.4.3) 

The difference between the bistatic and monostatic radar equation is purely the target ranges 

as before, 𝑅𝑅𝑇𝑇 = 𝑅𝑅R = 𝑅𝑅M , and relabeling of the cross section and losses, such that for the 

monostatic case (2.4.1) becomes: 

 
( )

2
T T R MS

R 3 4
M MS4

P G GP
R L
σ λ

π
= ,  (2.4.4) 

and thus the equivalent maximum range product becomes, 

 
( )

2
MAX T T R MS

4MS 3
MIN MS4

P G GR
S L
σ λ

π
= .  (2.4.5) 
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In bistatic radar the round trip distance for a signal to travel from Tx → Tgt → Rx is 

𝑅𝑅T + 𝑅𝑅R. If the round trip time delay between transmission and reception is 𝜏𝜏d, then given that 

the signal propagates at a speed 𝑐𝑐, the bistatic target range 𝑅𝑅BS (range sum) is given by, 

 BS T R dR R R cτ= + = .  (2.4.6) 

In the monostatic case 𝑅𝑅T = 𝑅𝑅R = 𝑅𝑅M, the monostatic target range 𝑅𝑅M is then given by, 

 d
MS 2

cR τ
=   (2.4.7) 

Due to the topology of the bistatic radar having two foci, a given value of bistatic range can 

be formed from many combinations of 𝑅𝑅T and 𝑅𝑅R, producing confocal ellipsoidal iso-range 

surfaces with constant range sum, 𝑅𝑅BS = 𝑅𝑅T + 𝑅𝑅R .  Conforming to standard ellipse 

definitions, the semi-major axis 𝑎𝑎 of an ellipse lying in the bistatic plane is described by, 

 T R2  a R R= +   (2.4.8) 

The semi-minor axis 𝑏𝑏 is defined by, 

 
2

2 2

2
db a  = −  

 
  (2.4.9) 

 
2

2 2

2
db a  = −  

 
  (2.4.10) 

It should be noted from (2.4.10), for the monostatic case, 𝑑𝑑 = 0 and therefore 𝑎𝑎 = 𝑏𝑏 which 

implies the ellipse becomes a circle of radius 𝑎𝑎 = 𝑅𝑅T+𝑅𝑅R
2

= 𝑅𝑅MS, as expected from a central 

focus point.  In reality, even though defined through an ellipse here, the iso-range contours are 

actually not contours, but surfaces which are ellipsoidal.  Due to symmetry in the topology the 

defined ellipse is essentially rotated about the baseline (volume of revolution) i.e. an ellipsoid 
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in which the semi-principle axes 𝑏𝑏 and 𝑐𝑐 are equal.  Examples of iso-range surfaces are shown 

in Figure 2.4-1 

 

Figure 2.4-1  Iso-range ellipsoid surfaces for an example 10 km base line. Red dots indicate transmitter 
and receiver. 

It can also be noted that as the bistatic range increases such that the antenna spacing 

becomes small in comparison, the system tends towards the monostatic case and the iso-range 

surfaces/contours become more spherical/circular. 

2.5 RANGE RESOLUTION 
Range resolution relates to the ability of the radar to separate/detect multiple targets in 

terms of their ranges or identically the receive delay time.  Conventionally a minimum 

separation in time between returns of 𝜏𝜏P is used, where 𝜏𝜏P is the pulse width at the output of 

the matched filter.  This is generally defined as the -3 dB pulse width i.e. full width at half the 

maximum of the pulse power.   

In the monostatic case, take the example of two targets each positioned on a different 

iso-range contour separated by a range difference Δ𝑅𝑅MS, as shown in Figure 2.5-1.  Then the 
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extra round trip distance travelled by the pulse to the furthest target is 2Δ𝑅𝑅MS.  The equivalent 

required distance separation relating to the time separation 𝜏𝜏P is 𝑐𝑐𝜏𝜏P, thus the minimum value 

of range separation for two targets to be resolved is given by, 

 P
MSΔ  

2 2
c cR

B
τ

= =   (2.5.1) 

where 𝐵𝐵 is the signal bandwidth.   

 

Figure 2.5-1.  Monostatic range resolution. 

The equivalent case for bistatic radar must take into account that the separation between iso-

range ellipsoids in bistatic radar is not constant, but dependent on the bistatic angle 𝛽𝛽.  The 

scenario for bistatic radar is shown in Figure 2.5-2.  

 

Figure 2.5-2.  Bistatic range resolution, target 1 and 2 (Tgt1 and Tgt2) occupy the same extended bistatic 
bisector, target 3 (Tgt3) lies away from this, but on the same range contour as Tgt 2. 
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The equivalent of Δ𝑅𝑅MS for the bistatic case is Δ𝑅𝑅BS which is the separation between bistatic 

iso-range ellipsoids.  This separation is defined along the extended bistatic bisector upon 

which targets Tgt1 and Tgt2 are located and which is perpendicular to the tangents of the 

ellipses.  Tgt 3 is a target located on the same range contour as Tgt2, but at some angle 𝜓𝜓 to 

the bisector and a distance  Δ𝑅𝑅BS
𝜓𝜓  from Tgt1.  In order to resolve Tgt1 from Tgt2, it can be 

shown that Δ𝑅𝑅BS must be at least, 

 P
BSΔ  

2cos
2

cR τ
β=   (2.5.2) 

And from Figure 2.5-2 it can be seen that the minimum distance for Tgt1 to therefore 

be resolved from Tgt3, Δ𝑅𝑅BS
𝜓𝜓 , is approximately given by, 

 BS P
BS

ΔΔ  
cos 2cos cos

2

R cRψ τ
βψ ψ

≈ =   (2.5.3) 

It should be noted here, that for a particular iso-range contour (on which would be 

situated Tgt1) and particular value of 𝜓𝜓, the minimum values for the range resolution occurs 

when the target is on the extended baseline.  This is sometimes known as the quasi-monostatic 

region where Tx, Rx and Tgt1 all lie along a single line. 

The above discussion and equations derived for range resolution are truly only valid 

for separating returns from two equal-sized point targets.  If, for example, one target response 

was much larger in amplitude, the larger response would mask the smaller, high noise levels 

would serve to effectively smear the responses in range.  In both situations the separation 

distance required to resolve them would be larger than predicted.  In general the range 
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resolution is dependent on parameters such as target reflectivity/RCS, target dimensions and 

the signal-to-noise ratio (SNR) of the return.   

2.6 ANGULAR RESOLUTION 
The previous subsection briefly discusses matters relating to range and the 

determination of target range in radar, however a particular measured target range is not 

associated with a single position in space.  In order to find this position, knowledge of the 

angular orientation of the antennas is required and essentially the combination of this and the 

antenna beam width defines the accuracy of the angular measurement.  

 Equivalent to range resolution, the angular resolution is an estimate of required target 

separation to resolve individual targets in angle.  In monostatic radar the angular resolution is 

defined to be the -3dB (one way) beam width of the antenna pattern, Δ𝜃𝜃M and thus a minimum 

physical target cross-range separation Δ𝑅𝑅MS
𝜃𝜃 , given by, 

 MS M MSΔ ΔR Rθ θ≥   (2.6.1) 

In the bistatic case, there is no enhancement due to a two-way beam pattern, Tx and 

Rx beam widths at the target range may be different both through differing ranges 𝑅𝑅T and 𝑅𝑅R, 

but also through differing antenna pattern widths Δ𝜃𝜃T and Δ𝜃𝜃R.  For the case where only the 

receiver contributes to the angular resolution (i.e. very wide transmitter beam width), the 

separation required to resolve two targets would be the receive antennas theoretical null to 

null beam width.  This is approximated as 2Δ𝜃𝜃R𝑅𝑅R for two targets on the same iso-range 

contour and this occurs when the target separation Δ𝑅𝑅BS
𝜃𝜃  is, 

 R R
BS

2ΔΔ
cos

2

RRθ θ
β≈   (2.6.2) 
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2.7 THE DOPPLER SHIFT AND DOPPLER RESOLUTION 
The Doppler (non-relativistic) frequency shift 𝑓𝑓𝐷𝐷 is related to the time rate of change 

of the range of a target with respect to the radar antenna or antennas.  

In bistatic radar, this (in relation to parameters in Figure 2.1-1(a)) is given by, 

 ( )T RBS
D

1 2 cos cos
2

d R R vf
dt

βd
λ λ

+ 
= = 

 
.  (2.7.1) 

 In monostatic radar this (in relation to Figure 2.1-1(b)) is given by, 

 MS MS
D V

d2 2 cos
d
R vf

t
θ

λ λ
= =   (2.7.2) 

In order to resolve two Doppler frequencies in the receiver, 𝑓𝑓𝐷𝐷1and 𝑓𝑓𝐷𝐷2, the required 

separation is defined to be, 

 
1 2

1
D D

c

f f
T

− =   (2.7.3) 

Where Tc is the coherent processing interval of the receiver.  In terms of a target velocity 

difference, for bistatic radar, ΔVBS, combining (2.7.1) and (2.7.3), 

 1 1 2 2Δ cos cos  
2 cos

2

BS

c

V v v
T

λδ δ β= − =  , (2.7.4) 

on the assumption the targets occupy approximately the same bistatic bisector, as shown in 

Figure 2.5-2.  For monostatic radar, the velocity resolution ΔVMS can be found by setting 

β = 0 in (2.7.4) or indeed by combining (2.7.2) and (2.7.3),  

 
1 21 2Δ cos cos  

2MS V V
c

V v v
T
λθ θ= − = .  (2.7.5) 
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As with the equations for range resolution discussed in Section 2.5, the equations 

stated here for Doppler resolution are only approximate.  The required separation in (2.7.3) is 

generally defined by the - 3dB bandwidth of the spectra of equal target returns.  This 

approximately equates to 1 cT  in the case that the signals are a pair of truncated sinusoids of 

length cT .  The frequency resolution will be affected as with range resolution, if one signal is 

of higher power and masks the other.  High levels of noise and target accelerations during the 

integration period both serve to smear spectral responses, requiring larger separation.  Any 

windowing applied to the signal will also broaden the spectral response, reducing the 

frequency resolution. 

2.8 CLUTTER  
Clutter is the unwanted returns received by the radar.  Depending on the type and 

mission of the radar, these may come in the form of distributed volume or surface clutter.  

Volume clutter includes returns from rain, snow, chaff and surface from vegetation, ocean etc.  

For the case of monostatic radar, the single antenna geometry makes it relatively 

simple to calculate the clutter volumes and surface areas (for at least certain nominal 

conditions).  However in the bistatic case, there are many more degrees of freedom—transmit 

and receive antenna beam widths may differ, the beam intersection geometry varies with 

bistatic angle, as does the intersection with the ellipsoidal range resolution cells and with the 

ground.  The calculation of clutter areas is usually restricted to very specific circumstances 

and in most cases of any complexity is numerically evaluated [2].  The calculation of clutter 

volumes, as with areas, is a function of many radar parameters (as described above) and as 

such is performed for the specific cases requiring investigation.  For this reason clutter 

volumes in bistatic radar are not derived here. 
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Figure 2.8-1.  Volume clutter in monostatic radar. 

The case for the monostatic radar clutter volume calculation is shown in Figure 2.8-1. 

To a first approximation, the volume can been estimated as an elliptical cylinder, with major 

and minor diameters defined by the angular/cross range resolution (2.6.1) in the antenna 

azimuth and elevation planes. The cylinder length is defined by the range resolution. Thus the 

clutter volume 𝑉𝑉c is given by [7], 

 2P
c P

1tan tan tan tan
2 2 2 2 2 2

cV R R c Rtθ φ θ φπ π t= =   (2.8.1) 

For longer pulse widths and/or wider antenna beams, the volume is an elliptical conic 

frustrum.  

  There are two scenarios for calculation of the monostatic clutter area 𝐴𝐴c, these are known as 

the beam width limited case and the range/pulse width limited case [4].  Essentially in the 

beam width limited case, the illuminated ground area dimension is smaller than the range 

resolution in this direction.  The other case implies that the illumined dimension is larger than 

a single range cell on the ground.  The two regimes can be mathematically defined, in 

accordance with Figure 2.8-2.  
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Figure 2.8-2.  Beam and pulse width limited clutter areas in monostatic radar. 

Figure 2.8-2(a) shows the beam width limited case, such that 

 
P

2 tan
2tan

/ 2

R

c

φ

ψ
t

>  , (2.8.2) 

 the clutter area is the area of the illuminated ground ellipse related to the cross range 

resolution in the azimuth and elevation planes of the antenna (2.6.1),  

 2
c tan tan csc

2 2
A R θ φπ ψ= .  (2.8.3) 

Figure 2.8-2(b) describes the pulse width limited case, which occurs under the conditions of: 

 
P

2 tan
2tan

/ 2

R

c

φ

ψ
t

< ,  (2.8.4) 
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the clutter cell area is the estimated area of the strip related to the azimuthal cross range 

resolution and the pulse length,  

 c P tan sec
2

A c R θt ψ= .  (2.8.5) 

As an example of bistatic clutter area estimation, the case from [2] for small grazing angles 

and large range sums t rR R D+ �  is reproduced.  This is shown pictorially for both beam 

width and pulse width limited cases in Figure 2.8-3. 

 

Figure 2.8-3.  Beam and pulse width limited surface clutter in bistatic radar (special case). 

The figure shows the intersection of the two antenna beams (approximated by a 

parallelogram) to give the beam width limited area and the corresponding intersection of this 

with a surface range resolution cell (intersection of constant range ellipsoids with ground 

surface).  The cell boundaries are assumed to be parallel across the beam intersection and the 

separation is given by (2.5.2), thus forming another parallelogram for the pulse length limited 

cell.   
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2.8.1 NORMALISED AREA AND VOLUME CLUTTERS 
Once the areas and volumes are found for the specific system, it is then possible to 

calculate the equivalent RCS of this patch/volume of the distributed clutter sources.  This is 

performed through the use of a (pre-determined) normalised reflectivity [7], 𝜂𝜂v – the volume 

clutter reflectivity [m2/m3] and 𝜎𝜎0  – the surface clutter reflectivity [m2/m2].  Such that to 

calculate the RCS of a volume of clutter 𝜎𝜎𝑐𝑐 , 

 c vc Vσ η=  , (2.8.6) 

where 𝑉𝑉c is the aforementioned clutter cell volume. Equivalently the RCS of a clutter patch is 

given by 

 c 0c Aσ σ=   (2.8.7) 

2.9 DETECTION OF SIGNALS IN NOISE – THE MATCHED 
FILTER RECEIVER 

Conventionally in radar, any form of signal processing occurs in the intermediate 

frequency stages after down conversion from RF.  In modern system it is done by means of 

digital signal processing in baseband usually presented by in-phase and quadrature channels.  

It is assumed that before this stage, the receiver is of large bandwidth and the actual frequency 

response 𝐻𝐻(𝑓𝑓) of the whole receiver will be defined by the filtering/amplification in the IF 

stage.  The magnitude of the frequency response in the IF stage, |𝐻𝐻(𝑓𝑓)| defines the bandwidth 

of the system, inside this band exists both system noise and received target returns.  Figure 

2.9-1(a) shows a pictorial example of a generic frequency response with bandwidth 𝐵𝐵𝑛𝑛 for an 

arbitrary receiver/IF filter. Figure 2.9-1(b) illustrates the power spectral density (PSD), at the 

34 
 



filter input, of both white noise - defined by a constant spectral density 𝑁𝑁0 [W/Hz] and that of 

a target signature which may occupy this band—|𝐻𝐻(𝑓𝑓)| has been overlaid for clarity.   

 

 

Figure 2.9-1.  Example of noise bandwidth of system (a) and this bandwidth being occupied by signal 
(filled blue) and noise (filled green) (b). 

It should be noted here that the bandwidth 𝐵𝐵𝑛𝑛 specified in (a) is not the common definition of 

bandwidth as defined by the FWHM (-3dB) power, but for consideration of system noise, this 

is the integrated or noise equivalent bandwidth, given by  [6], [7], 

 
( )
( )

2

2
0

 d

 n

H f f
B

H f

∞

−∞= ∫  . (2.9.1) 

𝐵𝐵𝑛𝑛  is the bandwidth of the equivalent brick-wall filter which gives the same noise power 

output as the actual filter.  Now as can be deduced from Figure 2.9-1 if the receiver noise 

bandwidth is overly large, the effective input noise power (which is the area of the green 

region in Figure 2.9-1)  

 
in 0 nN N B= ,  (2.9.2) 

|H(f)| 
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will increase with respect to the signal power and if it is too small, signal energy will be 

reduced as well as noise.  The task here is to calculate the response 𝐻𝐻(𝑓𝑓) such that its effect 

on the input signal and input noise gives optimum signal output.  This filter for the detection 

of targets in white noise is known as the matched filter [20].  The output of the matched filter 

gives the maximum available peak instantaneous signal power to mean white noise power 

ratio at its output, i.e. it maximises 𝑀𝑀 where,  

 
( ) 2

max
 outs t

M
N

= ,  (2.9.3) 

with 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) being the output signal voltage of the filter and 𝑁𝑁 is the average noise power 

output.  The problem can be solved using the Schwartz inequality and is outlined in standard 

texts [6].  The outcome being that the frequency response of the matched filter is given by, 

 ( ) ( ) 12* i ft
aH f G S f e π−= .  (2.9.4) 

Where 𝐺𝐺𝑎𝑎 is the matched filter gain (normally unity, has no effect on SNR at output), 𝑆𝑆∗(𝑓𝑓) is 

the complex conjugate of the received/input signal spectrum and 𝑡𝑡1 is the time at which the 

signal 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) is a maximum – essentially the exponent part is a constant time delay to ensure 

causality.  Along with this result comes the conclusion that the maximum value for  𝑀𝑀 in 

(2.9.3) and thus the maximum possible relation of peak output signal power to average output 

noise power is given by: 

 max
0

2EM
N

= .  (2.9.5) 

Where 𝐸𝐸is the input signal energy. 
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2.9.1 MATCHED FILTER FOR NON – WHITE NOISE 
In the case where the noise at the input to the matched filter is not white, but the 

spectrum is a function of frequency i.e  𝑁𝑁in(𝑓𝑓), the optimum filter here is known as the non-

white noise matched filter, and is defined as [1] 

 ( ) ( )
( ) ( )

( )
( )

1

1

*2*
2

2
in inin

1  
i ft

a i ft
a

G S f e S f
H f G e

N f N fN f

π
π

−
− 

= =   
 

,  (2.9.6) 

with the definitions as for (2.9.4).   The second equality expresses how the non-white noise 

filter can be expressed as two filters, where the term 1 𝑁𝑁in(𝑓𝑓)�  is a whitening filter, which as 

its name suggests, converts the noise to a uniform white noise spectrum and then is processed 

by a slightly modified standard matched filter. 

2.9.2 MATCHED FILTER RELATION TO CORRELATION 
  The output 𝑦𝑦out(𝑡𝑡)  of a filter with an impulse response ℎ(𝑡𝑡)  is given by the 

convolution of the impulse response with the input signal 𝑠𝑠in(𝑡𝑡′), which contains both target 

signal and noise, 

 ( ) ( ) ( )out in dy t s t h t t t
∞

−∞

′ ′= − ′∫ .  (2.9.7) 

The impulse response for the matched filter is given by the Fourier transform of the frequency 

response (2.9.4), which corresponds to the reverse of the received signal (noiseless) 𝑠𝑠(𝑡𝑡) in 

time, 

 ( ) ( )1ah t G s t t= −   (2.9.8) 

 ( ) ( )1ah t t G s t t t⇒ − = − +′ ′ .  (2.9.9) 
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Where 𝑡𝑡1 is as defined as for (2.9.4); the time at which the filter output signal 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) is a 

maximum. Thus (2.9.7) becomes, 

 
( ) ( ) ( )

( ) ( ) ( )
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in 1 1

d

da a

s t s t h t t t

G s t s t t t t G X t t

∞

−∞

∞

−∞

= −

= − + =

′ ′ ′

′ ′ ′ −

∫

∫
 , (2.9.10) 

where 𝑋𝑋(𝑡𝑡 − 𝑡𝑡1) is the cross-correlation function.  In summary, the matched filter 

output is proportional to the cross correlation between the noisy received signal and a time 

delayed, time reversed, complex conjugated replica of the transmitted signal. 

2.10 FORWARD SCATTER RADAR OVERVIEW 
The previous sub-sections have discussed radar principles in relation to the two classic 

radar topologies of monostatic and bistatic radar.  This section is a brief overview of the radar 

topology and parameters that are the main focus of this thesis – Forward Scatter Radar (FSR).   

2.10.1 TOPOLOGY 
FSR can be seen as a specific case of bistatic radar.  In general the true definition of FSR is 

when the bistatic angle is 180°, though it will be shown in following chapters that it does not 

need to be that restrictive.  The forward scatter topology lends itself towards systems where 

antennas face each other (when considering directional antennas) and target detection occurs 

at angles on or very close to the baseline; as depicted in Figure 2.10-1.  The figure shows the 

transmit and receive antennas, Tx and Rx and the bistatic angle 𝛽𝛽, which is 180˚ in this case 

of FSR.  The target crosses the baseline with some velocity 𝑣𝑣Tgt at bistatic ranges of 𝑅𝑅T and  

𝑅𝑅R from the transmit and receive antennas respectively and thus the total bistatic range sum is 
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equal to the baseline distance 𝑑𝑑.  It should be noted that for low profile/low height surface 

targets, the system functions at a very low grazing angle. 

 

 

 

Figure 2.10-1.  FSR topology. 

2.10.2 FORWARD SCATTER RADAR CROSS SECTION 
Though the general topology for FSR may seem restrictive in that detection can only 

occur in a specific spatial region, one of the major advantages of the use of FSR is the 

enhanced radar cross section in the forward direction [21], [22]—from hereon in termed the 

Forward Scatter Cross Section (FSCS).   

Analytical solutions for the FSCS are only available for certain convex shapes for 

optical and sub-optical scattering regions [23], [24]. In the Rayleigh region the diffraction 

mechanism is more sophisticated and correct analytical solutions are only available for the 

sphere and infinitely long cylinder.  However all is not lost, the Physical Theory of 

Diffraction gives an approximate method of calculating the FSCS. 

The FSCS pattern for a target of a given three-dimensional shape can be calculated by 

replacing the silhouette of the target in the transmitter beam with an equivalently shaped 

radiating aperture antenna as is pictorially demonstrated in Figure 2.10-2.  This replacement 

derives from the shadow contour theorem [22], [25] and the field in the FS direction is 

actually termed the shadow field, as it occupies the region of space in the ‘shadow’ of the 
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target.  This will be explained more thoroughly in a future chapter 3.1.  This specifically 

describes the main field component for small angular deviations about the Forward Scatter 

(FS) direction, in the upper Mie and Optical scattering regimes (as described in Section 2.3).  

At wider angles bistatic scattering additionally comes into consideration. 

 

Figure 2.10-2.  To estimate the forward scatter radar cross section pattern, a complex target shape (a) can 
be replaced by equivalent silhouette aperture of area A perpendicular to the incoming wave beam (b). 

 

The FSCS is generally independent of the material of the target object, be it metallic 

or dielectric, and thus this system is ideally suited for the detection of stealth targets. The 

magnitude of the maximum FSCS of the target, max
fss  , i.e. the cross section at a bistatic angle 

of 180°, along the FS axis, is given in [1], [21] for these higher frequency limits by, 

 
2

max
fs 4 As π

λ
 =  
 

 [m2]. (2.10.1) 

Where A is the physical area of the silhouette of the target intersecting the beam 

(perpendicular to the beam) as shown in Figure 2.10-2 and λ  is the illumination wavelength.  

As the target is essentially treated as an aperture antenna, all of the general parameters 

relating to such antennas can be applied to the FSCS, like the forward scatter main lobe 
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(FSML) (Figure 2.10-1), with corresponding -3 dB width, denoted by ml
fsθ , and expressed by 

(2.2.5) or (2.2.6), 

 ml
fs / Dθ l= ò .  (2.10.2) 

D  is the characteristic dimension of the target (in a particular plane of which we wish to find 

the lobe width), ε  is a scaling factor depending on the aperture shape and λ  is the signal 

wavelength—all previously shown in Section 2.2. This idea of a FS lobe relaxes the constraint 

to have the target exactly crossing the baseline in order to take advantage of the increase in 

FSCS. 

To show the enhancement of the FSCS magnitude over that of the monostatic RCS in 

the upper Mie and optical regions, and to give an idea of the main lobe width relationship, a 

reproduction of the plot in Figure 2.3-2 showing the normalised monostatic RCS of a sphere 

of radius 
sa  is shown below in Figure 2.10-3.  Here the FSCS and ml

fsθ calculated from the area 

and dimension of the corresponding circular silhouette using (2.10.1) and (2.10.2) are added.  

As to is the FSCS calculated from the Mie approximation for comparison to the 

approximation.  It can be seen that the FSCS enhancement begins to occur as stated before, in 

the Mie scattering region.   Therefore in this region the approximations of FSCS and thus ml
fsθ  

become valid, as can be seen by the similarity of the FSCS’s.  The gain in cross section for 

the FS case is obviously increasing as the electrical dimension of the sphere increases, i.e. a 6 

dB increase in FSCS for 2×  frequency increase; with this increase however comes a 

proportional 2×  narrowing of the main lobe width.  There is a trade-off between the gain in 

FSCS and its spatial/angular extent.  The concept of the FSML width and indeed its 
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narrowing, places restrictions on the antenna heights used in ground based FSR systems to 

ensure the FSML impinges on the receiver, making use of the increased FSCS.  

 

Figure 2.10-3.  Normalised cross sections for sphere (relates to left y-axis). Blue shows monostatic RCS 
(labelled MRCS) and red the FSCS, both from Mie theory.  Green gives the estimated FSCS from the 

circular silhouette.  The yellow line corresponds to estimated FSML width (associated with right y-axis). 

2.10.3 SPATIAL RESOLUTION PARAMETERS IN FSR 
One disadvantage of the use of FSR is that it lacks ranging ability and therefore range 

resolution.   We can see that a target has crossed the baseline, but we generally do not know 

where along its length and we cannot separate targets in range if they cross simultaneously.  

The lack of ranging is obvious in that the range sum from transmit to target and target to 

receiver is equal to the baseline D  (as shown in Figure 2.10-1). This is a constant no matter 

the baseline crossing point, this is also therefore the reason for lack of resolution.  This can 

also be shown mathematically by considering the range resolution equation for bistatic radar 

(2.5.3), reproduced here, 

 BS P
BS

ΔΔ  
cos 2cos cos
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R cRψ τ
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If the bistatic angle 𝛽𝛽 → 180°, then cos 𝛽𝛽
2
→ 0, this implies very large Δ𝑅𝑅BS

𝜓𝜓 , where targets 

require infinite separation to be resolved.  All is not lost however—due to the predictable 

nature of the target signatures in FSR (Section 3.1), it is possible to use correlation processing 

to infer target trajectory parameters.  This processing was part of the author’s contribution to 

the work contained in [26], and will be explained in more detail in Section 5.2.6.  

There is however be a form of angular resolution available to the FSR system, this is 

due to the distinct nature of the FSML as discussed in the previous sub-section. Depending on 

the electrical size of the target, the lobe is generally narrow and acts here as an equivalent 

directional antenna.  This scenario is depicted in Figure 2.10-4. 

 

 

Figure 2.10-4.  A form of range resolution in FSR, imposed by the target FSML acting as an effective 
directional antenna as it crosses the baseline (plan view of topology). 

Tg3 is separated from the receiver due to the narrow FSML, even in the case of a wide beam 

receive antenna.   The FSML’s from targets Tg1 and Tg2 are directed towards the receive 

antenna and hence the FS signal is detected.  On traversing the baseline, Tg3 will be resolved 

from Tg1 and Tg2 in distance.  The distance resolution fsR∆ , in Figure 2.10-4 could be 

estimated for narrow regions (small angles) around the baseline as, 

 
ml
fs

fs 2RR R θ
∆ ≈   (2.10.4) 
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where ml
fsθ  is the FSML width (given by (2.10.2)).  Or indeed the angular resolution of two 

targets with respect to the receiver can be described by ml
fs fs 2θ θ∆ = . 

2.10.4 FREQUENCY RESOLUTION AND DOPPLER SHIFT IN FORWARD 

SCATTER RADAR 
The lack of true range resolution is a drawback; however a benefit of FSR is that this absence 

of range resolution gives rise to a non-fluctuating target signal.  Additionally, the target 

equivalent antenna shape remains mostly unchanged in the target visibility region, further 

leading to low fluctuation levels in received signature envelopes.  This means that the 

coherent processing time for the target, can be its full visibility time, greatly improving 

frequency resolution of FSR systems.  As an approximation, if a perpendicular baseline 

crossing is considered at a velocity tgtv , then this visibility time fsτ∆  can be estimated by, 

 ( )cp
fs

tgt

2 tan
R
v

ta ∆ = .  (2.10.5) 

cpR  is the distance of the crossing point distance from the receiver and α  is the maximal 

considered diffraction angle of the target from the receiver (in the ground plane) as pictured in 

Figure 2.10-5.  

 

Figure 2.10-5.  Geometry for estimation of target visibility/coherent time. 

 If it is chosen to define the coherent time by the -3 dB width of the FSCS main lobe pattern 

then, using (2.2.5), 
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 , (2.10.6) 

with gttl  being the target length, for small angles, 

 cp
fs

tgt gtt

R
v l

l
t∆ = .  (2.10.7) 

Thus the frequency resolution fsf∆  is inverse to this: 

 fs
fs

1f
τ

∆ =
∆

 . (2.10.8) 

 

Table 2.10-1 shows a comparison of coherent times/frequency resolution for monostatic radar 

and FSR (last two columns) at different wavelengths, for a Predator UAV.   

Table 2.10-1.  Maximum coherent time in monostatic radar and FSR for ‘Predator’ like UAV target 
(reproduced from [27]) . 

 Monostatic  FSR 
/∆ ∆tϕ  

(°/s) → 

0.2  0.4  0.8  Baseline = 40km 

      
Tgv  = 50m/s 

λ (m) ↓ ∆ Mf  ∆ Mτ   ∆ Mf  ∆ Mτ   ∆ Mf  ∆ Mτ   ∆ FSf  ∆ FSτ  

3.0 0.8 1.25  1.6 0.63  3.2 0.31  0.013 75 

1.5 1.6 0.63  3.2 0.31  6.4 0.16  0.026 37.5 

0.75 3.2 0.31  6.4 0.16  12.8 0.09  0.053 18.8 

0.3 8.0 0.13  16.0 0.06  32.0 0.03  0.13 7.5 

0.1 24.0 0.04  48.0 0.02  96.0 0.01  0.4 2.5 

0.03 80.0 0.01  160.0 0.006  320.0 0.003  1.3 0.75 

 

The table is reproduced from [27] and is part of the author’s contribution to the publication.  

In the FSR case, the target crosses the mid-point of a 40 km FSR baseline at 50 ms-1.  In the 
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monostatic case, the target has a varying rate of change of aspect angle of 0.2, 0.4 or 0.8 °s-1 

and the coherent time is given by (2.3.5).  The table indicates the huge increase in the 

potential time for coherent integration in FSR over monostatic radar, due to the absence of 

phase fluctuations.  This fundamentally allows the development of effective target 

classification algorithms based on shadow inverse synthetic aperture synthesis and target 

profile reconstruction [28]–[30].   

 Figure 2.10-5 also allows the estimation of a maximal observed Doppler frequency, 

using (2.7.1), it can be seen that, the maximal FS Doppler  

 ( )tmax
d

gt2
sin

v
f a

λ
= .  (2.10.9) 

Again, if considering the angles defined by the -3dB FSML width, can be estimated by: 

 tgt tgt

tgt

m

tgt

ax
d

2
sin

2
v v

f
l l
l

l
 

= ≈  
 

.  (2.10.10) 

Which indicates an independence on wavelength for very narrow FSML widths, and is 

presented in [27].  
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3   FORWARD SCATTER RADAR FOR 
SURFACE TARGETS 

This section discusses more in depth the phenomenology behind the FS effect and 

shadow radiation, to give an insight to the underlying scattering principles of FSR.  From this, 

the operating region of FSR, calculation of FSCS and fundamentals of the target signature 

formation in FSR are presented.  Results from controlled anechoic chamber experiments are 

presented to experimentally verify the FS phenomenon.  Target power budget models are also 

derived, which include important multi-path effects of scattering from the underlying 

conductive sea surface.  The signal/power budget models are introduced here such that future 

work (not considered in this thesis) can focus on further validation against the collected 

experimental data described in Section 5. 

3.1 PHENOMENOLOGY OF DOPPLER FORWARD SCATTER 
RADAR 

This section describes important aspects of the phenomenology behind FSR in more 

depth.  In Section 2.10 introducing FSR, general statements were made concerning the FS 

effect/phenomenon and estimation of the FSCS, which are found in generic radar texts.  Here 

a broader overview will be given of the FS effect in terms of the Physical Optics (PO) 

approximation.  This gives enough theory to then permit a description of the target signature 

formation in an FSR system, i.e. one where the FS main lobe actually impinges on the 

receiver and in which we can describe as receiving fully shadow radiation (as opposed to a 

combination of bistatic scattering and shadow field).  The content here is an extension of part 

of the author’s contribution to [26].  We begin with an overview of the forward scattering 

phenomenon, an outline of its theoretical formulation in the context of physical optics and its 
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application to the calculation (or at least estimation) of FSCS.  Then the formation of target 

signatures, the extraction of the useful phase information and the effect of the forward scatter 

cross section are described.  Finally some measured results are shown to highlight and 

emphasise the FS phenomenology. 

3.1.1 THE FORWARD SCATTER EFFECT 
As mentioned in Section 2.10, FSR is a variant of bistatic radar which restricts the 

systems spatial operational area to regions in the vicinity of the radar baseline, but in 

exchange, it allows for enhanced target detection in these areas due to a dramatic increase in 

RCS in the forward direction. This is known as the FS effect [22], [31].  The phenomenon is 

observed in the Mie and optical scattering regimes and indeed was first discussed in a 

published work by Mie [32].  Much study has been carried out in optics [33] and more 

appropriate here is investigation in relation to radar and the estimation of the bistatic RCS of 

objects.  One of the key contributors in this area being Ufimtsev who through his work on 

RCS reduction techniques [34] not only developed the Physical Theory of Diffraction [25] as 

an extension of physical optics, but also formalised the key ideas of shadow radiation  and the 

shadow contour theorem related to FS.  The concept of the shadow radiation was well known 

beforehand, from studies of black body scattering [35], but not defined in the context of PO. 

In PO the total scattered field scE of an object can be separated into two constituent 

fields, the reflected field refE  and the shadow field shE  [22], [36] such that, 

 sc ref shE E E= + .  (3.1.1) 

The shadow field is so termed because the field is most prominent (though by all means not 

necessarily confined) in the spatial regions which are geometrically shielded (or shadowed) 

by the target, i.e. about the axis directly behind the target in the FS direction. Figure 3.1-1 
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gives a pictorial overview of the concept.  The figure shows an opaque body being 

illuminated by an incoming plane wave and indicates the reflected radiation and the shadow 

region.  The shadow contour Γ  defines the geometric boundary between the illuminated and 

non-illuminated sides of the object—it should be highlighted that the object is truly a 3-D 

volume and the contour is a planar shape.  

 

Figure 3.1-1.  Plane wave illumination of an opaque body, indicating incident and reflected radiation and 
the region of geometric shadow where shadow field concentrates. 

No attempt to indicate the shadow field structure is given in the figure and indeed there will 

be no rigorous theoretical derivations here, they can be found or are summarised in the 

following references, [25], [37], [38] and references therein.  However, general statements 

relevant to use in the development of FSR signal models can be made from the theory.  

Firstly, the shadow field structure is purely determined by the shadow contour, Γ , of the 

target object, not its full 3-D shape.  This was summed up by Ufimtsev in the ‘Shadow 

Contour Theorem’: 

‘The shadow radiation does not depend on the whole shape of 
the scattering object, and is completely determined only by the size 
and the geometry of the shadow contour’    

Moreover, the shadow field description (in the scalar theory) is identical to the Kirchoff 

approximation for the field scattered by a planar absorbing plate with shape defined by the 
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shadow contour.  Secondly, from black body theory [38], the shadow field is independent of 

the material (and hence electromagnetic) properties of the target object.  If the target were 

completely absorbing (true black body), the shadow field would be the only scattered field 

present—no reflected component would exist.  Both the fact that the shadow radiation doesn’t 

depend on the target 3-D shape or material provides major limitations in application of RCS 

reduction techniques such as the use of radar absorbing materials (RAM) or target surface 

shaping.  Ultimately if considering a perfect electrically conducting target object, the best that 

can be achieved by a perfect RAM coating is a reduction of one half of the total scattered 

power—such limitations and techniques are discussed in more detail in [37].  Thirdly some 

statements can be made about the asymptotic forms of the shadow field.  In the shadow region 

close to the target object, the field forms as a result of diffraction processes in the vicinity of 

the shadow boundary and is composed of creeping waves, surface diffracted waves or edge 

waves, dependant on the object shape.  In this region (and indeed at asymptotically high 

frequency) the radiation can be considered as a wave that approximately cancels the incident 

field, i.e.   

 sh incE E≈ −  (3.1.2) 

Now in the far field, the shadow radiation is interpreted as a result of co-phased interference 

of waves arising from the vicinity of the shadow boundary; the shadow field concentrates in 

the forward direction close to the FS axis, which is the focal line.  It is this concentration of 

the shadow field that is perceived as the forward scatter effect.  Figure 3.1-2 (adapted from 

[25]) shows an example of the total PO scattered field for a cylinder (illuminated at 45° to the 

length), along with the shadow radiation component of this field.  It clearly highlights the 

concentration of the shadow field around the forward scatter axis, and indeed the fact that the 
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shadow radiation forms the major component of the field over a certain angular range about 

the forward direction.  It is apparent in the figure and can be again shown from the theory 

[22], that in the direct FS direction (45° in Figure 3.1-2) the field is entirely composed of 

shadow radiation and in the backscatter direction (225° in the figure) the field is entirely 

composed of reflected radiation.  

 

Figure 3.1-2.  The total physical optics scattered far field of a cylinder, showing the contribution from 
shadow radiation which is focussed in the FS direction ( 45° in this figure)—adapted from [22], [25]. 

3.1.2 RELATION OF SHADOW RADIATION/FORWARD SCATTER EFFECT 

TO FORWARD SCATTER CROSS SECTION 
It can be shown [22] that if the incident field on a target, incE , is described by a plane wave 

travelling in the z direction i.e.  

 inc 0
ikzE E e= ,  (3.1.3) 

where 0E is the field strength and k  is the wavenumber, then exactly on the z axis (FS axis) 

on the shadow side of the target, the shadow far field has its maximum value max
shE , given by 

 max
sh 0 inc

ikziA e iAE E E
z zλ λ

= = .  (3.1.4) 
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A  is the area of the shadow contour. The imaginary amplitude in (3.1.4) implies that the 

shadow far field on the FS axis has a 2π  rad phase difference to the incident field; this is 

important for the next section when considering the formation of the FSR target signature.  

Using (3.1.4), and (2.3.1), it is therefore possible to write the equation for the maximum 

FSCS, 

 

2max 2 2
shmax 2 2

fs 2
inc

4 4 4
E iA Az z

zE
s π π π

λ λ
 = = =  
 

.     (3.1.5)   

The variables in the equation have been defined previously.  This corresponds to the earlier 

stated formula in Section 2.10.  The shape of the field and thus FSCS pattern can be 

approximated by considering what was stated in the previous sub section; the shadow 

radiation takes an identical form to that of an illuminated absorbing plate with shape defined 

by the shadow contour.  Through application of Babinet’s principle [11], which 

fundamentally states that the diffracted field from an opaque screen  and its complimentary 

screen i.e. a screen which is transparent where the other is opaque and vice-versa, are the 

same except for a change of sign.  It is possible therefore to treat the problem as one of 

diffraction from an aperture in a screen of which the aperture shape is given by the shadow 

contour.  The process of reducing the problem from a volumetric target object through to 

diffraction from an aperture is pictorially described in Figure 3.1-3.  It is seen (which was 

only stated in  Section 2.10) that the shadow field and therefore the FSCS pattern can now be 

described by what is effectively an aperture antenna power pattern, with the far field main 

lobe maxima along the FS axis given by (3.1.5).  Analytical power patterns for the far field of 

rectangular and elliptical apertures were given in Section 2.2.  As mentioned previously, as 

the electrical dimensions of the target increase, the FS enhancement increases via (3.1.5),  
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Figure 3.1-3.  Reduction of problem of calculating the FS shadow field of a volumetric target body. The 
application of the shadow contour theorem allows replacement of the target with an absorbing screen with 

shape defined by the target shadow contour.  Subsequently the application of Babinet’s principle allows 
further replacement by a complimentary aperture in an infinite screen. 

 

however, the FSML width narrows as the pattern is related to the Fourier transform of the 

aperture.   If the shadow contour can be found for an arbitrary shaped target, the FSCS pattern 

could be estimated using the Fourier Transform of the equivalent co-phasal aperture defined 

by the contour, i.e. 

 ( ) ( )
SH

2

2 22
0 02

A

4( ) lim 4 / exp 2 /fs sh incR
r R E E j r dSpsppl    r

l→∞
 = =  ∫

 
 . (3.1.6) 

 In which, ρ  is a radius vector to point PA on the aperture, 0r
   is the unit vector towards the 

evaluation point P and R


 is the radius vector to that point, SHA  is the area of the aperture.  

The notations and coordinates are depicted in Figure 3.1-4 

53 
 



 

Figure 3.1-4. FSCS pattern calculation using Fourier Transform from approximation by equivalent 
aperture antenna. 

3.1.3 FORWARD—BISTATIC SCATTERING BOUNDARY 
 When a target is traversing through an FSR system as in Figure 3.1-5, it has to 

approach from bistatic angles β  which are much less than 180° , therefore the angle rα  

between the FS axis and the receiver can be large. 

 

Figure 3.1-5.  A target approaching and crossing the FSR baseline, will approach from a bistatic angle 
< 180° .  In these regions, the angle from the FS axis to the receiver is large and the received scattered 

signal will be composed of both shadow and reflected radiation. 

As shown before with reference to Figure 3.1-2, at angles away from the FS axis the scattered 

field at the receiver is not necessarily purely shadow field, it only is when the target is on the 

baseline at zero bistatic angle or in the case of a true black body.  Therefore, scattering will 

also be composed of bistatic reflections from the target, which will vary with target electrical 

size and indeed shape and material. The replacement of target by aperture method will give 

the shadow field contribution, but in order to model FSR systems it is useful to know over 
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what range of angles near FS in which shadow radiation is dominant and when does an 

appreciable field contribution from bistatic scattering start to occur. Also it would be of 

interest to know the range of target electrical sizes the theory is applicable for in general, even 

though this is generally thought of as an optical approximation. Now this could be forgone if 

it was possible to accurately predict the full 3-D scattered electric field patterns of our targets, 

unfortunately this is only possible in certain cases as explained previously, or indeed we could 

use EM packages to calculate this.  However for the investigation of many trajectories, EM 

simulation would take a long time to compute over many incident angles.  In order to draw 

some gross conclusions it is possible to use the reference target of a perfect electrically 

conducting sphere, for which the Mie series [15] is a ‘complete’ analytical solution—

complete in that it still requires a sum to infinity for precise results.  Sum terms can however  

be limited according to some rules.  The Mie series gives the complete scattered far field 

(vector field), whereas the aperture antenna approximation will give the (scalar) component of 

this related to the shadow field and thus the ‘FS effect’.  Figure 3.1-6 shows a comparison of 

the calculated Mie and circular aperture FSCS’s for different scattering regimes or electrical 

size of the sphere.  (a) shows the Rayleigh scattering regime, where the sphere diameter 

s 0.5D λ= , (b) the Mie region s 10D λ=  and (c) the optical region where s 100D λ= .  It is 

clear from (a) that the aperture estimation of the FSCS fails to some extent, it does not define 

the FSCS at 0° appropriately or the lobe structure—as expected in the Rayleigh region, where 

indeed the scattering mechanism is not described by the shadow contour theorem.  In the Mie 

region (b) it is clear that for the main lobe the three curves coincide well, inferring that the 

main lobe is formed primarily by the shadow field component, this could also be concluded to 

a lesser degree for the first side lobes.  It is also apparent that this is true for both wave 

polarisations.  The larger electrical dimension sphere (c) shows similar conclusions, however  
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Figure 3.1-6.  Comparison of FSCS’s of a sphere as calculated by Mie series (full field)  and circular 
aperture approximation (shadow field) for different electrical sizes.  Sphere diameters are: (a) 0.5λ

(Rayleigh), (b) 10λ (Mie) and (c)  100λ (Optical). 

in this case the shadow field dominates many side lobes ( 5 6≈ −  ), though the extent of the 

dominance of the shadow field is not necessarily any larger in absolute angle that the case of 

(b).  In any case, it is clear that the FSML can be treated to be composed solely of the shadow 

field. 

3.1.4 TARGET SIGNATURE FORMATION IN FORWARD SCATTER RADAR 
In essence the target signature in FSR can be thought of as a composition of both the 

phase signature due to a point like target traversing the FSR baseline over time, and an 

amplitude modulation imposed upon this by the FSCS and any present propagation effects.  

The next sub-sections will describe the phase/Doppler signature, followed by the effect of the 
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FSCS.  Only once this generalised form of the signature is described will propagation effects 

be introduced to give a full signal model.  

3.1.4.1 TARGET PHASE/DOPPLER SIGNATURE 

As a target moves through (or indeed in the vicinity of) the baseline, two main signals 

play a role in forming the target phase signature at the receiver of an FSR system, these are 

highlighted in Figure 3.1-7.  The first signal, resulting from the topology of FSR, is the strong 

unobscured direct path signal from transmitter to the facing receiver (otherwise known as the 

leakage signal).   

 

Figure 3.1-7.  Received components forming the fundamental target phase signature in FSR.  Highlighting 
direct path (leakage) and delayed scattered (shadow) signal from the target and the changing ranges as 

the target moves on its trajectory. 

The second is the weaker signal scattered from the target and in the case of FSR is formed by 

the shadow field of the target being cast over the receiver.  It is the interference of these two 

signals which forms the target phase signature.  Thus, at the receiver the input signal ( )inS t

can be treated as the sum of the direct path ( )dpS t  and the delayed signal scattered from the 

target ( )tgtS t , 

 ( ) ( ) ( ) ( )( )in dp tgt dp 0 tgt 0 tgtcos(2 ) ( )sin 2S t S t S t A f t A t f t t tpp  = + = + +  .  (3.1.7) 
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Where dpA and tgt ( )A t are the amplitudes of the direct path and target signals respectively. In the 

case of FSR with stationary antennas the direct path amplitude dpA  is stable, the target 

amplitude tgt ( )A t  will change with time due to propagation effects.  0f  is the carrier 

frequency and ( )tgtt t  is the delay time of the scattered signal in relation to the direct path, 

which may1 vary with time for the moving target, providing the phase modulation (Doppler 

shift).  Initial phases are omitted with no loss of generality due to the coherency of both 

signals as they arise from the same source.  It should be noticed that in (3.1.7) the target 

signal, being shadow radiation, is an additional 2π  radians phase shifted in relation to the 

direct path transmitted signal (as shown by (3.1.4)), hence the use of one cosine and one sine 

term.  When away from the baseline, the target signal may also contain bistatic reflection 

components.  As noted in Section 3.1.3, the magnitude of these bistatic components in 

relation to the shadow field depends on the target electrical size (Figure 3.1-6)—the larger the 

target, the wider the scattering angle over which the shadow field dominates.  This signal 

model based on pure shadow radiation would therefore be valid over a wider range of 

scattering angles when representing targets in the Mie and optical scattering regimes.     

The experimental hardware built for the research presented in this thesis uses what is termed a 

‘self-mixing heterodyne’ receiver to extract the Doppler by means of a non-linear 

transformation of the input signal.  As explained in Section 2.10, due to the large bistatic 

angles encountered in FSR, the Doppler frequencies involved are very low, in the order of Hz.  

This type of receiver fundamentally enables the extraction and measurement of these very low 

frequencies, which may otherwise be masked in the background of transmitter phase noise; 

1 The term ‘may’ is used in recognition that in some special cases e.g. motion around iso-range contours 
or along the FSR baseline, motion will not produce a varying delay.   
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further descriptions of the hardware and discussion of phase noise can be found in Section 

4.2.1 and its subsection 4.2.1.1 respectively.  

Commonly in bistatic radar, the direct path signal is considered to be a source of unwanted 

interference, for FSR however, it is vital.  In such a ‘self-mixing’ receiver, the direct path 

signal component acts as a reference waveform, one which is however combined with the 

target returns at the receiver input and is not used independently.  A detector with a 

quadrature characteristic, or ‘square law’ detector (SLD) is considered here, acting on the 

input waveform ( )inS t , which after passing through a low pass filter (LPF) gives (using 

standard trigonometric identities) the following receiver output, ( )outS t :   

 ( ) ( ) ( )( )

( )

( ) ( )( )

out

2 2SLD LPF2 dp tgt
in in dp tgt 0 tgt

out dc ph 0 tgt

sin 2
2

sin 2

S t

A A
S t S t A A f t t

S t A A f t t

p

p

+
→ → +  

⇒ ≈ +

))))))+))))))

.  (3.1.8) 

Where
2 2

dp tgt
dc 2

A A
A

+
= , which given that dp tgtA A�   is essentially a dc level equal to the 

direct path signal power, sometimes referred to as the received signal strength indicator 

(RSSI). ph dp tgtA A A=  is the phase signature envelope and ( )ph sinA ψ , where ( )0 tgt2 f t tψ π= , 

is the modulation on top of the RSSI dc level.  It can be seen here that if the value of 

( )tgt const=t t  i.e. a stationary target, then the sin term is also a constant and the target just 

contributes to the received signal dc amplitude, as one would expect.  Also from Figure 3.1-7, 

an expression for the target signal delay, ( )tgtt t , can be found: 

 ( ) ( ) ( )
tgt

R t R t D
t t

c
+ −

= t r ,  (3.1.9) 
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where ( )tR t  and ( )rR t  are the transmitter to target and receiver to target ranges respectively 

and D  is the baseline length.  The numerator is the total extra distance travelled by the target 

signal w.r.t. the direct path, c  is the speed of signal propagation (speed of light) and t  

indicates the dependence on time due to target motion.  The argument of the sin function in 

(3.1.8) is the phase of the point-like target signature ( )tψ as it travels through the system, and 

can be written in full using (3.1.9) as: 

 ( ) ( ) ( ) ( )( )0
0 tgt t r

22 ft f t t R t R t D
c
πψ π= = + − . (3.1.10) 

This describes the phase in the general sense, the dependence on time is indicated but this has 

to be calculated in relation to the target kinematics and initial conditions.  The method of 

calculation of the ranges tR , rR  and d   is straight forward and described with the aid of 

Figure 3.1-8. 

 

Figure 3.1-8.  Variables to calculate ranges required for FSR phase signature calculation as target 
traverses the system.  Time dependence is omitted for figure clarity. 

The figure shows the Tx and Rx antenna masts, with heights th  and rh  respectively, 

separated by a distance along the ground of bl , centred on the coordinate origin and extending 

in either direction along the y  axis.  The target, depicted by its phase centre, is undergoing 
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motion and as such has a time dependent position ( ) ( ) ( )( )tgt tgt tgt tgt, ,x t y t z t=p .  There are 

two further ground paths shown, ( )tl t  and ( )rl t , which correspondingly join the Tx and Rx 

antenna mast bases to the target ground coordinates ( ) ( )( )tgt tgt,x t y t .  It can be seen that 

knowing bl , the baseline distance D  can be calculated thus, 

 ( )2 2
t r bD h h l= − + .  (3.1.11) 

It can therefore by similar means be shown that, 

 ( ) ( )( ) ( )2 2
t t tgt tR t h z t l t= − +   (3.1.12) 

and ( ) ( )( ) ( )2 2
r r tgt rR t h z t l t= − +  , (3.1.13) 

where ( ) ( ) ( )
2

2 2b
t tgt tgt2

ll t y t x t = + + 
 

  (3.1.14) 

and ( ) ( ) ( )
2

2 2b
r tgt tgt2

ll t y t x t = − + 
 

.  (3.1.15) 

To give an example of the form of the target phase signature, it is possible to consider the 

simplest case of a mid-point, perpendicular crossing of the baseline as shown in Figure 3.1-9.   

 

Figure 3.1-9.  Plan view of target trajectory of mid-baseline, perpendicular crossing.   
Scenario used to highlight general features of target phase signature. 
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If the antennas and target height are all considered equal, the equations for the ranges ( )tR t  

and ( )rR t  in (3.1.10) are given by: 

 ( ) ( ) ( )
2

2
t r tgt2

DR t R t x t = = + 
 

,  (3.1.16) 

with 

 ( )tgt 0 tgtx t x v t= + ,  (3.1.17) 

where tgtv , the target speed has purely positive x  component.   The phase and phase signature 

for this trajectory is shown in Figure 3.1-10 for a speed of 5 and 10 ms-1 crossing a 500 m 

baseline. 

 

Figure 3.1-10.  Doppler phase (a) and phase signature (b) for target mid-point crossing of 500 m baseline 
at 5 and 10 ms-1.  

It can be seen that the signature is a chirp like waveform and the phase progression can 

actually be described by the progress of the target through Fresnel zones [39] as shown 

pictorially in Figure 3.1-11. 
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Figure 3.1-11.  Target phase signature as a consequence of target motion through consecutive 
(constructive and destructive) Fresnel zones along the trajectory. 

 

In the preceding discussion and examples the amplitude phA  in (3.1.8) has been neglected in 

order to purely show the phase description of the signal (the amplitude is set to unity), now in 

truth the phase signature is modulated by an envelope given by the amplitude of the target 

scattered signal.  This amplitude is both a consequence of the FSCS pattern and the signal 

propagation.  Neglecting propagation effects for now, the next sub-section will concentrate on 

describing/estimating the contribution of the target FSCS pattern to the target phase signature 

envelope. 

3.1.4.2 TARGET SIGNATURE ENVELOPE – THE EFFECT OF FORWARD SCATTER 
CROSS SECTION 

This section is dedicated to estimating the effect of target FSCS on the Doppler 

signature envelope.  When modelling the target signatures in FSR, in order to limit the 

complexity and variety of the simulations it is assumed that target has a uniform linear 

trajectory when crossing the FSR baseline. This is a reasonable assumption stemming from 

the consequence of having the relatively narrow FSCS patterns, visibility time (signature 

length) is generally in the order of seconds, it is not likely that any (at least ground based) 

target would make a significant manoeuvre or change of speed over this short time.  The 
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target is treated as a plate of given length and height traversing the baseline, complying with 

and representing the aperture approximation of the FSCS as described before in Section 3.1.2.  

Figure 3.1-12 shows as an example, a rectangular plate of height tgth , length tgtl , travelling at 

velocity tgt x y z( , , )v v v=v  with a time dependent position tgt tgt tgt tgt( ) ( ( ), ( ), ( ))t x t y t z t=p of the 

phase centre of the target at it traverses the baseline. 

 

Figure 3.1-12.  Rectangular plate target traversing the FSR baseline. 

The angles hα  and vα  are the horizontal and vertical view angles of the transmitter to the 

target, hβ and vβ  are the corresponding angles for the receiver, given by, 

 ( ) ( )

( )
tgt

h
b

tgt

arctan

2

x t
t l y t

a

 
 

=  
 +
 

,  (3.1.18) 

 ( ) ( )

( )
tgt

h
b

tgt

arctan

2

x t
t l y t

b

 
 

=  
 −
 

,  (3.1.19) 

 ( ) ( )
( )

tgt t
v

t

arctan
z t h

t
l t

a
 −

=   
 

  (3.1.20) 

and ( ) ( )tgt r
v

r

arctan
( )

z t h
t

l t
β

− 
=  

 
.  (3.1.21) 
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Where  ( )tl t   and ( )rl t  have been previously defined in (3.1.14) and (3.1.15).  ψ  is the angle 

the target velocity vector ( )x y,v v  component makes with the line joining antenna bases, 

expressed by,   

 x

y

arctan
v
v

y
 
 =
 
 

.  (3.1.22) 

In order to calculate the FSCS in the direction of the receiver for a given point along the 

trajectory, the effective length eff
tgtl , height eff

tgth  and thus area eff
tgtA of the target perpendicular to 

the incident wave must be calculated, this is highlighted in one dimension in Figure 3.1-13. 

 

Figure 3.1-13.  Idea of target effective dimension eff
tgtl and area eff

tgtA ,  perpendicular to the incident beam.  
    

In Figure 3.1-13, ζ  is the angle the target makes with the perpendicular to the 

incident wave beam.  So as the plate target progresses in its motion, the FSCS directed 

towards the receiver is defined by the aforementioned transmitter and receiver view angle 

variation over time.  Figure 3.1-14 shows the geometries required for calculation.  Figure 

3.1-14(a)-(c) show the plan view of three different parts of the target trajectory for a target 

originating in the x−  dimension, travelling with positive x  and y velocity components, all 

other FSR trajectories can be derived from this due to symmetry. (d) gives the side on view of 

the trajectory.  All variables relating to the figure have been previously described, except h/vζ   
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Figure 3.1-14.  Geometries for the calculation of the received component of the FSCS pattern of a moving 
target, originating in the −x  dimension with positive ,x y  velocity components; (a) through (c) show 
plan views for different sections of the trajectory.  Side on view parameters in (d). 

Which relates to ζ  in Figure 3.1-13 and fsθ  and fsf  which are the azimuth and elevation 

angles from the FS axis to the receiver.  These are in fact the FSCS pattern angles, 

corresponding to those in the aperture antenna descriptions in Section 2.2 and from the figure 

can be calculated as: 

 ( ) ( ) ( )fs h ht t tf α β= +   (3.1.23) 

and ( ) ( ) ( )fs v vt t tθ α β= + .  (3.1.24) 

For completeness, Figure 3.1-14(a) shows the part of the trajectory where 90hα ψ+ > °  .  In 

this case,  

 ( ) ( ) ( )( )h h 90  for  90ht t tζ ψ α α ψ= + − + >  [°]. (3.1.25) 
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Figure 3.1-14(b) shows the trajectory where 90hα ψ+ < ° and (c) the continuation of this to

x+ .  In these cases, 

 ( ) ( )h h90t tζ ψ α= − +  [°], (3.1.26) 

which also accounts for the sign change in hα  as the target crosses the baseline.  The 

geometry of Figure 3.1-14(d) gives, 

 ( ) ( )v vt tζ α= .  (3.1.27) 

Thus it is now possible to calculate the effective length ( )eff
tgtl t , height ( )eff

tgth t  of the planar 

target over the course of the trajectory: 

 ( ) ( )( )eff
tgt tgt hcosl t l tζ= ,  (3.1.28) 

 ( ) ( )( ) ( )( )eff
tgt tgt v tgt vcos cosh t h t h tζ α= = ,  (3.1.29) 

In any general measurement scenario, the shape of the target is a priory unknown, it is not 

possible to simulate the FSCS for all target shape possibilities and indeed not computationally 

efficient and so calculation of the received values of the FSCS are performed using the shapes 

with analytical patterns. The effective area of the aperture/plate target is dependent on the 

shape of target chosen, for the rectangular shape, it is given by  

 ( ) ( ) ( )eff eff eff
rect tgt tgtA t l t h t= .  (3.1.30) 

Or for an elliptical shaped target,  

 ( ) ( ) ( )eff eff eff
elip tgt tgt4

A t l t h tp
= .  (3.1.31) 
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It is now possible to write down the forms for the FSCS in the direction of the receiver for 

both a rectangular and elliptical shaped target using the equations for the aperture antenna 

patterns, (2.2.7) and (2.2.13), combined with the equation for the maximal FSCS (2.10.1) and 

those derived in this subsection. Such that for the rectangular target, 

 ( ) ( ) ( ) ( ) ( ) ( )
eff effeff
tgt tgtrectrect

fs fs
2

fs

2

24 sinc sin sinc sin
2 2

k kh t l tA t
t t tsf  θπ

l
    
            

=


  (3.1.32) 

and for the elliptical target, 

 ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

eff eff
eff tgt fs tgt fs
elipelip

fs
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2
2 22
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tgt fs t

22
1

2 22
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2

2 sin sin
4

sin sin

l t t h t tA t
t

l t t h

k

k t

J

t
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θ f

θ fl
s

 +   
    

+ 


=
 


.  (3.1.33) 

Now the received FSCS pattern of an extended target is calculable and the Doppler 

signature of a point target is known from (3.1.10) the two can be combined.  Figure 3.1-15 

shows the FCSC pattern (a) and that pattern as applied to the phase signature (b) of Figure 

3.1-10 for a 2.5 m long, 1 m high rectangular target—(c) and (d) gives the equivalent when 

simulated with an elliptical target of the same dimensions.  The full formation of the 

fundamental target signature can therefore be seen as being created from two processes, the 

progress of the target through Fresnel zones giving the phase signature and the diffractive 

processes (which are Fraunhoffer like in the far field) of the scattering from the ‘aperture’ 

target forming the signal envelope.  This is shown pictorially in Figure 3.1-16, where the 

target progresses across the FSR baseline through the Fresnel zones causing the peaks and 

troughs in the phase signature, with the directive FSCS pattern providing the envelope 

modulation.  The phase gives information on the target trajectory, and the envelope gives 

information on the target itself, size and even shape. 
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Figure 3.1-15.  FSCS pattern at receiver (a)(c) and phase signatures from Figure 3.1-10 modulated 
according to FSCS pattern (b)(d). 

 

 

Figure 3.1-16.  Target signature as a consequence of the constructive and destructive interference as the 
target travels through consecutive Fresnel zones combined with the envelope imposed by the FSCS 

(Fraunhofer like aperture diffraction) pattern. 
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3.1.5 VERIFICATION OF FORWARD SCATTER PHENOMENON IN A 

CONTROLLED ENVIRONMENT—EXPERIMENTAL STUDY IN ANECHOIC 

CHAMBER 
A set of controlled FSR experiments were performed in an anechoic chamber.  The 

main purpose of which was to confirm the phenomenological principles underlying FSR 

which have been described in this section (Section 3.1) thus far.  The measurements and 

analysis shown here are a part of the author’s contributions to publications [26] and [41].  By 

comparing signatures from absorbing and metallic targets with similar silhouettes, the 

independence of the shadow radiation from the actual target shape and material could be 

investigated.  The targets used consisted of two types, cylinder and rectangular plate, each 

consisting of one metallic and one covered with absorbing material (Laird Technologies Q-

Sorb RFSB 1062 [40]) with peak of absorption at 5.46 GHz (5.5 cm wavelength).  The 

absorbing material will also help to reduce any bistatic reflections.  The experimental setup is 

shown in Figure 3.1-17, where a polystyrene rail was setup along which to pull the targets to  

 

Figure 3.1-17.  Anechoic chamber experimental setup to test FSR phenomenology.  Red arrow shows 
direction of target motion, dashed line indicates the FSR baseline. Figure adapted from [26]. 

ensure the same trajectory on each test.  Speed data for the target was measured through 

comparing timestamps on video recordings with distance markers on the rail—further details 

Tx Horn 

Rx Horn 

Target 
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can be found in [26] and [41].  The Tx and Rx were positioned at distance of 4.25 m apart to 

provide far field operation.  All targets have the same rectangular cross sections of 9 x 13 cm 

(height x length) in order to make effective comparisons between the recorded signatures.  

The dimensions also infer that the scattering regime for this experimental setup lies between 

the Mie and Optical regions. Recorded Doppler signatures—received signal strength indicator 

(RSSI) signals with leakage subtracted— are shown in Figure 3.1-18 (a) and (b) for absorbing 

and metallic cylinders and in Figure 3.1-19 (a) and (b) for absorbing and metallic plates. 

Using the previous sub-section signal model, a signature has been simulated for the plate for 

comparison in (c).  

From comparison of Figure 3.1-18(a),(b) and Figure 3.1-19(a),(b) it can be seen that 

around the forward scatter region at 180° (the FS main lobe region), the amplitudes of the 

signatures for all target shapes and materials coincide very well with each other.  The 

envelopes shown in Figure 3.1-18 are formed by applying a low pass filter to the signature 

magnitude, and are solely included here to highlight the main lobe region similarity between 

the absorbing and metallic targets. The similarity of the results of these comparative 

measurements validates the approximation that the target signal in the FS region is 

independent of the complete 3D object shape and material.  It depends purely on the 

silhouette shape, agreeing with the ‘Shadow Contour Theorem’ stated in 3.1.1.  As the bistatic 

angle tends away from the main lobe, in regions say less than 160° and greater than 200°, the 

amplitude of the signal from the absorbing cylinder in Figure 3.1-18 decreases.  While for the 

metallic cylinder the amplitude remains reasonably constant. This difference indicates the 

transition from FS to bistatic reflections in the metallic case due to lack of absorbing cover, 

which supresses these reflections in the absorbing case.   
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Figure 3.1-18.  Experimental comparison of FSR signatures of similar dimension absorbing (a) and 
metallic (b) cylinders.  Target signature envelope is formed by application of a low-pass filter to the 

Doppler signature magnitude.  This is added to indicate similarity of the Doppler signal amplitude and 
structure in the forward scatter region.  Phase discontinuities from FS main lobe to side lobe transition 

are arrowed in red Figure adapted from [26]. 

 

 

 

Figure 3.1-19.Experimental comparison of FSR signatures of similar dimension absorbing (a) and metallic 
(b) plates.  Simulated signature for ‘absorbing’ plate (c), based on previously derived FSR signal model.  

Phase discontinuities from FS main lobe to side lobe transition are arrowed in red.  Figure is adapted 
from [26]. 
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This effect is less prevalent in the plate experiment (Figure 3.1-19) where the bistatic 

reflections are reduced due to the thinness of the target, and the signatures of absorbing and 

metallic structures maintain similarity over a wider angle.  Phase discontinuities may be 

observable in the signals around 160° (and symmetrically 200°) which indicate transition 

between FSCS main and side shadow lobes, these are more obscured in the metallic cases due 

to the additional bistatic reflections.  When they are visible, the discontinuities are marked on 

the figures with red arrows.  One final remark is that the simulated signal of Figure 3.1-19(c) 

coincides with the measured signature of the absorbing plate, as would be expected from the 

shadow field based FSR signal model using a rectangular aperture target approximation.  

These measurements provide at least partial verification for its accuracy and use. 

To highlight the benefit of using FSR to detect stealth targets, records have been made 

of the same cylinder targets using a monostatic radar configuration. Tx and Rx antennas were 

placed next to each other with enough separation to provide adequate isolation and the targets 

performed the same trajectory as in the previous experiments.  The recorded signatures are 

found in Figure 3.1-20.  

 

Figure 3.1-20. Monostatic signatures of the metallic (a) and absorbing (b) cylinders.  Figure adapted from 
[26]. 

A dramatic reduction of 14 dB of the peak backscattered power is seen when comparing the 

metallic and absorbing targets and highlights the difficulty posed by stealth targets in 

monostatic radar. 
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3.1.6 EFFECT OF TARGET DIMENSION ON SCATTERING 
The previous descriptions of target signature formation in this section have been 

related to a specific scattering mechanism from the target i.e. Fraunhofer diffraction, from the 

equivalent aperture.  Target signatures have however been measured in the maritime 

environment for cases where the receiver is not in the far-field region of the target due to the 

target size.  The Fresnel parameter S  can be used to classify the scattering region,    

 
2

4
effl

S
l

= ,  (3.1.34) 

in which effl  is the largest effective dimension of the target object.  Thus in the 

Fraunhofer region d S� and for the Fresnel diffraction region d S≈ , where d  is the 

distance from target to receiver.  Maritime target signatures were recorded for a 300 m base 

line at 7.5 GHz and the targets were approximately base line mid-point crossing.  The 

experimental data gathering and subsequent analysis shown here are a part of the author’s 

contributions to publications [26] and [41].  The targets and corresponding signatures are 

shown in Figure 3.1-21.   Figure 3.1-21(a) shows a small co-operative target (inflatable boat) 

estimated 60S = m and so in the Fraunhofer diffraction region.  It can be seen here that the 

direct path/leakage signal is essentially larger than and modulated by the scattered signal—as 

in the phenomenology/derivations thus far. A larger sail boat in (b) has an estimated 160S =  

m, which is on the Fraunhofer/Fresnel diffraction boundary for the given baseline.  The 

leakage signal is comparable to the target scattered signal. (c) defines the case where full 

signal blocking occurs (here 630S =  m).  In (b) and (c) it is still possible to see the typical 

passage through the Fresnel zones at the leading and trailing edges of the target signature.  
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The largest targets are obviously detectable; however it is only the smaller target (a) for which 

any motion parameter data may be gained from the phase/Doppler structure of the signal.   

 

Figure 3.1-21.  Recorded maritime FSR signatures of targets crossing the middle of a baseline of length 
d = 300 m. a) small inflatable boat, b) medium size yacht and c) large motor boat. Figure reproduced from 

[26]. 

 

The scattering mechanism also has dependence on the aspect angle of the target, as this will 

determine the dimension of the target presented to the FSR baseline.  A long boat target for 

example, may present a much smaller target dimension if drifting sideways through the FSR 

baseline.  The fundamental scattering mechanism may then change. 

3.2 FORWARD SCATTER RADAR POWER BUDGET FOR 
SURFACE TARGETS 

The previous section made an attempt to explain the major phenomenology behind 

FSR and the fundamental target signature formation.  However for useful estimation of power 

budget, the effects of propagation must obviously be included.  In this section a more in depth 

description of the signature formation is described with regard to estimating the received 
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power, incorporating propagation losses/effects.  The fundamentals of this analysis are related 

to the basic link budget models of free space and two-ray path propagation, but with further 

adaptation to not only include point to point links, but FSR targets as well.  A similar 

description can be found in [42], however, the derivation is important in understanding 

propagation in FSR, here it is extended to take into account the full FSCS aperture description  

and potential effects to consider in propagation over the sea surface. 

3.2.1 POWER BUDGET IN FREE SPACE 

 

Figure 3.2-1.  Free space propagation topology, consisting of two paths, one direct/leakage between 
antennas and one via target. 

If we consider the scenario as in Section 3.1 and the diagram in Figure 3.2-1, the 

power budget calculation for free space propagation relies on two paths.  One being the line of 

sight (LOS) between antennas, over a distance D , the other being the path via the target, with 

range t rR R+ .  The LOS signal power at the receiver input can be described by the standard 

free space communications point to point link budget equation. This is known as the Friis 

equation [43] and takes the form,  

 
2

fsp
lkg t t r t t r fsp4

P PG G PG G L
D
l
p

 = = 
 

.  (3.2.1) 
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fsp
lkgP  is the power at the receiver input/receive antenna output.  In this radar analysis, we will 

term the direct path/LOS signal as the antenna leakage signal, labelled here as lkg and free 

space is abbreviated to fsp to avoid confusion with the use of fs for forward scatter.  tP  is the 

transmitter power, t/rG  are the transmit and receive antenna gains, D  is the baseline distance 

between antennas and λ  is the wavelength of the transmitted signal.  fspL  is termed the free 

space loss.  This equation is somewhat a misguiding, as it indicates that propagation through a 

vacuum has some loss properties which are dependent on wavelength, this dependence 

however comes from the definition of the receiving antenna gain (as given in Section 2.2) and 

(3.2.1) can be written thus, 

 

Power density at 
distance  from source

fsp t
lkg t r2

Isotropic
source radiation

4

d

PP G A
Dp

=




.  (3.2.2) 

Where rA  is the receive antenna effective aperture/area.   

 
2

r
r 4

GA λ
π

=   (3.2.3) 

The first part of (3.2.2) is the isotropic radiation factor, it gives the power density [Wm-2] at a 

radial distance D  from an isotropic source, i.e. the source power distributed over the surface 

area of a sphere of radius D .  The antenna gain tG  increases (or indeed can decrease in a 

null) the power density in a given direction and then the effective area of the receiving 

antenna, rA , intercepts a proportion of this.   

The received power for the path to the receiver via the target can be found following 

the same procedure, however the antenna receiving aperture is replaced by the target cross 
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section.  One definition of the cross section is that it can be seen as the area over which if the 

intercepted power were re-radiated isotropically, then it would deliver the same power at the 

receiver as the target itself.  Thus, on interception with the target, the signal can be seen as 

then re-radiating isotropically (spherically) towards the receiver which then again intercepts a 

proportion of the radiated power given by the antenna effective area.  The power received at 

the antenna from the target scattered path is then given by,  

 
 ( )

Effective power
intercepted by target

2
fsp t t t r

tgt t r 32 2 2 2
t r t r

sotropic
source radiation

Power density at receive antenna from 
isotropic re-radiation from t arget

P P G G1G
4πR 4πR 4 R R

P A λ ss
p

= =

))))

))))))(

.  (3.2.4) 

This is the well-known free space bistatic radar equation (Section 2.4).  Thus it is now 

possible to give forms for the amplitude parameters lkgV  and tgtV  in (3.1.8) through the blind 

use of ohms law.  The instantaneous voltage amplitude V at the receive antenna output (input 

to receiver) is given by: 

 V PZ= .  (3.2.5) 

 P  is the instantaneous power and Z is the system impedance, in most common radar 

systems 50Z =  Ω.  The free space case relates directly to the anechoic chamber experiments 

in section 3.1. 

3.2.2 POWER BUDGET IN THE TWO-RAY PATH MODEL 
The two-ray path propagation model [44] is the most basic model for incorporating 

multipath into calculation of propagation loss.  In the two-ray path model, not only is the 

direct LOS signal considered as in the above example, but also a single ground specular 
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reflected ray (under the assumption of flat ground).  This multi-path propagation is vital for 

describing power budget over the sea surface   

 

3.2.2.1 LEAKAGE SIGNAL 

 

Figure 3.2-2.  Geometry for leakage signal calculation in the two-ray path propagation model. 

The scenario for the leakage signal, in this model which includes a ground reflected 

ray is shown in Figure 3.2-2; the field at the receiver is due to the sum of the direct path ray of 

length D  and the ground reflected ray of length ref
lkgR .  The ground reflected ray travels a 

longer distance than the direct and therefore a comparative phase change is introduced due to 

its extra path length (much like the formulation of the target phase signature in Section 3.1).  

This extra distance travelled will also mean that the reflected ray amplitude will be reduced at 

the receiver in comparison to the direct path, the reduction depending on the antenna heights.  

There will also be phase and amplitude variation introduced by the specular surface reflection; 

these effects are described by the surface reflection coefficients. 

The surface reflection coefficients [45], [44] are dependent on the grazing angle ψ  

(labelled as lkgψ  in Figure 3.2-2), surface material properties and polarisation of the incident 

wave.  For horizontally polarised waves, the reflection coefficient hΓ  is given by: 
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and for vertically polarised waves: 
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where 
02

x
f
σ
π ε

= .  (3.2.8) 

In the above equations, rε  and σ are the relative permittivity and conductivity [Sm-1] of the 

surface material respectively.  f is the wave frequency and 0ε  is the permittivity of free 

space, the factor r ixε −  is also known as the complex relative permittivity.  In order to have a 

visual insight into the behaviour of the reflection coefficient, some specific examples are 

calculated.  The relative permittivity and conductivity for three surface types, dry ground, wet 

ground and sea water [43] are shown in Table 3.2-1. 

 

Table 3.2-1.  Table of relative permittivity’s and conductivities for three surface ‘materials’. 

Surface Type 
Relative Permittivity 

rε  

Conductivity 

σ  [Sm-1] 

Dry Ground 15 5×10-3 

Wet Ground (Average) 27.5 2×10-2 

Sea Water  (Average) 81 5 

 

Figure 3.2-3 shows the horizontal reflection coefficient magnitude (a) and phase (b) for the 

extreme cases of the shown surface types, dry ground and sea water at different frequencies. 
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Figure 3.2-3.  Reflection coefficient for dry ground and sea water. (a) shows magnitude and (b) phase for 
the three surface materials.  Note that in the magnitude plots the 10 GHz and 20 GHz sea water curves are 
coincident, as too are the curves for dry ground. (c) showns zoomed magnitude and (d) the zoomed phase 
for small grazing angles. 

It can be seen that for very low grazing—as is expected in the ground based FSR with 

grazing angles definitely below 2°—we can expect that for most surface types the reflection 

coefficient magnitude ρ is approximately 1 and the phase φ  is approximately π  radians i.e. 

the reflection coefficient 1Γ = − .  Even so, further derivations will include the use of the full 

reflection coefficient and after this, simplifications may be made.  

To account for the interference of the propagating signals in the two-ray path model, it 

is important to consider not just the power, but the magnitudes and phases of the signals.  The 

relationship between power density and the electric field strength magnitude (in the far field) 

in free space are related by the impedance of free space η , by, 
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 E Pη= ,  (3.2.9) 

where 120η π= .  So, if we reconsider the first part of (3.2.2) it is possible using (3.2.9) to 

write the electric field strength dpE  for the direct path ray (Figure 3.2-2) at a distance D  from 

the source (transmitter), 

 t t
dp 24

PGE
D

η
p

= .  (3.2.10) 

Thus it is then possible to write a form of the oscillating direct path ray, when considering a 

CW transmitted signal,   

 ( )i2
dp dp dpe ei ft kD ikDE E Epf − + −= = ,  (3.2.11) 

where iφ is some initial phase term.  It is possible to neglect this and any time dependence in 

the oscillatory part of the signal as all considered paths originate from the common transmitter 

and so oscillate with the same time dependence and have same initial phase.  The signal for 

the ground reflected path in Figure 3.2-2 can be written in a similar way, this time including 

the reflection coefficient Γ and the total reflected path length ref
lkgR  from Tx – ground – Rx,  

 
( )

( ) ( )ref ref
lkg lkgref reft t

lkg lkg lkg lkg2ref
lkg

e e
4

ikR ikRPGE E
R

η ψ ψ
π

− −= ⋅G = ⋅G ,  (3.2.12) 

where, ( )2ref 2
lkg t rbR l h h= + + , (3.2.13) 

with ( )22 2
b t rl D h h= − − .  (3.2.14) 

The grazing angle ψ , which is required for the calculation of Γ , can be found from Figure 

3.2-2, using: 
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The total field at the receiver trp
lkgE  is the sum of the two fields, 

 ( ) ref
lkgtrp ref ref

lkg dp lkg dp lkg lkge e ikRikDE E E E E ψ −−= + = + ⋅Γ .  (3.2.16) 

Commonly the above equation is simplified for calculation of low grazing angles, t r,D h h� , 

the reflection coefficient is approximated to 1Γ = −  (independent of polarisation as shown 

previously), and due to the similar length of the two paths involved, ref dpE E≈ , resulting in: 

 trp t r t t t r
lkg dp 2
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D D D
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   = =   
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. (3.2.17) 

Note that the antenna gains are assumed equal for both direct and ground reflected rays.  

Using (3.2.9) this can be re-converted into a power density at the receive antenna.  Then as 

with the free space derivation, using the antenna effective area/gain relationship, the received 

power is given by:  
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.  (3.2.18) 

Which for extremely low grazing (small arguments of the sin  function), can be simplified 

further to give, 
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This is the standard equation for two-ray path propagation in communications, indicating an 

independence on frequency and an inverse 4th power law for distance. 

3.2.2.2 TARGET SIGNAL 

The target power model follows the same general outline as calculating the leakage 

power, and is shown in Figure 3.2-4.  The target case involves the superposition of multiple 

 

Figure 3.2-4.  General outline of topology related to two-ray path calculation of received target power, 
indicating direct paths and ground reflected paths. 

two-ray path sections.  As can be seen in the figure, there are two rays incident on the target, 

the direct signal from transmitter to target, tR  and the ground reflected ray, ref
tR .  Each of 

these produce two rays incident on the receiver, one direct from target to receiver, rR , and 

one ground reflected, ref
rR .  Using the low grazing angle two-ray path leakage signal, 

described by (3.2.18), the target signal can be derived in a similar way to that of the target 

signal in the free space approximation.  Instead of using the receiver antenna area rA , the 

target FSCS is used in its place along with the appropriate ranges and heights, shown in 

Figure 3.2-4.  The target then acts as the transmitter for the second two-ray path section and 

thus we can write down the equation for the target power at the receiver, 
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 . (3.2.20) 

This derivation assumes equal antenna gains and FSCS for both paths.  On 

simplification for extremely low grazing angles,  

 
2 2 4

t r tgttrp
tgt t t fs 2 4 4
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λ
=   (3.2.21) 

Noting that now the received power goes like an inverse 8th power of the target range 

and has a 4th power dependence on the target height.  It is also possible to derive the case for 

when the grazing angle is not so small and/or the reflection coefficient is not assumed to be 

1− .  In order to clarify further, the scenario is split visually into four separate groups of rays,  

Figure 3.2-5(a) and (b) show the rays incident at the Rx due to the direct ray from Tx to target 

and Figure 3.2-5(c) and (d) shows those due to the reflected path from Tx to target.  The total 

field at the receiver is the sum of the resultant fields these ray groups. It can be seen when 

comparing Figure 3.2-5(a) with (c) that the path from target to Rx, rR , is the same length, but 

has differing contribution from the FSCS due to the slightly different target view angles—

either vα for (a) or tψ  for (b) from the ground reflection point.  The same type of effect 

occurs for ref
rR in (b) and (d).   This variation in view angle gives different FS axis directions 

and thus different diffraction/scattering angles, ,i jγ ’s, from the FS axis to the two receive paths 

and also potentially different target effective aperture size.    
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Figure 3.2-5.  Parameters for calculation target two-ray path received power.  (a) and (b) indicate the rays 
stemming from the direct path incident ray on target, (c) and (d) indicate the rays developed from the 
ground bounce incident path. 

The scattering angles ,i jγ  are again actually composed of the azimuthal ,i jφ  and elevation ,i jθ  

scattering angles, which correspond to the azimuth and elevation angles relating to the 

equivalent target aperture antenna pattern.  The ray groups will be investigated separately, 

starting with ray group (a).  The scenario in Figure 3.2-5(a) can be broken down further into 

two paths: 

Path (a) 
t r

Tx Target Rx
R R

→ →   

The received field from path (a) is constructed from the free space target approximation in the 

same fashion as the leakage power was calculated for the two-ray path model.  Using (0.3) 
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and (0.8) an expression for the field at the receive antenna from path (a), a
rE , can be written 

thus: 

 ( ) ( )
( )

( )tt t h v 1 aa
r 2 2 2

t r

P G ,
e

4π R R
rik R RE

aa  σ γ
h − += ⋅ .  (3.2.22) 

The transmit gain dependence on the view angles of the target (or ground reflection point) is 

included for completeness.  Following a similar logic it is possible to ‘write down’ the field at 

the receive antenna for each of the other paths, including reflection coefficients where 

applicable, i.e., 
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Where,  
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The total field at the receive antenna from the target trp
tgtE  is therefore, 

 trp a b c d
tgt r r r rE E E E E= + + + .  (3.2.32) 

To take into account any dependence of receiver gain due to angle of ray arrival, it is 

necessary to consider independent antenna effective area factors for each of the fields, such 

that the instantaneous power at the output of the antenna is given by: 
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   (3.2.33) 

 (Note the above is a sum, not a matrix).  If we make certain assumptions, i.e. that the antenna 

beam width is much wider than the region we expect to observe FS or indeed it is omni-

directional, we can remove the dependence of the Tx and Rx antenna gain on angle and 

assume each path experiences the same antenna gain. 

3.2.2.3   MODIFIED REFLECTION CO-EFFICIENT FOR SEA SURFACE SCATTERING 

For the case of sea surface scattering it is obvious there would not just be a single 

surface specular reflected ray, but multiple reflections from the many facets and slopes of the 

88 
 



surface.  Indeed the reflected signals can be seen as the combination of two scattering effects, 

known as coherent and incoherent (diffuse) [46], and are described pictorially in Figure 3.2-6.  

   

 

Figure 3.2-6 .Scattering behaviours from sea surface (a) specular/coherent scattering, (b) 
diffuse/incoherent scattering. Figure adapted from [47]. 

Figure 3.2-6 (a) shows the idea of coherent scattering from the smoother sea surface, 

whilst (b) shows the diffuse component arising from the rougher/choppier surface.  The 

dominance of either coherent or incoherent scattering depends on the sea conditions and is 

discussed along with measurement in [47].  The discussion of scattering mechanism and the 

data collection work were part of the author’s contribution to this publication. One other 

condition is defined, relating to low grazing angle systems in which intermittent loss of signal 

can occur due to wave blocking in high sea states.  The specular/coherent scattering 

mechanism is the most important in terms of power budget analysis as it contributes to the 

average received signal power (and is coherent to the direct signal), whereas the incoherent 

part causes fluctuations around this.    

The coherent reflected field was theoretically studied by Ament [48] and a form was  

proposed for a modified reflection coefficient amentΓ , where:  

 
21

2
ament ament

g
eρ
−

Γ = Γ = Γ  , (3.2.34) 

with Γ  being the standard specular reflection co-efficient and 
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= ,  (3.2.35) 

which is the Rayleigh roughness criterion [43] for reflections from rough surfaces, with hσ  

being the standard deviation of the surface height about the mean and gψ  the grazing angle. 

The coherent and incoherent fields were then experimentally studied by Beard [46] [49] in 

measurements of the sea surface and found that the experimental values of the coherent field 

were larger than those predicted by Ament.  A modified expression was proposed by Miller, 

Brown and Vegh (MBV) [50] [51] , 

 
21

22
mbv mbv

1
2

g

oe I gρ
−  Γ = Γ = Γ 

 
,  (3.2.36) 

where Γ  is the specular reflection co-efficient, g  the Rayleigh criterion of Equation (3.2.35), 

0I  is the zeroth order modified Bessel function and mbvρ is known as the MBV reduction 

factor.  The MBV model is generally the most popular for use in radio wave propagation 

modelling  [52].  In order to estimate the reduction factor for a given surface, the standard 

deviation of the surface height must be known.  In the case of the sea surface, for a fully 

developed sea—one in which the wind has been blowing in the same direction for a long 

enough period of time, this can be approximated from the sea state/significant wave 

height/wind speed.  These concepts and their relationship are discussed in more detail in 

Sections 4.1 and 6.1.  The significant wave height 1/3H (or sH ) is the mean wave 

height (trough to crest) of the highest third of the sea waves and the standard deviation of the 

heights hσ  is given by [53], 

 1/3
h 4

Hσ =   (3.2.37) 
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Needless to say, on inspection of (3.2.36), at the low grazing angles of the FSR system, it is 

expected that mbv 1ρ = .  This infers that the power budget model should satisfy  

3.3 SUMMARY OF FSR FOR SURFACE TARGETS 
The investigation of the phenomenology behind forward scattering has provided an 

important insight into the scattering mechanisms at play in FSR.  It has allowed estimates to 

be placed on the FS angular region for given target electrical dimensions and prediction of 

FSCS magnitude and main lobe widths.  Using the phenomenological principles signal 

models have been produced for the FSR system, incorporating Doppler/phase signature 

creation and the envelope effect of the FSCS pattern upon this.  A set of controlled 

experiments were performed which validated the FS principles.  A target power budget model 

has been presented based on two-ray path propagation; this requires future confirmation 

against measured data.  The models may then be used as a part of radar performance 

prediction.   

The inclusion of a multi-path model is vital for the estimation of target power budget 

on the reflecting sea surface; multi-path reflection will have a great influence on measured 

FSR signals in the maritime environment.  Indeed the model here is defined for a static 

surface, however the sea surface is constantly under motion and we can expect dynamically 

changing multipath reflections from the whole illuminated area of the surface.  This dynamic 

multipath is the fundamental source of sea clutter in FSR.  The continuously changing path 

differences between direct and surface reflected signals will cause varying interference 

behaviour at the receiver.  Thus it may be expected that the multipath/clutter will cause an 

underlying oscillation to the received signals, modulated by the wave motion; the model will 

represent the average of this.      
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4   MARITIME FORWARD SCATTER 
RADAR 

This section initially summarises the concept and requirement for the maritime FSR 

radar network, as was also explained within the thesis introduction.  Following this a 

description of the prototype hardware that was designed and built by the author of this thesis2 

is provided.  This equipment allowed an extensive experimental investigation to be performed 

and the gathering of a comprehensive database of maritime FSR measurements.  An overview 

of the experimental targets and test sites used and ground truth measurements that were made 

during experimentation is provided.   

4.1 MARITIME FORWARD SCATTER RADAR NETWORK 
CONCEPT 

The fundamental concept of the maritime forward scatter radar is to provide perimeter 

protection in a maritime environment, for coastline, offshore interests such as wind farms and 

oil rigs and even exclusive economic zones.   Utilising the benefits of increased cross section 

in the forward direction (FSCS) and long integration times to detect, in a high clutter 

environment, small even stealth low speed targets which may be being used for illegal 

activities.  Due to the topology of FSR and the requirement for targets to cross the Tx-Rx 

baseline, FSR is ideally suited for surface target, tripwire-like applications.  To enable remote 

offshore operation, the system is envisaged to be an easily deployable buoy mounted network 

of FSR sensors such as depicted in Figure 4.1-1. 

2 Through occasional consultation with Senior Research Fellow Dr. Edward Hoare 
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Figure 4.1-1.  Example of buoy mounted maritime forward scatter radar network.  Yellow lines show 
potential FSR baselines. 

A buoy mounted system should have low antenna heights, this is not only due the need 

to maintain low grazing to ensure the use of the narrow increased FSCS, but also due to 

mechanical constrains on the floating/swaying structure.  This platform motion would also 

limit the choice of antenna for the system.  Full azimuth coverage would be required to form 

the network topology requiring a near omni-directional pattern or even a multiple azimuth 

sector horn arrangement.  Antenna elevation beam widths would need to be wide enough to 

account for the swaying motion, or some form of antenna stabilisation would be required e.g. 

inertial measurement unit and servo control or even mechanical gimbal.  Because the system 

will be remotely deployed, research should also be made into power supply demands and 

ways to lengthen battery life, for example the use of solar, wind and wave power.    

The actual configuration of the network structure itself is not discussed here and this 

and the actual networking of these nodes are complex areas of research that a will need to be 

addressed.  Fundamentally in order to setup the baselines in a networked system, each node 

must have knowledge of its position and the position of the surrounding nodes – this may be 

achieved through Global Navigation Satellite System (GNSS) positioning and node to node 

communication, where communication may be possible through modulation of the FSR 

transmit signal itself.  Another important aspect to consider is inter-baseline/nodal signal 
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interference.  It would be understood that any transmitter/receiver may service many 

baselines, however in order to determine on which baseline a detection occurred something 

must uniquely identify this baseline to the receiver.  This would infer the use of some form of 

channel access method, such as time-division multiple access (TDMA) or frequency-division 

multiple access (FDMA).  FDMA would imply that each transmitter may have a slightly 

different transmit frequency; this method would require a level of frequency diversity in the 

receiver, increasing its RF complexity.  The TDMA method would mean that each transmitter 

produced a burst in a different time slot and the receiver would recognise this from a pre-

determined schedule.  The synchronisation for this timing could be provided through the 

GNSS positioning system required for the buoy localisation.  The number of timeslots and/or 

frequencies required would be related to the radius at which a transmitted signal can be 

received through the network and this would be a function of the required inter node spacing 

for a specific application.       

Even though the final radar system is expected to be buoy mounted and have multiple 

nodes/baselines (multistatic), the start point of research must take the simplest component part 

to study.  Indeed much of that covered in research thus far and that presented in this thesis is 

limited to the case of a single FSR baseline with stationary shore mounted antennas. 

4.2 FORWARD SCATTER RADAR PROTOTYPE 
EXPERIMENTAL EQUIPMENT 

In order to perform an experimental study of maritime FSR, it was necessary to design 

and build a test radar system.  The fundamental system design was based around the need for 

a low cost ‘simple’ system design, allowing the extraction of the low Doppler frequencies that 

are observed in FSR.  As previously explained in Section 3.1, FSR uses the direct path signal 

as a reference, this ultimately allows the extraction of the Doppler through the use of a non-
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linear element (NLE) and removes the need for a coherent transmitter and receiver.  Given an 

element which functions in the appropriate frequency band, there is no need for any down 

conversion of the received RF signal.  This all implies that the radar be a single channel 

system, moreover, due to the topology of FSR the requirement for a quadrature receiver is 

minimal.  A quadrature receiver has two channels one termed in-phase (I) and the other 

termed quadrature phase (Q) which are related to each other by a 90° phase shift.  For the 

purposes of discussion here, by looking at which channel lags or leads the other a 

determination of the sign of the Doppler frequency of the signal may be found.  Symmetry in 

the FSR topology infers that there is ambiguity in the baseline crossing direction and angle, 

which cannot be resolved by knowing the sign of the Doppler.  This lack of requirement of 

quadrature receiver makes the design much simpler, as stated, the transmitter and receiver do 

not need to be coherent, thus removing any need for connection (physical or remote e.g. GPS 

disciplined oscillator’s) between the spatially separated nodes.   Coherency still arises due to 

the direct path signal reception and minimal target scattered signal delays, over which time 

any transmit oscillator would not deviate in frequency by any considerable amount.   

There are certain cases where a fully coherent quadrature FSR system would be 

required, i.e. situations where full signal phase information is required, such as in the Target 

Shadow Profile Reconstruction/Shadow Inverse Synthetic Aperture Radar application of FSR 

[28]–[30].  This process fundamentally requires the extraction and removal of the phase from 

the FS Doppler signature leaving what is essentially the FSCS pattern, which as shown 

previously (Section 3.1.2) is related to the target silhouette shape/profile.  The profile may 

then be extracted by inverse Fourier transform.   

 

 

95 
 



4.2.1 TRANSMITTER AND RECEIVER DESIGN 
The generic continuous wave (CW) transmitter and receiver architecture for the FSR 

system is found in Figure 4.2-1. 

 

Figure 4.2-1.  Generic design of FSR transmitter and receiver sections. 

  The transmitter section (upper Figure 4.2-1) simply consists of an oscillator with 

band pass filtering (BPF), amplification and transmit antenna.  The receiver (lower Figure 

4.2-1) consists of receive antenna, band pass filter (BPF) to reduce out of band noise, low 

noise amplifier (LNA) section into the non-linear element, low pass filtering (LPF) to remove 

any sum frequencies from the NLE and ensure no aliasing by the analogue-to-digital 

converter (ADC), which samples at a rate determined by the expected Doppler frequencies.  

The digitised data is stored on PC for post processing. 

The actual hardware designed and produced was for CW operation at 7.5 GHz.  The 

choice of 7.5 GHz was made such that smaller maritime targets (~1 m dimension) would be 

scattering in the upper Mie/optical regime. The choice was also swayed by the availability of 

RF parts and antennas within the radar group at this frequency.  More recently a 24 GHz 

channel was added.  This was to enable future investigation of the effect of higher frequency 

on the target detection from the increased but narrower lobed FSCS as well as effects on 

clutter characteristics.  24 GHz was chosen specifically due to the availability of (relatively) 
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low cost commercial off the shelf components (COTS) and modules.  It should be noted that 

no target measurement data at 24 GHz is presented in this thesis, the hardware is described 

here in order to show that thought has been put into investigating the fundamental effects of 

the radar parameters in FSR.  Figure 4.2-2 contains the schematic of each of the radar 

channels. 

 

Figure 4.2-2.  Schematic of the designed and manufactured 2 band Doppler receiver at 7.5 and 24 GHz 
used for maritime FSR trials. 

The lower yellow section is the 7.5 GHz channel front end, which was designed and built by 

the author from COTS components.  It has total gain of 60 dB at the output to the log 

detector, a noise figure of 2 dB, bandwidth of 30 MHz and dynamic range of 60 dB.  The top 

yellow box in the figure is the 24 GHz receiver, which is a commercial amateur television 

(ATV) module from Kuhne Electronic [54] – MKU LNC 24A.  This outputs an intermediate 

frequency of 1.1 GHz, has a gain of 45 dB, noise figure of 2.5 dB, bandwidth of 30 MHz and 

dynamic range of 60 dB.   The gray part of the figure shows the NLE, which in the case of the 

most recent hardware for both channels consisted of a Mini Circuits ZX47-60+ logarithmic 

power detector [55].  This detector was chosen for its more than 60 dB dynamic band at 
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frequencies up to 8 GHz, previous incarnations of the 7.5 GHz hardware utilised a Schottky 

diode detector – Herotek DHM124AB  [56] which had only 40 dB dynamic range and less 

sensitivity and required addition hardware/gain on the diode output.  The response curve of 

output voltage vs input power for the logarithmic detector is shown in Figure 4.2-3.  

 

Figure 4.2-3.  Data sheet response curve for Mini Circuits ZX47-60+ logarithmic detector. 

For use with the maritime hardware it was necessary to perform similar calibrations at 

7.5 GHz and 1.1 GHz in order to accurately relate the detector output voltages to the power 

received at the detector.  This process was performed by attaching a calibrated signal 

generator to the detector input, varying the input power and recording the detector output 

voltage.  The results of the calibration are found in Figure 4.2-4.  When measuring signal 

data, it is essential that the output signals are in the ‘linear’ part of the response and are not 

undergoing saturation or indeed conversely too low or below the noise floor.  This is highly 

dependent on the baseline range of testing and may require either additional amplification, or 

the use of attenuators.  The output from the detector is of the form of a dc level (from the 

direct path signal) with Doppler variation imposed on top of this from the target scattered 

signals, as described in Section 3.1.4.1, and is referred to as the RSSI signal.  
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Figure 4.2-4.  Response curve for logarithmic detector, measured at 1.1 GHz (IF output of 24 GHz 
receiver) and at 7.5 GHz. 

The output RSSI signals are digitised with a Measurement Computing USB-1608FS 

USB ADC [57], with 16 bit resolution and maximum sample rate of 15 kS/s per channel.  The 

ADC has multiple selectable voltage ranges enabling matching of the range to the received 

signal amplitudes, thus ensuring maximum bit depth is utilised.  The digitised data is 

transferred to and stored on a laptop PC. An interface to MATLAB was developed to allow 

the visualisation of the digitised data as it was being collected, which greatly helps with 

system debugging in real time.  Due to the low Doppler frequencies, low sample rates 

(generally a maximum of 200 Hz) are used, thus this system is capable of recording data for 

many hours continuously. 

The transmit side of the 7.5 GHz system was built ‘in-house’ and had an output power 

of 26 dBm, the 24 GHz transmitter consisted of another Kuhne module (MKU ATV 24-2), 

with output power of 300 mW (~25 dBm).  The FSR system requires very low power which 

would help to ensure long battery life when remotely deployed. 

The complete maritime hardware itself is very compact and portable, transmitter and 

receiver sections each fit into a waterproof Peli case as shown in Figure 4.2-5. 
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Figure 4.2-5.  Prototype maritime forward scatter radar, contained in waterproof Peli cases. 

 

4.2.1.1 PHASE NOISE CONSIDERATIONS 

It should be noted that the self-mixing receiver not only provides the extraction of the 

Doppler signature directly, but also overcomes a potential noise issue related to receiving low 

Doppler frequency signals – that being transmitter/synthesiser phase noise.  Figure 4.2-6 

shows the typical phase noise as a function of frequency offset from carrier for modern 

synthesisers, for carrier frequencies ranging from 500 MHz to 20 GHz. 

 

 

Figure 4.2-6.  Typical phase noise level in modern synthesizers, showing phase noise levels as a function of 
frequency offset from the carrier for a range of carrier frequencies.  Plot is taken from National 

Instruments QuickSyn Synthesisers web-site [58]. 

The plot does not extend down to the very low offset frequencies; however, extrapolation can 

give an idea of the expected phase noise below 10 Hz.  The phase noise level is estimated to 
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be between –20 and –50 dBc/Hz for 20 GHz and –60 and –90 dBc/Hz at 500 MHz. Thus it 

might be expected that the transmitter phase noise may be a limiting factor in the FS mode.  

However with the use of the self-mixing receiver the leakage signal is acting as a heterodyne 

to the FS target signal.  In FSR the target and leakage signals have near zero relative delay 

due to the very close vicinity of the target to the baseline, in this case the leakage and target 

phase noise will be correlated and converted to dc at the mixer output.  Figure 4.2-7 shows 

frequency spectra from FS Doppler measurements performed at 7.5 GHz in an anechoic 

chamber, where a small rotating target was placed on the FSR baseline and spun at 4 different 

speeds ranging from 200 rpm – 600 rpm.                                                            

 

Figure 4.2-7.  Spectra of measured Doppler signatures of a three-blade propeller rotated at four different 
speeds. Peaks indicate Doppler frequency of the rotating target for four speeds, ranging between peak 1, 
the fastest (200 rpm) and the slowest, peak 4 (60 rpm). 

The figure shows four numbered peaks in the Doppler spectrum associated with the different 

fan speeds, peak 1 relates to the fastest speed and peak 4 the slowest as would be expected.  

More importantly, this experiment demonstrates that Doppler frequencies of less than 1 Hz 

can be measured, in practice, using this measurement technique.  The static objects within the 

scene and the correlated phase noise reside in the dc (0 Hz) component and any residual phase 

noise extending out from this is not considerable enough to affect the 1 Hz Doppler 

measurement.  The experiment was an attempt to validate the concept by measurement, the 
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close-to-carrier phase noise of the 7.5 GHz transmitter would ideally be measured.  However, 

the investigation of the influence of phase noise may be more important for the prototype 24 

GHz system mentioned previously, and shown in Figure 4.2-2.  The design was chosen due to 

the availability of low cost COTS components, but the superheterodyne receiver uses an 

internal dielectric resonator oscillator (DRO) for down conversion to 1.1 GHz.  This oscillator 

will have an associated phase which is uncorrelated with the transmit signal, and produce an 

ac component on the detector output.  The full investigation of these effects is part of future 

work.      

4.2.2 ANTENNAS 
Directional and omni-directional antennas were available for use with the 7.5 GHz 

radar system and are shown in Figure 4.2-8.  The left hand image shows a pair of 20 dB horns 

with equal E and H-plane beam widths (±10°) and gain of 20 dB, which were the main 

antenna used.  The middle image shows a pair of non-equal beam width horns (±6° H, ±30° 

V) also with a gain of 20 dB.  These were produced so that in the future, measurements could 

be made to test the effects of increasing/reducing the illuminated area of the sea surface.  The 

right hand image is of a pair of omni-directional azimuth antennas built at the University of 

Birmingham with an elevation beam width of ±30°and gain of 3 dB. 

 

Figure 4.2-8.  Examples of available 7.5 GHz antennas for the maritime FSR system. 
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4.2.3 WIDEBAND AND ULTRA-WIDEBAND HARDWARE DEVELOPMENT 
A very preliminary study of ultra-wide band FSR has been performed by the author 

and aspects of this may be found in [60]–[62].  These papers discuss the concept of using 

ultra-wideband (UWB) signals in FSR [60],[61] and give a description of the experimental 

hardware (which is also described below)[60].  In [61] and [62] bistatic RCS simulations were 

performed in CST Microwave Studio [17].  The small inflatable and a jet-ski were modelled 

and the computed RCSs were compared to the aperture approximation of the FSCS described 

in the phenomenology section (3.1) and showed good agreement. Actual maritime 

measurements with this system were limited and mainly related to hardware testing, hence, 

only the above reference to the papers is included in the thesis for the interested reader to 

follow up.   

The proposed benefit of UWB FSR is the introduction of a form of range resolution.  

Looking back at the equation for bistatic range resolution (2.5.2) in Section 2.5, to obtain 

resolution at very small bistatic angles requires very short pulse duration (large bandwidth), 

so UWB signals must be used.  As explained in [60] and [61], the introduced range resolution 

may artificially limit the area of the sea surface from which returns are received to a very 

narrow elliptical region between the FSR transmitter and receiver.  This would still allow 

reception of target signals through their directive FS main lobe, the actual discrimination in 

range of targets crossing the baseline would be no better than the CW system, but the size of 

the clutter patch would be substantially reduced.  Signal-to-clutter ratio (SCR) would be 

enhanced whilst still permitting the use of omni-directional azimuth beam pattern antennas.  

The next stages of work in this area will be to collect UWB FSR data sets to prove the theory 

against the CW FSR data, thus as a precursor to enable this, an addition was made to the 

existing hardware.  Pulsed wide-band (WB) and ultra-wide band (UWB) equipment was 
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developed at a centre frequency of 7.5 GHz, which used Gaussian pulses with - 3 dB 

bandwidths of 100 MHz, 1 GHz and 3GHz as shown in Figure 4.2-9.  Initially, the hardware 

composed of rather bulky equipment, using a Tektronix arbitrary waveform generator 

(AWG7102) with sample rate of 20 GS/s as a transmitter. As a receiver, a Tektronix digital 

phosphor (DPO72004) oscilloscope (DPO) with deep fast storage memory was connected to 

the output of the 7.5 GHz receiver described in Section 4.2.1—received raw pulse data was 

recorded at RF into the DPO memory.  The devices are shown on the left hand side of Figure 

4.2-10, the right hand image shows the receiver side of this setup being used (under cover due 

to rain) at one of the test sites (Langstone Harbour).   

The recorded raw data from the oscilloscope can be used to reconstruct an equivalent 

Doppler signature as would be recorded from the standard FSR Doppler hardware, by 

implementing a square-law detector in software.  A smaller portable variable PRF (1MHz, 

100kHz and 10kHz), variable bandwidth (1 GHz, 100 MHz, 10 MHz) pulse modulated mode 

was designed (by the author, using salvaged test equipment parts) and added to the 7.5 GHz 

equipment to replace the DPO and AWG.  This was included in the portable equipment 

shown in Figure 4.2-5 and required the development of a 3 GHz band width cavity BPF for 

the receiver front end to band pass the received 7.5 GHz UWB signals. 
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Figure 4.2-9.  Examples of Gaussian pulsed signals used in WB and UWB maritime FSR.  Raw data 
recorded on a digital phosphor oscilloscope. 

 

 

Figure 4.2-10. Arbitrary waveform generator (AWG) and digital phosphor oscilloscope (DPO) used for 
UWB measurements (left hand images).  Setup being used for initial UWB maritime measurements. 
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4.2.4 MOCK BUOY  
As a preliminary stage of future investigation, to move from a stationary 

transmitter/receiver scenario to a single floating node, a ‘home made’ buoy was developed.  

This was created to test the effect off antenna motion on target and clutter signatures—shown 

in Figure 4.2-11.  Only very preliminary trials were made in order to test the functionality of 

the system mounted on the ‘buoy’ and seaworthiness of the ‘buoy’ itself.  No measurement 

results are presented here, rather it is included as an indication of where future research work 

will be required and how it may be accomplished, in order to develop a fully buoy mounted 

system. 

 

Figure 4.2-11.  'Buoy' mounted transmitter. 

When anchored out in deep sea, the position of the ‘buoy’ was very stable, as seen 

from the GPS track in Figure 4.2-12, it only moved within a radius of 4 m over 6 hours. 

 

Figure 4.2-12.  Six hour GPS track of the anchored ‘buoy’ in open sea. 
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4.3 CO-OPERATIVE TARGET  
During trials, many targets of opportunity have been encountered, though the main target of 

experimentation and that which relates to data presented in this thesis, was the group’s small 

inflatable boat.  The inflatable is 2.9 m long and approximately 1 m height with a person on 

board and is shown in Figure 4.3-1. 

 

Figure 4.3-1.  Small inflatable boat used for co-operative target measurements. 

This co-operative target will be referred to from hereon in as the ‘MISL’ (Microwave 

Integrated Systems Laboratory) or ‘small inflatable’ boat. 

4.4 MARITIME EXPERIMENTAL TEST SITES 
From the outset, it should be stated that due to the logistical issues with testing out in 

deep sea, many of the trials performed to collect maritime FSR target and clutter data were 

performed in littoral environments.  The need to have access to either side of a stretch of 

water to position transmitter and receiver means that inshore areas were more suitable for 

testing, thus deep sea test sites were unattainable. A number of test sites have been employed 

over the duration of the maritime FSR study, the author was responsible for assessing and 

identifying these as suitable for trials. 
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4.4.1 LANGSTONE HARBOUR 
The main testing ground for the maritime FSR study was Langstone Harbour near 

Portsmouth and was initially chosen for ease of access to either side of the harbour entrance.  

The trials site is shown in Figure 4.4-1 with lines to indicate some of the baselines available. 

 

Figure 4.4-1. Langstone Harbour test site.  Left image shows a baseline formed across the harbour, right 
shows the transmitter placed on a boat out at sea pointing back to the coastline. 

Langstone provided baseline lengths ranging from 300 m to 750 m across the harbour 

entrance and longer ranges with the transmitter out at sea pointing back to the coastline.  

Measurements were made here involving the variation of many parameters, such as: sea state, 

target speed, target baseline crossing angle, baseline crossing point, antenna height and 

polarisation.   The majority of results presented in this thesis were recorded at this test site.  

4.4.2 CONISTON WATER     
In order to provide some calm water trials and to access longer baselines in which the 

small inflatable boat could be used; Coniston water in the Lake District was chosen.  Figure 

4.4-2 shows a selection of the baselines used at this test site. 
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Figure 4.4-2.  Examples of Coniston Water test site baselines. 

4.4.3 OTHER TEST SITES 
Other test sites were investigated and trials performed, these included such places as 

Weymouth, Sozopol in Bulgaria and Livorno in Italy for NATO-SET Group trials. 

4.5 GROUND TRUTH AND ENVIRONMENTAL 
MEASUREMENTS 

 

As with any experimental campaign, radar data is not the only required measurement 

and certain ground truth and environmental measurements were also made.  

4.5.1 WEATHER AND SEA STATE 
During trials, a weather station was employed to log the wind speed and direction, the 

device is shown attached to the group trials vehicle in Figure 4.5-1. 
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Figure 4.5-1. Weather station attached to test vehicle. 

  The use of such data may only provide a useful estimation for the given conditions of 

measurement which as shown were generally in a coastal littoral environment and so relating 

wind speed to the sea state which is a scale based on a developed deep sea is not necessarily 

appropriate.  Also the wave direction was defined in the littoral cases by the fact that the 

waves were coming in shore from out at sea.  It was deemed the best way to classify the sea 

state in the case of our experimental records was through estimation of the wave height, a 

table of sea state in relation to wave height and wind speed is shown in Table 6.2-1 in Section 

6.1. 

Tide tables were also utilised in order to estimate the sea level at the test site at the 

time of measurement. 

4.5.2 VIDEO AND PHOTO IMAGERY 
In all experimental trials, video and photographic recordings were made.  These 

allowed documentation of non-cooperative targets, enabling estimation of their speed and 

sizes.   Video was actually used post-measurement along with visual observation at the time 

of measurement in order to help define the wave height or associated ‘sea state’ for any given 

measurement.  A video screen capture from trials is shown in Figure 4.5-2. 
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Figure 4.5-2.  Example of video recording of trials at Langstone Harbour. 

4.5.3 TRAJECTORY AND TOPOLOGY MEASUREMENT – GPS 
In order to have an estimate of the inflatable boat target speed and trajectories along 

with knowledge of the Tx and Rx positions, a handheld GPS unit was used to record boat 

track data in the form of NMEA files and antenna positions in the form of waypoint files.  

The GPS positions have an root mean square positional accuracy of around 5 m (the best 

achievable with the standard GPS receiver used).  An example of the layout of each file type 

can be found in Figure 4.5-3.  

Initially great circle navigation formulae [59] were implemented in MATLAB™ and 

used to calculate all target trajectory parameters from GPS waypoint data for Tx and Rx 

positions and GPS track data from the inflatable boat.  Trajectories were also calculated 

manually by constructing lines on Google Earth™ after importing GPS data.  The trajectory 

parameters calculated via this method were comparable to the great circle method.  Examples 

of the track data and waypoints as displayed in Google Earth™, are shown in Figure 4.5-4. 
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Figure 4.5-3.  Example of (a) waypoint file for Tx/Rx positions and (b) NMEA track data file for target 
position tracks. 

 

 

Figure 4.5-4.  Examples of GPS track data recordings of MISL boat target trajectory (blue lines) and 
waypoint markers for antenna positons (Tx/Rx). 
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5   SELECTED RESULTS FROM THE 
MEASUREMENT CAMPAIGN 

This section presents a representative selection of results of from the FSR 

measurement campaign.  Initially a summary of forward scatter radar clutter measurement 

results are made, looking briefly at spectral and statistical properties—these are vital to 

understand and predict target detection probabilities and false alarm rates within the clutter 

background.  Following this, a comprehensive selection of target measurement results are 

presented for various different test parameters; which are described in more detail within the 

section.  For each set of measurements a qualitative discussion of the results is provided and 

how they relate to the expected behaviour in FSR.  This data set is required for future research 

to fully verify the target signature and propagation models described previously in this thesis.  

Also this data is vital (alongside the clutter data) for future work in predicting the radar 

performance.  Finally a section describing initial work on signal processing to enhance target 

detection and predict target motion parameters is included.  This is ongoing work and as such 

a discussion of the requirements for prediction of detection performance is presented. 

The trials, trials data and results presented in this section were organised, collected and 

compiled by the author of this thesis.  Measurements were conducted using the 7.5 GHz 

hardware designed and constructed, also by the author, and described in Section 4.2.  The 

results here make up the first known comprehensive database of recorded maritime FSR target 

signatures. 
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5.1 MARITIME FORWARD SCATTER RADAR CLUTTER 
SUMMARY 

 

Clutter in FSR is related to the change of the underlying surface and the surrounding 

environment, which in the case of maritime FSR is the dynamic sea surface. In the traditional 

radar case, range resolution and the use of directional antennas lead to clutter being received 

from only a limited area.  In buoy mounted maritime FSR, it is expected that antennas with an 

omni-directional azimuth pattern will be used. This combined with the lack of range 

resolution infers that clutter will be received from a large area between the transmitter and 

receiver.  The spatially distributed clutter will cause both bistatic and forward scatter signal 

interference and thus target detection in FSR will be performed against a background of 

strong Doppler modulated clutter.  The main clutter related problems associated with target 

detection are: firstly, if the spectrum of Doppler modulated clutter overlaps with the target 

return spectrum and, secondly, general non-Gaussian behaviour of the clutter intensity 

distribution, where long tails of the distribution result in an increased false alarm rate.  

Statistical and spectral characteristics of FSR clutter need to be distinguished in order to 

develop effective detection algorithms.  A general overview of statistical distributions in 

relation to radar and clutter may be found in Appendix A of [63] and discussion of 

distributions for sea clutter in bistatic radar may be found in [64]. 

By its very configuration the FSR channel is similar to an RF communication channel, 

therefore sea clutter can be described in terms of the fading of an RF channel over the sea 

surface. Forward propagation studies over the sea have been dedicated to characterising radio 

wave propagation [49], [68]–[74], coastal or ship-to-ship communications [51], [70], [75]–

[78] as well as radar scattering at low grazing angles in [46], [49], [71]–[74], [77], [79]. In 
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[47] approaches developed for characterization of fading of RF channels were applied for 

analysis of FSR clutter at very low grazing angle. Both spectral and statistic properties were 

measured, analysed and results were compared to those of modelling.  In particular, the 

dependence of scattering mechanisms – dominant specular reflections, diffused scattering and 

partial shadowing - on the sea state have been considered (as described briefly in Section 3.2).  

A brief overview of spectral and statistical properties of clutter related to the maritime 

environment is presented here, summarised from [47] and [66].  The author of this thesis was 

a co-author on these publications, responsible for the data collection, spectral analysis and 

providing initial clutter distribution analysis and the software for the distribution analysis.  In 

summary:    

• FSR sea clutter measured at very low grazing angles (less than 0.5º) exhibits, to a first 

approximation, a near constant frequency centred below 1 Hz.  The spectrum rolls off 

of at approximately 35-40 dB per decade. Figure 5.1-1(a) shows clutter PSDs 

estimated from a variety of measurement parameters. 

• The Rayleigh distribution is a good fit to the measured clutter intensity distribution. 

Figure 5.1-1 (b) and (c) show the measured distributions and corresponding Rayleigh 

distribution fits (straight lines on the Weibull scale) for different test sites and 

different sea states respectively. 

• In fact both the clutter spectrum and shape of clutter distribution function are found to 

be independent of transmit receive baseline range, sea state and carrier frequency, 

within the range of limited experimental conditions. 
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Figure 5.1-1.  (a) Normalised PSDs of FSR sea clutter recorded at varying frequencies, ranges, sea states 
and test sites. (b) cumulative distribution function (CDF) of normalised FSR sea clutter from different test 
sites, plotted on Weibull paper along with a Rayleigh CDF fit (straight line). (c) gives comparison of CDFs 

for long term FSR sea clutter measurements in different sea states, with corresponding Rayleigh fits 
(straight lines).  SS stands for Sea State by WMO/Douglas scale.  Figures reproduced from [47]. 

5.2 TARGET MEASUREMENT PROGRAM EXPERIMENTAL 
RESULTS AND INITIAL PROCESSING  

This section contains a set of representative results from the Maritime FSR 

measurement campaign.  Measurements presented were measured under variation of baseline 

crossing angle, velocity, sea state, polarisation and range.  The analysis of the results is 

limited at this time to showing target measurement results and corresponding spectra and is 

mainly qualitative at this stage of the research, relating the measured results to what we may 

expect in the FSR system topology.  A section on initial work on quasi-coherent processing to 
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estimate target motion parameters and improve target detection is included at the end, this 

work is a subject for extensive future investigation. 

To give an example of a maritime FSR target signature, Figure 5.2-1 contains the first 

Doppler signature ever measured with the maritime FSR hardware, that of a rigid inflatable 

lifeboat target of opportunity.   

 

Figure 5.2-1.  First target measurement with maritime FSR system, left hand side is the recorded Doppler 
signature, right hand side is an image of the lifeboat target. 

 

The plot on the left side of the figure is the Doppler output from the detector i.e. the 

RSSI signal with dc offset (due to the direct path signal) removed.  The target signature is at 

the beginning of the record, with clutter occupying the last 50 s of the record.  The right hand 

side of the figure shows an image of the target.   

5.2.1 VARIATION OF TARGET SIGNATURE WITH BASELINE CROSSING 

ANGLE 
A set of experimental measurements have been performed to determine the variation 

of target signature with FSR baseline crossing angle.  The measurements presented here were 

recorded at Langstone Harbour over a range of 298 m with antenna heights of 1 m using a 7.5 

GHz CW signal.  The target shown in each of the following measurements is the co-operative 

small inflatable boat target and using GPS track and waypoint data it is possible to retrieve the 

trajectories for the target in each measurement.  Measurements were taken quite close in time 
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to attempt to ensure a constant sea state.  Efforts were made to achieve baseline crossing 

angles of 90, 45 and 22.5°, along with 0° directly along the baseline.  The sea conditions 

make such trajectories hard to achieve precisely and the outcome was a set of measurements 

at 78, 52 and 34° and as close to along the baseline as possible. 

5.2.1.1   RECORDED SIGNATURES FOR 78° BASELINE CROSSING OF SMALL 
INFLATABLE BOAT 

Figure 5.2-2 shows the GPS track data corresponding to a 78° target-baseline crossing. 

 

Figure 5.2-2.   GPS track data for 78° target trajectory.  Blue shows full track and red indicates section 
used for analysis. 

The speed of the target was found to be 11 km h-1 (5.9 knots).  The Doppler record is 

shown in Figure 5.2-3 and contains two inflatable boat signatures of which the second, 

highlighted in red, is related to the GPS data above.  

 

Figure 5.2-3.   Doppler signature for two baseline crossings of the MISL boat.  Red indicates target 
selection corresponding to a 78° crossing angle, green indicates a pure clutter selection, blue indicates data 

not selected for use in analysis. 
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The power spectral densities (PSD’s) of the selected target (plus clutter) signature 

(red) and the selected clutter section (green) are shown in Figure 5.2-4 (in corresponding 

colours). 

 

Figure 5.2-4.  Power spectral density of target and clutter for a target-baseline crossing angle of 78°. 

It can be seen both from time domain and PSD that the target signatures have a high 

SCR; the target is clearly visible above clutter and occupies a much wider spectral bandwidth. 

5.2.1.2   RECORDED SIGNATURES FOR 52° BASELINE CROSSING OF SMALL 
INFLATABLE  BOAT 

Figure 5.2-5 shows the recorded trajectory for a target crossing the baseline at an angle 

of 52°. 

 

Figure 5.2-5.  GPS track data for target trajectory.  Blue shows full track and red indicates section used 
for analysis. 

In this case, the target speed is measured to be 10.6 km h-1 equivalent to 5.7 knots, which is 

similar to the speed of the target for the 78° crossing angle and so a good comparison.  The 

Doppler record containing the target signature relating to the above trajectory is shown in 

Frequency [Hz] 
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Figure 5.2-6.  This record contains the target selected in red, the signature of a sailboat as it 

crossed the baseline in the blue section and a clutter selection in green.   The PSDs for the 

target (plus clutter) and clutter selection are shown in Figure 5.2-7. 

 

Figure 5.2-6.  Doppler signature for baseline crossing of the MISL inflatable.  Red indicates target 
selection corresponding to a 52° crossing angle and green indicates a clutter selection. 

 

Figure 5.2-7. Power spectral density of target plus clutter for a target-baseline crossing angle of 52°. 

Again the target is clearly separable from the clutter in both time and frequency domains.  The 

Doppler spread of the target is still well removed from the clutter band. 

5.2.1.3   RECORDED SIGNATURES FOR 34° BASELINE CROSSING OF SMALL 
INFLATABLE BOAT 

Figure 5.2-8 shows the recorded trajectory for the target present in the Doppler 

signature in Figure 5.2-9.  The GPS track of the target gives a velocity of 10.2 km h-1 or 5.5 

knots. 

Frequency [Hz] 
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Figure 5.2-8. GPS track data for target trajectory.  Blue shows full track and red indicates section used for 
analysis. 

 

Figure 5.2-9. Doppler signature for baseline crossing of the MISL inflatable.  Red indicates target 
selection corresponding to a 34° crossing angle and green indicates a clutter selection. 

The PSD’s of the selected target signature (red) and the selected clutter section (green) are 

shown in Figure 5.2-10.  Yet again the target can clearly be seen above clutter, however it is 

noted that the spread of the target spectrum is reduced for the lower crossing angles – this is 

expected from the FSR topology—however the target is still separated from the narrow 

clutter. 

 

Figure 5.2-10. Power spectral density of target plus clutter for a target-baseline crossing angle of 34°. 
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5.2.1.4   COMPARISON OF CROSSING ANGLE SPECTRA 

Figure 5.2-11 shows a comparison of all three target crossing angle PSDs plus one 

selected example of a clutter spectrum. 

 

Figure 5.2-11.  Comparison of target signature PSDs for target-baseline crossing angles of 78, 52 and 33°, 
alongside a selected example of clutter from one of the corresponding records. 

5.2.1.5   TARGET TRAJECTORY ALONG THE BASELINE 

At first thought one potential disadvantage of the FSR system is the non-detection of 

targets that are travelling directly along the baseline, where Doppler will be zero.  

Fundamentally this is not an issue for two main reasons.  Firstly the target actually has to 

reach the baseline and in doing so has to approach from some larger angle; secondly 

attempting to maintain a trajectory directly along the baseline (especially in smaller craft) is 

extremely difficult.  There is the added advantage that when the target is very near the 

baseline, even though the Doppler is small, the FSCS (forward scatter cross section) at these 

angles is at its greatest.  Attempts have been made to record the MISL small inflatable 

travelling along the baseline with an effort to maintain as accurate a trajectory as possible.  

Figure 5.2-12 gives the GPS track for such a trajectory.  It shows the difficulty involved in 

maintaining a straight line trajectory over the relatively short distance of 298 m even with 

complete visibility of transmitter and receiver as a guide. 
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Figure 5.2-12.  GPS target track for attempted ‘along baseline 0°’ trajectory. 

Figure 5.2-13 shows the signature recorded along this trajectory, towards the beginning of the 

signature, entry onto the baseline is noticeable as well as a baseline crossing (around 35-40 s), 

at the end, the boat makes some loops around the baseline and then moves away. 

 

Figure 5.2-13.  Doppler signature for attempted ‘along baseline’ trajectory. 

 

5.2.1.6   SUMMARY AND CONCLUSIONS FOR BASELINE CROSSING ANGLE RESULTS 

It can be seen from the PSDs in Figure 5.2-11, that he smaller the crossing angle, the 

narrower the target spectrum (when target speeds are more or less constant).  This behaviour 

is expected from FSR geometry due to the velocity components of the target being larger with 

respect to transmitter and receiver at greater angles – thus higher Doppler. 

The smaller the crossing angle the longer the observation time as the target occupies 

the region around the baseline for a longer time.  This can be seen especially so by comparing 
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the highlighted target signatures in Figure 5.2-3, Figure 5.2-6 and Figure 5.2-9; observing the 

relative widths in the time domain.   It should be noted though that for the given parameters, 

in each case, the target Doppler spread is still well separated from the clutter spectrum even at 

such low speeds, making detection possible. 

The potential difficulty posed by targets traversing along the baseline with zero 

Doppler is not realistic as essentially the targets need to travel to the baseline initially, also 

maintaining such a trajectory on the sea is difficult. 

5.2.2 VARIATION OF TARGET SIGNATURE WITH BASELINE CROSSING 

VELOCITY 
To determine the variation of target signature with respect to target velocity, Doppler 

recordings were made of the MISL inflatable boat target crossing the FSR baseline 

approximately mid-way at 90°, with 1m antenna heights using a CW 7.5GHz signal.  Various 

target speeds have been measured over the full period of our trials, here two speeds are 

shown, 10 knots and 5 knots which have been recorded when travelling with and against the 

tide in Langstone Harbour.  

5.2.2.1   RECORDED SIGNATURE FOR 10 KNOT TARGET VELOCITY 

Recorded/measured Doppler data for the small inflatable boat target is found in Figure 

5.2-14 (a), red indicates the target signature and green the clutter which are then used to form 

the PSD’s in (b).  The signature denotes the boat travelling with the tidal flow into the 

harbour.  In Figure 5.2-14 (b) the spectral width of the target signature is effectively wide due 

to the relatively high speed of the target, noticeable above the clutter/noise level up to 

approximately 60Hz.  

   

124 
 



 

Figure 5.2-14. Doppler signature (a) and PSD (b) for sea clutter and target with speed of 10 knots. 

 

Figure 5.2-15 is the image of the target trajectory as measured by the GPS tracker.  

The blue line shows the complete measured trajectory and the red, the trajectory used to 

measure target speed and baseline crossing parameters.  The speed is estimated at an average 

of 9.8 knots (10.5 knots across the baseline), with a crossing angle of 68°, crossing a 276m 

baseline 106 m from the transmitter Tx. 

 

Figure 5.2-15. GPS tracks showing the measured target trajectory for the signature in Figure 5.2-14. 
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5.2.2.2   RECORDED SIGNATURE FOR 5 KNOT TARGET VELOCITY 

Figure 5.2-16(a) and (b) are the corresponding Doppler data and PSDs from 

measurement relating to a slower target velocity, where the target is competing against the 

tide.   

 

Figure 5.2-16.  Doppler signature (a) and PSD (b) for sea clutter and target with velocity 5 knots. 

Figure 5.2-17 indicates the target trajectory as measured by the GPS tracker.  The blue 

line shows the complete measured trajectory and the red, the trajectory used to measure target 

speed and baseline crossing parameters.  The speed is estimated at an average of 4.8 knots 

(5.4 knots across the baseline), with a crossing angle of 83°, crossing a 276m baseline 127m 

from the transmitter Tx. 

 

Figure 5.2-17. Map showing the measured target trajectory (red line) for the signature in Figure 5.2-16.  
Yellow line is the FSR baseline.  
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5.2.2.3   COMPARISON OF SPECTRA AND SIGNATURE FROM DIFFERENT TARGET 
VELOCITIES 

Figure 5.2-18 shows the comparison of the PSD’s of the two target speeds. 

 

Figure 5.2-18.  PSD comparison for boat target moving at speeds of 5kt and 10kt. 

The figure indicates that the spectral width of the target signature at 5 kt is about half as wide 

as for the 10 kt as one would expect.  The target spectra are visible above the clutter level up 

to a frequency of approximately 30 and 60 Hz for the different speeds.  Zoomed versions of 

the time domain target signatures are found in Figure 5.2-19 and it can also be seen that the 

signal durations are also related by a factor of 2 (approximately).  

 

Figure 5.2-19.  Zoomed target signatures at 5 and 10 knots, indicating relationship between signal 
duration. 
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5.2.2.4   SUMMARY AND CONCLUSIONS FOR TARGET VELOCITY VARIATION RESULTS 

As expected, the bandwidth of the PSD is greater for the faster moving target.  This is 

(as expected) in proportional to the speed being two times faster and all other conditions being 

reasonably equal.  This proportional speed difference is also visible in the target signatures 

themselves, with the slower speed target having a twice longer duration signature in than the 

faster target, purely because the target has spent longer in the vicinity of the baseline.   The 

target is still well separated from the clutter even for such a low speed as 5 knots.  

It is reassuring that the measured amplitudes of the received signals are very similar 

due to the target FSCS (forward scatter cross section) remaining constant, slight fluctuation 

occurs due to the underlying clutter. 

5.2.3 TARGET DETECTABILITY AS A FUNCTION OF SEA STATE 
Data has been collected in what might be termed different ‘sea states’, though in the 

littoral environment of Langstone Harbour it is very difficult to classify in terms of real sea 

state as defined by the WMO (World Meteorological Organisation), which requires that the 

area of surface to be classified is large and has been exposed to external conditions for a long 

period of time.  During the course of our trials, the surface conditions have visibly changed 

due to factors including tidal flow of varying strengths and weather conditions influencing 

waves coming into the harbour – though we cannot say there is a direct relationship between 

wind speed and surface conditions measured inside the harbour. 

It has been possible using video recordings of the trials to select a few measurements 

in which we can say we have different sea states.  The actual values of sea state are estimated 

and this is a very objective process.  However we can at least separate lowest visual sea state 

from highest and some value in between. 
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Measurements shown here have been made using a 7.5 GHz CW signal, with a 

baseline range of approximately 300 m. 

5.2.3.1   TARGET SIGNATURES AT LOWEST ESTIMATED SEA STATE (1-2) 

Figure 5.2-20 shows the Doppler signature of the MISL boat and sphere target for 

motion over what is deemed to be a low sea state of 1-2, along with corresponding video 

capture stills of the sea surface during the measurement.  The measured wind speed and 

direction was 1.4 km h-1 Westerly. 

 

Figure 5.2-20.  Recorded Doppler signature and image of lowest sea state (1-2) – including boat and 
sphere target. 

Target and sphere are clearly visible over the sea clutter at around 60 s into the record. 

5.2.3.2   TARGET SIGNATURES AT MID ESTIMATED SEA STATE (2-3) 

Figure 5.2-21 shows a recorded target signature and still capture image of the sea 

surface for what is estimated to be somewhere in between the lowest and highest sea states in 

the available data, an approximate sea state 2-3. 

 

Figure 5.2-21.  Recorded Doppler signature and image of sea state 2-3. 
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Target is still highly visible within the clutter (around 30 s), but much less so than the 

lower sea state case in Figure 5.2-20.   

5.2.3.3   TARGET SIGNATURES AT HIGHEST ESTIMATED SEA STATE (3) 

Figure 5.2-22, Figure 5.2-23 and Figure 5.2-24 represent the case of what are deemed 

to be the highest sea state measurements, around sea state 3.   

 

 

Figure 5.2-22. Recorded Doppler signature and image of sea state (3), target is visible at around 35-40 s 
and 90 s. 

  

Figure 5.2-23.  Recorded Doppler signature and image of sea state (3), target is visible at around 22 s. 

 

Figure 5.2-24.  Recorded Doppler signature and image of boat jumping from the surface in highest sea 
state (3), target is visible at around 50-60 s.  A larger boat target crosses the baseline at 100 s. 
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All measurements contain the MISL inflatable and it can be seen in the still captures that the 

small inflatable has left the water’s surface - giving an indication of the roughness.  The wind 

speeds and directions measured during the records are 3.4 km h-1 W, 4.4 km h-1 SW and 3.7 

km h-1 SW respectively.  Visually the target signatures become less visible within the clutter 

as we reach sea state 3 as you would expect, as the clutter amplitude rises, but target 

amplitude remains the same.  Even though spectral plots would be ideal, it is visually clear 

that the density of the target signature oscillations (Doppler frequency) are separating the 

target from the clutter.  As the clutter resides in quite a narrow bandwidth (<1 Hz) as 

presented in Section 5.1, with the use of a simple (non-optimised) 2 Hz HPF much of this can 

be removed to give good signal to clutter ratios without the need for a whitening filter 

designed around the measured clutter spectrum.  Figure 5.2-25 shows a filtered version of 

Figure 5.2-23, an estimated sea state 3 record.  The improvement through clutter reduction is 

clear. 

 

Figure 5.2-25.  Target signature from Figure 5.2-23 after application of 2 Hz HPF to remove clutter. 

5.2.3.4   SUMMARY AND CONCLUSIONS FOR SEA STATE VARIATION 

Video, photographic, written and weather data have been collected during the majority 

of trials which have enabled the approximation of the sea state for certain Doppler records.  

Though this can quite subjective it still enables the selection of records for which the sea 

surface clearly has different roughness. 
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Even though the clutter amplitude rises, the narrow clutter spectrum means that still in 

high sea states, it may not overlap completely with the lower power target spectrum, thus 

allowing the use of a HPF for clutter removal, still leaving adequate signal power for 

detection. 

5.2.4 EFFECTS OF POLARISATION ON TARGET SIGNATURE 
Measurements have been performed to estimate the system performance with respect 

to varying antenna polarisation.   The horns used in the trials presented here are equal beam 

width in both planes (±10°), ensuring no effect of antenna pattern when changing polarisation.   

The MISL small inflatable boat is used as the target and measurements are made using 

a CW 7.5GHz signal with 1m antenna heights.  On inspection of the recorded GPS track data 

the target trajectories for each measurement have similar baseline crossing points and angles, 

the speeds are in the range 10-12 knots.  Absolute peak signal value for the target and 

received dc signal level are indicated, the dc level gives an indication of the received signal 

(leakage/direct path) strength and is removed from signatures shown before plotting.  

Doppler data for a target recorded with both the receiving and transmitting antennas 

having vertical polarisation is shown in Figure 5.2-26 (a).   The red highlight indicates the 

inflatable boat target signature and green a section of clutter.  Figure 5.2-26 (b) shows the 

corresponding PSDs for these sections of the signature.   The absolute peak signal value for 

the target and received dc signal level are indicated, as before, the dc level is removed from 

signatures shown before plotting.  The same target is recorded for H-H polarisation depicted 

in Figure 5.2-27, (a) showing the Doppler signature and (b) the PSDs of the selections. 
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Figure 5.2-26.  Doppler signature (a) and PSD (b) for target and clutter recorded with V-V polarisation. 

 

 

Figure 5.2-27.  Doppler signature (a) and PSD (b) for target and clutter recorded with H-H polarisation. 

 

Finally, the same target was recorded with cross polarisation H-V, shown in Figure 5.2-28, 

again with (a) showing the full and selected parts of the recorded Doppler signature and (b) 

the corresponding PSDs.  Note that Figure 5.2-28 also contains the signature of a larger boat 

crossing the baseline (blue section). 
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Figure 5.2-28. Doppler signature (a) and PSD (b) for target and clutter recorded with H-H polarisation. 

It can be seen when comparing the co-polar measurements (note the different axis 

scales) that the target signature amplitudes and the direct path propagation amplitudes (dc 

levels) are reasonably coincident.  Thus for the target signature, this implies no real 

dependence on polarisation.  This is to be expected, as in FSR the propagation model is 

expected to be independent of the polarisation, due partly to the conductive surface material, 

but mainly the low grazing angles involved in the topology (Section 3.2).  Due to the 

scattering mechanism in FSR being equivalent to diffraction from an aperture, at high 

frequencies we expect no depolarisation from the target scattering, and indeed the FSCS 

should not be dependent on the incident polarisation, as shown in Section 3.1.  What is 

obvious is the dramatic drop in absolute signal power for the cross polarised case—the spectra 

showing a 25-30 dB reduction in power in relation to the co-polarised case (again note 

different axis scales in plots).  This level of signature may be explained by the effect of 

antenna depolarisation, i.e. the antenna does not have perfect polarisation characteristics and 

will still receive a small amount of opposite plane polarised signal. 
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5.2.5 MEASUREMENT OF POTENTIAL DETECTION RANGE 
In order to give insight into the potential detection range of the experimental system, 

the decision was made to test on the calmest surface possible.  Therefore it was decided to 

move from sea to lake based trials, thus this section contains information gathered from trials 

on Coniston Water in the Lake District.  This test site also gave us the ability to ground mount 

the antenna’s at a variety of ranges; this is not possible at the Langstone harbour test site. 

The signatures shown in this section are all recorded using a CW 7.5 GHz signal and 

an antenna height of 1 m.  The target used is the MISL small inflatable and signatures contain 

either one or two baseline crossings of the boat. 

5.2.5.1   TARGET DOPPLER SIGNATURES FOR 726 M BASELINE 

The signature for a target detected at a range of 650m is shown in Figure 5.2-29.  As 

before, the red highlight indicates the target signature itself (with clutter) and the blue the 

background noise and clutter.  It is noticeable when comparing this signature to others, there 

is some unknown source of interference contained in the record; however the target signature 

is still visible between 50 and 60 s into the record.    

 

Figure 5.2-29.  Doppler signature recorded with a 726 m baseline, target signature highlighted in red. 

Figure 5.2-30 shows the GPS track data for the target trajectory in Figure 5.2-29.  The 

target crossed 370 m from the transmitter (356 m from the receiver) at an angle of 82° to the 
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baseline, with a velocity of 12.5 kmh-1 or 6.8 knots.  The blue line shows the full trajectory 

and the red the section used for the GPS track analysis. 

 

Figure 5.2-30. GPS track data for target trajectory.  Blue shows full track and red indicates section used 
for analysis, green is the FSR baseline. 

 

5.2.5.2   TARGET SIGNATURES FOR 935 M BASELINE 

The Doppler signature for 2 consecutive target measurements over a 935 m baseline 

range is shown in Figure 5.2-31.  The target signatures are highlighted in red and are 

reasonably well resolved visually.  What is interesting to note here is the large amplitude, low 

frequency sinusoidal variation underlying the usual clutter variation.  At the time of 

measurement a build-up of large long wavelength (swell like) undulations on the lake surface 

was seen.  This was theorised to be due to combined wakes from multiple large passenger 

(sight-seeing) boats travelling on the contained body of water.  The undulations essentially 

shifted the local mean surface height of the lake and this is the effect seen in the 

measurement.  The multipath scattering from the surface is varying in unison with the slow 

surface height changes (the relative antenna heights are changing over time) giving what is a 

long term, 10 s – 15 s, periodic oscillation in the received signal power.    
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Figure 5.2-31.  Doppler signature recorded with a 935 m baseline, two separate target signatures are 
highlighted in red. 

The GPS track data sets used to calculate the target trajectory parameters for both 

target signatures in Figure 5.2-31 are presented in Figure 5.2-32.  Blue showing full track and 

red the section used for analysis.  The crossing points were 617 and 600 m from the 

transmitter, which makes this trajectory slightly off from a central baseline crossing, in a 

slightly more favourable position for detection.  The crossing angles were 81 and 71° with 

velocities of 22.7 and 16.6 kmh-1. 

 

 

Figure 5.2-32.  GPS track data for target trajectories.  Blue shows full track, left red line highlights first 
target signature in Figure 5.2-31 right for second.  Green line is the FSR baseline. 

 

On implementation of a 2 Hz HPF for clutter removal, as was done for the high sea state case 

in 5.2.3.3, the two signatures are clearly visible as shown in Figure 5.2-33. 

137 
 



 

 

 

Figure 5.2-33.  Doppler signature for a 935 m baseline, after application of a 2Hz HPF.  Two target 
signatures are visible. 

 

5.2.5.3   TARGET SIGNATURE FOR 1287 M BASELINE 

The longest baseline measured was that of 1287 m.  Figure 5.2-34 contains the 

received Doppler signature, where the target signal is highlighted in red and the 

corresponding target GPS track data is shown in Figure 5.2-35,  

 

 

Figure 5.2-34.  Doppler signature recorded with a 1287 m baseline, target signature highlighted in red. 
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Figure 5.2-35.  GPS track data for target trajectory in Figure 5.2-34, Blue shows full track and red 
indicates section used for analysis. 

The trajectory information gives the target-baseline crossing point at 643 m from the 

transmitter (almost exactly midpoint crossing), crossing angle of 81° and target speed of 22.6 

km h-1 (12.2 knots).  Still at this range the target signature is visible with no pre-processing 

performed on the data.  Figure 5.2-36 shows the signal after being passed through the 2 Hz 

high pass filter. 

 

Figure 5.2-36. Doppler signature for a 1287 m baseline, after application of 2Hz HPF.   

 

5.2.5.4   SUMMARY AND CONCLUSIONS FOR TARGET DETECTION RANGE 

Data has been collected to show that it is possible to detect a small inflatable (2.9 m 

long) boat at a baseline range of approximately 1300 m, for the given smooth surface (~sea 

state 1) and radar parameters.  These recorded signatures actually require no pre-processing to 
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be visible, however it has been shown that the application of a HPF to remove the narrow 

band clutter can greatly improve the SCR/target visibility.   

5.2.6 QUASI-OPTIMAL SIGNAL PROCESSING IN MARITIME FSR  

Due to the lack of range resolution in FSR it is not possible, in the traditional sense, to 

track a targets position as it crosses the baseline.  Target motion and trajectory parameters 

must therefore be inferred by other means.  In [26] the process termed ‘quasi-optimal’ 

processing was introduced for the extraction of motion parameters in FSR and applied to 

experimental maritime target signatures3.  The processing scheme, summarised here, relies on 

the creation of a database of pre-defined reference signatures, formed using the FSR target 

signature model in Section 3.1.4.1.  The FSR signal model equation (3.1.8) is reproduced here 

with the dc term removed: 

 ( ) ( ) ( )( )ref 0 tgtsin 2S t A t f t tπ≈  (5.2.1) 

( )A t is a time varying envelope, related principally to the FSCS, the argument of the 

sin function is the target Doppler where 0f is the FSR operating frequency and 

 ( ) ( ) ( )
tgt

R t R t D
t t

c
+ −

= t r  . (5.2.2) 

( )R tt /r  are time varying target to transmitter/receiver ranges related to the target 

baseline crossing point and velocity and D is the baseline length.  Using (5.2.1) a set of 

reference signatures can be produced, ( )ref
ijkS t , which cover a range of expected target 

velocities ( )x y,i jv v  and baseline crossing points c
ky , where 

x
1... vi N= ,

y
1... vj N= and 

3 The author of this thesis contributed in part with the first author to the development of the ‘quasi-
optimal’ processing in [26] and played the major role in the creation of the software for its application to 
measured target signals. 
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c
1... yk N= .  The total number of references in the database is 

x y cv v yN N N .  The estimation of 

target motion parameters is now just a case of sequentially correlating the references with the 

measured signals.  The reference providing the maximum correlation output gives the 

trajectory parameters best matched to that of the target.   

No mention has yet been made concerning the envelope term in (5.2.1).  The target 

velocities and crossing points used to create reference functions can be expressed within some 

expected ranges, dependent on the expected target types.  The amplitude envelope of the 

reference (and indeed the measured signals) is a function of the FSCS pattern and hence target 

profile shape.  It is not reasonable to expect the database can be extended to include 

references for all possible target profile shapes.  In [26], correlations were performed on a 

series of chirps with different window functions and frequencies. It was shown through 

example, that the correlation output is much less affected by the slowly varying envelope than 

it is by the faster sign-alternating phase, i.e. estimating the Doppler correctly is much more 

important than using the correct target profile shape.  Hence, as the processing does not fully 

account for this envelope parameter it has been termed ‘quasi-optimal’.  Figure 5.2-37 shows 

the application of the quasi-optimal processing to three recorded maritime signatures. The left 

panes show the target trajectory with respect to the baseline, the middle panes are the 

recorded signatures and the right panes show the best matched reference waveform from the 

processing. The figures show that the signal envelope of the recorded signature may appear 

very dissimilar to the reference e.g. in (b) and (c).  In these cases it is due to the underlying 

clutter and potential non planar motion of the target over the sea.  Even so, as shown in  
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Table 5.2-1, which compares the measured and extracted target motion parameters, 

very good estimations of the target motion parameters can be obtained purely by the phase 

matching. 

 

Figure 5.2-37.  Example of measured maritime target signatures and matched waveforms from correlation 
processing. Left hand panes show the target trajectory, middle panes the recorded signature and right 
hand show the matched reference signal.  (a) represents a target crossing the middle of a baseline 
perpendicularly, (b) a perpendicular crossing nearer to the receiver and (c) a crossing angle of around 
60°.  Reproduced from [26]. 
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Table 5.2-1.  Comparison of measured (GPS tracked) and extracted motion parameters for the target 
trajectories shown in Figure 5.2-37.  Reproduced from [26]. 

 

 

The processing technique does require optimisation and future research may be based 

upon this.  The generation of the database of signatures needs to be fundamentally 

investigated i.e.  how to determine the optimal velocity component and crossing point 

increments used to create the database, and understand how this affects the accuracy in the 

estimations.  It may not be as simple as creating as many references as possible.  Ultimately 

the processing could use iterative refinement from an initial set of grossly spaced generated 

signatures to find upper and lower bounds of the parameters and then refine within these. 

The quasi-optimal processing scheme was developed in FSR in order to provide a 

method of estimating target kinematics.  However, the scheme is fundamentally the 

application of the correlation matched filter (Section 2.9), which is used to compress the 

signal and increase the SCR.  

Figure 5.2-38 shows a Doppler signature consisting of two MISL inflatable crossings, 

one at around 55 s the other at 100 s overlapping with another larger boat.  The sea state is an 

estimated sea state 3.  Again, with the use of a 2 Hz HPF again the clutter components can be 

removed as shown in Figure 5.2-39.  The target(s) positioned around 20 s in time were 

believed to be seagulls crossing through the FSR baseline close to one of the antennas.   

143 
 



 

Figure 5.2-38.  Doppler signature containing two inflatable boat crossings, one overlapping with a larger 
boat at around 100 s, in an estimated sea state 3. 

 

 

Figure 5.2-39.  2 Hz high pass filtered Doppler signature of Figure 5.2-38. 

The red highlighted part of the Figure 5.2-39 indicates a section of filtered clutter of which the 

standard deviation is 0.003 V.  The inflatable boat target signature, in green, has a maximum 

value of 0.20 V.  This gives an estimated ratio of the standard deviation to maximum of 

36.5dB.  Applying the quasi-optimal correlation processing to this Doppler signature (after 

applying the same 2 Hz HPF filter to the reference database) yields the output shown in 

Figure 5.2-40.  Green highlights the compressed target signature and red a section of clutter, 

visually selected with effort to avoid including the side lobes of compressed target signatures. 
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Figure 5.2-40.  Measured target signatures after quasi-optimal correlation processing. 

The standard deviation of the red highlighted clutter is now 0.023 and the compressed 

target signature peak is 5.0, giving a new ratio of 46.8dB.  Thus after quasi-optimal 

processing the SCR has improved by 10dB.  It should also be noteed that at around 1.6 mins 

into the record it is potentially possible to distinguish the smaller boat target from the larger, 

as there are two compression peaks.   

The application of the quasi-optimal processing for improving target detection 

requires future investigation; here it is just shown as a concept applied to an example 

signature.  Detection schemes as a whole need to be developed for the FSR system and its 

capabilities against low SCR (otherwise termed marginal) targets need to be assessed.  At this 

time, the investigation of target detection algorithms and detection of marginal targets has not 

been considered (due to time constraints).  It is however a priority for future work.  In the first 

instance, the current target data set can be used to make estimates of the target statistics.  Also 

if the proposed FSR target signal models can be verified against the data, they can be used for 

simulation of the statistics for many scenarios.  The knowledge of the clutter and target 

statistics will allow the formation of receiver operating characteristic (ROC) curves.  These 

are used to visualise the probability of detection, dP , of targets with a given SCR for a given 
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probability of false alarm, faP  (probability of erroneous detection).  The probability of false 

alarm is defined by the clutter statistics and a chosen detection threshold voltage, tV , at the 

receiver output.  It is calculated from the integral of the clutter probability density function 

(PDF), cp , expressed in its basic form as: 

 
t

fa c
V

P p dV
∞

= ∫   (5.2.3) 

The detection probability is the same integral performed over the target signal plus clutter 

PDF, sp , 

 
t

d s
V

P p dV
∞

= ∫   (5.2.4) 

 If the PDF for targets is known, then the probability of detection, dP , can be found for the 

defined detection threshold.  The sea clutter levels in FSR will however change over time due 

to, for example, variation in sea state.  In practice a constant false alarm rate (CFAR) detector 

should be employed for automatic detection.  A CFAR detector samples the clutter from the 

data as it is being collected and adjusts the voltage threshold according to the statistics; 

maintaining the chosen false alarm rate.   There are many variants of the CFAR detector, one 

of the more common being the cell averaging-CFAR (CA-CFAR).  The CA-CFAR takes the 

average statistical parameters of reference ‘cells’ of data on either side of a test cell.  It then 

adjusts the detection threshold for that test cell accordingly.  This is subject to investigation, 

but CA-CFAR would seem a good initial choice in FSR, as the clutter is generally observed to 

be homogenous over time (see previous experimental measurement results) i.e. the clutter in 
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the reference cells would be representative of the clutter in the test cell.  Changes in the FS 

clutter tend to occur over relatively long periods of time, allowing the CFAR time to adapt.   

The reader is directed to [63] for more information on CFAR and the fundamentals of radar 

detection.   

5.3 SUMMARY OF MEASUREMENT CAMPAIGN RESULTS 
This section presented a selection of results from a comprehensive measurement 

campaign to gather target and clutter data in Maritime FSR, in a variety of conditions.  To the 

author’s knowledge it is a novel and unique dataset, which, as intended will provide data for 

the further investigation of the system.     

Initially an overview of clutter spectral and statistical analysis was given, and it was 

seen that for a wide range of measurement parameters, the clutter spectral power is 

concentrated below 1 Hz and the statistics appear Rayleigh distributed.  Target measurement 

results for varied scenarios were then presented; a qualitative analysis has been made at this 

stage to describe the effects seen in the context of FSR. For example, independence of 

polarisation, target spectra variation for different target kinematics.  

A quasi-optimal correlation processing scheme was introduced, based on the earlier 

proposed signal models to provide estimation of target kinematic parameters in FSR.  This 

was then applied to real data and showed good estimation of the motion parameters—this 

example may also give partial verification of the signal models.  Target tracking/trajectory 

estimation is very important for any radar system.  Due to the lack of range resolution in FSR, 

the only method by which any form of trajectory estimation is possible for a single baseline is 

through the use of this processing.  The quasi-optimal correlation method is fundamentally 

related to matched filtering and is also crudely applied to target signatures to show 

147 
 



improvement of the SCR.  Now that the fundamentals of the processing have been laid down, 

optimisation and further examination should be carried out.  The target detection performance 

of the FSR system, especially for low SCR (marginal) targets is one of the most important 

area of the system analysis and should be considered as high priority.  Estimation of the 

performance requires knowledge of both clutter and target statistics in order to probabilities of 

false alarm and detection.  Now that experimental target signatures have been collected, an 

estimation of target statistics may be made.  Ultimately the signal model proposed in this 

thesis need to be shown to adequately reproduce the statistics.  It can then be used to produce 

estimates for a wide range of parameters.  The data should also be used to verify the power 

budget so that estimations can be made of the types/dimensions of target that will be 

considered marginal for given scenarios.  

6   TARGET LINE OF SIGHT VISIBILITY IN 
HIGH SEA STATES 

Due to the logistics of maritime testing, the majority of trials performed and data 

collected have been restricted to littoral waters, shore mounted antennas and the lower sea 

states (1-3 WMO).  The outcome of this is that the line of sight (LOS) between antennas and 

antennas and target is rarely if ever lost due to wave blocking, i.e. the wave being high 

enough to block the radar/target scattered signals as in Figure 5.3-1.  As mentioned in Section 

4.1 the ultimate aim of the Maritime FSR system is to perform as a netted (multi-static) array 

of buoy mounted transceivers.  In this situation, not only will the motion of the target 

contribute to blockage, but also the vertical and tilting motions of the antennas on their buoy 

mounts.   
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Until the time comes that it is possible to produce such experimental testing out in 

deeper waters with buoy mounted equipment, it is necessary to estimate to some degree what 

the level of wave blocking that will be present in the scenarios that are likely to be 

encountered i.e. sea conditions in which the small ‘difficult’ targets of interest would be at 

sea.  In the long run, this can be an aid to estimating the target detection capability of the FSR 

system.  This chapter presents a geometric (currently not electromagnetic) model that gives 

insight into the matter at hand and a selection of results from simulations based on the model.  

The model itself is a direct discrete synthesis of a deep sea surface onto which antennas and 

target models are placed and then the simulation is evolved through time to emulate an FSR 

baseline crossing.  The target traverses the sea surface, under the influence of the surface 

height and the antennas sway and move according to the surface conditions at their base 

positions.  During the traversal of the target, LOSs are estimated purely through the use of 

geometric rays drawn between antennas and target (as in Figure 5.3-1).  At this stage the 

model is purely based on sea gravity waves (not capillary) as these are deemed to provide the 

most influence over LOS—the rest of this chapter describes the method used to generate the 

sea surface and the simulation model, followed by selected important results. 

 

Figure 5.3-1.  Antenna-target line of sight blocking due to high waves/sea state. 

6.1 GENERAL METHOD FOR SURFACE SIMULATION  
The computer-generated imagery (CGI) industry has been creating visually realistic 

simulations of the sea surface for computer games and movies for many years now and the 
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methods used are useful for and indeed are now used in electro-magnetic scattering 

simulations. 

The most commonly used method of sea surface simulation (due to its computational 

efficiency) involves the use of the inverse fast Fourier transform (IFFT) [80], [81].  The 

method is based on the assumption that the sea surface is composed as the sum of many 

sinusoids, (which relates to Airy’s linear gravity wave theory [82]), with various amplitudes, 

frequencies, directions and phases.  Thus the wave height, 𝜂𝜂(𝒙𝒙) at a position 𝒙𝒙 = (𝑥𝑥,𝑦𝑦), at an 

instant in time, is given by 

 ( ) ( ) iA eη ⋅=∑ k x

k

x k   (6.0.1) 

Where 𝐴𝐴(𝒌𝒌) are the complex amplitudes (magnitude and phase) of the individual sinusoidal 

components specified by their wave vector 𝒌𝒌 . Here the sum for all 𝒙𝒙 = (𝑥𝑥,𝑦𝑦)   is to be 

performed computationally (and discretely) by the IFFT.   

Some thought must be given to the choice of amplitudes and phases of the waves that are 

summed to construct the surface.  Ocean waves in deep water are considered to be a Gaussian 

random process [83], irrespective of sea severity.  Thus the measurements of surface 

displacement about the mean (over time, or a patch of sea) tend towards a Gaussian 

distribution; this and other statistical properties of the surface should therefore be reproduced 

in simulation.  From the central limit theorem, the sum of a large number of random sinusoids 

should produce a Gaussian height distribution, provided the appropriate random variables are 

chosen for the construction of the individual sinusoids.  There are two common 

methodologies adopted: 

1. Non- deterministic spectral amplitude model (NSA) 

2. Deterministic spectral amplitude (DSA) 
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These methods of Gaussian noise generation were originally developed by Rice [84] in his 

papers on the mathematical development of random noise, and are adopted in [85] to simulate 

random ocean waves. 

The NSA model (also known as the random coefficient scheme) is derived from a 

representation of the surface height 𝜂𝜂(𝑥𝑥) through the discrete Fourier series in its quadrature 

form, 

 
𝜂𝜂(𝑥𝑥) =

𝑎𝑎0
2
�(𝑎𝑎𝑛𝑛 cos𝑘𝑘𝑛𝑛𝑥𝑥 + 𝑏𝑏𝑛𝑛 sin𝑘𝑘𝑛𝑛𝑥𝑥)
𝑁𝑁/2

𝑛𝑛=1

. (6.1-1) 

In which the d.c. component 𝑎𝑎0 = 0  and the Fourier coefficients 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 are independent, 

normally distributed random variables with zero mean and a standard deviation 𝜎𝜎𝑛𝑛 defined by 

a prescribed discretised one sided energy density spectrum for the sea surface, 𝑆𝑆(𝑘𝑘𝑛𝑛), the 

choice of which will be discussed in the next sub-section.  Thus the coefficients are given by, 

 �
𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛� = �

𝛼𝛼𝑛𝑛
𝛽𝛽𝑛𝑛�

�𝑆𝑆(𝑘𝑘𝑛𝑛)∆𝑘𝑘. (6.1-2) 

Where  𝛼𝛼𝑛𝑛and 𝛽𝛽𝑛𝑛  are normally distributed random variables with zero mean and standard 

deviation of 1 and ∆𝑘𝑘 is the discrete wavenumber spacing of the energy density spectrum.  

These 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛  can then be transformed into complex amplitudes 𝐴𝐴𝑛𝑛  (one-sided) of the 

component waves in order to be used in the IFFT: 

 
𝐴𝐴𝑛𝑛 = ��𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑛𝑛

2� 𝑒𝑒𝑖𝑖�atan�
𝑏𝑏𝑛𝑛
𝑎𝑎𝑛𝑛
�� (6.1-3) 

Note the phase can actuallybe uniform random between 0 and 2π. 

The DSA model (also known as the random phase scheme) uses the alternative form 

of the Fourier series,   
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𝜂𝜂(𝑡𝑡) =

𝑐𝑐0
2
�𝑐𝑐𝑛𝑛 cos(𝜔𝜔𝑛𝑛𝑡𝑡 − 𝜃𝜃𝑛𝑛)
𝑁𝑁/2

𝑛𝑛=1

. (6.1-4) 

In this method, the Fourier coefficients 𝑐𝑐𝑛𝑛 are determined directly from the energy spectrum, 

and are indeed the actual amplitudes of the wave components (hence the term deterministic),  

 𝑐𝑐𝑛𝑛 = �2𝑆𝑆(𝑘𝑘𝑛𝑛)∆𝑘𝑘. (6.1-5) 

The phase term 𝜃𝜃𝑛𝑛, is a uniformly distributed number in the range [0,2𝜋𝜋], thus the complex 

amplitudes (one sided) of the wave components of the surface are given by, 

 𝐴𝐴𝑛𝑛 = ��2𝑆𝑆(𝑘𝑘𝑛𝑛)∆𝑘𝑘�𝑒𝑒𝑖𝑖𝜃𝜃𝑛𝑛 (6.1-6) 

Which particular model to use is a matter of debate and there are arguments that the random 

phase method does not produce the correct statistics [86], though [87] argued that if enough 

frequency components are used, approximately 2000 comprising the main spectral peak, then 

the correct statistics are indeed reproduced.  Essentially, the NSA model will reproduce 

surfaces more likely to be measured during say a single experimental trial as it randomly 

samples the energy spectrum, whereas the DSA model will reproduce a more average version 

as it directly uses the energy spectrum values – assuming the considered energy spectrum is 

one previously formed as an average from an ensemble of measurements. The method chosen 

for simulation in this thesis is the DSA, it requires the generation of only a single random 

variable and the number of samples chosen for the IFFT will be more than adequate. 

6.2 EMPIRICAL SEA WAVE SPECTRA 
In order to generate a model of the sea surface, as explained above, a description in 

terms of its energy density spectrum is required, both with regards to frequency/wavenumber 

and indeed direction.  The most commonly used spectra are empirically derived from 

experimental data.  This data is obtained from many sources, be that oceanic, lake/reservoir or 
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wave tank, and measured in a variety of ways - wave buoys (of which there are many 

variations), ship based apparatus, wave staffs.  The list is quite extensive and each 

experimental method for each developed spectrum cannot be discussed here and should be 

investigated as the reader requires, though an overview can be found in the more general 

‘ocean wave’ texts such as [53] and [88].   

There are two distinct parts of a full directional wave spectrum, the point spectrum and 

the directional spreading function.  The point or uni-directional wave spectrum (as it assumes 

all wave energy is travelling in a single direction – the wind direction) is derived from wave 

recordings made at a single point on the sea surface, and essentially describes the combination 

of the wave energy from all directions at that point.  The directional spreading functions (or 

directional energy distribution), are produced by combining data measured at multiple points 

on the surface and describe the actual angular distribution of the waves.  The method of 

creating the spectra and directional function from measured data traditionally involved the 

Fourier transform of both auto and cross correlation functions, by use of Weiner-Kinchine 

theorm, more simple methods essentially boil down to performing the FFT of the time series 

data, again deeper methodological descriptions can be found in the more general texts [53], 

[88]. 

Two of the most commonly used point sea spectra will be discussed here, each is used 

for a different phase in the wave generation process, either fully developed or developing.  

The point must be made that these models are specifically only valid for what are termed 

gravity waves, which are generally accepted to be the sea waves with wavelength 𝜆𝜆 > 2cm 

and for which the restoring force is gravity, as opposed to capillary waves for which the 

restoring force is surface tension.  Having said this, the method of measurement used in the 
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data collected to form the spectrum may have a cut off at a much longer wavelength value 

than this boundary.         

6.2.1.1 PIERSON-MOSKOWITZ SPECTRUM FOR FULLY DEVELOPED 

SEAS 
The Pierson-Moskowitz (P-M) spectrum [89] describes the point sea wave spectra for 

a fully developed sea.  This is the final stage of wave development where the energy losses 

from wave actions such as wave breaking and the dissipation to capillary waves equal the 

energy being supplied by the wind.  The spectrum was originally given in terms of angular 

frequency ω  by,  

 
𝑆𝑆PM(𝜔𝜔) =

𝛼𝛼𝑔𝑔2

𝜔𝜔5 𝑒𝑒
−𝛽𝛽�𝜔𝜔0

𝜔𝜔 �
4

, (6.2-1) 

where 𝛼𝛼 is the Phillips constant, with value 0.0081.  𝛽𝛽 has the value 0.74 and 𝜔𝜔0 = 𝑔𝑔 𝑈𝑈19.5⁄ , 

where 𝑈𝑈19.5 is the wind speed measured at 19.5 m above sea level. Examples of the Pierson-

Moskowitz spectrum for different wind speeds, 𝑈𝑈19.5, are shown in Figure 6.2-1. 

 

Figure 6.2-1  Pierson-Moskowitz point sea spectra in terms of angular frequency for differing wind speeds 

Being a single peaked spectrum, we can find the modal wave frequency by differentiating 

(6.2-1),  
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 d𝑆𝑆PM(𝜔𝜔)
d𝜔𝜔

= 𝛼𝛼𝛼𝛼𝑒𝑒−𝛽𝛽�
𝜔𝜔0
𝜔𝜔 �

4

�
4𝛽𝛽𝜔𝜔0

4

𝜔𝜔10 −
5
𝜔𝜔6� . (6.2-2) 

The modal frequency 𝜔𝜔m, occurs when d𝑆𝑆PM(𝜔𝜔) d𝜔𝜔⁄ = 0, thus from (6.2-2) 

 4𝛽𝛽𝜔𝜔0
4

𝜔𝜔m
10 =

5
𝜔𝜔m
6 , (6.2-3) 

 
𝜔𝜔m = 𝜔𝜔0�

4
5
𝛽𝛽

4
=

𝑔𝑔
𝑈𝑈19.5

�4
5
𝛽𝛽

4
. (6.2-4) 

The knowledge of the modal frequency is not necessarily important; however it can be useful 

as a visual check to ensure any simulated sea surfaces correspond to the expected bulk wave 

frequency. 

The wave spectrum can also be written in terms of significant wave height.  This is 

useful when associating the spectrum with a sea state (SS).  The sea state is a method of 

classifying the severity of a sea.  Common definitions are the world meteorological 

organisation (WMO) code (Table 3700 in [90]) which adopts the Douglas sea state scale.  The 

scale defines a number from 0 to 9 along with a significant wave height 𝐻𝐻1/3 and description 

of the surface characteristic, the WMO codes are reproduced in Table 6.2-1.   

Table 6.2-1.  WMO Sea State Code. 

Code Figure 
(Sea State) 

Significant Wave 
Height, 𝑯𝑯𝟏𝟏/𝟑𝟑 [m] 

Descriptive Terms 

0 0 Calm (Glassy) 
1 0-0.1 Calm (Rippled) 
2 0.1-0.5 Smooth (Wavelets) 
3 0.5-1.25 Slight 
4 1.25-2.5 Moderate 
5 2.5-4 Rough 
6 4-6 Very Rough 
7 6-9 High 
8 9-14 Very High 
9 Over 14 Phenomenal 
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The significant wave height is the average height of the 1/3 highest waves (this being what it 

is supposed we actually measure when estimating wave heights visually). 

So to obtain relationships for the significant wave height, firstly we integrate the point 

spectrum (6.2-1), using the substitution 𝑢𝑢 = −𝛽𝛽 �𝜔𝜔0
𝜔𝜔
�
4
 

 
� 𝑆𝑆PM(𝜔𝜔)d(𝜔𝜔) =

𝛼𝛼𝑈𝑈19.5
4

4𝛽𝛽𝑔𝑔2
,

∞

0
 (6.2-5) 

then by assuming the spectra is narrow banded (surface has a Rayleigh height distribution) 

and given that the integral of the wave spectrum gives the variance (zeroth moment) of the 

wave height field [53], [88], i.e.  

 
� 𝑆𝑆PM(𝜔𝜔)d(𝜔𝜔) = 𝜎𝜎2,
∞

0
 (6.2-6) 

 we therefore know the integral is also given by: 

 
� 𝑆𝑆PM(𝜔𝜔)d(𝜔𝜔) = �

𝐻𝐻1/3

4
�
2

.
∞

0
 (6.2-7) 

Equating (6.2-5)and (6.2-7), after some rearrangement it is found that 

 
𝑈𝑈19.5 = �𝛽𝛽𝑔𝑔

2𝐻𝐻1/3
2

4𝛼𝛼

4

, (6.2-8) 

which can if needed, be substituted into 𝜔𝜔0
4 in (6.2-1).   

It should also be noted that (6.2-8) gives the relation between the significant wave 

height and the wind speed for the Pierson-Moskowitz wave spectrum.  The modal angular 

frequencies and significant wave heights for the spectra in Figure 6.2-1 are, 0.86, 0.57 and 

0.43 rad s-1 and 2.1 m (SS 4), 4.8 m (SS 6) and 8.5 m (SS 7) respectively with increasing wind 

speed. 
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The Pierson-Moskowitz spectral formulation is very useful in its simplicity, however fully 

developed seas require a specific fetch (distance) and duration of wind blowing over the 

surface, these conditions are listed in Table 6.2-2.  In order to describe situations where these 

conditions are not met (and they rarely are it seems) another commonly used spectral form is 

the JOint North Sea WAve Project (JONSWAP) formulation. 

Table 6.2-2.  Condition for fully developed sea. 

Wind Speed (in single direction) 

 [km/hr] 

Fetch 

[km] 

Wind Duration 

[hrs] 

19 19 2 

37 139 10 

56 518 23 

74 1313 42 

92 2627 69 

 

6.2.1.2 JONSWAP SPECTRUM FOR UNDEVELOPED SEAS 
The JONSWAP spectrum was created to describe developing seas, a sea where the 

energy equilibrium between wave and wind is not yet reached.  The state of development is 

described using the wind speed and fetch, the fetch being the distance over which a persistent 

wind has been blowing, the JONSWAP spectrum in terms of frequency is given by [91]: 

 
𝑆𝑆JS(𝑓𝑓) = 𝛼𝛼

𝑔𝑔2

(2𝜋𝜋)4
1
𝑓𝑓5
𝑒𝑒−1.25(𝑓𝑓m 𝑓𝑓⁄ )4𝛾𝛾𝑒𝑒−(𝑓𝑓−𝑓𝑓m)2 2(𝜎𝜎𝑓𝑓m)2� . (6.2-9) 

Where: 𝛾𝛾 = 3.30 (shape parameter). 
  𝛼𝛼 = 0.076𝑥̅𝑥−0.22 (scale parameter). 
  𝑥̅𝑥 = 𝑔𝑔 𝑥𝑥 𝑈𝑈�10

2⁄  (dimensionless fetch). 
  𝑥𝑥 = fetch length [m]. 
  𝑈𝑈�10 = mean wind speed at 10 m above sea level [ms-1]. 
  𝑔𝑔 = gravitational constant [ms-2]. 

𝑓𝑓m = 3.5 𝑔𝑔
𝑈𝑈�10

𝑥̅𝑥−0.33 (modal frequency). 
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  𝜎𝜎 = �0.07   𝑓𝑓 ≤ 𝑓𝑓m
0.09   𝑓𝑓 > 𝑓𝑓m

  

 
The JONSWAP form contains an additional parameter to the PM spectrum, the peak 

enhancement parameter 𝛾𝛾. In truth the value of the parameter is quite spread and it can be 

considered to be Gaussian distributed with a 𝛾𝛾 value of 3.3 as the average (typical sea), the so 

called standard ‘JONSWAP Spectral Formulation’ is known by the use of the parameters 

above.  They can be changed to suit particular sea measurement data if required.  So in 

comparison to the Pierson-Moskowitz spectrum assuming we use the standard values of 𝛾𝛾 and 

𝜎𝜎 we can vary not only the wind speed, but the fetch also; spectral plots are shown in Figure 

6.2-2, highlighting the effects of variation of the two parameters. 

 

Figure 6.2-2  JONSWAP spectra for varying fetch at constant wind speed and varying wind speed at 
constant fetch. 

It can be seen that the wave energy, which is proportional to the variance of the wave 

height and hence area under curves in Figure 6.2-2 (from (6.2-6)), increases as the fetch 

increases, as the sea is pushed more towards a fully developed equilibrium state.  

Again, this spectral form can be written in terms of significant wave height 𝐻𝐻1/3, again 

using the narrow banded spectrum approximation (as for the Pierson Moskowitz spectrum).  
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However there is no analytic solution to the integral of 𝑆𝑆JS(𝑓𝑓) and so this is performed for 

specific values of 𝛾𝛾, the following relationship between fetch and wind speed was found, 

 𝑈𝑈� = 𝑘𝑘𝑥𝑥−0.615𝐻𝐻1/3
1.08. 

(6.2-10) 

 
⇒𝐻𝐻1/3 = � 𝑈𝑈�

𝑘𝑘𝑥𝑥−0.615

1.08

. (6.2-11) 

Where the value of 𝑘𝑘 has been derived for various values of the shape parameter 𝛾𝛾; for 

𝛾𝛾 = 3.30, 𝑘𝑘 = 83.7 [92]. 

6.2.1.3 COMPARISON OF SPECTRAL FORMULATIONS 
In order to compare both the JONSWAP and Pierson Moskowitz spectrum they should 

both be dependent on the same variable; as most directional spreading functions (which will 

be discussed later) are defined in terms of linear frequency this will be chosen as the common 

variable and the Pierson Moskowitz spectrum shall be transformed.  The method of 

transformation is relatively simple, to maintain integral equality of the spectrum  (and thus 

conserving wave energy on transformation), the equality 

 
� 𝑆𝑆PM(𝜔𝜔)
∞

0
d𝜔𝜔 =  � 𝑆𝑆PM(𝑓𝑓)

∞

0
d𝑓𝑓 (6.2-12) 

must be satisfied and thus, 

 
�𝑆𝑆PM�𝜔𝜔(𝑓𝑓)�

d𝜔𝜔
d𝑓𝑓

d𝑓𝑓 = �𝑆𝑆PM(𝑓𝑓)𝑑𝑑𝑑𝑑, (6.2-13) 

where 𝜔𝜔(𝑓𝑓) = 2𝜋𝜋𝜋𝜋 , d𝜔𝜔 d𝑓𝑓 = 2𝜋𝜋⁄  , therefore from the definition of the Pierson 

Moskowitz spectrum(6.2-1) and to put in terms of modal frequency 𝑓𝑓m  (from 𝜔𝜔m  using 

(6.2-4)): 
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 𝑆𝑆PM(𝑓𝑓) = 2𝜋𝜋 ∙ 𝑆𝑆PM(𝜔𝜔 = 2𝜋𝜋𝜋𝜋) (6.2-14) 

 
⇒ 𝑆𝑆PM(𝑓𝑓) =

𝛼𝛼𝑔𝑔2

(2𝜋𝜋)4𝑓𝑓5
𝑒𝑒−

5
4�
𝑓𝑓m
𝑓𝑓 �

4

, (6.2-15) 

where 

 
𝑓𝑓m =

𝜔𝜔m

2𝜋𝜋
=

𝑔𝑔
2𝜋𝜋𝜋𝜋19.5

�4
5
𝛽𝛽

4
. (6.2-16) 

It should also be considered that there is a discrepancy in the definition of the wind 

speed, for the Pierson-Moskowitz spectrum the wind speed is specified 19.5 m above the sea 

surface whereas for the JONSWAP it is 10 m.  Therefore the wind speed should be adjusted, 

and the chosen adjustment is to define the 10 m speed.  Under certain atmospheric 

assumptions it can be shown [93] that 𝑈𝑈19.5 = 1.076 ∙ 𝑈𝑈10.  A comparison of the P-M and 

JONSWAP spectrum for a single wind speed but varying fetch is shown in Figure 6.2-3. 

 

Figure 6.2-3  Pierson-Moskowitz and JONSWAP Spectral comparison for fixed wind speed and variable 
fetch. 

What should be taken from Figure 6.2-3 is that, from Table 6.2-2, at 500 km fetch the 

JONSWAP spectrum (green line) should signify a fully developed sea, in some way tending 

towards the PM spectrum (black line) – it is not so simple as this, as adjustments may need to 

160 
 



be made to the value of 𝛾𝛾 for this situation.  Needless to say the JONSWAP formulation does 

not tend towards the PM as the fetch increases and remains overly peaked.  This effect has 

been discussed and reconciled in other more recent spectral forms which have merged the two 

scenarios, for example the Donelan spectrum [94].  Suffice to say the PM spectra should be 

used for fully developed and JONSWAP for developing seas. 

In this thesis the analysis is constrained to the use of the PM spectrum which thus 

restricts simulation to the fully developed sea, and allows us to therefore compare similar 

aged seas for various wind speeds, giving a well-defined basis for comparison of results.  

6.2.2 DIRECTIONAL SPREADING FUNCTIONS 
Just knowing the spectrum of the waves at a single point is not useful for constructing 

a 2-D surface profile; knowledge about the direction of travel of the various wave components 

is also required.  This comes in the form of the empirically derived directional spreading 

functions.  

6.2.2.1 COSINE-SQUARE SPREADING FORMULA 
The most basic spreading function was proposed in [95] and is known as cosine-

square spreading.  It is basic in that it has no dependence on wave frequency, only angle and 

takes the form: 

 
𝐷𝐷(𝜃𝜃) =

2
𝜋𝜋

sin2(𝜃𝜃)      for −
𝜋𝜋
2

< 𝜃𝜃 <
𝜋𝜋
2

   (6.2-17) 

Where 𝜃𝜃 is the spreading angle and 𝜃𝜃 = 0 is the direction of motion of the bulk of the 

waves i.e. what would generally be considered the prevailing wave/wind direction.   A plot of 

the function is shown in Figure 6.2-4.  The factor of 2/𝜋𝜋 is a normalisation factor to meet the 

requirement for all directional spreading functions - the integral over all angles is unity, 
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� 𝐷𝐷(𝑓𝑓,𝜃𝜃) = 1,
2𝜋𝜋

0
 (6.2-18) 

this property maintains that the total energy at a point (from the point spectrum) 

remains unchanged no matter which direction the waves arrive from. 

 

 

 

Figure 6.2-4.  Cosine2 directional/energy spreading function 

This function may be relatively unrealistic as it has no dependence on frequency, a 

more complex generalised form for the directional spreading function is the Longuet-Higgins 

formulation. 

6.2.2.2 LONGUET-HIGGINS DIRECTIONAL SPREADING FORMULATION 

The Longuet-Higgins spreading function [96] is also dependent on the wave frequency (and 

thus by implication, the wind speed and fetch): 

 
𝐷𝐷(𝜃𝜃,𝑓𝑓) =

2𝑠𝑠−1

𝜋𝜋
Γ(𝑠𝑠 + 1)2

Γ(2𝑠𝑠 + 1) �cos
1
2

(𝜃𝜃 − 𝜃̅𝜃)�
2𝑠𝑠

. (6.2-19) 
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Where, as in the cosine-square function, 𝜃𝜃  is the spreading angle, 𝜃̅𝜃  is now the 

prevailing wind/wave direction. Γ is the gamma function and 𝑠𝑠 is a function of frequency 𝑓𝑓 

for which others such as Mitsuyasu [97] and Hasselmann [98] have then proposed (through 

analysis of their sea data) forms. 

6.2.2.3 MITSUYASU SPREADING 

Mitsuyasu et al. suggest the following for the parameter 𝑠𝑠 in equation (6.2-19). 

   𝑠𝑠 = � 𝑠𝑠𝑚𝑚(𝑓𝑓 𝑓𝑓m⁄ )5   𝑓𝑓 ≤ 𝑓𝑓m
𝑠𝑠𝑚𝑚(𝑓𝑓 𝑓𝑓m⁄ )−2.5   𝑓𝑓 > 𝑓𝑓m

 

𝑠𝑠𝑚𝑚 = 11.5(2𝜋𝜋𝑓𝑓m 𝑈𝑈�10 𝑔𝑔⁄ )−2.5  

𝑓𝑓m = modal frequency of wave spectrum. 

𝑈𝑈�10 = mean wind speed 10 m above sea surface. 

An example of the Mitsuyasu spreading function for 𝑓𝑓m = 0.8 Hz and 𝑈𝑈�10 = 15 ms-1 is shown 

in Figure 6.2-5. 

 

Figure 6.2-5  Mitsuyasu directional/energy spreading function 

6.2.3 DIRECTIONAL WAVE SPECTRA 
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Now we have both point spectra and spreading functions, due to their construction, the 

two are combined by multiplication to form a full frequency directional wave spectrum 

(termed from now on as the directional wave spectrum).  Firstly this can be shown in the same 

co-ordinates as the spreading spectra in section 6.2.2, a function of (𝑓𝑓,𝜃𝜃).  It is then required 

that we express the wave spectrum in terms of spatial frequencies or wavenumbers and for 

this a dispersion relationship is required. 

6.2.3.1 DIRECTIONAL WAVE SPECTRUM IN ANGULAR AND FREQUENCY 

DOMAIN 

The directional wave spectrum 𝐸𝐸(𝑓𝑓, 𝜃𝜃) is given by: 

 𝐸𝐸(𝑓𝑓,𝜃𝜃) = 𝑆𝑆(𝑓𝑓)𝐷𝐷(𝑓𝑓,𝜃𝜃). (6.2-20) 

Figure 6.2-6 shows the full wave spectra for the Pierson-Moskowitz spectrum with 

both cosine-square and Mitsuyasu spreading functions for a wind speed of 𝑈𝑈10 of 15 ms-1. 

 

Figure 6.2-6.  Pierson-Moskowitz spectra with both cosine-square and Mitsuyasu spreading. 
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Figure 6.2-7.  JONSWAP spectra with both cosine-square and Mitsuyasu spreading. 

Figure 6.2-7 shows the JONSWAP spectra with both spreading functions at the same 

wind speed for a fetch of 400 km. 

It can be seen that the cosine-square spreading is much wider than the Mitsuyasu.  For 

further simulation, due to its handling of the effects of wave frequency (and it is deemed more 

realistic), the Mitsuyasu spectrum will be used.  

6.2.3.2 DIRECTIONAL WAVE SPECTRA IN ANGULAR AND SPATIAL 

FREQUENCY DOMAIN 
In order to create a modelled 2D sea surface (eventually through the use of the FFT), 

the wave spectra is required to be expressed in spatial frequency (or indeed wave number).  In 

order to do this, the dispersion relation must be known.  For gravity waves (linear wave 

theory-small displacements) the dispersion relation is well known, 

 ω = �𝑔𝑔𝑔𝑔 tanh(𝑘𝑘ℎ), (6.2-21) 

 
𝑘𝑘 =

2𝜋𝜋
𝜆𝜆

. 
(6.2-22) 

In which  ω is the angular wave frequency, 𝑘𝑘 is the wavenumber, 𝑔𝑔 is the acceleration 

due to gravity, ℎ  is the water depth and 𝜆𝜆  is the wavelength (this does not describe the 
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capillary waves which are not included in these simulations).  When only considering the 

deep sea, i.e. ℎ > 𝜆𝜆 2⁄ , (6.2-21) can be reduced to 

 ω = �𝑔𝑔𝑔𝑔. (6.2-23) 

Converting this to linear frequency 𝑓𝑓, to match the definitions we have used for the 

sea spectra by again using the substitution 𝜔𝜔 = 2𝜋𝜋𝜋𝜋, 

 
𝑓𝑓 =

1
2𝜋𝜋�

𝑔𝑔𝑔𝑔. (6.2-24) 

It would be appropriate to stop there and leave this dispersion relation in terms of frequency 

and wavenumber.  However in order to make things simpler (to save further scaling of the 

FFT for MATLAB algorithms), we will also convert the wavenumber to spatial frequency.  

The spatial frequency 𝜈𝜈 = 1 𝜆𝜆⁄ .  Substituting this into (6.2-22) then (6.2-24) gives the 

dispersion relation in terms of 𝑓𝑓and 𝜈𝜈: 

 
𝑓𝑓 = �

𝑔𝑔𝑔𝑔
2𝜋𝜋

 (6.2-25) 

Now we can transform the full wave spectrum 𝐸𝐸(𝑓𝑓,𝜃𝜃), into the spatial frequency domain 

𝐸𝐸(𝜈𝜈,𝜃𝜃).  Again preserving the integral equality, 

 
�𝐸𝐸(𝜈𝜈,𝜃𝜃) d𝜈𝜈d𝜃𝜃 =  �𝐸𝐸(𝑓𝑓,𝜃𝜃) d𝑓𝑓d𝜃𝜃 = �𝐸𝐸(𝑓𝑓(𝜈𝜈),𝜃𝜃)

d𝑓𝑓
d𝜈𝜈

d𝜈𝜈d𝜃𝜃 

 
(6.2-26) 

and from (6.2-25) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
2
�

𝑔𝑔
2𝜋𝜋𝜋𝜋

 (6.2-27) 

Thus 
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𝐸𝐸(𝜈𝜈,𝜃𝜃) =

1
2
�

𝑔𝑔
2𝜋𝜋𝜋𝜋

𝐸𝐸 �𝑓𝑓 = �𝑔𝑔𝑔𝑔 2𝜋𝜋⁄ ,𝜃𝜃� (6.2-28) 

Indeed this operation could also be carried out separately the point spectrum 𝑆𝑆(𝑓𝑓), to 

give 𝑆𝑆(𝜈𝜈), then 𝐷𝐷(𝑓𝑓,𝜃𝜃) would just require the substitution of (6.2-25) and will still remain 

normalised over angle due to its construction.  No transformation is required for the cosine-

square spreading as it is not a function of frequency.  Figure 6.2-8 shows an example of the 

PM spectrum with Mitsuyasu spreading the same as in Figure 6.2-6 however now in terms of 

spatial frequency and angle. 

 

Figure 6.2-8  PM wave spectrum in terms of spatial frequency and Mitsuyasu spreading angle. 

6.2.3.3 WAVE SPECTRUM IN SPATIAL FREQUENCY VECTOR DOMAIN 
The final conversion required is essentially a conversion from the polar co-ordinates 

of spreading angle and spatial frequency magnitude into the rectangular/Cartesian co-

ordinates of spatial frequency (x and y) vector components.   

It is commonly known in order to change integration variables from polar co-ordinates 

𝑟𝑟,𝜃𝜃 to Cartesian 𝑥𝑥,𝑦𝑦  that 

d𝑥𝑥d𝑦𝑦 = 𝑟𝑟 d𝑟𝑟d𝜃𝜃, 
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or in the case of the variables used above, 

d𝜈𝜈𝑥𝑥d𝜈𝜈𝑦𝑦 = 𝑣𝑣 d𝜈𝜈d𝜃𝜃, 

where 𝜈𝜈𝑥𝑥,𝜈𝜈𝑦𝑦 are the vector components of the spatial frequency.  Hence 

 �𝐸𝐸�𝜈𝜈𝑥𝑥,𝜈𝜈𝑦𝑦�d𝜈𝜈𝑥𝑥d𝜈𝜈𝑦𝑦 = �𝐸𝐸�𝜈𝜈𝑥𝑥,𝜈𝜈𝑦𝑦�𝜈𝜈 d𝜈𝜈d𝜃𝜃 = �𝐸𝐸(𝜈𝜈,𝜃𝜃) d𝜈𝜈d𝜃𝜃 
(6.2-29) 

   

and thus 

 
𝐸𝐸�𝜈𝜈𝑥𝑥,𝜈𝜈𝑦𝑦� =

1
𝜈𝜈
𝐸𝐸(𝜈𝜈,𝜃𝜃) (6.2-30) 

or from the original temporal frequency defined spectrum, 

 
𝐸𝐸�𝜈𝜈𝑥𝑥,𝜈𝜈𝑦𝑦� =

1
2𝜈𝜈

�
𝑔𝑔

2𝜋𝜋𝜋𝜋
𝐸𝐸 �𝑓𝑓 = �𝑔𝑔𝑔𝑔 2𝜋𝜋⁄ ,𝜃𝜃� . 

(6.2-31) 

   

An example of the spectrum calculated in Figure 6.2-8, now in terms of spatial 

frequency vector components is shown in Figure 6.2-9. 

 

Figure 6.2-9.  P-M/Mitsuyasu directional wave spectrum in terms of vector spatial frequency. 
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Spectra of this sort can then be used in an IFFT to produce a representation of the sea 

surface.  Thought must now be given to the sampling methodology used. 

6.3 CREATING AND EVOLVING THE SURFACE 

THROUGH THE IFFT 
Essentially from the directional spectra we have the energy distribution of the different 

spatial wave components that make up the surface.  Next to be considered is the spectrum/ 

surface sampling, the conversion of the energy spectrum to an amplitude spectrum (and the 

addition of random phase terms) and then the evolution of the created surface in time. 

6.3.1 SPECTRUM SAMPLING AND ARRAY FORMATION 
The task when using the IFFT to produce a surface is one of obtaining the required 

spatial resolution through selection of the spatial sample rate.  It must be ensured, through the 

Nyquist criteria, that the sample rate is enough to encompass all the spectral content required.  

The surface then has to be of appropriate dimension to ensure good frequency resolution in 

the spectrum, however, the IFFT size should be reasonable so simulation times are not 

excessive. 

To this end it is appropriate to begin with deciding what spatial frequency content is 

required in the spectrum.  As stated before, the spectra described thus far are only suitable to 

describe gravity waves; this immediately imposes a lower wavelength cut-off in the spectrum 

of 2 cm.  However the methods used to determine these spectra were not designed to measure 

down to this wavelength, for example in the JONSWAP experiment the measurement 

equipment lowest wavelength cut off was 1.5 m.  It may be justified to say that as the wave 

physics should still be the same and it can be assumed the spectra are good down to the 

capillary length, but due to gravity capillary interactions, this may not be the case.  So to 
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avoid the inclusion of the shorter wavelengths, it was decided to remove them from the 

spectra – cutting off below 1.5 m.  The removal of these higher frequency waves will not 

affect our optical line of sight calculations or have great effect on the surface energy due to 

their very small amplitudes.  The cut–off does not introduce any sharp discontinuities in the 

spectra, as the spectral amplitudes are very low in this region.  

Now that the minimum wavelength/maximum spatial frequency is decided (vmax = 1 l⁄ ), the 

surface sample rate minimum  Rx,y
samp can be set according to the Nyquist criterion, 

 𝑅𝑅𝑥𝑥,𝑦𝑦
samp ≥ 2𝜈𝜈𝑥𝑥,𝑦𝑦

max (6.3-1) 

   

In order to reproduce the spectrum well in the spatial domain, it is chosen to over-

sample the surface, at a rate of 𝑅𝑅𝑥𝑥,𝑦𝑦
samp = 3𝜈𝜈𝑥𝑥,𝑦𝑦

max and with the cut off spectrum, this adds no 

higher physical frequency content.  The spatial sample spacing Δx,y is given by 1/𝑅𝑅𝑥𝑥,𝑦𝑦
samp, thus 

for a given surface of length 𝐿𝐿𝑥𝑥 and breadth 𝐿𝐿𝑦𝑦  the spatial vectors can be formed4 : 

 𝑥𝑥 = [0 Δx 2Δx  ⋯𝐿𝐿𝑥𝑥 ] 

𝑦𝑦 = �0 Δy 2Δy  ⋯𝐿𝐿𝑦𝑦 � 

(6.3-2) 

   

where the surface dimensions in terms of number of samples in 𝑥𝑥 and 𝑦𝑦 direction 𝑛𝑛𝑥𝑥,𝑦𝑦 , is 

given by: 

4 The sample spacing is chosen such that the required spatial dimension is an integer multiple of that 

spacing. 
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𝑛𝑛𝑥𝑥,𝑦𝑦 =  

𝑙𝑙𝑥𝑥,𝑦𝑦

Δx,y
+ 1. 

 

(6.3-3) 

   

As the number of samples in the spatial frequency and spatial domain are one to one 

for the FFT/IFFT, this allows us to define our spatial frequency vectors 𝑣𝑣𝑥𝑥  and 𝑣𝑣𝑦𝑦 , which 

consist of 𝑛𝑛𝑥𝑥and 𝑛𝑛𝑦𝑦 samples and range over: 

 −𝑅𝑅𝑥𝑥,𝑦𝑦
samp

2
≤ 𝑣𝑣𝑥𝑥,𝑦𝑦 <

𝑅𝑅𝑥𝑥,𝑦𝑦
samp

2
 

(6.3-4) 

   

 where the equality sign on the left depends on whether 𝑛𝑛𝑥𝑥,𝑦𝑦are odd or even and a matrix  of 

spatial frequencies is created from these vectors and the directional spectrum is calculated at 

these points and is similar to Figure 6.2-9.   

It should be noted that if a specific spatial sampling is required this could be used as 

the start point of the above method, instead of a required minimum wavelength.  Indeed it 

must be made sure that the number of samples 𝑛𝑛𝑥𝑥,𝑦𝑦 in the spectrum is enough to effectively 

sample the spectrum and there are enough components to allow the representation of a 

Gaussian process as discussed in the previous section.  This can be altered by increasing the 

spatial sampling rate for a given surface size or increasing the surface size for a given sample 

rate.  One form of check is to compare the expected/theoretical value of the integral of the 

continuous energy spectrum (6.2-7) to that calculated from the created discrete one (by 

summing the area under the discrete spectrum) – these should be similar if sampled properly 

and also hint that the spectrum generation has been performed correctly (a sanity check).   It is 

known that for speed reasons the IFFT dimensions should be a power of 2𝑛𝑛 , thus as a 

171 
 



compromise between speed and adequate spectrum sampling it would be preferable to use an 

IFFT size of 2048 x 2048 points if other constraints allow.  Needless to say, for any set of 

comparative measurements, all parameters are kept constant. 

6.3.2 CONVERSION TO AMPLITUDE SPECTRUM AND ADDITION OF 

RANDOM PHASE. 
It should be re-emphasised, that the spectrum is not actually in terms of wave 

amplitude as required for IFFT procedures, but wave energy.  The amplitudes 𝑎𝑎𝑖𝑖𝑖𝑖  of the 

individual wave spectrum components are found by: 

 
𝑎𝑎𝑖𝑖𝑖𝑖 = �2𝐸𝐸�𝑓𝑓𝑖𝑖 ,𝜃𝜃𝑖𝑖𝑖𝑖�Δ𝑓𝑓𝑖𝑖Δ𝜃𝜃𝑖𝑖𝑖𝑖  = �2𝐸𝐸�𝑣𝑣𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑦𝑦

𝑗𝑗�Δ𝑣𝑣𝑥𝑥𝑖𝑖Δ𝑣𝑣𝑦𝑦
𝑗𝑗   

(6.3-5) 

   

   

as in (6.1-6) and where Δ  signifies the spacing of the discrete variables in the 

spectrum.   Following this conversion each component is then multiplied by a random phase 

factor 𝑒𝑒𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖  where 𝜙𝜙𝑖𝑖𝑖𝑖  is uniformly distributed between [0,2𝜋𝜋] again as in the DSA scheme 

(6.1-6). 

The IFFT is then performed on the matrix of complex amplitudes to produce a 

spectrum for a given instant in time, an example surface is shown in Figure 6.3-1. 
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Figure 6.3-1 Example of surface produced from a JONSWAP/Mitsuyasyu wave spectrum for wind speed of 15 
m/s and 400km fetch. 

6.3.3 SURFACE EVOLUTION 
In order to evolve the surface over time, the original phase spectrum is taken and each 

component 𝜙𝜙𝑖𝑖𝑖𝑖ori progressed in phase according to the dispersion relation and a given time step 

Δ𝑡𝑡, such that the new phase 𝜙𝜙𝑖𝑖𝑖𝑖new is given by: 

 𝜙𝜙𝑖𝑖𝑖𝑖new = 𝜙𝜙𝑖𝑖𝑖𝑖ori + 𝜔𝜔𝑖𝑖𝑖𝑖Δ𝑡𝑡 = 𝜙𝜙𝑖𝑖𝑖𝑖ori + �2𝜋𝜋𝜈𝜈𝑖𝑖𝑖𝑖𝑔𝑔 ∙ Δ𝑡𝑡 . 
(6.3-6) 

   

 The process is slightly more complicated as it is performed on the vector values of 

spatial frequency separately in x and y and then combined and sign considerations must be 

made depending if frequency values are negative or positive. 

6.4 ANTENNA MOTION MODEL 
For this analysis the antenna is chosen to be omni-directional.  It is expected that for such a 

radar system this would be the case as it removes the need to maintain any directional antenna 

pointing, which would in practice be challenging on the rough undulating surface without the 

use of stabilising equipment. 

6.4.1 ANTENNA MAST DIRECTLY ON SEA SURFACE 
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To attempt to model the motion of an antenna mounted on a rigid mast directly on the 

varying surface, the gradient of the surface under the antenna position is used to perform a 

rotation about the x and y axes.  Firstly, the base of an antenna of height hant is located at a 

point in the x-y plane Pant�xp, yp�.  The x and y components of the surface gradient ΔFx,ΔFy 

are found at this point (discretely on the surface mesh), i.e. 

 
Δ𝐹𝐹𝑥𝑥 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝

;     Δ𝐹𝐹𝑦𝑦 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝

 ,  
(6.4-1) 

   

 

where F is the surface height function.  These surface gradients are then related to 

corresponding tilt angles in the x and y directions, as illustrated in Figure 6.4-1.  

 

Figure 6.4-1.  Illustration of gradient and tilt angle calculation for an antenna mounted on a surface. 

Therefore the tilt angles 𝜃𝜃𝑥𝑥,𝑦𝑦
tilt  are simply given by the arc-tangent of the gradient 

components,  

 𝜃𝜃𝑥𝑥tilt = atan(Δ𝐹𝐹𝑥𝑥);    𝜃𝜃𝑦𝑦tilt = atan�Δ𝐹𝐹𝑦𝑦� (6.4-2) 

   

Some precautions must be taken to ensure that the sign of each angle is correct.  It is at 

this point where it is possible to invoke a form of antenna stabilization to the simulation by 
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limiting the values of 𝜃𝜃𝑥𝑥,𝑦𝑦
tilt  to some value, for example 5° or indeed to simulate stabilisation by 

averaging out the surface over a given ‘buoy base’ area and taking the tilt from this.   

The next process is to rotate the antenna about the base by the two tilt angles.  The 

rotation is performed by using the standard rotation matrices 𝑅𝑅𝑥𝑥(𝜃𝜃) and 𝑅𝑅𝑦𝑦(𝜃𝜃), with the total 

rotation matrix 𝑅𝑅tot�𝜃𝜃𝑥𝑥tilt,𝜃𝜃𝑦𝑦tilt� = 𝑅𝑅𝑥𝑥�𝜃𝜃𝑦𝑦tilt�𝑅𝑅𝑦𝑦�𝜃𝜃𝑥𝑥tilt�.  This is acted on the vector [0,0,ℎant], to 

give the rotated antenna position w.r.t the origin 𝐴𝐴rot, 

 𝐴𝐴rot = 𝑅𝑅tot�𝜃𝜃𝑥𝑥tilt,𝜃𝜃𝑦𝑦tilt�[0,0,ℎant]𝑇𝑇 . (6.4-3) 

   

 

This is then translated to the original antenna position to give the final rotated antenna 

position 𝑃𝑃rot(𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟)where 

 𝑃𝑃rot = 𝐴𝐴rot + [𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝,ℎ𝑝𝑝surf]𝑇𝑇 , (6.4-4) 

   

ℎ𝑝𝑝surf is the surface height at 𝑃𝑃ant�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝�. 

It is understood that the order of rotation does indeed matter normally,  however for 

sufficiently small time steps in simulation, it is expected that the angular changes will be very 

small and thus the rotation matrices commute.  

6.5 SIMULATION TARGET MODEL 
The target model chosen for these simulations is a rather simplified one.  It consists of 

treating the target as a point, which is placed at half the true target height above the surface.  

The method of testing if the target is visible by the antennas will be explained in the next 

section, however there needs to be some definition of a potential target visibility region. 
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6.5.1 POTENTIAL TARGET VISIBILITY REGION 
In order to ensure this is a simulation related to FSR, there is a need to specify when it may 

be possible to view the target in relation to some FSR parameter.  The parameter chosen is to 

define the potential visibility region by use of the FSCS main lobe.   

It is possible to use a simplified model of cross section in the forward scatter direction, 

wherein the target is replaced by a rectangular aperture of equivalent length and height, this is 

then treated as a secondary antenna [62], as described in Sections 2.10 and 3.1.  In this case the 

radiation pattern (in power units) takes the form of a sinc2 function; it is chosen that the main 

lobe width will be defined by the half power points (full width half maximum).  In this 

simulation only the horizontal plane of the FSCS pattern will be used, thus the sinc2 function 

depends only on the length 𝑙𝑙 of the target object, thus 

 
sinc2 �

𝜋𝜋𝜋𝜋
𝜆𝜆

sin𝜃𝜃� =
1
2

 , 
(6.5-1) 

   

where 𝜆𝜆 is the wavelength of the radiation striking the target and 𝜃𝜃 is the half cross 

section width.  This is solved numerically such that, 

 𝜋𝜋𝜋𝜋
𝜆𝜆

sin 𝜃𝜃 = 1.392 ;  𝜃𝜃fs = 2 asin �
1.392𝜆𝜆
𝜋𝜋𝜋𝜋

� , 
(6.5-2) 

   

in which 𝜃𝜃fs is the width of the FSCS main lobe.  To decide if the target is potentially 

observable it is now just a case of ensuring that the main lobe is visible by the antennas during 

the target trajectory.   This simple concept is highlighted in Figure 6.5-1, (a) indicating the 

non-visible scenario and (b) the visible.  
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Figure 6.5-1 Illustration of potential target observation scenarios, (a) when target is not potentially visible 
and (b) when it is – plan view of surface. 

  There are three things that should be noted, firstly, using the -3dB (half power) point may be 

overly stringent due to the usually large gains in cross section in the FS direction, it severely 

restricts the lobe widths and available target viewing time (depending on target size).  

Secondly using just the FSCS pattern in one plane (horizontal) is not entirely accurate as it 

does not account for any pitch and roll of target.  Finally, at present the model of potential 

target visibility is mapped purely to a flat plane, using only the 𝑥𝑥 and 𝑦𝑦 values of both target 

and antenna base as references, not accounting for any antenna motion.  The latter two are 

approximations that make simulation easier by allowing us to define a priori the regions of 

potential observability before running the simulation.  

6.5.2 SURFACE TARGET MOTION 
The target is modelled with constant vector velocity 𝒗𝒗tgt(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦) with respect to the 

planar ground surface (or, in essence, the sea bed).  Given a start position vector 𝑷𝑷𝟎𝟎
tgt(𝑥𝑥,𝑦𝑦), 

the position vector 𝑷𝑷tgt(𝑥𝑥,𝑦𝑦) at a later time 𝑡𝑡  is simply found by the standard kinematic 

equation, 

 𝑷𝑷tgt = 𝑷𝑷𝟎𝟎
tgt + 𝒗𝒗tgt ∙ 𝑡𝑡. (6.5-3) 
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The 𝑧𝑧 component of the target position is (as stated previously) given by the modelled 

sea surface height interpolated at the calculated 𝑷𝑷tgt, plus half the target height. 

6.6 ESTIMATING TARGET VISIBILITY THROUGH 

LINE OF SIGHT 
Now the positions of the target and antenna are known in relation the surface and each 

other, also the window of potential visibility is calculated.  Thus, the actual target visibility by 

means of LOS can now be estimated, through the tracing of rays between the target and each 

antenna – fundamentally a purely geometrical approach.  As described in Section 3.1.4.1, in 

FSR it is also required that there is mutual LOS between antennas to provide the reference 

signal, the target is deemed visible if and only if all three LOS’s exist simultaneously.  Thus, 

three 3-D rays are formed, see Figure 6.6-1; one from transmitter to the target 𝒂𝒂tx-tgt , another 

from the target 𝒂𝒂tgt-rx to receiver, the third from transmitter to receiver 

 𝒂𝒂tx-tgt = 𝑷𝑷tgt −  𝑷𝑷tx , 

𝒂𝒂tgt-rx = 𝑷𝑷rx −  𝑷𝑷tgt , 

𝒂𝒂tx-rx = 𝑷𝑷rx −  𝑷𝑷tx , 

(6.6-1) 

   

where the 𝑷𝑷’s are the position (vectors) of the target and antennas.  These vectors then 

allow the interpolation of the surface heights along their corresponding 𝑥𝑥,𝑦𝑦 paths.  If the 

surface height is greater than each vector’s 𝑧𝑧 value at any point – this would imply a surface 

intersection and thus loss of one or more of the LOSs, as depicted in Figure 14.  The 

interpolation is carried out at a finer resolution along the vector path than the resolution of the 
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surface itself and must be fine enough such that the ray does not ‘pass through’ a wave 

without realising an intersection.  On the other hand, the fineness greatly effects the 

simulation time, the spacing used is 0.10 m. 

 

Figure 6.6-1.   Line of sight vectors between target and antennas and antennas themselves. Loss of line of 
sight occurs between receiver (rx) and target (tgt) due to ray path intersection with surface. 

During a simulation run this process is carried out at every time step, evolving the surface, 

moving the target and antennas and then observing if the three LOS’s exist or not, with the 

output for the particular time step being a logical 1 or 0 for each of the three rays.  An 

example of the estimation of line of sight on a generated surface is shown in Figure 6.6-2.  

The target is classed as visible in a given time step all three rays are logical 1 i.e. have LOS 

for that time step. 

 

Figure 6.6-2  Example of line of sight evaluation on the simulated surface, green lines show available line 
of sight from transmitter to receiver and transmitter to target, red shows lack of line of sight from target 
to receiver. 
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6.7 SIMULATION PARAMETERS 
There are many scenarios that can be investigated, with this in mind, the simulations for this 

thesis have been restricted to some fundamental target trajectories, wind conditions and sea 

states/significant wave heights.  The target trajectory considered in each simulation is a 

perpendicular mid-point crossing of the baseline and three basic wind directions are 

considered.  The first is a wind direction parallel to the baseline (cross wind for target), the 

second is the wind perpendicular to the baseline (head/tail wind for target) and thirdly, wind at 

45°  to the baseline.  Note that for the last two cases the wind can be travelling with or against 

the target direction of travel, so in all a total of 5 wind directions are simulated— topologies 

are presented in Figure 6.7-1.  The target dimensions in the simulations are based 

 

Figure 6.7-1.  Simulation topologies, perpendicular crossing of baseline with winds (a) parallel, (b) 
perpendicular with and against target and (c) at 45° to the baseline with and against target direction. 
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upon the standard small inflatable boat target used in much of the experimental maritime FSR 

investigation i.e. of length 2.9 m and 1 m height [65] as introduced in Section 4.3, though a 

sub-set of simulations are carried out with 2 m height for comparative reasons; the target 

speed chosen is a low to medium speed of 4 ms-1 for all simulations.  Again conforming to the 

experimental investigation, the radar frequency used (along with the target length) in order to 

calculate the potential visibility time is 7.5 GHz.   

The wave spectrum chosen for use in the simulation is the P-M spectrum as stated in 

Section 6.2.1.3, it allows for a well-defined comparison of results; this is combined with the 

frequency dependent Mitsuyasu spreading function (Section 6.2.2.3).  For each wind/baseline 

topology, five different wind speeds are chosen for the PM spectrum, giving significant wave 

heights of 0.5, 1, 2, 3 and 4 m (SS 2/3 – SS 5/6) as shown in Table 6.7-1.  Along with this, 

four antenna heights of 1, 2, 3 and 4 m are simulated and three baseline lengths of 250, 500 

and 1000 m.  It should be noted that the small inflatable boat target under consideration would 

not be deemed seaworthy in a sea state above 3 (1 m significant wave height) and so any 

conclusions should be drawn in relation to this limit. 

Table 6.7-1.  Sea state descriptors for simulations with Pierson Moskowitz Spectrum. 

Wind Speed 
𝑼𝑼10

 

[ms-1] 

Modal 
Wavelength 

[m] 

𝑯𝑯1/3 
[m] 

WMO Sea State 
# (Description) 

4.5 20 0.5 2/3 (Smooth Slight) 
6.4 40 1 3 (Slight) 
9.0 80 2 4 ( Moderate) 
11.0 120 3 5 (Rough) 
12.7 150 4 5/6 (Rough/Very Rough) 

 

  Each simulated baseline crossing will be divided into 0.02 s time steps in which to 

test for lines of sight and in total there will be 1000 runs (simulated baseline crossings) 
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through each topology for each set of parameters for statistics, each new run starts with a new 

set of random spectral phases so as not to repeat the same sea surface on any given run. 

6.8 ANALYSIS OF AVERAGE TARGET VISIBILITY 

TIME 
In the following analysis, the target visibility time is expressed as a fraction of the 

potential visibility time, i.e. the number of time steps in the run (baseline crossing) in which 

full LOS occurs as a fraction of the total number of time steps in the run—this will be termed 

the ‘fractional visibility time’.  Further to this, the fractional visibility time will be averaged 

over all of the 1000 runs per simulated scenario.  Where necessary/appropriate, this can be 

easily converted into normalised or actual average visibility times with knowledge of the 

potential visibility time. 

6.8.1 EFFECT OF WIND DIRECTION ON FRACTIONAL VISIBILITY TIME—

AND VARIATION WITH SIGNIFICANT WAVE HEIGHT 
The first variable that is considered in the analysis is how the wind direction affects 

the target visibility time.  Figure 6.8-1 shows the fractional visibilities for the simulations with 

2 m antenna heights over the range of wind directions and (a), (b) and (c) correspond to the 

different baseline lengths of 250, 500 and 1000 m respectively.   
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Figure 6.8-1.  Dependence of fractional visibility time on the wind direction for 2 m antenna heights and 
baselines of (a) 250 m, (b) 500 m and (c) 1000 m. 

It is immediately noticeable that there is a least and most preferable wind direction required to 

maximise the fractional visibility time of the target.  The most favourable wind conditions are 

a wind perpendicular to the baseline (red lines in Figure 6.8-1), and as with the 45° winds 

(green lines), there is not much difference in visibility time with the wind being either with 

(triangles) or against (diamonds) the target motion; the least favourable wind is the wind 

blowing parallel to the baseline.  These observations fit with the common sense view of the 

scenarios, the parallel wind would excite waves to oscillate up and down in between the 

antennas providing maximum wave blocking, whereas the perpendicular wind excites them 

such that the target and antennas would be oscillating more in synchronous with each other.  

The 45° case is an intermediate situation, though tending more towards the parallel case in 
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terms of the effect on target visibility.  A general comment can be made that after an initial 

separation of the curves when the significant wave height exceeds the target half height (0.5 

m), as the significant wave height increases further, for significant wave heights greater than 

the antenna height (2 m), the difference in fractional visibility time between best and worst 

case wind conditions reduces.  This can be assumed to be the effect of the increased blocking 

due to increased wave height dominating any effect of the wind conditions.  For example, the 

500 m baseline difference in fractional visibility reduces from 19% to 8% between significant 

wave heights of 2 – 4 m.  

6.8.2 EFFECT OF BASELINE LENGTH ON VISIBILITY TIME 
On viewing the plots in Figure 6.8-1, it is apparent that the rate of drop off of target 

fractional visibility time over increasing significant wave height is greater for the longer 

baselines.  Ultimately the longer baselines have generally lower fractional visibility times for 

a given sea state, which fits again with the common sense view of increased number of wave 

peaks between antennas and target and antennas and thus greater amounts of blocking of 

LOS.  However this is only a part of the picture, as the baseline length increases, the potential 

visibility time for the target crossing also increases, due to the geometry.  It is therefore 

apparent that in order to compare results between baselines, it is necessary to normalise the 

potential visibility times. 

Due to the defined target trajectory for the simulations presented here (perpendicular 

crossing of baseline), normalising the potential visibility times is relatively straight forward as 

they are proportional to the baseline length.  Thus the 250 m baseline is given a normalised 

potential visibility time of 1, the 500 m baseline is therefore 2 and the 1000 m baseline is 4.  

Figure 6.8-2 shows the equivalent plots from Figure 6.8-1, but now with a normalised instead 
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of fractional visibility time, which now allows the comparison of true effect of baseline 

length.   

 

 

Figure 6.8-2.  Dependence of normalised visibility time on baseline for baseline lengths of (a) 250 m, (b) 
500 m and (c) 1000 m.  Antenna heights 2 m. 

It is clear that for significant wave heights less than the antenna height of 2 m, the reduction 

of fractional visibility time due to baseline length increase is more than compensated for by 

the increase in the potential visibility time.  At wave heights greater than the antenna height it 

appears that there is no fundamental difference in the normalised visibility times with respect 

to the baseline length. The steeper falloff and lower fractional visibility times for the longer 

baselines cancel out any increase in potential visibility time.  It must be stressed though that it 

is not so simple as to just increase the baseline and expect better visibility times for the lower 

sea states.  This analysis assumes that the target can still be detected in a received power 
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sense, but the increase of baseline length would obviously require increase in transmitted 

power. 

If just the results at a significant wave height of 1 m (SS 3) are considered, it is 

possible to compare the best and worst case wind condition results over the range of baseline 

lengths, this is shown in Figure 6.8-3. 

 

Figure 6.8-3.  Normalised visibility time for various baseline lengths for 1 m significant wave height (SS 3) 
with best and worst case wind conditions – antenna height 2 m. 

It can be seen from the figure that in going from 250 m baseline to 1000 m, it is 

possible to triple the average visibility time for the best and worst case (perpendicular and 

parallel) wind scenarios.  Given that the visibilities are normalised to the 250 m baseline, it is 

possible to use the actual potential visibility time to define the absolute visibility time.  Figure 

6.8-4 shows the equivalent of Figure 6.8-3 however now with the absolute/actual visibility 

times. 
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Figure 6.8-4. Actual visibility time [s] for various baseline lengths for 1 m significant wave height (SS 3) 
with best and worst case wind conditions – antenna height 2 m. 

The plot indicates that assuming the target is detectable within the -3 dB main lobe of 

the FSCS pattern, with a baseline range of 1000 m it may be possible to achieve a target 

visibility time between 0.8 and 1.1 s dependent on the wind conditions. For 500 m basleine 

this reduces to between 0.5 and 0.65 s. 

6.8.3 EFFECT OF ANTENNA HEIGHTS ON FRACTIONAL VISIBILITY 

TIME—AND VARIATION WITH SIGNIFICANT WAVE HEIGHT 
In this section, the effect of antenna heights varying from 2 – 4 m on the fractional 

target visibility is discussed for the worst case wind scenario of the wind being parallel to the 

baseline again over a range of baseline lengths; plots are shown in Figure 6.8-5.  As expected, 

the increase in antenna height does increase the fractional visibility time for a given baseline 

range as expected.  However, as significant wave height increases, the effectiveness of the 

antenna height increase reduces, i.e. the separation between the blue and green lines (4 and 2 

m antenna heights) tends to reduce.  It may be expected that the taller antennas should 

maintain effectiveness in increasing target visibility to higher sea states, however there is 

interplay here between not only the antenna-antenna visibility, but the antenna-target 
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visibility.  Increasing the antenna heights at longer ranges does not necessarily help the 

antenna-target visibility as the look down angle is very shallow and remains shallow under 

antenna height increases which are small in comparison to the baseline range.   In order to 

compare across the baseline ranges, again the visibility times should be normalised as 

described in the previous section, Section 6.8.2.  The normalised visibility time plot 

equivalents of the plots in Figure 6.8-5 are shown in Figure 6.8-6 

 

Figure 6.8-5. Dependence of fractional visibility time on antenna heights of 2 - 4 m, for baseline lengths of 
(a) 250 m, (b) 500 m and (c) 1000 m.  Antenna heights 2 m, wind parallel to baseline (worst case). 
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Figure 6.8-6.. Dependence of normalised visibility time on antenna heights of 2 - 4 m, for baseline lengths 
of (a) 250 m, (b) 500 m and (c) 1000 m.  Antenna heights 2 m, wind parallel to baseline (worst case). 

Once again from this, it is possible to focus on the results for SS 3 (1 m significant 

wave height) and plot the normalised and actual visibility times as a function of baseline 

length and antenna height, as in Figure 6.8-7.  It can be seen, that if the target is detectable 

within the -3 dB main lobe of the FSCS pattern with a baseline range of 1000 m, it is possible 

to achieve target visibility time improvement of 0.8 to 1.1 s on increase of the antenna height 

from 2 m to 4 m.  If detection is only achievable at 500 m then the target visibility time will 

be reduced to being between 0.5 and 0.6 s. 
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Figure 6.8-7.  Normalised (a) and actual visibility time (b) for various antenna heights as a function of 
baseline lengths for 1 m significant wave height (SS 3) under worst case wind conditions – antenna height 

2 m. 

6.9 SUMMARY OF VISIBILITY SIMULATIONS 
A sea surface simulator has been developed in order to estimate the availability of 

target LOS visibility in a buoy mounted maritime FSR.  This was done in order to assess if 

the system had any potential capability in situations where wave blocking was expected and 

which were unmeasurable experimentally at this stage. The simulation uses empirical sea 

surface spectra and simple target and antenna models.  Target visibility times have been 

estimated for a set of scenarios which include variation of wind direction, wave height, 

baseline length and antenna heights.  

Fundamentally the simulations have shown that the FSR system would still maintain a 

certain level of target visibility in sea states where wave blocking is expected and warrants 

further research into these scenarios   

The simulated average visibility times from the results range from between 0.3 s and 

1.2 s over all scenarios.  Comparing these visibility times (which in essence are the coherent 

integration times in FSR) to the coherent integration times for the monostatic radar in  
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Table 2.10-1, it can be seen that they are still comparatively quite lengthy even with 

the effect of wave blocking.  It should however be noted that the visibility estimations are all 

given under the assumption that adequate target power is received for detection over the given 

ranges, within the received clutter power.   

The simulation work in this chapter has been described (more briefly) in the author’s 

publication [99]. Simulations looking at the effect on visibility by including a second parallel 

baseline can be found in [100]—also written by the author of this thesis.  This paper 

simulated a target traversing different parallel baseline separations with 3 m height waves 

travelling perpendicular and parallel to the 500 m baselines.  The fractional visibility times for 

a single baseline and for the combined baselines were calculated and it was found that for 

baseline separations above 12.5 m, the second baseline was acting as if it were statistically 

independent to the first5.   For the worst case scenario of wind parallel to the baseline, a single 

baseline gave an average fractional visibility of 23% whereas the pair gave 39%.   

It still remains to validate the simulation model through comparison with trials data.  

As stated in the introduction to this section, currently all the maritime FSR experimental data 

has been recorded in situations where wave blocking has not been observed.  In order to gain 

confidence in the use of the model for extrapolating results to higher sea states, more 

measurements will be required.  The reason for the simulation development was that 

experiments with small boats in high sea states are difficult to perform.  Blocking can 

currently only be experimentally measured by reducing antenna heights during lower sea state 

measurements.  A series of scaled down measurements may be performed i.e. target height, 

antenna height and wave height reduced, however maintain similar height ratios as in the 

simulations.  There will of course be propagation related effects due to the reduction of 

5 This may also be confirmed by looking at the auto-correlation function and correlation length of the 
generated sea surface. 
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antenna height and these will need to be considered in more detail when planning such 

experiments.  The evidence of blocking of line of sight will be apparent from a complete loss 

of received power at the detector output—implying a loss of direct path signal. The blocking 

time can be estimated from these received power outages and compared to the model.   

The simulations themselves may be also be extended.  Currently they only include the 

generation of wind driven (wind-sea) waves; it may be assumed that swell will have a role in 

any real sea measurement.  Swell may be caused by very distant storms and will introduce 

long wavelength structures to the wave spectrum.  The wave spectrum may become bi-modal, 

one peak from the local wind driven waves and the other from the distant swell (discussed in 

[101] and the references within).  The addition of swell to the simulations and the 

investigation of its effects may be considered as future work.  Ultimately, from a radar 

performance prediction point of view, it would be useful to assess target visibility from an 

electromagnetic point of view.  Having had experience with commercial electromagnetic 

simulation software, it is noted that the generated faceted sea surface model lends itself to a 

multi-bounce ray tracing/geometrical optics simulation.  Rays are launched at the surface and 

each hit point acts as a new Huygens source of waves; the simulation only requires that the 

appropriate level of surface detail is used.  Generally it would be assumed that feature sizes of 

the order of a wavelength should be incorporated. The surface detail is not only governed by 

the range of spectral components used (surface sample rate), but also by the surface resolution 

and these parameters will need investigation.  3D target models such as the ones shown in 

[61] and [62] would be introduced onto the surface.  The simulation would have to be stepped 

through time to build up a full received signal record similar to that measured.   

Computational time may be excessive for larger surfaces, though the use of GPU processing 

will help here.  To decrease simulation times the surface area of the simulation may be 
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reduced by considering smaller baselines and restricted angles.  The surface may be 

considered a perfect electrical conductor due to the low grazing angle and surface 

conductivity, further reducing simulation complexity. 
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7   SUMMARY, CONCLUSIONS AND 
FUTURE WORK 

7.1 SUMMARY 
This thesis and the research work related to it, is dedicated to the study of Forward 

Scatter Radar (FSR) in the context of the marine environment and marine target 

measurements.  FSR is a little (but growing) studied sub-class of bistatic radar, its application 

to the marine environment is a novel concept, which takes advantage of the benefits that FSR 

has to offer to overcome the problems associated with a high clutter environment such as the 

ocean.  The study has involved a mix of theory/phenomenology, classic radar principles, 

hardware design and production, model development, simulation, extensive field trials (in 

what were at many times harsh environmental conditions), as well as initial (more qualitative) 

data analysis.    

The thesis begins by setting the scene on why such a radar system would be required, 

and its application for persistent remote monitoring of maritime borders and assets.  It is not 

necessarily seen as a replacement for the current sensing systems, but an addition.  An 

introduction to common monostatic and bistatic radar principles, concepts and terminologies 

is provided in Section 2.  FSR is then introduced and comparisons drawn between the three 

radar types in order to give context and highlight the benefits of FSR; such as increase in 

radar cross section in the forward direction and increased target coherent/visibility times.  

After the fundamentals of FSR had been introduced in a more conceptual manner, the 

phenomenology behind FSR was then discussed in Section 3.1, putting it in a more physical 

light through its description in terms of the Physical Theory of Diffraction.  This is by no 

means described to a rigorous level, but to one which allowed the formulation of a 
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fundamental signal model for FSR.  This was based around two components, a Doppler 

component and an amplitude modulation component imposed by the FSCS.  This description 

was then incorporated with the free space and two-ray path propagation models in the 

derivation of the power budget for FSR in Section 3.2.  This is a more comprehensive signal 

description, whereby the two-ray path model introduces multi-path reflections into the model; 

a brief discussion of the multi-path effects on the sea surface was given—these are the 

underlying source of the clutter in maritime FSR.   Section 3.1.5 presents results of 

experimental work performed in an anechoic chamber, in order to experimentally observe the 

effect of the FS Shadow Contour Theorem, i.e. that the FSCS is governed solely by the 

silhouette shape of the target.  This was investigated by comparing the signature of similarly 

contoured metallic and absorbing targets.  The result of the experimental measurements 

confirmed the effect. 

After the more theoretical aspects of forward scatter and FSR had been discussed, the 

concept behind the expected application of this work, the maritime FSR network, was 

introduced in Section 4.1.  A short discussion on how such a networked system may be 

practically implemented was provided.  Following this, the core design of the FSR hardware 

was explained—the self-mixing receiver.  This inherently uses the direct path signal between 

transmitter and receiver as a reference to extract the low frequency Doppler of targets 

crossing the FSR baseline.  7.5 GHz experimental hardware development and production was 

discussed in Section 4.2, including efforts to design and build hardware for future 

experimentation, in the form of additional multi-frequency and UWB systems.  The trials 

methodology, a brief description of test sites and other experimental essentials was included, 

preceding the presentation of measurement results from comprehensive trials in Section 5.   
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An overview of maritime FSR clutter analysis was given, explaining the key aspects 

such as the narrow clutter bandwidth, concentrated below 1Hz, and its Rayleigh probability 

density.  Both of which appear invariant to the experimental parameters used in the trials on 

which the analysis was performed.  Following this a selection of target measurement results 

are presented, recorded with variation of certain parameters of the target, radar and radar 

topology.  Initial analysis was performed on the data, mostly of a qualitative nature involving 

comparison of the spectra.  The effect of changing target velocity and crossing angle were 

observed to fit with the expectation from theory, in general the very narrow clutter bandwidth 

does not completely overlap the target spectra.  This allows the detection/visibility of the 

small boat target even at very low speeds and with trajectories at very narrow angles to the 

baseline.  The visibility of targets in increasing sea states was studied, showing the expected 

degradation of visibility with increased sea roughness and clutter.  Some initial processing 

was performed through the application of a 2 Hz HPF to remove clutter and this was shown to 

help improve the target visibility/SCR.  Results to show the effect of the radar polarisation on 

the target and clutter signals have been presented.  These fit with the expected behaviour 

corresponding to very low grazing angle measurements, and the forward scatter effect at 

optical frequencies.  Finally some results of target measurements made over longer ranges 

were presented, it was seen that with the current maritime hardware it was possible to detect 

the small inflatable boat target over a baseline range of 1300 m. The target was crossing the 

mid-point of the baseline, which is the least preferable from a power budget perspective.  The 

concept of ‘quasi-optimal’ processing was introduced in Section 5.2.6 and showed by 

application to data, that even though FSR has no range resolution, processing techniques can 

be applied to extract the target trajectory with good accuracy.  In summary, the method uses 

signal correlation with a reference database in order to find the reference with the nearest 
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matching trajectory parameters. The quasi-optimal processing is very similar to the matched 

filter correlator and so was also applied to a high sea state record (after a 2 Hz HPF clutter 

removal) to further increase the SCR.  Following this, a discussion was provided of what 

needs to be done in order to predict the detection capabilities of the FSR system, its 

effectiveness against marginal (low SCR) targets and implement automatic target detection 

algorithms.  

Finally due to the fact that the majority of experimental work had to be carried out in 

low sea state littoral waters, with stationary antennas, simulations were required in order to 

give some estimation of the FSR system capabilities in open sea conditions.  The maritime 

FSR system is ultimately expected to function out in the deep sea in high sea states, with 

moving antennas, where wave blocking is expected to become an issue. This sort of 

environment is not however easily accessible for trials. 

In Section 6, a 3D sea surface model was created through the use of empirical deep sea 

wave spectra.  Antennas and targets were placed upon the animated surface, set in motion, 

and target line of sight visibility times were estimated for varying wind/wave speeds and 

directions.  The simulations suggested that visibility can be maintained for between 0.3 s and 

1.2 s for the given simulation parameters, which is encouraging.  Discussion was included as 

to how the simulations may be extended to include electromagnetic effects and how to 

validate the model experimentally. 

7.2 CONCLUSIONS 
The work undertaken for the production of this thesis actually initiated research in the 

field of maritime FSR.  It set out to fundamentally show through creation of an experimental 

system and collection of experimental data, that the concept of maritime FSR was practically 
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feasible.  The author collected the first ever database of maritime FSR target and clutter 

records for various environmental, radar and target parameters.   

The introductory work in Section 2 provided essential comparison of radar basics to 

place FSR within the context of the more commonplace radar systems (and vice versa).  The 

phenomenological description in Section 3.1 however gave a more comprehensive, required 

understanding of the physics underlying the FSR system.  The benefit of the 

phenomenological research is apparent as it allows us to more completely define the operating 

region of FSR, based on expected target sizes and radar frequency.  It also provided the 

information necessary to produce the FSR signal and power budget models.  These 

incorporated the most important consequence of the forward scatter effect, known as the 

‘Shadow Contour Theorem’.  The signal amplitude in the forward scatter region is modulated 

by the diffraction pattern from the target object’s silhouette shape; it is independent of the full 

3D shape and material.  This makes it very useful in detecting stealth targets.  At this stage, 

neither model has been comprehensively compared to experimental data for verification.  

However, the signal simulated for comparison to the results of anechoic chamber experiments 

to verify the FS effect in Section 3.1.5 provided a good match to the measured signals in the 

FS region for which it was derived. It gave a near complete match to the rectangular 

absorbing target, which almost completely negates any bistatic scattering, which the FS signal 

model doesn’t account for. This gives the signal model some credibility at least in controlled 

conditions.  The models were derived in this work in order to gain insight into what to expect 

during measurement, provide correlation references for the quasi-optimal processing in 

Section 5.2.6 and more fundamentally create a starting point for future development and 

verification; and these goals were achieved. 
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As stated previously, one of the most important aims for this research was to create an 

experimental system to perform actual maritime FSR measurements; the other was to make 

the measurements themselves.  Both of these aims were achieved, and both contribute to the 

field of research in novel and important ways.  Now that the design of the FSR system has 

been considered, built and proven experimentally, it can be used for future FSR studies.  The 

trials data, as mentioned before, is unique and of great importance for progressing the current 

research.  The main effort in design has been into the development of a 7.5 GHz system, 

based around the ‘self-mixing’ receiver, this has been the mainstay of the experimental 

research in this thesis.  Thought has been put into testing the effects of radar parameters on 

performance; the FS phenomenology gives an indication into how the radar parameters may 

affect the target signal. This made the case for the design and inclusion of a 24 GHz channel 

in the radar system. The higher frequency may enable better target detection due to the 

increased target FSCS, however the reduction in width of the FSCS main lobe may impact 

directivity towards the receiver.  This requires experimental investigation, and it is currently 

unknown how the clutter amplitude will behave at this higher frequency.  This hardware 

addition was included to ensure the progress of research into the next stages after the work in 

this thesis.   

All the experimental data within the thesis was collected for the fundamental single 

baseline transmitter–receiver pair, and indeed this is where the research should start.  

Research effotr should however be put in alongside this, to ensure that the end goal of the 

FSR buoy mounted network is feasible from a practical point of view.  Discussion has been 

included in Section 4.1 as an effort to identify some of the issues that may need exploring.  

Additionally to this however, an analysis of the potential performance improvements derived 

from the network should be made e.g. enhanced target tracking across multiple baselines. 
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A selection of data from the measurement campaign was presented in Section 5 in 

which clutter analysis results were presented in terms of the clutter spectra and distribution.  

The target measurement data at this time has not however received as in depth an analysis and 

is currently more at the qualitative stages.  The proposed ‘quasi-optimal’ processing was 

applied to estimate target trajectory parameters for a set of data.  The fact that this processing 

provides good trajectory estimation is another indication that the FSR signal model used to 

form the correlation database is credible.  The improvements from both the HPF clutter 

removal and quasi-optimal processing were not quantified completely and were shown rather 

as proof of principle.  The techniques warrant further investigation into their optimisation and 

assessment of performance.  The generation of the reference signature database requires 

investigation into the optimum parameter spacing required for accurate motion parameter 

estimation, whilst limiting the size of the database.    

Currently no investigation has been performed on the data to predict detection 

performance of the radar system.  This is a very important part of the development of the 

maritime FSR system as a whole and has been discussed at the end of Section 5.2.6.  The 

clutter characteristics in general are known, what is required next is an analysis of the target 

data in order to estimate target signal statistics, and for verification or improvement of the 

FSR signal models.  With the appropriate signal model the target signal characteristics may be 

simulated for a wide variety of scenarios without the need for excessive measurement 

campaigns.  All the experimental measurements show reasonably good SCRs with easily 

detectable targets, and this is useful for understanding the system functionality and 

signal/propagation model confirmation.  However, what is really important is to understand 

the detection capabilities against marginal targets.  Once the statistics are understood, 

determination of the probabilities of detection for given false alarm rates and SCRs can be 
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found and thought can be put towards the application of CFAR automatic detection schemes.  

It also important to understand what type/size/shape of target is considered a marginal target 

in FSR and how this varies with radar and topology parameters e.g. baseline length.   This 

requires experimental validation of the FSR power budget to estimate signal strength and 

consequently (using clutter data) SCRs for given targets. 

 With no method of testing deep sea functionality, simulations were required in order 

to predict if this system will function in its proposed environment and thus warrant further 

investigation.  The simulations gave good insight into the effects of wave blocking and how 

the various model parameters affect this.  These results also seemed to correspond to insight.   

This model has however reduced the complexity of the real sea scenario quite dramatically 

with the choice to only measure the direct line of sight visibility; it will also require 

experimental confirmation as to its accuracy.  It was proposed in Section 6.9 that this may be 

accomplished by scaled down experimentation, i.e. reduce antenna and target heights in low 

sea state measurements.  The model could also extended, such as including the effect of swell 

in to the wave spectra, which may have a large effect.  Ultimately it would be ideal to use the 

simulated surfaces in an electromagnetic simulation, this was also discussed in Section 6.9.  

The faceted models suggest ray tracing techniques could be used, it would be the subject of 

future work to assess the feasibility from a computational point of view however.  If 

simulations are possible and accuracy determined, they can provide another source of data to 

further the development of the FSR system.   

7.3 FUTURE WORK 
As with any research, the work remaining exceeds what has already been 

accomplished.  The process of performing the research highlights many important tasks with 
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which to proceed.  This section summarises the most important next stages of research and is 

drawn from the conclusions section. 

The most important area of future work is to perform analysis on the collected target 

signature database.  This will involve FSR signal model verification through comparison with 

the recorded data, to test if the models accurately reproduce the measured spectra, statistics 

and expected power budget.  The use of the clutter analysis work will be required for this and 

this process will also determine if any further clutter analysis is required.  Alongside this, the 

measured data should be used to begin characterisation of the FSR target detection 

capabilities.  Estimations of detection probabilities should be formed from the target and 

clutter statistics, the signal models can also be used to inform prediction for unmeasured 

scenarios.  Marginal targets should be defined and the detection probabilities for these low 

SCR targets should be assessed.  The use of automatic CFAR detection schemes should be 

investigated (initially CA-CFAR) and their performance evaluated. 

Being that the hardware is already constructed, extensive experimentation should be 

made using the 24 GHz FSR system and compared to simultaneous 7.5 GHz measurements.  

This should be part of ongoing work investigating the optimisation of the FSR system, 

motivated in part by the FSR phenomenology. 

Validation of LOS simulation models will require new data sets to be recorded with 

very low antenna heights in order for the measurement of wave blocking to be accomplished. 

This testing should be combined with and part of the 24 GHz measurements.  Development of 

the model in terms of the addition of swell to the current simulation method and expansion of 

the model to consider electromagnetic scattering should be investigated. 
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The current clutter filtering and quasi–optimal processing methodologies should be 

progressed further, estimating performance and optimising filter characteristics and reference 

database creation.   

Finally, some continued effort should be made into investigating the practicalities of 

networking nodes in the final system design.  It is better to know the problems that may be 

faced before we face them.  
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